1
|
Zhang S, Zhang Y, Ning Z, Duan M, Lin X, Duan N, Wang Z, Wu S. Design and application of microfluidics in aptamer SELEX and Aptasensors. Biotechnol Adv 2024; 77:108461. [PMID: 39374797 DOI: 10.1016/j.biotechadv.2024.108461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Aptamers are excellent recognition molecules obtained from systematic evolution of ligands by exponential enrichment (SELEX) that have been extensively researched for constructing aptasensors. However, in the process from SELEX to the construction of aptasensors, there are many disadvantages, such as tedious and repetitive operations, interference from external factors, and low efficiency, which seriously limits their application scope and development. Introducing the microfluidic technology can realize the integration and intelligence of SELEX and aptasensing, improve the efficiency of SELEX, and enhance the detection performance and convenience of aptasensing. Hence, in this review, the characteristics of various chips based on different driving forces are described firstly. And then summarizing the design of microfluidic devices based on different SELEX methods and showing the strategies of microfluidic aptasensors based on different detection modes. Finally, discussing the difficulties and challenges encountered when microfluidic is integrated with the SELEX and the aptasensors.
Collapse
Affiliation(s)
- Shikun Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yingming Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyuan Ning
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengxia Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Yang KZ, Wang M, Gao MY, Wang YT, Zhang ZL. Dynamic selection of high-affinity aptamers using a magnetically activated continuous deflection microfluidic chip. Chem Commun (Camb) 2024; 60:2772-2775. [PMID: 38353965 DOI: 10.1039/d4cc00229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
To accelerate the discovery of high-affinity aptamers, a magnetically activated continuous deflection (MACD) chip was designed. The MACD chip could achieve dynamic selection in a continuous flow, which meant that the binding and separation were carried out consecutively. Dynamic selection could make selection efficient. Low-affinity sequences could be eluted in time and high-affinity sequences could be enriched via dynamic selection. The stringency of the conditions could be further increased by lowering the target concentration in the dynamic selection. Finally, a C.al3 aptamer with high-affinity and high-specificity for Candida albicans (C. albicans) was obtained through six rounds of selection. Its dissociation constant (Kd) was 7.9 nM. This demonstrated that dynamic selection using a MACD chip was an effective method for high-affinity aptamer selection.
Collapse
Affiliation(s)
- Ke-Zhu Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Meng Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Ming-Yue Gao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Yong-Tao Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
3
|
Yoo H, Lee HR, Kang SB, Lee J, Park K, Yoo H, Kim J, Chung TD, Lee KM, Lim HH, Son CY, Sun JY, Oh SS. G-Quadruplex-Filtered Selective Ion-to-Ion Current Amplification for Non-Invasive Ion Monitoring in Real Time. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303655. [PMID: 37433455 DOI: 10.1002/adma.202303655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
Living cells efflux intracellular ions for maintaining cellular life, so intravital measurements of specific ion signals are of significant importance for studying cellular functions and pharmacokinetics. In this work, de novo synthesis of artificial K+ -selective membrane and its integration with polyelectrolyte hydrogel-based open-junction ionic diode (OJID) is demonstrated, achieving a real-time K+ -selective ion-to-ion current amplification in complex bioenvironments. By mimicking biological K+ channels and nerve impulse transmitters, in-line K+ -binding G-quartets are introduced across freestanding lipid bilayers by G-specific hexylation of monolithic G-quadruplex, and the pre-filtered K+ flow is directly converted to amplified ionic currents by the OJID with a fast response time at 100 ms intervals. By the synergistic combination of charge repulsion, sieving, and ion recognition, the synthetic membrane allows K+ transport exclusively without water leakage; it is 250× and 17× more permeable toward K+ than monovalent anion, Cl- , and polyatomic cation, N-methyl-d-glucamine+ , respectively. The molecular recognition-mediated ion channeling provides a 500% larger signal for K+ as compared to Li+ (0.6× smaller than K+ ) despite the same valence. Using the miniaturized device, non-invasive, direct, and real-time K+ efflux monitoring from living cell spheroids is achieved with minimal crosstalk, specifically in identifying osmotic shock-induced necrosis and drug-antidote dynamics.
Collapse
Affiliation(s)
- Hyebin Yoo
- Department of Materials Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Hyun-Ro Lee
- Department of Materials Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Soon-Bo Kang
- Department of Materials Science & Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Juhwa Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Kunwoong Park
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Hyunjae Yoo
- Department of Materials Science & Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Jinmin Kim
- Department of Materials Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Hyun-Ho Lim
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Chang Yun Son
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon, 21983, South Korea
| | - Jeong-Yun Sun
- Department of Materials Science & Engineering, Seoul National University, Seoul, 08826, South Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, South Korea
| | - Seung Soo Oh
- Department of Materials Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon, 21983, South Korea
| |
Collapse
|
4
|
Hong SL, Zhang MF, Wang X, Liu H, Zhang N, Tang M, Li W. Magnetic-based Microfluidic Chip: A Powerful Tool for Pathogen Detection and Affinity Reagents Selection. Crit Rev Anal Chem 2023; 54:2658-2669. [PMID: 37004164 DOI: 10.1080/10408347.2023.2195940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The global outbreak of pathogen diseases has brought a huge risk to human lives and social development. Rapid diagnosis is the key strategy to fight against pathogen diseases. Development of detection methods and discovery of related affinity reagents are important parts of pathogen diagnosis. Conventional detection methods and affinity reagents discovery have some problems including much reagent consumption and labor intensity. Magnetic-based microfluidic chip integrates the unique advantages of magnetism and microfluidic technology, improving a powerful tool for pathogen detection and their affinity reagent discovery. This review provides a summary about the summary of pathogen detection through magnetic-based microfluidic chip, which refers to the pathogen nucleic acid detection (including extraction, amplification and signal acquisition), pathogen proteins and antibodies detection. Meanwhile, affinity reagents are served as the critical tool to specially capture pathogens. New affinity reagents are discovered to further facilitate the pathogen diagnosis. Microfluidic technology has also emerged as a powerful tool for affinity reagents discovery. Thus, this review further introduced the selection progress of aptamer as next generation affinity through the magnetic-based microfluidic technology. Using this selection technology shows great potential to improve selection performance, including integration and highly efficient selection. Finally, an outlook is given on how this field will develop on the basis of ongoing pathogen challenges.
Collapse
Affiliation(s)
- Shao-Li Hong
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, People's Republic of China
| | - Meng-Fan Zhang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Xuan Wang
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Huihong Liu
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Nangang Zhang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Man Tang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Wei Li
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| |
Collapse
|
5
|
Fabrication and Evaluation of Optical Nanobiosensor based on localized surface plasmon resonance (LSPR) of gold nanorod for detection of CRP. Anal Chim Acta 2022; 1237:340580. [DOI: 10.1016/j.aca.2022.340580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/16/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
|
6
|
Lee M, Kang B, Lee J, Lee J, Jung ST, Son CY, Oh SS. De novo selected hACE2 mimics that integrate hotspot peptides with aptameric scaffolds for binding tolerance of SARS-CoV-2 variants. SCIENCE ADVANCES 2022; 8:eabq6207. [PMID: 36288301 PMCID: PMC9604513 DOI: 10.1126/sciadv.abq6207] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/07/2022] [Indexed: 06/02/2023]
Abstract
The frequent occurrence of viral variants is a critical problem in developing antiviral prophylaxis and therapy; along with stronger recognition of host cell receptors, the variants evade the immune system-based vaccines and neutralizing agents more easily. In this work, we focus on enhanced receptor binding of viral variants and demonstrate generation of receptor-mimicking synthetic reagents, capable of strongly interacting with viruses and their variants. The hotspot interaction of viruses with receptor-derived short peptides is maximized by aptamer-like scaffolds, the compact and stable architectures of which can be in vitro selected from a myriad of the hotspot peptide-coupled random nucleic acids. We successfully created the human angiotensin-converting enzyme 2 (hACE2) receptor-mimicking hybrid ligand that recruits the hACE2-derived receptor binding domain-interacting peptide to directly interact with a binding hotspot of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Experiencing affinity boosting by ~500% to Omicron, the de novo selected hACE2 mimic exhibited a great binding tolerance to all SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Minjong Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Byunghwa Kang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Juhwa Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jisun Lee
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul 02841, South Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, South Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul 02841, South Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, South Korea
| | - Chang Yun Son
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 21983, South Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 21983, South Korea
| |
Collapse
|
7
|
Chen JC, Chen JP, Shen MW, Wornow M, Bae M, Yeh WH, Hsu A, Liu DR. Generating experimentally unrelated target molecule-binding highly functionalized nucleic-acid polymers using machine learning. Nat Commun 2022; 13:4541. [PMID: 35927274 PMCID: PMC9352670 DOI: 10.1038/s41467-022-31955-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
In vitro selection queries large combinatorial libraries for sequence-defined polymers with target binding and reaction catalysis activity. While the total sequence space of these libraries can extend beyond 1022 sequences, practical considerations limit starting sequences to ≤~1015 distinct molecules. Selection-induced sequence convergence and limited sequencing depth further constrain experimentally observable sequence space. To address these limitations, we integrate experimental and machine learning approaches to explore regions of sequence space unrelated to experimentally derived variants. We perform in vitro selections to discover highly side-chain-functionalized nucleic acid polymers (HFNAPs) with potent affinities for a target small molecule (daunomycin KD = 5-65 nM). We then use the selection data to train a conditional variational autoencoder (CVAE) machine learning model to generate diverse and unique HFNAP sequences with high daunomycin affinities (KD = 9-26 nM), even though they are unrelated in sequence to experimental polymers. Coupling in vitro selection with a machine learning model thus enables direct generation of active variants, demonstrating a new approach to the discovery of functional biopolymers.
