1
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
2
|
Matsuda A, Boottanun P, Koizumi S, Nagai M, Kuno A. Differential Glycoform Analysis of MUC1 Derived from Biological Specimens Using an Antibody-Overlay Lectin Microarray. Methods Mol Biol 2024; 2763:223-236. [PMID: 38347414 DOI: 10.1007/978-1-0716-3670-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The association between altered glycosylation of MUC1 and various disease events has sparked significant interest. However, analytical technologies to investigate the disease-related glycoforms of endogenous MUC1 in blood and tissue specimens are limited. Therefore, we devised a reliable technique for differential analysis of endogenous MUC1 glycoforms based on an antibody-assisted lectin microarray. Its highly sensitive detection aids in analyzing soluble MUC1 from relatively small amounts of serum via a simple enrichment process. Micro-/macro-dissection of the MUC1-positive region is combined with glycoform analysis of the membrane-tethered MUC1. Thus, we have optimized the protocol for sample qualification using immunohistochemistry, sample pretreatment for tissue sections, protein extraction, purification via immunoprecipitation, and the antibody-overlay lectin microarray, which are sequentially essential for differential glycoform analysis of endogenous MUC1.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Sysmex Corporation, Reagent Engineering, Protein Technology Group, Hyogo, Japan
| | - Patcharaporn Boottanun
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Sachiko Koizumi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Misugi Nagai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Atsushi Kuno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan.
| |
Collapse
|
3
|
Shu J, Xiong W, Zhang R, Ma S, Zhou K, Wang X, Yan F, Huang D, Li J, Wu Y, He J. Glycan-selective in-situ growth of thermoresponsive polymers for thermoprecipitation and enrichment of N-glycoprotein/glycopeptides. Talanta 2023; 253:123956. [PMID: 36167012 DOI: 10.1016/j.talanta.2022.123956] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 12/13/2022]
Abstract
In view of the biological significance and micro-heterogeneity of protein glycosylation for human health, specific enrichment of N-glycosylated proteins/peptides from complex biological samples is a prerequisite for the discovery of disease biomarkers and clinical diagnosis. In this work, we propose a "grafting-from" N-glycoprotein enriching method based on the in-situ growth of thermoresponsive polymer brushes from the N-glycosylated site of proteins. The initiator was first attached to the pre-oxidized glycan moieties by hydrazide chemistry, from which the thermoresponsive polymers can be grown to form giant protein-polymer conjugates (PPC). The thermosensitive PPC can be precipitated and separated by raising the temperature to above its lower critical solubility temperature (LCST). Mass spectrometry verified 210 N-glycopeptides corresponding to 136 N-glycoproteins in the rabbit serum. These results demonstrate the capability of the tandem thermoprecipitation strategy to enrich and separate N-glycoprotein/glycopeptide. Due to its simplicity and efficiency specifically, this method holds the potential for identifying biomarkers from biological samples in N-glycoproteome analysis.
Collapse
Affiliation(s)
- Jingjing Shu
- Research Institute of Photocatalysis, College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, China
| | - Wenli Xiong
- Research Institute of Photocatalysis, College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, China
| | - Ran Zhang
- Central Laboratory of Health Quarantine, International Travel Health Care Center, Shenzhen Customs District. 1011 Fuqiang Road, Shenzhen, 518045, China
| | - Shanyun Ma
- Research Institute of Photocatalysis, College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, China
| | - Kaiqiang Zhou
- Research Institute of Photocatalysis, College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, China
| | - Xuwei Wang
- Research Institute of Photocatalysis, College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, China
| | - Fen Yan
- Research Institute of Photocatalysis, College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, China
| | - Da Huang
- Research Institute of Photocatalysis, College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, China
| | - Jianhua Li
- Research Institute of Photocatalysis, College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, China
| | - Yuanzi Wu
- Research Institute of Photocatalysis, College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, China.
| | - Jian'an He
- Central Laboratory of Health Quarantine, International Travel Health Care Center, Shenzhen Customs District. 1011 Fuqiang Road, Shenzhen, 518045, China.