Collapse
Affiliation(s)
- Jonathan C. Chen
- grid.66859.340000 0004 0546 1623Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA USA ,grid.38142.3c000000041936754XDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA ,grid.38142.3c000000041936754XHoward Hughes Medical Institute, Harvard University, Cambridge, MA USA
| | - Jonathan P. Chen
- grid.512059.aWork conducted at Uber AI Labs, Uber Technologies, Inc., San Francisco, CA USA ,Meta Platforms, Menlo Park, CA USA
| | - Max W. Shen
- grid.66859.340000 0004 0546 1623Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA USA ,grid.38142.3c000000041936754XDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA ,grid.38142.3c000000041936754XHoward Hughes Medical Institute, Harvard University, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Michael Wornow
- grid.66859.340000 0004 0546 1623Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA USA ,grid.38142.3c000000041936754XDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA
| | - Minwoo Bae
- grid.66859.340000 0004 0546 1623Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA USA ,grid.38142.3c000000041936754XDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA
| | - Wei-Hsi Yeh
- grid.66859.340000 0004 0546 1623Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA USA ,grid.38142.3c000000041936754XDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA ,grid.38142.3c000000041936754XHoward Hughes Medical Institute, Harvard University, Cambridge, MA USA ,grid.38142.3c000000041936754XProgram in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA USA
| | - Alvin Hsu
- grid.66859.340000 0004 0546 1623Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA USA ,grid.38142.3c000000041936754XDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA ,grid.38142.3c000000041936754XHoward Hughes Medical Institute, Harvard University, Cambridge, MA USA
| | - David R. Liu
- grid.66859.340000 0004 0546 1623Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA USA ,grid.38142.3c000000041936754XDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA ,grid.38142.3c000000041936754XHoward Hughes Medical Institute, Harvard University, Cambridge, MA USA
| |
Collapse
|
8
|
Lim H, Chang J, Kim KI, Moon Y, Lee S, Lee B, Lee JH, Lee J. On-chip selection of adenosine aptamer using graphene oxide-coated magnetic nanoparticles. BIOMICROFLUIDICS 2022; 16:044102. [PMID: 35909647 PMCID: PMC9337878 DOI: 10.1063/5.0095419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Systematic evolution of ligands by exponential enrichment (SELEX) is a method that is generally used for developing aptamers, which have arisen the promising alternatives for antibodies. However, conventional SELEX methods have limitations, such as a limited selection of target molecules, time-consuming and complex fabrication processes, and labor-intensive processes, which result in low selection yields. Here, we used (i) graphene oxide (GO)-coated magnetic nanoparticles in the selection process for separation and label-free detection and (ii) a multilayered microfluidic device manufactured using a three-dimensionally printed mold that is equipped with automated control valves to achieve precise fluid flows. The developed on-chip aptamer selection device and GO-coated magnetic nanoparticles were used to screen aptamer candidates for adenosine in eight cycles of the selection process within approximately 2 h for each cycle. Based on results from isothermal titration calorimetry, an aptamer with a dissociation constant of 18.6 ± 1.5 μM was selected. Therefore, the on-chip platform based on GO-coated magnetic nanoparticles provides a novel label-free screening technology for biosensors and micro/nanobiotechnology for achieving high-quality aptamers.
Collapse
Affiliation(s)
| | - Junhyuck Chang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyung-il Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Youngkwang Moon
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Saebom Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Byoungsang Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Heon Lee
- Authors to whom correspondence should be addressed:, Tel.: +82-31-290-7404 and , Tel.: +82-31-299-4845
| | - Jinkee Lee
- Authors to whom correspondence should be addressed:, Tel.: +82-31-290-7404 and , Tel.: +82-31-299-4845
| |
Collapse
|
9
|
Liu Y, Wang N, Chan CW, Lu A, Yu Y, Zhang G, Ren K. The Application of Microfluidic Technologies in Aptamer Selection. Front Cell Dev Biol 2021; 9:730035. [PMID: 34604229 PMCID: PMC8484746 DOI: 10.3389/fcell.2021.730035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Aptamers are sequences of single-strand oligonucleotides (DNA or RNA) with potential binding capability to specific target molecules, which are increasingly used as agents for analysis, diagnosis, and medical treatment. Aptamers are generated by a selection method named systematic evolution of ligands by exponential enrichment (SELEX). Numerous SELEX methods have been developed for aptamer selections. However, the conventional SELEX methods still suffer from high labor intensity, low operation efficiency, and low success rate. Thus, the applications of aptamer with desired properties are limited. With their advantages of low cost, high speed, and upgraded extent of automation, microfluidic technologies have become promising tools for rapid and high throughput aptamer selection. This paper reviews current progresses of such microfluidic systems for aptamer selection. Comparisons of selection performances with discussions on principles, structure, operations, as well as advantages and limitations of various microfluidic-based aptamer selection methods are provided.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, SAR China
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, Hong Kong, SAR China
| | - Nijia Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, SAR China
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, Hong Kong, SAR China
| | - Chiu-Wing Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, SAR China
| | - Aiping Lu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, Hong Kong, SAR China
- School of Chinese Medicine, Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, Hong Kong Baptist University, Hong Kong, Hong Kong, SAR China
| | - Yuanyuan Yu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, Hong Kong, SAR China
- School of Chinese Medicine, Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, Hong Kong Baptist University, Hong Kong, Hong Kong, SAR China
| | - Ge Zhang
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, Hong Kong, SAR China
- School of Chinese Medicine, Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, Hong Kong Baptist University, Hong Kong, Hong Kong, SAR China
| | - Kangning Ren
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, SAR China
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, Hong Kong, SAR China
- Institute of Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon, Hong Kong, SAR China
| |
Collapse
|
10
|
Xu Y, Jiang X, Zhou Y, Ma M, Wang M, Ying B. Systematic Evolution of Ligands by Exponential Enrichment Technologies and Aptamer-Based Applications: Recent Progress and Challenges in Precision Medicine of Infectious Diseases. Front Bioeng Biotechnol 2021; 9:704077. [PMID: 34447741 PMCID: PMC8383106 DOI: 10.3389/fbioe.2021.704077] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/26/2021] [Indexed: 02/05/2023] Open
Abstract
Infectious diseases are considered as a pressing challenge to global public health. Accurate and rapid diagnostics tools for early recognition of the pathogen, as well as individualized precision therapy are essential for controlling the spread of infectious diseases. Aptamers, which were screened by systematic evolution of ligands by exponential enrichment (SELEX), can bind to targets with high affinity and specificity so that have exciting potential in both diagnosis and treatment of infectious diseases. In this review, we provide a comprehensive overview of the latest development of SELEX technology and focus on the applications of aptamer-based technologies in infectious diseases, such as targeted drug-delivery, treatments and biosensors for diagnosing. The challenges and the future development in this field of clinical application will also be discussed.
Collapse
Affiliation(s)
- Yixin Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhong Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Ma
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,The First People's Hospital of Shuangliu District, Chengdu/West China (Airport)Hospital Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Tapp M, Dennis P, Naik RR, Milam VT. Competition-Enhanced Ligand Selection to Screen for DNA Aptamers for Spherical Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9043-9052. [PMID: 34279112 DOI: 10.1021/acs.langmuir.1c01053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Competition-Enhanced Ligand Selection (CompELS) approach was used to identify aptamer candidates for spherical gold nanoparticles (AuNPs). This approach differs from conventional Systematic Evolution of Ligands by EXponential enrichment (SELEX)-based aptamer screening by eliminating repeated elution and polymerase chain reaction (PCR) amplification steps of bound candidate sequences between each selection round to continually enrich the candidate aptamer pool with oligonucleotides remaining from an earlier SELEX selection round. Instead, a new pool of unenriched oligonucleotides is added during each CompELS selection round to compete with existing target-bound oligonucleotides species for target binding sites. In this study, 24 aptamer candidates for AuNPs were identified using the CompELS approach and then compared to reveal similarities in their primary structures and their predicted secondary structures. No strong patterns in individual base identities (position-dependent) nor in segments of consecutive bases (independent of position) prevailed among the identified sequences. Motifs in predicted secondary structures, on the other hand, were shared among otherwise unrelated aptamer sequences. These motifs were revealed using a systematic classification and enumeration of distinct secondary structure elements, namely, hairpins, duplexes, single-stranded segments, interior loops, bulges, and multibranched loops.
Collapse
Affiliation(s)
| | - Patrick Dennis
- Materials & Manufacturing Directorate, Soft Matter Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Rajesh R Naik
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | | |
Collapse
|
12
|
Yu H, Alkhamis O, Canoura J, Liu Y, Xiao Y. Advances and Challenges in Small‐Molecule DNA Aptamer Isolation, Characterization, and Sensor Development. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Haixiang Yu
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| | - Obtin Alkhamis
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| | - Juan Canoura
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| | - Yingzhu Liu
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| | - Yi Xiao
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| |
Collapse
|
13
|
Yu H, Alkhamis O, Canoura J, Liu Y, Xiao Y. Advances and Challenges in Small-Molecule DNA Aptamer Isolation, Characterization, and Sensor Development. Angew Chem Int Ed Engl 2021; 60:16800-16823. [PMID: 33559947 PMCID: PMC8292151 DOI: 10.1002/anie.202008663] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/16/2021] [Indexed: 12/12/2022]
Abstract
Aptamers are short oligonucleotides isolated in vitro from randomized libraries that can bind to specific molecules with high affinity, and offer a number of advantages relative to antibodies as biorecognition elements in biosensors. However, it remains difficult and labor-intensive to develop aptamer-based sensors for small-molecule detection. Here, we review the challenges and advances in the isolation and characterization of small-molecule-binding DNA aptamers and their use in sensors. First, we discuss in vitro methodologies for the isolation of aptamers, and provide guidance on selecting the appropriate strategy for generating aptamers with optimal binding properties for a given application. We next examine techniques for characterizing aptamer-target binding and structure. Afterwards, we discuss various small-molecule sensing platforms based on original or engineered aptamers, and their detection applications. Finally, we conclude with a general workflow to develop aptamer-based small-molecule sensors for real-world applications.
Collapse
Affiliation(s)
- Haixiang Yu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Obtin Alkhamis
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Juan Canoura
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Yingzhu Liu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Yi Xiao
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| |
Collapse
|
14
|
Wu L, Wang Y, Xu X, Liu Y, Lin B, Zhang M, Zhang J, Wan S, Yang C, Tan W. Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chem Rev 2021; 121:12035-12105. [PMID: 33667075 DOI: 10.1021/acs.chemrev.0c01140] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed ongoing progress in precision medicine to improve human health. As an emerging diagnostic technique, liquid biopsy can provide real-time, comprehensive, dynamic physiological and pathological information in a noninvasive manner, opening a new window for precision medicine. Liquid biopsy depends on the sensitive and reliable detection of circulating targets (e.g., cells, extracellular vesicles, proteins, microRNAs) from body fluids, the performance of which is largely governed by recognition ligands. Aptamers are single-stranded functional oligonucleotides, capable of folding into unique tertiary structures to bind to their targets with superior specificity and affinity. Their mature evolution procedure, facile modification, and affinity regulation, as well as versatile structural design and engineering, make aptamers ideal recognition ligands for liquid biopsy. In this review, we present a broad overview of aptamer-based liquid biopsy techniques for precision medicine. We begin with recent advances in aptamer selection, followed by a summary of state-of-the-art strategies for multivalent aptamer assembly and aptamer interface modification. We will further describe aptamer-based micro-/nanoisolation platforms, aptamer-enabled release methods, and aptamer-assisted signal amplification and detection strategies. Finally, we present our perspectives regarding the opportunities and challenges of aptamer-based liquid biopsy for precision medicine.
Collapse
Affiliation(s)
- Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yidi Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yilong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bingqian Lin
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingxia Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jialu Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuang Wan
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
15
|
Li J, Gu J, Zhang H, Liu R, Zhang W, Mohammed-Elsabagh M, Xia J, Morrison D, Zakaria S, Chang D, Arrabi A, Li Y. A Highly Specific DNA Aptamer for RNase H2 from Clostridium difficile. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9464-9471. [PMID: 33410654 DOI: 10.1021/acsami.0c20277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Molecular recognition elements with high specificity are of great importance for the study of molecular interactions, accurate diagnostics, drug design, and personalized medicine. Herein, a highly specific DNA aptamer for RNase H2 from Clostridium difficile (C. difficile) was generated by SELEX and minimized to 40 nucleotides. The aptamer exhibits a dissociation constant (Kd) of 1.8 ± 0.5 nM and an inhibition constant (IC50) of 7.1 ± 0.6 nM for C. difficile RNase H2, both of which are 2 orders of magnitude better for the same enzyme from other control bacteria. The fluorescent version of the aptamer can distinguish C. difficile from several other control bacteria in a cell lysate assay. This work demonstrates that a ubiquitous protein like RNase H2 can still be used as the target for the development of highly specific aptamers and the combination of the protein and the aptamer can achieve the recognition specificity needed for a diagnostic test and drug development.
Collapse
Affiliation(s)
- Jiuxing Li
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Jimmy Gu
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Hongfen Zhang
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Rudi Liu
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Wenqing Zhang
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Mostafa Mohammed-Elsabagh
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Jianrun Xia
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Devon Morrison
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Sandy Zakaria
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Dingran Chang
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Amjad Arrabi
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Yingfu Li
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
16
|
Xue J, Chen F, Bai M, Cao X, Fu W, Zhang J, Zhao Y. Aptamer-Functionalized Microdevices for Bioanalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9402-9411. [PMID: 33170621 DOI: 10.1021/acsami.0c16138] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aptamers have drawn great attention in the field of biological research and disease diagnosis for the remarkable advantages as recognition elements. They show unique superiority for facile selection, desirable thermal stability, flexible engineering, and low immunogenicity, complementing the use of conventional antibodies. Aptamer-functionalized microdevices offer promising properties for bioanalysis applications because of the compact sizes, minimal reaction volume, high throughput, operational feasibility, and controlled preciseness. In this review, we first introduce the innovative technologies in the selection of aptamers with microdevices and then highlight some advanced applications of aptamer-functionalized microdevices in bioanalysis field for diverse targets. Aptamer-functionalized microfluidic devices, microarrays, and paper-based and other interface-based microdevices are all bioanalysis platforms with huge potential in the near future. Finally, the major challenges of these microdevices applied in bioanalysis are discussed and future perspectives are also envisioned.
Collapse
Affiliation(s)
- Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Xiaowen Cao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Wenhao Fu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Jin Zhang
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
17
|
Evenson WE, Lin WZS, Pang K, Czaja AT, Jalali-Yazdi F, Takahashi TT, Malmstadt N, Roberts RW. Enabling Flow-Based Kinetic Off-Rate Selections Using a Microfluidic Enrichment Device. Anal Chem 2020; 92:10218-10222. [PMID: 32633489 PMCID: PMC10368462 DOI: 10.1021/acs.analchem.0c01867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modern genomic sequencing efforts are identifying potential diagnostic and therapeutic targets more rapidly than existing methods can generate the peptide- and protein-based ligands required to study them. To address this problem, we have developed a microfluidic enrichment device (MFED) enabling kinetic off-rate selection without the use of exogenous competitor. We tuned the conditions of the device (bed volume, flow rate, immobilized target) such that modest, readily achievable changes in flow rates favor formation or dissociation of target-ligand complexes based on affinity. Simple kinetic equations can be used to describe the behavior of ligand binding in the MFED and the kinetic rate constants observed agree with independent measurements. We demonstrate the utility of the MFED by showing a 4-fold improvement in enrichment compared to standard selection. The MFED described here provides a route to simultaneously bias pools toward high-affinity ligands while reducing the demand for target-protein to less than a nanomole per selection.