| |
Collapse
|
4
|
Wang Y, Lih TSM, Höti N, Sokoll LJ, Chesnut G, Petrovics G, Kohaar I, Zhang H. Differentially expressed glycoproteins in pre- and post-digital rectal examination urine samples for detecting aggressive prostate cancer. Proteomics 2022; 23:e2200023. [PMID: 36479985 DOI: 10.1002/pmic.202200023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Urinary glycoproteins associated with aggressive prostate cancer (AG-PCa) were previously reported using post-digital rectal examination (DRE) urine specimens. To explore the potential of using pre-DRE urine specimens for detecting AG-PCa, we compared glycoproteins between pre- and post-DRE urine specimens, verified the previously identified post-DRE AG-PCa-associated urinary glycoproteins in pre-DRE urine specimens, and explored potential new glycoproteins for AG-PCa detection in pre-DRE urine specimens. Quantitative glycoproteomic data were acquired for 154 pre-DRE urine specimens from 41 patients with no cancer at biopsy, 48 patients with non-AG-PCa (Gleason score = 6), and 65 patients with AG-PCa (Gleason score 7 or above). Compared to glycopeptides from the post-DRE urine data, humoral immunity-related proteins were enriched in pre-DRE urine samples, whereas cell mediated immune response proteins were enriched in post-DRE urine samples. Analyses of AG-PCa-associated glycoproteins from pre-DRE urine revealed that the three urinary glycoproteins, prostate-specific antigen (PSA), prostatic acid phosphatase (ACPP), and CD97 antigen (CD97) that were previously identified in post-DRE urine samples, were also observed as AG-PCa associated glycoproteins in pre-DRE urine. In addition, we identified three new glycoproteins, fibrillin 1 (FBN1), vitronectin (VTN), and hemicentin 2 (HMCN2), to be potentially associated with AG-PCa in pre-DRE urine specimens. In summary, glycoprotein profiles differ between pre- and post-DRE urine specimens. The identified AG-PCa-associated glycoproteins may be further evaluated in large cohort of pre-DRE urine specimens for detecting clinically significant PCa.
Collapse
Affiliation(s)
- Yuefan Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Naseruddin Höti
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lori J Sokoll
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gregory Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Urology Service, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA
| | - Indu Kohaar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Lectins applied to diagnosis and treatment of prostate cancer and benign hyperplasia: A review. Int J Biol Macromol 2021; 190:543-553. [PMID: 34508719 DOI: 10.1016/j.ijbiomac.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/02/2021] [Indexed: 11/20/2022]
Abstract
Environmental factors, as well as genetic factors, contribute to the increase in prostate cancer cases (PCa), the second leading cause of cancer death in men. This fact calls for the development of more reliable, quick and low-cost early detection tests to distinguish between malignant and benign cases. Abnormal cell glycosylation pattern is a promising PCa marker for this purpose. Proteins, such as lectins can decode the information contained in the glycosylation patterns. Several studies have reported on applications of plant lectins as diagnostic tools for PCa considering the ability to differentiate it from benign cases. In addition, they can be used to detect, separate and differentiate the glycosylation patterns of cells or proteins present in serum, urine and semen. Herein, we present an overview of these studies, showing the lectins that map glycans differentially expressed in PCa, as well as benign hyperplasia (BPH). We further review their applications in biosensors, histochemical tests, immunoassays, chromatography, arrays and, finally, their therapeutic potential. This is the first study to review vegetable lectins applied specifically to PCa.
Collapse
|
6
|
Wu CC, Lu YT, Yeh TS, Chan YH, Dash S, Yu JS. Identification of Fucosylated SERPINA1 as a Novel Plasma Marker for Pancreatic Cancer Using Lectin Affinity Capture Coupled with iTRAQ-Based Quantitative Glycoproteomics. Int J Mol Sci 2021; 22:ijms22116079. [PMID: 34199928 PMCID: PMC8200073 DOI: 10.3390/ijms22116079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive cancer with a high mortality rate, necessitating the development of effective diagnostic, prognostic and predictive biomarkers for disease management. Aberrantly fucosylated proteins in PC are considered a valuable resource of clinically useful biomarkers. The main objective of the present study was to identify novel plasma glycobiomarkers of PC using the iTRAQ quantitative proteomics approach coupled with Aleuria aurantia lectin (AAL)-based glycopeptide enrichment and isotope-coded glycosylation site-specific tagging, with a view to analyzing the glycoproteome profiles of plasma samples from patients with non-metastatic and metastatic PC and gallstones (GS). As a result, 22 glycopeptides with significantly elevated levels in plasma samples of PC were identified. Fucosylated SERPINA1 (fuco-SERPINA1) was selected for further validation in 121 plasma samples (50 GS and 71 PC) using an AAL-based reverse lectin ELISA technique developed in-house. Our analyses revealed significantly higher plasma levels of fuco-SERPINA1 in PC than GS subjects (310.7 ng/mL v.s. 153.6 ng/mL, p = 0.0114). Elevated fuco-SERPINA1 levels were associated with higher TNM stage (p = 0.024) and poorer prognosis for overall survival (log-rank test, p = 0.0083). The increased plasma fuco-SERPINA1 levels support the utility of this protein as a novel prognosticator for PC.