Collapse
Affiliation(s)
- William E Evenson
- Department of Chemistry, University of Southern California, 3620 McClintock Avenue, SGM 418, Los Angeles, California 90089, United States
| | - Wan-Zhen Sophie Lin
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, California 90089, United States
| | - Kenmond Pang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, California 90089, United States
| | - Alexander T Czaja
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Denney Research Center (DRB) 140, Los Angeles, California 90089, United States
| | - Farzad Jalali-Yazdi
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, California 90089, United States
| | - Terry T Takahashi
- Department of Chemistry, University of Southern California, 3620 McClintock Avenue, SGM 418, Los Angeles, California 90089, United States
| | - Noah Malmstadt
- Department of Chemistry, University of Southern California, 3620 McClintock Avenue, SGM 418, Los Angeles, California 90089, United States.,Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, California 90089, United States.,Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Denney Research Center (DRB) 140, Los Angeles, California 90089, United States.,USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, California 90033, United States
| | - Richard W Roberts
- Department of Chemistry, University of Southern California, 3620 McClintock Avenue, SGM 418, Los Angeles, California 90089, United States.,Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, HED 216, Los Angeles, California 90089, United States.,Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Denney Research Center (DRB) 140, Los Angeles, California 90089, United States.,USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, California 90033, United States.,Department of Molecular and Computational Biology, University of Southern California, 1050 Child Way, RRI 201, Los Angeles, California 90089, United States
| |
Collapse
|
18
|
JIANG H, LV XF, ZHAO KX. Progress of Aptamer Screening Techniques Based on Microfluidic Chips. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60015-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Catalytic RNA, ribozyme, and its applications in synthetic biology. Biotechnol Adv 2019; 37:107452. [DOI: 10.1016/j.biotechadv.2019.107452] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022]
|
20
|
Wu Y, Belmonte I, Sykes KS, Xiao Y, White RJ. Perspective on the Future Role of Aptamers in Analytical Chemistry. Anal Chem 2019; 91:15335-15344. [PMID: 31714748 PMCID: PMC10184572 DOI: 10.1021/acs.analchem.9b03853] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It has been almost 30 years since the invention of Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology and the description of the first aptamers. In retrospect over the past 30 years, advances in aptamer development and application have demonstrated that aptamers are potentially useful reagents that can be employed in diverse areas within analytical chemistry, biotechnology, biomedicine, and molecular biology. While often touted as artificial antibodies with an ability to be selected for any target, aptamer development, unfortunately, lags behind development of analytical methodologies that employ aptamers, hindering deeper integration into the application of analytical tool development. This perspective covers recent advances in SELEX methodology for improving efficiency of the SELEX procedure and enhancing affinity and specificity of the selected aptamers, what we view as a critical barrier in the future role of aptamers in analytical chemistry. We discuss postselection modifications that can be used for enhancing performance of the selected aptamers in an analytical device by including understanding intermolecular interaction forces in the binding domain. While highlighting promising properties of aptamers that enable several analytical advances, we provide discussion on the challenges of penetration of aptamers in the analytical field.
Collapse
Affiliation(s)
- Yao Wu
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Israel Belmonte
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Kiana S Sykes
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Yi Xiao
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Ryan J White
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States.,Department of Electrical Engineering and Computer Science , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| |
Collapse
|
21
|
Kang B, Park SV, Soh HT, Oh SS. A Dual-Sensing DNA Nanostructure with an Ultrabroad Detection Range. ACS Sens 2019; 4:2802-2808. [PMID: 31547650 DOI: 10.1021/acssensors.9b01503] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite considerable interest in the development of biosensors that can measure analyte concentrations with a dynamic range spanning many orders of magnitude, this goal has proven difficult to achieve. We describe here a modular biosensor architecture that integrates two different readout mechanisms into a single-molecule construct that can achieve target detection across an extraordinarily broad dynamic range. Our dual-mode readout DNA biosensor combines an aptamer and a DNAzyme to quantify adenosine triphosphate (ATP) with two different mechanisms, which respond to low (micromolar) and high (millimolar) concentrations by generating distinct readouts based on changes in fluorescence and absorbance, respectively. Importantly, we have also devised regulatory strategies to fine-tune the target detection range of each sensor module by controlling the target-sensitivity of each readout mechanism. Using this strategy, we report the detection of ATP at a dynamic range spanning 1-500 000 μM, more than 5 orders of magnitude, representing the largest dynamic range reported to date with a single biosensor construct.
Collapse
Affiliation(s)
| | | | - Hyongsok Tom Soh
- Department of Electrical Engineering and Department of Radiology, Canary Center at Stanford University, 3155 Porter Drive, Stanford, California 94305, United States
| | | |
Collapse
|
22
|
Eissa S, Siddiqua A, Chinnappan R, Zourob M. Electrochemical SELEX Technique for the Selection of DNA Aptamers against the Small Molecule 11-Deoxycortisol. ACS APPLIED BIO MATERIALS 2019; 2:2624-2632. [DOI: 10.1021/acsabm.9b00294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shimaa Eissa
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi Rd, Riyadh 11533, Saudi Arabia
| | - Ayesha Siddiqua
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi Rd, Riyadh 11533, Saudi Arabia
| | - Raja Chinnappan
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi Rd, Riyadh 11533, Saudi Arabia
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi Rd, Riyadh 11533, Saudi Arabia
- King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh 12713, Saudi Arabia
| |
Collapse
|
23
|
Fraser LA, Cheung YW, Kinghorn AB, Guo W, Shiu SCC, Jinata C, Liu M, Bhuyan S, Nan L, Shum HC, Tanner JA. Microfluidic Technology for Nucleic Acid Aptamer Evolution and Application. ACTA ACUST UNITED AC 2019; 3:e1900012. [PMID: 32627415 DOI: 10.1002/adbi.201900012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/12/2019] [Indexed: 12/18/2022]
Abstract
The intersection of microfluidics and aptamer technologies holds particular promise for rapid progress in a plethora of applications across biomedical science and other areas. Here, the influence of microfluidics on the field of aptamers, from traditional capillary electrophoresis approaches through innovative modern-day approaches using micromagnetic beads and emulsion droplets, is reviewed. Miniaturizing aptamer-based bioassays through microfluidics has the potential to transform diagnostics and embedded biosensing in the coming years.
Collapse
Affiliation(s)
- Lewis A Fraser
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Yee-Wai Cheung
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Andrew B Kinghorn
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Wei Guo
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), China
| | - Simon Chi-Chin Shiu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Chandra Jinata
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Mengping Liu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Soubhagya Bhuyan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| | - Lang Nan
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong (SAR), China
| | - Julian A Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong (SAR), China
| |
Collapse
|
24
|
Hong SL, Xiang MQ, Tang M, Pang DW, Zhang ZL. Ebola Virus Aptamers: From Highly Efficient Selection to Application on Magnetism-Controlled Chips. Anal Chem 2019; 91:3367-3373. [PMID: 30740973 DOI: 10.1021/acs.analchem.8b04623] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aptamers for Ebola virus (EBOV) offer a powerful means for prevention and diagnostics. Unfortunately, few aptamers for EBOV have been discovered yet. Herein, assisted by magnetism-controlled selection chips to strictly manipulate selection conditions, a highly efficient aptamer selection platform for EBOV is proposed. With highly stringent selection conditions of rigorous washing, manipulation of minuscule amounts of magnetic beads, and real-time evaluation of the selection effectiveness, the selection performance of the platform was improved significantly. In only three rounds of selection, the high-performance aptamers for EBOV GP and NP proteins were obtained simultaneously, with dissociation constants ( Kd) in the nanomolar range. The aptamer was further applied to the detection of EBOV successfully, with a detection limit of 4.2 ng/mL. The whole detection process that consisted of sample mixing, separation, and signal acquisition was highly integrated and conducted in a magnetism-controlled detection chip, showing high biosafety and great potential for point-of-care detection. The method may open up new avenues for prevention and control of EBOV.
Collapse
Affiliation(s)
- Shao-Li Hong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Meng-Qi Xiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Man Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
25
|
Hermann CA, Duerkop A, Baeumner AJ. Food Safety Analysis Enabled through Biological and Synthetic Materials: A Critical Review of Current Trends. Anal Chem 2018; 91:569-587. [PMID: 30346696 DOI: 10.1021/acs.analchem.8b04598] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cornelia A Hermann
- Department of Analytical Chemistry, Chemo- and Biosensors , University of Regensburg , 93053 Regensburg , Germany
| | - Axel Duerkop
- Department of Analytical Chemistry, Chemo- and Biosensors , University of Regensburg , 93053 Regensburg , Germany
| | - Antje J Baeumner
- Department of Analytical Chemistry, Chemo- and Biosensors , University of Regensburg , 93053 Regensburg , Germany
| |
Collapse
|
26
|
Zhou Y, Li W, Tseng Y, Zhang J, Liu J. Developing slow-off dickkopf-1 aptamers for early-diagnosis of hepatocellular carcinoma. Talanta 2018; 194:422-429. [PMID: 30609553 DOI: 10.1016/j.talanta.2018.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/25/2018] [Accepted: 10/03/2018] [Indexed: 01/10/2023]
Abstract
In this work, we obtained fast-off and slow-off aptamer recognizing dickkopf-1(DKK1), a promising biomarker for detection of early-stage hepatocellular carcinoma (HCC), with high affinity in a single SELEX procedure. The two types of aptamer possessed distinct characteristics confirmed via different validation methods. In comparison to fast-off aptamers, slow-off aptamers were proven more suitable for aptamer-based ELISA assay. Using slow dissociation SELEX, slow-off aptamers were selectively retained. Meanwhile, a mutant (34del) of slow-off D10 was estimated with picomolar affinity (371.9 pM). The mutant was further truncated into 39nt before pairing with an antibody in the aptamer-based ELISA. The aptamer-target-antibody construction showed similar performance as conventional ELISA with a detection limit of 62.5 pg/ml. Quantification in 60 sera samples with the construction was also correlated with conventional ELISA. The results demonstrated novel DKK1 aptamer could replace capture antibody for potential early HCC diagnosis.