Collapse
Affiliation(s)
- Chia-Chun Wu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.W.); (Y.-T.L.)
| | - Yu-Ting Lu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.W.); (Y.-T.L.)
| | - Ta-Sen Yeh
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou 33305, Taiwan; (T.-S.Y.); (Y.-H.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yun-Hsin Chan
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou 33305, Taiwan; (T.-S.Y.); (Y.-H.C.)
| | - Srinivas Dash
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.W.); (Y.-T.L.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-211-8800 (ext. 5171); Fax: +886-3-211-8891
| |
Collapse
|
7
|
Bertok T, Jane E, Chrenekova N, Hroncekova S, Bertokova A, Hires M, Vikartovska A, Kubanikova P, Sokol R, Fillo J, Kasak P, Borsig L, Tkac J. Analysis of serum glycome by lectin microarrays for prostate cancer patients - a search for aberrant glycoforms. Glycoconj J 2020; 37:703-711. [PMID: 33119808 DOI: 10.1007/s10719-020-09958-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/31/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
This is the first work focused on glycoprofiling of whole N- and O- glycome using lectins in an array format applied for analysis of serum samples from healthy individuals, benign prostate hyperplasia (BPH) patients, and prostate cancer (PCa) patients. Lectin microarray was prepared using traditional lectins with the incorporation of 2 recombinant bacterial lectins and 3 human lectins (17 lectins in total). Clinical validation of glycans as biomarkers was done in two studies: discrimination of healthy individuals with BPH patients vs. PCa patients (C vs. PCa) and discrimination of healthy individuals vs. BPH and PCa patients (H vs. PCond). Single lectins (17 lectins) and a combination of two lectins (136 binary lectin combinations) were applied in the clinical validation of glycan biomarkers providing 153 AUC values from ROC curves for both studies (C vs. PCa and H vs. PCond). Potential N- and O-glycans as biomarkers were identified and possible carriers of these glycans are shortly discussed.
Collapse
Affiliation(s)
- Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia.,Glycanostics, Ltd, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
| | - Nikola Chrenekova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
| | - Stefania Hroncekova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
| | - Aniko Bertokova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
| | - Alica Vikartovska
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
| | - Petra Kubanikova
- Private Urological Ambulance, Piaristicka 6, 911 01, Trencin, Slovakia
| | - Roman Sokol
- Private Urological Ambulance, Piaristicka 6, 911 01, Trencin, Slovakia
| | - Juraj Fillo
- University Hospital Bratislava, Mickiewiczova 13, 81107, Bratislava, Slovakia
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Lubor Borsig
- Department of Physiology, University of Zurich, Zurich, Switzerland.,Comprehensive Cancer Center, Zurich, Switzerland
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia. .,Glycanostics, Ltd, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia.
| |
Collapse
|
8
|
Wang J, Tian GG, Li X, Sun Y, Cheng L, Li Y, Shen Y, Chen X, Tang W, Tao S, Wu J. Integrated Glycosylation Patterns of Glycoproteins and DNA Methylation Landscapes in Mammalian Oogenesis and Preimplantation Embryo Development. Front Cell Dev Biol 2020; 8:555. [PMID: 32754589 PMCID: PMC7365846 DOI: 10.3389/fcell.2020.00555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Glycosylation is one of the most fundamental post-translational modifications. However, the glycosylation patterns of glycoproteins have not been analyzed in mammalian preimplantation embryos, because of technical difficulties and scarcity of the required materials. Using high-throughput lectin microarrays of low-input cells and electrochemical techniques, an integration analysis of the DNA methylation and glycosylation landscapes of mammal oogenesis and preimplantation embryo development was performed. Highly noticeable changes occurred in the level of protein glycosylation during these events. Further analysis identified several stage-specific lectins including LEL, MNA-M, and MAL I. It was later confirmed that LEL was involved in mammalian oogenesis and preimplantation embryogenesis, and might be a marker of FGSC differentiation. Modified nanocomposite polyaniline/AuNPs were characterized by electron microscopy and modification on bare gold electrodes using layer-by-layer assembly technology. These nanoparticles were further subjected to accuracy measurements by analyzing the protein level of ten-eleven translocation protein (TET), which is an important enzyme in DNA demethylation that is regulated by O-glycosylation. Subsequent results showed that the variations in the glycosylation patterns of glycoproteins were opposite to those of the TET levels. Moreover, analysis of correlation between the changes in glyco-gene expression and female germline stem cell glycosylation profiles indicated that glycosylation was related to DNA methylation. Subsequent integration analysis showed that the trend in the variations of glycosylation patterns of glycoproteins was similar to that of DNA methylation and opposite to that of the TET protein levels during female germ cell and preimplantation embryo development. Our findings provide insight into the complex molecular mechanisms that regulate human embryo development, and a foundation for further elucidation of early embryonic development and informed reproductive medicine.
Collapse
Affiliation(s)
- Jian Wang
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Geng G. Tian
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyong Li
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yangyang Sun
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Li Cheng
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yanfei Li
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Shen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xuejin Chen
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenwei Tang
- School of Chemistry Science and Technology, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, China
| | - Shengce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Ji Wu
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
9
|
Yu H, Shu J, Li Z. Lectin microarrays for glycoproteomics: an overview of their use and potential. Expert Rev Proteomics 2020; 17:27-39. [PMID: 31971038 DOI: 10.1080/14789450.2020.1720512] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Glycoproteomics is an important subdiscipline of proteomics, focusing on the role of protein glycosylation in various biological processes. Protein glycosylation is the enzymatic addition of sugars or oligosaccharides to proteins. Altered glycosylation often occurs in the early stages of disease development, for example, certain tumor-associated glycans have been shown to be expressed in precursor lesions of different types of cancer, making them powerful early diagnostic markers. Lectin microarrays have become a powerful tool for both the study of glycosylation and the diagnosis of various diseases including cancer.Areas covered: This review will discuss the most useful features of lectin microarrays, such as their technological advances, their capability for parallel/high-throughput analysis for the important glycopatterns of glycoprotein, and an overview of their use for glycosylation analysis of various complex protein samples, as well as their diagnostic potential in various diseases.Expert opinion: Lectin microarrays have proved to be useful in studying multiple lectin-glycan interactions in a single experiment and, with the advances made in the field, hold a promise of enabling glycopatterns of diseases in a fast and efficient manner. Lectin microarrays will become increasingly powerful early diagnostic tool for a variety of conditions.
Collapse
Affiliation(s)
- Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
10
|
Qin X, Zhang Z, Shao H, Zhang R, Chen L, Yang X. Boronate affinity material-based sensors for recognition and detection of glycoproteins. Analyst 2020; 145:7511-7527. [DOI: 10.1039/d0an01410a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review comprehensively presents the current overview and development potential of BAMs-based sensors for glycoprotein recognition and detection.
Collapse
Affiliation(s)
- Xiaoxiao Qin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P.R. China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P.R. China
| | - Hongjun Shao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P.R. China
| | - Runguang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P.R. China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Research Centre for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P.R. China
| |
Collapse
|
11
|
Maciel VL, Tamashiro LK, Bertolla RP. Post-translational modifications of seminal proteins and their importance in male fertility potential. Expert Rev Proteomics 2019; 16:941-950. [PMID: 31726898 DOI: 10.1080/14789450.2019.1693895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: The seminal proteome has been shown to directly influence the male fertile potential. Post-translational modifications (PTMs) are significant changes that play a role in the biological regulation of proteins. Sperm cells are transcriptionally and translationally inactive and these modifications are essential to control protein function.Areas covered: Here we reviewed seven PTMs which importance for male reproductive function investigated in the past decade, namely S-nitrosylation and tyrosine nitration (both occurring by the action of NO), glycosylation, ubiquitination, acetylation, methylation, and SUMOylation. Since they were previously identified in human semen, we focus on their role in sperm function, as well as in physiological and pathophysiological processes which could contribute to the fertility potential. The following keywords were applied: 'post-translational modification', 'sperm', 'semen', 'seminal plasma', 'male infertility', 'nitrosylation', 'nitration', 'histone methylation', 'SUMOylation', 'ubiquitination', 'ubiquitilation', 'glycosylation', and 'acetylation'.Expert opinion: Most biological processes orchestrated by proteins require PTMs for their activation or inhibition. Most of them are dynamic and occur in mature sperm, modulating protein function, thus exerting a significant role in sperm function and fertility. Finally, the study of PTMs should be also addressed in pathophysiological processes, as different clinical conditions are known to alter the proteome.