Collapse
Affiliation(s)
- Yin Zhou
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wenshuai Li
- Department of Digestive Diseases of Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200040, China
| | - Yujen Tseng
- Department of Digestive Diseases of Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200040, China
| | - Jun Zhang
- Department of Digestive Diseases of Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200040, China.
| | - Jie Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Digestive Diseases of Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200040, China.
| |
Collapse
|
27
|
Pan Q, Law COK, Yung MMH, Han KC, Pon YL, Lau TCK. Novel RNA aptamers targeting gastrointestinal cancer biomarkers CEA, CA50 and CA72-4 with superior affinity and specificity. PLoS One 2018; 13:e0198980. [PMID: 30303958 PMCID: PMC6179186 DOI: 10.1371/journal.pone.0198980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/21/2018] [Indexed: 11/18/2022] Open
Abstract
Gastric cancer is the third most common cause of death from cancer in the world and it remains difficult to cure in Western countries, primarily because most patients present with advanced disease. Currently, CEA, CA50 and CA72-4 are commonly used as tumor markers for gastric cancer by immunoassays. However, the drawback and conundrum of immunoassay are the unceasing problem in standardization of quality of antibodies and time/effort for the intensive production. Therefore, there is an urgent need for the development of a standardized assay to detect gastric cancer at the early stage. Aptamers are DNA or RNA oligonucleotides with structural domain which recognize ligands such as proteins with superior affinity and specificity when compared to antibodies. In this study, SELEX (Systematic Evolution of Ligands by Exponential enrichment) technique was adopted to screen a random 30mer RNA library for aptamers targeting CEA, CA50 and CA72-4 respectively. Combined with high-throughput sequencing, we identified 6 aptamers which specifically target for these three biomarkers of gastrointestinal cancer. Intriguingly, the predicted secondary structures of RNA aptamers from each antigen showed significant structural similarity, suggesting the structural recognition between the aptamers and the antigens. Moreover, we determined the dissociation constants of all the aptamers to their corresponding antigens by fluorescence spectroscopy, which further demonstrated high affinities between the aptamers and the antigens. In addition, immunostaining of gastric adenocarcinoma cell line AGS using CEA Aptamer probe showed positive fluorescent signal which proves the potential of the aptamer as a detection tool for gastric cancer. Furthermore, substantially decreased cell viability and growth were observed when human colorectal cell line LS-174T was transfected with each individual aptamers. Taking together, these novel RNA aptamers targeting gastrointestinal cancer biomarker CEA, CA50 and CA72-4 will aid further development and standardization of clinical diagnostic method with better sensitivity and specificity, and potentially future therapeutics development of gastric cancer.
Collapse
Affiliation(s)
- Qing Pan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - Carmen O. K. Law
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - Mingo M. H. Yung
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - K. C. Han
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - Yuen Lam Pon
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - Terrence Chi Kong Lau
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| |
Collapse
|
28
|
Tapp MJN, Slocik JM, Dennis PB, Naik RR, Milam VT. Competition-Enhanced Ligand Selection to Identify DNA Aptamers. ACS COMBINATORIAL SCIENCE 2018; 20:585-593. [PMID: 30189130 DOI: 10.1021/acscombsci.8b00048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Competition-enhanced ligand screening (CompELS) was employed to rapidly screen through large DNA libraries to identify single-stranded, oligonucleotide-based ligands called aptamers that bind to a nonbiological target. This previously unreported aptamer screening approach involves the repeated introduction of unenriched random sequence populations during the biopanning process, but avoids iterative elution and polymerase chain reaction (PCR) amplification steps inherent to traditional SELEX (systematic evolution of ligands by exponential enrichment) screening. In this study, 25 aptamers were identified against a gold surface via CompELS and evaluated to identify patterns in primary structures and predicted secondary structures. Following a final one-round competition experiment with the 25 identified aptamers, one particular aptamer sequence (1N) emerged as the most competitive adsorbate species for the gold substrate. Binding analysis indicated at least an order of magnitude difference in the binding affinity of 1N ( Kd = 5.6 × 10-10 M) compared to five other high affinity aptamer candidates ( Kd = 10-8-10-9 M) from identical secondary structure families. Collectively, these studies introduce a rapid, reliable screening and ranking platform along with a classification scheme well-suited for identifying and characterizing aptamers for nonbiological as well as biological targets.
Collapse
Affiliation(s)
| | - Joseph M. Slocik
- Materials & Manufacturing Directorate, Soft Matter Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Patrick B. Dennis
- Materials & Manufacturing Directorate, Soft Matter Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Rajesh R. Naik
- Materials & Manufacturing Directorate, Soft Matter Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | | |
Collapse
|
29
|
Chen N, Zhu Y, Feng Z, Wang Q, Qin S, Quan K, Huang J, Liu J, Yang X, Wang K. Selection of Aptamers for Hydrophobic Drug Docetaxel To Improve Its Solubility. ACS APPLIED BIO MATERIALS 2018. [DOI: 10.1021/acsabm.8b00073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nandi Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Ying Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Zhenzhen Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Shiya Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Ke Quan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
30
|
Diao D, Qiao N, Wu X, Li J, Lou X. An efficient method to evaluate experimental factor influence on in vitro binding of aptamers. Anal Biochem 2018; 556:7-15. [PMID: 29913134 DOI: 10.1016/j.ab.2018.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/11/2022]
Abstract
Nucleic acid-based aptamers are promising alternative to antibodies, however, their selection process (SELEX) is challenging. A number of simulations and few experiments have been reported offering insights into experimental factors (EFs) that govern the effectiveness of the selection process. Though useful, these previous studied were either lack of experimental confirmation, or considered limited EFs. A more efficient experimental method is highly desired. In this study, we developed a fast method that is capable to quantitatively probe the influence of multiple EFs. Based on the fact that the aptamer enrichment efficiency is highly affected by background binding, the binding ratio between the numbers of specific aptamer binders and nonspecific (unselected library) binders per bead was used to quantitatively evaluate EF effects. Taking thrombin and streptavidin as models, three previously studied EFs (surface coverage, buffer composition, and DNA concentration) and four never-studied ones (surface chemistry, heat treatment, elution methodology and pool purity) were investigated. The EFs greatly affected binding ratio (ranging from 0.03 ± 0.03 to 14.60 ± 2.30). The results were in good agreement with the literature, suggesting the good feasibility of our method. Our study provides guidance for the choice of EFs not only for aptamer selection, but also for binding evaluation of aptamers.
Collapse
Affiliation(s)
- Donglin Diao
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Na Qiao
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Xiao Wu
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Jiyuan Li
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Xinhui Lou
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China.
| |
Collapse
|
31
|
Mazaafrianto DN, Maeki M, Ishida A, Tani H, Tokeshi M. Recent Microdevice-Based Aptamer Sensors. MICROMACHINES 2018; 9:E202. [PMID: 30424135 PMCID: PMC6187364 DOI: 10.3390/mi9050202] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/17/2022]
Abstract
Since the systematic evolution of ligands by exponential enrichment (SELEX) method was developed, aptamers have made significant contributions as bio-recognition sensors. Microdevice systems allow for low reagent consumption, high-throughput of samples, and disposability. Due to these advantages, there has been an increasing demand to develop microfluidic-based aptasensors for analytical technique applications. This review introduces the principal concepts of aptasensors and then presents some advanced applications of microdevice-based aptasensors on several platforms. Highly sensitive detection techniques, such as electrochemical and optical detection, have been integrated into lab-on-a-chip devices and researchers have moved towards the goal of establishing point-of-care diagnoses for target analyses.
Collapse
Affiliation(s)
- Donny Nugraha Mazaafrianto
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Akihiko Ishida
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Hirofumi Tani
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- Innovative Research Center for Preventive Medical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
- Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
32
|
Zhou Y, Huang Z, Yang R, Liu J. Selection and Screening of DNA Aptamers for Inorganic Nanomaterials. Chemistry 2017; 24:2525-2532. [PMID: 29205597 DOI: 10.1002/chem.201704600] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Indexed: 11/10/2022]
Abstract
Searching for DNA sequences that can strongly and selectively bind to inorganic surfaces is a long-standing topic in bionanotechnology, analytical chemistry and biointerface research. This can be achieved either by aptamer selection starting with a very large library of ≈1014 random DNA sequences, or by careful screening of a much smaller library (usually from a few to a few hundred) with rationally designed sequences. Unlike typical molecular targets, inorganic surfaces often have quite strong DNA adsorption affinities due to polyvalent binding and even chemical interactions. This leads to a very high background binding making aptamer selection difficult. Screening, on the other hand, can be designed to compare relative binding affinities of different DNA sequences and could be more appropriate for inorganic surfaces. The resulting sequences have been used for DNA-directed assembly, sorting of carbon nanotubes, and DNA-controlled growth of inorganic nanomaterials. It was recently discovered that poly-cytosine (C) DNA can strongly bind to a diverse range of nanomaterials including nanocarbons (graphene oxide and carbon nanotubes), various metal oxides and transition-metal dichalcogenides. In this Concept article, we articulate the need for screening and potential artifacts associated with traditional aptamer selection methods for inorganic surfaces. Representative examples of application are discussed, and a few future research opportunities are proposed towards the end of this article.