Collapse
Affiliation(s)
- Valter Luiz Maciel
- Departamento de Cirurgia, Disciplina de Urologia, Centro de pesquisa em Urologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Letícia Kaory Tamashiro
- Departamento de Cirurgia, Disciplina de Urologia, Centro de pesquisa em Urologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo Pimenta Bertolla
- Departamento de Cirurgia, Disciplina de Urologia, Centro de pesquisa em Urologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Electrospun polyacrylonitrile fibers with and without magnetic nanoparticles for selective and efficient separation of glycoproteins. Mikrochim Acta 2019; 186:542. [DOI: 10.1007/s00604-019-3655-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/02/2019] [Indexed: 01/23/2023]
|
13
|
Penezić A, Križakova M, Miljuš G, Katrlik J, Nedić O. Diagnostic Potential of Transferrin Glycoforms-A Lectin-Based Protein Microarray Approach. Proteomics Clin Appl 2019; 13:e1800185. [PMID: 31050875 DOI: 10.1002/prca.201800185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/28/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Disease or a specific condition may cause alteration of human transferrin (hTf) glycosylation pattern. A specific analytical platform, lectin-based protein microarray, is designed and optimized for the investigation of hTf glycans, attached to the protein core in their native form. EXPERIMENTAL DESIGN hTf molecules isolated from healthy persons of different age, diabetes mellitus type 2 (T2DM) or colorectal carcinoma (CRC) patients are used for method validation. Reliability of the results is ensured by three criteria for the evaluation of hTf-lectin interactions: i) signal-to-noise ratio above 3, ii) signal intensity above 250 arbitrary units, and iii) hTf concentration ensuring high sensitivity of the assay. RESULTS Six lectins, out of fourteen tested, satisfy the criteria. hTf is spotted at concentration of 50 µg mL-L . When physiological samples (isolated hTf) are analyzed, the highest potential to differentiate between population groups expresses Aleuria aurantia (AAL), Triticum vulgaris (WGA) and Phaseolus vulgaris (PHA-E) lectins. The initial amount of hTf which can be analyzed is very low (75 pg). CONCLUSION AND CLINICAL RELEVANCE Results confirm that a very sensitive, high-throughput lectin-based protein microarray platform can be formulated to detect changes in hTf glycan structures which can be considered as biomarkers of ageing or a disease.
Collapse
Affiliation(s)
- Ana Penezić
- Institute for the Application of Nuclear Energy (INEP), Banatska 31b, 11080, Belgrade, Serbia
| | - Martina Križakova
- Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Goran Miljuš
- Institute for the Application of Nuclear Energy (INEP), Banatska 31b, 11080, Belgrade, Serbia
| | - Jaroslav Katrlik
- Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy (INEP), Banatska 31b, 11080, Belgrade, Serbia
| |
Collapse
|
14
|
Tkac J, Gajdosova V, Hroncekova S, Bertok T, Hires M, Jane E, Lorencova L, Kasak P. Prostate-specific antigen glycoprofiling as diagnostic and prognostic biomarker of prostate cancer. Interface Focus 2019; 9:20180077. [PMID: 30842876 PMCID: PMC6388024 DOI: 10.1098/rsfs.2018.0077] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2018] [Indexed: 01/03/2023] Open
Abstract
The initial part of this review details the controversy behind the use of a serological level of prostate-specific antigen (PSA) for the diagnostics of prostate cancer (PCa). Novel biomarkers are in demand for PCa diagnostics, outperforming traditional PSA tests. The review provides a detailed and comprehensive summary that PSA glycoprofiling can effectively solve this problem, thereby considerably reducing the number of unnecessary biopsies. In addition, PSA glycoprofiling can serve as a prognostic PCa biomarker to identify PCa patients with an aggressive form of PCa, avoiding unnecessary further treatments which are significantly life altering (incontinence or impotence).
Collapse
Affiliation(s)
- Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
- Glycanostics Ltd, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Veronika Gajdosova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Stefania Hroncekova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
- Glycanostics Ltd, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84538 Bratislava, Slovakia
- Glycanostics Ltd, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
| |
Collapse
|
15
|
Pearson AJ, Gallagher ES. Overview of Characterizing Cancer Glycans with Lectin-Based Analytical Methods. Methods Mol Biol 2019; 1928:389-408. [PMID: 30725466 DOI: 10.1007/978-1-4939-9027-6_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glycosylation is a post-translational modification that is often altered in disease development and progression, including cancer. In cancerous patients, the abnormal expression of glycosylation enzymes leads to aberrant glycosylation, which has been linked to malignant tissues. Due to aberrant glycosylation, the presence of specific glycans can be used as biomarkers for identifying the type and stage of cancer. Glycan structures are heterogeneous, with different protein glycoforms having different functional activities. Lectins are an important tool in glycan analysis due to their specificity in binding to unique glycan linkages and monosaccharide units, which allows for the identification of unique glycan structural properties. In this review, we will discuss the use of lectins in microarrays and chromatography for characterizing glycan structures.