Collapse
Affiliation(s)
- Yibo Zhou
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Juewen Liu
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, P. R. China.,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
33
|
Abstract
Nucleic acid aptamers have tremendous potential as molecular recognition elements in biomedical targeting, analytical arrays, and self-signaling sensors. However, practical limitations and inefficiencies in the process of selecting novel aptamers (SELEX) have hampered widespread adoption of aptamer technologies. Many factors have recently contributed to more effective aptamer screening, but no influence has done more to increase the efficiency, scale, and automation of aptamer selection than that of new microfluidic SELEX techniques. This review introduces aptamers as a powerful chemical and biological tool, briefly highlights traditional SELEX techniques and their limitations, covers in detail the recent advancements in microfluidic methods of aptamer selection and characterization, and suggests possible future directions of the field.
Collapse
Affiliation(s)
- Sean K Dembowski
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
34
|
Development of Cell-Specific Aptamers: Recent Advances and Insight into the Selection Procedures. Molecules 2017; 22:molecules22122070. [PMID: 29186905 PMCID: PMC6149766 DOI: 10.3390/molecules22122070] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 12/22/2022] Open
Abstract
Systematic evolution of ligands by exponential enrichment (SELEX) is an established procedure for developing short single-stranded nucleic acid ligands called aptamers against a target of choice. This approach has also been used for developing aptamers specific to whole cells named Cell-SELEX. Aptamers selected by Cell-SELEX have the potential to act as cell specific therapeutics, cell specific markers or cell specific drug delivery and imaging agents. However, aptamer development is a laborious and time-consuming process which is often challenging due to the requirement of frequent optimization of various steps involved in Cell-SELEX procedures. This review provides an insight into various procedures for selection, aptamer enrichment, regeneration and aptamer-binding analysis, in addition to a very recent update on all aptamers selected by Cell-SELEX procedures.
Collapse
|
35
|
Liu M, Yin Q, Brennan JD, Li Y. Selection and characterization of DNA aptamers for detection of glutamate dehydrogenase from Clostridium difficile. Biochimie 2017; 145:151-157. [PMID: 28882627 DOI: 10.1016/j.biochi.2017.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/31/2017] [Indexed: 12/18/2022]
Abstract
Rapid and accurate diagnosis of Clostridium difficile infections (CDI) is crucial for patient treatment, infection control and epidemiological monitoring. As an important antigen, glutamate dehydrogenase (GDH) has been proposed as a preliminary screening test target for CDI. However, current assays based on GDH activity or GDH immunoassays have suboptimal sensitivity and specificity. Herein, we describe the selection and characterization of single-stranded DNA aptamers that specifically target GDH. After 10 rounds of selection, high-throughput sequencing was used to identify enriched aptamer candidates. Of 10 candidates, three aptamers for GDH were identified. Gel shift assays showed that these aptamers exhibited low nanomolar affinities. One aptamer was optimized based on structural analysis and further engineered into a structure-switching fluorescence signaling aptamer, wherein desorption from reduced graphene oxide (RGO) upon binding of GDH led to an increase in fluorescence emission. This method allowed for quantitative detection of GDH with a detection limit of 1 nM, providing great potential for its further application in CDI diagnosis.
Collapse
Affiliation(s)
- Meng Liu
- Department of Biochemistry and Biomedical Sciences, and Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada; Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 0A3, Canada; School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Qingxin Yin
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - John D Brennan
- Department of Biochemistry and Biomedical Sciences, and Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada; Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 0A3, Canada; The Michael G. DeGroote Institute for Infectious Disease Research (IIDR), McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, and Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada; Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 0A3, Canada; The Michael G. DeGroote Institute for Infectious Disease Research (IIDR), McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
36
|
Hong SL, Wan YT, Tang M, Pang DW, Zhang ZL. Multifunctional Screening Platform for the Highly Efficient Discovery of Aptamers with High Affinity and Specificity. Anal Chem 2017; 89:6535-6542. [DOI: 10.1021/acs.analchem.7b00684] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shao-Li Hong
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Ya-Tao Wan
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Man Tang
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Dai-Wen Pang
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
37
|
Liu X, Li H, Jia W, Chen Z, Xu D. Selection of aptamers based on a protein microarray integrated with a microfluidic chip. LAB ON A CHIP 2016; 17:178-185. [PMID: 27924973 DOI: 10.1039/c6lc01208f] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We developed an efficient and fast method based on a protein microarray integrated with a microfluidic chip for the process of SELEX (systematic evolution of ligands by exponential enrichment). Lactoferrin from bovine milk was used as a target protein, while bovine serum albumin (BSA), α-lactalbumin, β-lactoglobulin and casein were used as negative proteins. They were separately dotted and immobilized to prepare the protein microarray and the resulting microarray was further integrated into a microfluidic chip for the SELEX (PMM-SELEX) process. The interaction between aptamer candidates and targets could be monitored using a fluorescence microarray scanner and the whole PMM-SELEX process was performed through seven-round selection. As a result, five aptamers (Lac-14, Lac-6a, Lac-9, Lac-5, Lac-3a) with high specificity and affinity can be repeatedly obtained during three times of independent repeated selection. Surface plasmon resonance (SPR) was used to calculate the dissociation constants (Kd). The aptamer Lac-6a was then used for detection of lactoferrin by fluorescence polarization. A linear response was observed for lactoferrin concentrations in the range of 0.78-50 μg mL-1 and the detection limit was 0.39 μg mL-1. Thus, the innovative PMM-SELEX presented shows stability, accuracy and high efficiency for aptamer screening.
Collapse
Affiliation(s)
- Xiaohui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, China.
| | - Hui Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, China.
| | - Wenchao Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, China.
| | - Zhu Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, China.
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, China.
| |
Collapse
|
38
|
Aptamer Selection Technology and Recent Advances. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 4:e223. [PMID: 28110747 PMCID: PMC4345306 DOI: 10.1038/mtna.2014.74] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023]
Abstract
Over the last decade, aptamers have begun to find their way from basic research to diverse commercial applications. The development of diagnostics is even more widespread than clinical applications because aptamers do not have to be extensively modified to enhance their in vivo stability and pharmacokinetics in diagnostic assays. The increasing attention has propelled the technical progress of the in vitro selection technology (SELEX) to enhance the efficiency of developing aptamers for commercially interesting targets. This review highlights recent progress in the technical steps of a SELEX experiment with a focus on high-throughput next-generation sequencing and bioinformatics. Achievements have been made in the optimization of aptamer libraries, separation schemes, amplification of the selected libraries and the identification of aptamer sequences from enriched libraries.
Collapse
|
39
|
Rozenblum GT, Lopez VG, Vitullo AD, Radrizzani M. Aptamers: current challenges and future prospects. Expert Opin Drug Discov 2015; 11:127-35. [PMID: 26630462 DOI: 10.1517/17460441.2016.1126244] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Aptamers are oligonucleotide molecules raised in vitro from large combinatorial libraries of nucleic acids and developed to bind to targets with high affinity and specificity. Whereas novel target molecules are proposed for therapeutic intervention and diagnostic, aptamer technology has a great potential to become a source of lead compounds. AREAS COVERED In this review, the authors address the current status of the technology and highlight the recent progress in aptamer-based technologies. They also discuss the current major technical limitations of aptamer technology and propose original solutions based on existing technologies that could result in a solid aptamer-discovery platform. EXPERT OPINION Whereas aptamers have shown to bind to targets with similar affinities and specificities to those of antibodies, aptamers have several advantages that could outweigh antibody technology and open new opportunities for better medical and diagnostic solutions. However, the current status of the aptamer technology suffers from several technical limitations that slowdown the progression of novel aptamers into the clinic and makes the business around aptamers challenging.
Collapse
Affiliation(s)
- Guido Tomás Rozenblum
- a Departamento de Investigaciones Biomédicas y Biotecnológicas , Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, CEBBAD - Universidad Maimónides , Buenos Aires , Argentina
| | - Vanina Gisela Lopez
- a Departamento de Investigaciones Biomédicas y Biotecnológicas , Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, CEBBAD - Universidad Maimónides , Buenos Aires , Argentina
| | - Alfredo Daniel Vitullo
- a Departamento de Investigaciones Biomédicas y Biotecnológicas , Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, CEBBAD - Universidad Maimónides , Buenos Aires , Argentina
| | - Martín Radrizzani
- b Laboratorio de Neuro y Citogenética Molecular , Centro de Estudios de Salud y Medio Ambiente, Universidad de San Martín - CONICET , Buenos Aires , Argentina
| |
Collapse
|
40
|
Abstract
Detection of desired target chemicals in a sensitive and selective manner is critically important to protect human health, environment and national security. Nature has been a great source of inspiration for the design of sensitive and selective sensors. In this mini-review, we overview the recent developments in bio-inspired sensor development. There are four major components of sensor design: design of receptors for specific targets; coating materials to integrate receptors to transducing machinery; sensitive transducing of signals; and decision making based on the sensing results. We discuss the biomimetic methods to discover specific receptors followed by a discussion about bio-inspired nanocoating material design. We then review the recent developments in phage-based bioinspired transducing systems followed by a discussion of biomimetic pattern recognition-based decision making systems. Our review will be helpful to understand recent approaches to reverse-engineer natural systems to design specific and sensitive sensors.
Collapse
Affiliation(s)
- Ju Hun Lee
- Department of Bioengineering, University of California, Berkeley, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Hilton JP, Olsen T, Kim J, Zhu J, Nguyen T, Barbu M, Pei R, Stojanovic M, Lin Q. Isolation of thermally sensitive protein-binding oligonucleotides on a microchip. MICROFLUIDICS AND NANOFLUIDICS 2015; 19:795-804. [PMID: 31223297 PMCID: PMC6586242 DOI: 10.1007/s10404-015-1604-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/24/2015] [Indexed: 06/07/2023]
Abstract
This paper presents a microfluidic chip capable of isolating thermally sensitive protein-binding aptamer candidates. The chip makes use of bead-immobilized target molecules and DNA (deoxyribonucleic acid) sequences to enable a simplified chip design, in which affinity selection and PCR (polymerase chain reaction) amplification of target-binding sequences occur in temperature-controlled microchambers. Using pressure-driven flow, buffer containing single-stranded DNA molecules with randomized sequences is cycled through a series of affinity selection and PCR amplification steps on microbeads. Successive introduction of the sample to each chamber effects a process of competition whereby DNA strands with weak binding strength to target molecules are rejected in favor of strongly binding sequences. Using bead-based PCR, the amplification step was miniaturized and integrated with affinity selection, resulting in significant reductions in process time and reagent use. As a demonstration, temperature-dependent selection and amplification of single-stranded oligonucleotides that bind to human Immuno-globulin E (IgE) was performed in 4 h, a 20-fold reduction in process time as compared to conventional methods that would require approximately a week. Fluorescent binding assays then demonstrated that the desired temperature specificity was imparted to the aptamer candidates within just one round of selection, and within two rounds the aptamer candidates exhibited enhanced affinity toward IgE.
Collapse
Affiliation(s)
- John P. Hilton
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Timothy Olsen
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Jinho Kim
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Jing Zhu
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - ThaiHuu Nguyen
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Mihaela Barbu
- Division of Clinical Pharmacology and Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Renjun Pei
- Suzhou Institute of Nano‑Tech and Nano‑Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu, China
| | - Milan Stojanovic
- Division of Clinical Pharmacology and Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
42
|
Zhou W, Huang PJJ, Ding J, Liu J. Aptamer-based biosensors for biomedical diagnostics. Analyst 2015; 139:2627-40. [PMID: 24733714 DOI: 10.1039/c4an00132j] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aptamers are single-stranded nucleic acids that selectively bind to target molecules. Most aptamers are obtained through a combinatorial biology technique called SELEX. Since aptamers can be isolated to bind to almost any molecule of choice, can be readily modified at arbitrary positions and they possess predictable secondary structures, this platform technology shows great promise in biosensor development. Over the past two decades, more than one thousand papers have been published on aptamer-based biosensors. Given this progress, the application of aptamer technology in biomedical diagnosis is still in a quite preliminary stage. Most previous work involves only a few model aptamers to demonstrate the sensing concept with limited biomedical impact. This Critical Review aims to summarize progress that might enable practical applications of aptamers for biological samples. First, general sensing strategies based on the unique properties of aptamers are summarized. Each strategy can be coupled to various signaling methods. Among these, a few detection methods including fluorescence lifetime, flow cytometry, upconverting nanoparticles, nanoflare technology, magnetic resonance imaging, electronic aptamer-based sensors, and lateral flow devices have been discussed in more detail since they are more likely to work in a complex sample matrix. The current limitations of this field include the lack of high quality aptamers for clinically important targets. In addition, the aptamer technology has to be extensively tested in a clinical sample matrix to establish reliability and accuracy. Future directions are also speculated to overcome these challenges.
Collapse
Affiliation(s)
- Wenhu Zhou
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Central South University, Tongzipo Road #172, Changsha 410013, Hunan, PR China.
| | | | | | | |
Collapse
|
43
|
Spiga FM, Maietta P, Guiducci C. More DNA-Aptamers for Small Drugs: A Capture-SELEX Coupled with Surface Plasmon Resonance and High-Throughput Sequencing. ACS COMBINATORIAL SCIENCE 2015; 17:326-33. [PMID: 25875077 DOI: 10.1021/acscombsci.5b00023] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To address limitations in the production of DNA aptamers against small molecules, we introduce a DNA-based capture-SELEX (systematic evolution of ligands by exponential enrichment) protocol with long and continuous randomized library for more flexibility, coupled with in-stream direct-specificity monitoring via SPR and high throughput sequencing (HTS). Applying this capture-SELEX on tobramycin shows that target-specificity arises at cycle number 8, which is confirmed by sequence convergence in HTS analysis. Interestingly, HTS also shows that the most enriched sequences are already visible after only two capture-SELEX cycles. The best aptamers displayed K(D) of approximately 200 nM, similar to RNA and DNA-based aptamers previously selected for tobramycin. The lowest concentration of tobramycin detected on label-free SPR experiments with the selected aptamers is 20-fold smaller than the clinical range limit, demonstrating suitability for small-drug biosensing.
Collapse
Affiliation(s)
- Fabio M. Spiga
- Institute of Bioengineering, Ecole Polytechnique Féderale De Lausanne (EPFL), Lausanne, Vaud, 1015, Switzerland
| | - Paolo Maietta
- Structural Computational Biology Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Carlotta Guiducci
- Institute of Bioengineering, Ecole Polytechnique Féderale De Lausanne (EPFL), Lausanne, Vaud, 1015, Switzerland
| |
Collapse
|
44
|
Abstract
Aptamers, as a novel class of molecular probes for diagnosis, imaging and targeting therapy, have attracted increasing attention in recent years. Aptamers are generated from libraries of single-stranded nucleic acids against different molecules via the "systematic evolution of ligands by exponential enrichment" (SELEX) method. SELEX is a repetitive process of a sequential selection procedure in which a DNA or RNA library pool is incubated separately with target and control molecules to select specific oligonucleotide aptamers with high affinities and specificities. Cell-SELEX is a modified version of the SELEX process in which whole living cells are used as targets for the aptamers. Dendritic cell (DC) targeting, as a new therapeutic approach, can improve the efficiency of immunotherapy in the treatment of allergies and cancers. DCs use various receptors to continuously induce adaptive immunity via capture and presentation of antigens to naïve T cells. DCs are considered as the best targets in modulating immune responses against cancer, autoimmunity, allergy and transplantation. Aptamers, as a new agent, can be applied in DC targeting. The purpose of this review is to present some general concepts of aptamer production and DC targeting by aptamer molecules.
Collapse
Affiliation(s)
- A Ganji
- a Student Research Committee , Mashhad University of Medical Sciences , Mashhad , Iran .,b Immunology Research Center, Medical School, Mashhad University of Medical Sciences , Mashhad , Iran , and
| | - A Varasteh
- c Allergy Research Center, Medical School, Mashhad University of Medical Sciences , Mashhad , Iran
| | - M Sankian
- b Immunology Research Center, Medical School, Mashhad University of Medical Sciences , Mashhad , Iran , and
| |
Collapse
|
45
|
Predicting the Uncertain Future of Aptamer-Based Diagnostics and Therapeutics. Molecules 2015; 20:6866-87. [PMID: 25913927 PMCID: PMC6272696 DOI: 10.3390/molecules20046866] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 01/07/2023] Open
Abstract
Despite the great promise of nucleic acid aptamers in the areas of diagnostics and therapeutics for their facile in vitro development, lack of immunogenicity and other desirable properties, few truly successful aptamer-based products exist in the clinical or other markets. Core reasons for these commercial deficiencies probably stem from industrial commitment to antibodies including a huge financial investment in humanized monoclonal antibodies and a general ignorance about aptamers and their performance among the research and development community. Given the early failures of some strong commercial efforts to gain government approval and bring aptamer-based products to market, it may seem that aptamers are doomed to take a backseat to antibodies forever. However, the key advantages of aptamers over antibodies coupled with niche market needs that only aptamers can fill and more recent published data still point to a bright commercial future for aptamers in areas such as infectious disease and cancer diagnostics and therapeutics. As more researchers and entrepreneurs become familiar with aptamers, it seems inevitable that aptamers will at least be considered for expanded roles in diagnostics and therapeutics. This review also examines new aptamer modifications and attempts to predict new aptamer applications that could revolutionize biomedical technology in the future and lead to marketed products.