Collapse
Affiliation(s)
- Amanda J Pearson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | | |
Collapse
|
16
|
Díaz-Fernández A, Miranda-Castro R, de-Los-Santos-Álvarez N, Rodríguez EF, Lobo-Castañón MJ. Focusing aptamer selection on the glycan structure of prostate-specific antigen: Toward more specific detection of prostate cancer. Biosens Bioelectron 2018; 128:83-90. [PMID: 30640124 DOI: 10.1016/j.bios.2018.12.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
The development of chemical sensors capable of detecting the specific glycosylation patterns of proteins offers a powerful mean for the early detection of cancer. Unfortunately, this strategy is scarcely explored because receptors recognizing the glycans linked to proteins are challenging to discover. In this work, we describe a simple method for directing the selection of aptamers toward the glycan structure of the glycoproteins, with prostate-specific antigen (PSA) as a model target. Using this strategy, we identified one aptamer (PSA-1) that binds the glycan moiety of PSA with reasonable affinity (a dissociation constant of 177 ± 65 nM). Interestingly, an electrochemical sensor with a sandwich format employing the identified aptamer as a signaling receptor, provides a tool of discriminating human PSA from the unglycosylated protein, with a limit of detection of 0.66 ng/mL. The sensor responds to different levels of PSA in serum, correlating well with chemiluminescence ELISA used in hospitals even with higher potential to discriminate clinically meaningful prostate cancer. Although validation on a larger cohort is needed, this is the first demonstration of an aptamer-based sensor to detect PSA by focusing in its glycan moiety.
Collapse
Affiliation(s)
- Ana Díaz-Fernández
- Dpto. Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011 Oviedo, Spain
| | - Rebeca Miranda-Castro
- Dpto. Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011 Oviedo, Spain
| | - Noemí de-Los-Santos-Álvarez
- Dpto. Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011 Oviedo, Spain
| | | | - María Jesús Lobo-Castañón
- Dpto. Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011 Oviedo, Spain.
| |
Collapse
|
17
|
Tian R, Zhang H, Chen H, Liu G, Wang Z. Uncovering the Binding Specificities of Lectins with Cells for Precision Colorectal Cancer Diagnosis Based on Multimodal Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800214. [PMID: 29938190 PMCID: PMC6010763 DOI: 10.1002/advs.201800214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/09/2018] [Indexed: 05/03/2023]
Abstract
There is a high desire for novel targets/biomarkers to diagnose and treat colorectal cancer (CRC). Here, an approach starting from a polyacrylamide hydrogel-based lectin microarray is presented to screen the high expression of glycans on the CRC cell surface and to identify new lectin biomarkers for CRC. Three common CRC cell lines (SW480, SW620, and HCT116) and one normal colon cell line (NCM460) are profiled on the microarray with 27 lectins. The experimental results reveal that CRC cells highly express the glycans with d-galactose, d-glucose, and/or sialic acid residues, and Uelx Europaeus Agglutinin-I (UEA-I) exhibits reasonable specificity with SW480 cells. After conjugation of UEA-I with silica-coated NaGdF4:Yb3+, Er3+@NaGdF4 upconversion nanoparticles, the follow-up in vitro and in vivo experiments provide further evidence on that UEA-I can serve as tumor-targeting molecule to diagnose SW480 tumor by multimodal imaging including upconversion luminescence imaging, T1-weighted magnetic resonance imaging, and X-ray computed tomography imaging.
Collapse
Affiliation(s)
- Rongrong Tian
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaRoad Baohe DistrictHefeiAnhui230026P. R. China
| | - Hua Zhang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Hongda Chen
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Guifeng Liu
- Department of RadiologyChina–Japan Union Hospital of Jilin UniversityNo. 126, Xiantai StreetChangchun130033P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| |
Collapse
|
18
|
Zhao Q, Zhan T, Deng Z, Li Q, Liu Y, Yang S, Ji D, Li Y. Glycan analysis of colorectal cancer samples reveals stage-dependent changes in CEA glycosylation patterns. Clin Proteomics 2018; 15:9. [PMID: 29507546 PMCID: PMC5834848 DOI: 10.1186/s12014-018-9182-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