Collapse
|
46
|
Wu Y, Zhan S, Wang L, Zhou P. Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles. Analyst 2015; 139:1550-61. [PMID: 24496116 DOI: 10.1039/c3an02117c] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The demand for selection of aptamers against various small chemical molecules has substantially increased in recent years. To incubate and separate target-specific aptamers, the conventional SELEX procedures generally need to immobilize target molecules on a matrix, which may be impotent to screen aptamers toward small molecules without enough sites for immobilization. Herein we chose Cd(II) as a model of a small molecule with less sites, and proposed a novel SELEX strategy of immobilizing ssDNA libraries rather than target molecules on a matrix, for selection of aptamers with high affinity to Cd(II). After eleven rounds of positive and negative selection, twelve T and G-rich of nonrepeating ssDNA sequences were identified, of which the Cd-4 aptamer displayed the highest binding affinity to Cd(II). The secondary structures of these sequences revealed that a stem-loop structure folded by the domain of their 30-random sequence is critical for aptamers to bind targets. Then the interaction between the selected Cd-4 aptamer and Cd(II) was confirmed by CD analysis, and the binding specificity toward other competitive metal ions was also investigated. The dissociation constant (Kd) of Cd-4 aptamer was determined as 34.5 nM for Cd(II). Moreover, the Cd-4 aptamer was considered a recognition element for the colorimetric detection of Cd(II) based on the aggregation of AuNPs by cationic polymer. Through spectroscopic quantitative analysis, Cd(II) in aqueous solution can be detected as low as 4.6 nM. The selected Cd-4 aptamer will offer a new substitute for the detection of Cd(II) or other applications like recovery of cadmium from polluted samples.
Collapse
Affiliation(s)
- Yuangen Wu
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | | | | | | |
Collapse
|
47
|
Oh S, Lee BF, Leibfarth FA, Eisenstein M, Robb MJ, Lynd N, Hawker CJ, Soh HT. Synthetic aptamer-polymer hybrid constructs for programmed drug delivery into specific target cells. J Am Chem Soc 2014; 136:15010-5. [PMID: 25290917 PMCID: PMC4210129 DOI: 10.1021/ja5079464] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Indexed: 12/11/2022]
Abstract
Viruses have evolved specialized mechanisms to efficiently transport nucleic acids and other biomolecules into specific host cells. They achieve this by performing a coordinated series of complex functions, resulting in delivery that is far more efficient than existing synthetic delivery mechanisms. Inspired by these natural systems, we describe a process for synthesizing chemically defined molecular constructs that likewise achieve targeted delivery through a series of coordinated functions. We employ an efficient "click chemistry" technique to synthesize aptamer-polymer hybrids (APHs), coupling cell-targeting aptamers to block copolymers that secure a therapeutic payload in an inactive state. Upon recognizing the targeted cell-surface marker, the APH enters the host cell via endocytosis, at which point the payload is triggered to be released into the cytoplasm. After visualizing this process with coumarin dye, we demonstrate targeted killing of tumor cells with doxorubicin. Importantly, this process can be generalized to yield APHs that specifically target different surface markers.
Collapse
Affiliation(s)
- Seung
Soo Oh
- Materials Department, Department of Chemistry and Biochemistry, Department of Mechanical
Engineering, Materials Research Laboratory, University
of California, Santa Barbara, California 93106, United States
| | - Bongjae F. Lee
- Materials Department, Department of Chemistry and Biochemistry, Department of Mechanical
Engineering, Materials Research Laboratory, University
of California, Santa Barbara, California 93106, United States
- Chemical
Research Institute, Samsung Cheil Industries,
Inc., Seoul, Republic
of Korea 140739
| | - Frank A. Leibfarth
- Materials Department, Department of Chemistry and Biochemistry, Department of Mechanical
Engineering, Materials Research Laboratory, University
of California, Santa Barbara, California 93106, United States
| | - Michael Eisenstein
- Materials Department, Department of Chemistry and Biochemistry, Department of Mechanical
Engineering, Materials Research Laboratory, University
of California, Santa Barbara, California 93106, United States
| | - Maxwell J. Robb
- Materials Department, Department of Chemistry and Biochemistry, Department of Mechanical
Engineering, Materials Research Laboratory, University
of California, Santa Barbara, California 93106, United States
| | - Nathaniel
A. Lynd
- Materials Department, Department of Chemistry and Biochemistry, Department of Mechanical
Engineering, Materials Research Laboratory, University
of California, Santa Barbara, California 93106, United States
| | - Craig J. Hawker
- Materials Department, Department of Chemistry and Biochemistry, Department of Mechanical
Engineering, Materials Research Laboratory, University
of California, Santa Barbara, California 93106, United States
| | - H. Tom Soh
- Materials Department, Department of Chemistry and Biochemistry, Department of Mechanical
Engineering, Materials Research Laboratory, University
of California, Santa Barbara, California 93106, United States
| |
Collapse
|
48
|
New Technologies Provide Quantum Changes in the Scale, Speed, and Success of SELEX Methods and Aptamer Characterization. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e183. [PMID: 25093707 PMCID: PMC4221594 DOI: 10.1038/mtna.2014.34] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/10/2014] [Indexed: 12/24/2022]
Abstract
Single-stranded oligonucleotide aptamers have attracted great attention in the past decade because of their diagnostic and therapeutic potential. These versatile, high affinity and specificity reagents are selected by an iterative in vitro process called SELEX, Systematic Evolution of Ligands by Exponential Enrichment. Numerous SELEX methods have been developed for aptamer selections; some that are simple and straightforward, and some that are specialized and complicated. The method of SELEX is crucial for selection of an aptamer with desired properties; however, success also depends on the starting aptamer library, the target molecule, aptamer enrichment monitoring assays, and finally, the analysis and characterization of selected aptamers. Here, we summarize key recent developments in aptamer selection methods, as well as other aspects of aptamer selection that have significant impact on the outcome. We discuss potential pitfalls and limitations in the selection process with an eye to aid researchers in the choice of a proper SELEX strategy, and we highlight areas where further developments and improvements are desired. We believe carefully designed multiplexed selection methods, when complemented with high-throughput downstream analysis and characterization assays, will yield numerous high-affinity aptamers to protein and small molecule targets, and thereby generate a vast array of reagents for probing basic biological mechanisms and implementing new diagnostic and therapeutic applications in the near future.
Collapse
|
49
|
Wang Q, Liu W, Xing Y, Yang X, Wang K, Jiang R, Wang P, Zhao Q. Screening of DNA aptamers against myoglobin using a positive and negative selection units integrated microfluidic chip and its biosensing application. Anal Chem 2014; 86:6572-9. [PMID: 24914856 DOI: 10.1021/ac501088q] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An aptamer screening method using a positive and negative selection units integrated microfluidic chip was introduced. Here, myoglobin (Myo), one of the early markers to increase after acute myocardial infarction, was used as the model. After 7-round selection, the aptamers, which exhibited dissociation constants (K(d)) in the nanomolar range (from 4.93 to 6.38 nM), were successfully obtained using a positive and negative selection units integrated microfluidic chip. The aptamer with the highest affinity (K(d) = 4.93 nM) was then used for the fabrication of a label-free supersandwich electrochemical biosensor for Myo detection based on target-induced aptamer displacement. The detection limit of this aptamer-based electrochemical biosensor was 10 pM, which was significantly lower than that of those previous antibody-based biosensors for Myo detection. This work may not only develop a strategy for screening aptamer but also offer promising alternatives to the traditional analytical and immunological methods for Myo detection.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha, Hunan 410082, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Oh SS, Plakos K, Xiao Y, Eisenstein M, Soh HT. In vitro selection of shape-changing DNA nanostructures capable of binding-induced cargo release. ACS NANO 2013; 7:9675-9683. [PMID: 24168267 PMCID: PMC3919467 DOI: 10.1021/nn404079v] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Many biological systems employ allosteric regulatory mechanisms, which offer a powerful means of directly linking a specific binding event to a wide spectrum of molecular functionalities. There is considerable interest in generating synthetic allosteric regulators that can perform useful molecular functions for applications in diagnostics, imaging and targeted therapies, but generating such molecules through either rational design or directed evolution has proven exceptionally challenging. To address this need, we present an in vitro selection strategy for generating conformation-switching DNA nanostructures that selectively release a small-molecule payload in response to binding of a specific trigger molecule. As an exemplar, we have generated a DNA nanostructure that hybridizes with a separate 'cargo strand' containing an abasic site. This abasic site stably sequesters a fluorescent cargo molecule in an inactive state until the DNA nanostructure encounters an ATP trigger molecule. This ATP trigger causes the nanostructure to release the cargo strand, thereby liberating the fluorescent payload and generating a detectable fluorescent readout. Our DNA nanostructure is highly sensitive, with an EC50 of 30 μM, and highly specific, releasing its payload in response to ATP but not to other chemically similar nucleotide triphosphates. We believe that this selection approach could be generalized to generate synthetic nanostructures capable of selective and controlled release of other small-molecule cargos in response to a variety of triggers, for both research and clinical applications.
Collapse
Affiliation(s)
- Seung Soo Oh
- Materials Department, University of California, Santa Barbara, CA 93106
| | - Kory Plakos
- Materials Department, University of California, Santa Barbara, CA 93106
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106
| | - Yi Xiao
- Materials Department, University of California, Santa Barbara, CA 93106
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106
| | - Michael Eisenstein
- Materials Department, University of California, Santa Barbara, CA 93106
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106
| | - Hyongsok Tom Soh
- Materials Department, University of California, Santa Barbara, CA 93106
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106
| |
Collapse
|