Background Carcinoembryonic antigen (CEA) is a glycoprotein associated with colorectal cancer (CRC). While the functions of its gene and protein have been fully characterized, its post-translational modifications in the context of CRC development remain undefined. Methods To show the correlation between the different stages of CRC development and changes in the glycosylation patterns of CEA, we analyzed CEA in tumor tissues (CEA-T) and paired tumor-adjacent normal tissues (CEA-A) from 53 colorectal cancer patients using a high-density lectin microarray containing 56 plant lectins. Results We detected higher expression levels of fucose, mannose and Thomsen–Friedenreich antigen, and lower expression levels of N-acetylgalactosamine, N-acetylglucosamine, galactose, branched and bisecting N-glycans on CEA in the tumor tissues relative to the tumor-adjacent normal tissues. Furthermore, a combinatorial assessment of 9 lectins is sufficient to distinguish CRC tumor tissues from tumor-adjacent normal tissues with 83% sensitivity and ~ 90% specificity. Moreover, the levels of N-acetylgalactosamine, mannose, galactose, N-acetylglucosamine on CEA showed a downward trend after first experiencing an increase at Stage II with the stages of CRC. Conclusions Our insights into the changing CEA glycosylation patterns and their role in the development of CRC highlight the importance of glycan variants on CEA for early clinical detection and staging of CRC. Electronic supplementary material The online version of this article (10.1186/s12014-018-9182-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qianqian Zhao
- 1Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tiancheng Zhan
- 3Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Colorectal Surgery, Peking University Cancer Hospital and Institute, Beijing, 100142 China
| | - Zaian Deng
- 1Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101 China
| | - Qianqian Li
- 1Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101 China
| | - Yaming Liu
- 1Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101 China
| | - Shaojie Yang
- GuangDong Bio-healtech Advanced Co., Ltd., Foshan, 528000 China
| | - Dengbo Ji
- 3Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Colorectal Surgery, Peking University Cancer Hospital and Institute, Beijing, 100142 China
| | - Yan Li
- 1Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
19
|
Abstract
This review is devoted to the analytical application of carbohydrate-binding proteins called lectins. The nature of lectins and the regularities of their specificity with respect to simple sugars and complex carbohydrate-containing biomolecules are discussed. The main areas of the modern analytical application of lectins are described. Lectin-affinity chromatography, histo- and cytochemical approaches, lectin blotting, microarray, and biosensor technologies as well as microplate analysis are considered in detail. Data on the use of lectins for the detection of cells and microorganisms as well as the study of protein glycosylation are summarized. The large potential of lectins as components of analytical systems used for the identification of glycans and the characteristics of their structure are substantiated.
Collapse
Affiliation(s)
- O D Hendrickson
- a A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Prospect , Moscow , Russia
| | - A V Zherdev
- a A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Prospect , Moscow , Russia
| |
Collapse
|
20
|
Benachour H, Leroy-Dudal J, Agniel R, Wilson J, Briand M, Carreiras F, Gallet O. Vitronectin (Vn) glycosylation patterned by lectin affinity assays-A potent glycoproteomic tool to discriminate plasma Vn from cancer ascites Vn. J Mol Recognit 2017; 31:e2690. [PMID: 29205553 DOI: 10.1002/jmr.2690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 11/10/2022]
Abstract
Changes in glycosylation have been associated with human cancer, but their complexity poses an analytical challenge. Ovarian cancer is a major cause of death in women because of an often late diagnosis. At least one-third of patients presents ascites fluid at diagnosis, and almost all have ascites at recurrence. Vitronectin (Vn) is a multifunctional glycoprotein that is suggested to be implicated in ovarian cancer metastasis and is found within ascites. The present study evaluated the potential of using lectin affinity for characterizing the glycosylation pattern of Vn. Human Vn was purified from 1 sample of ovarian cancer ascites or a pool of plasma samples. Consistent findings were observed with both dot blot and lectin array assays. Based on a panel of 40 lectins, the lectin array revealed discriminant patterns of lectin binding to Vn glycans. Interestingly, almost all the highlighted interactions were found to be higher with Vn from ascites relative to the plasma counterpart. Also, the lectin array was able to discriminate profiles of lectin interactions (ConA, SNA-I, PHA-E, PHA-L) between Vn samples that were not evident using dot blot, indicating its high sensitivity. The model of ConA binding during thermal unfolding of Vn confirmed the higher accessibility of mannosylated glycans in Vn from ascites as monitored by turbidimetry. Thus, this study demonstrated the usefulness of lectins and the lectin array as a glycoproteomic tool for high throughput and sensitive analysis of glycosylation patterns. Our data provide novel insights concerning Vn glycosylation patterns in clinical specimens, paving the way for further investigations regarding their functional impact and clinical interest.
Collapse
Affiliation(s)
- H Benachour
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122), Université de Cergy-Pontoise, Neuville Sur Oise Cedex, France
| | - J Leroy-Dudal
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122), Université de Cergy-Pontoise, Neuville Sur Oise Cedex, France
| | - R Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122), Université de Cergy-Pontoise, Neuville Sur Oise Cedex, France
| | - J Wilson
- RayBiotech, Inc., Norcross, GA, USA
| | - M Briand
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment, BioTICLA axis "Biology and Innovative Therapeutics for Ovarian Cancers"), Caen, France.,UNICANCER, Comprehensive Cancer Center François Baclesse, CRB Biological Resources Centre « OvaRessources », Caen, France
| | - F Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122), Université de Cergy-Pontoise, Neuville Sur Oise Cedex, France
| | - O Gallet
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122), Université de Cergy-Pontoise, Neuville Sur Oise Cedex, France
| |
Collapse
|
21
|
Glycan profiling of proteins using lectin binding by Surface Plasmon Resonance. Anal Biochem 2017; 538:53-63. [PMID: 28947169 DOI: 10.1016/j.ab.2017.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 01/21/2023]
Abstract
Glycan profiling of proteins was studied through their lectin binding activity by Surface Plasmon Resonance (SPR). To validate the method, we monitored specific lectin binding with sequential removal of sugar moieties from human transferrin using specific glycosidases. The results clearly indicated that glycans on the protein can be identified by their selective binding activity to various lectins. Using this method, we characterized Fc glycosylation profiles of therapeutic peptibodies and antibodies expressed in mammalian cells (CHO and HEK 293 6E cells), with E. coli expressed proteins as the negative controls. We observed that antibodies expressed in CHO cells did not contain any sialic acid, while antibodies expressed in 293 6E cells contained sialic acid. CHO cell expressed antibodies were also more heavily fucosylated than the ones expressed by 293 6E cells. We further applied this method to measure the fucose composition of glycan engineered mouse antibodies, as well as to determine mannose composition of human antibody variants with depletion or enrichment of high mannose. The glycan profiles generated using this method were comparable to results from 2-AB labeled glycan analysis of normal-phase separated glycans, and Fc gamma receptor binding activity of the glycan engineered antibodies were consistent with their glycan profiles. Hence, we demonstrated that SPR lectin binding analysis can be a quick alternative method to profile protein glycosylation.
Collapse
|
22
|
Hashim OH, Jayapalan JJ, Lee CS. Lectins: an effective tool for screening of potential cancer biomarkers. PeerJ 2017; 5:e3784. [PMID: 28894650 PMCID: PMC5592079 DOI: 10.7717/peerj.3784] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022] Open
Abstract
In recent years, the use of lectins for screening of potential biomarkers has gained increased importance in cancer research, given the development in glycobiology that highlights altered structural changes of glycans in cancer associated processes. Lectins, having the properties of recognizing specific carbohydrate moieties of glycoconjugates, have become an effective tool for detection of new cancer biomarkers in complex bodily fluids and tissues. The specificity of lectins provides an added advantage of selecting peptides that are differently glycosylated and aberrantly expressed in cancer patients, many of which are not possibly detected using conventional methods because of their low abundance in bodily fluids. When coupled with mass spectrometry, research utilizing lectins, which are mainly from plants and fungi, has led to identification of numerous potential cancer biomarkers that may be used in the future. This article reviews lectin-based methods that are commonly adopted in cancer biomarker discovery research.
Collapse
Affiliation(s)
- Onn Haji Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jaime Jacqueline Jayapalan
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Cheng-Siang Lee
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Signal Transductions of BEAS-2B Cells in Response to Carcinogenic PM 2.5 Exposure Based on a Microfluidic System. Anal Chem 2017; 89:5413-5421. [PMID: 28447797 DOI: 10.1021/acs.analchem.7b00218] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PM2.5 (particulate matter less than 2.5 μm in diameter) is considered as a harmful carcinogen. Determining the precise relationship between the chemical constituents of PM2.5 in the air and cancer progression could aid the treatment of environment related disease and establishing risk reduction strategies. Herein, we used transcriptomics (RNA-seq) and an integrated microfluidic system to identify the global gene expression and differential target proteins expression induced by ambient fine particles collected from the heavy haze in China. The results clearly indicated that cancer related pathways exhibited the strongest dysregulation. The ambient fine particles could be uptaken into the cells by pinocytosis, mainly promoting the PI3K-Akt pathway, FGF/FGFR/MAPK/VEGF signaling, and the JAK-STAT pathway, leading to evading apoptosis, sustained angiogenesis, and cell proliferation, which are the most important hallmarks of cancer. And fine particles also have been demonstrated to create intracellular reactive oxygen species (ROS) and mitochondrial ROS, change intracellular free Ca2+, and induce apoptosis, which are all key players in mediating cancer progression. It was observed by transmission electron microscopy (TEM) that the particles from the haze could enter the mitochondria, resulting in disturbance of the mitochondrial membrane and disruption of the mitochondria, and these particles can even enter inside the nucleus. It was also found in our study of organics (OC, PAHs) and metals (Zn, As, V) that compounds of fine particles were more closely associated with the exacerbation of cancer and secondary aerosols generated by traffic had the largest impact on cancer related signal transductions.
Collapse
|
24
|
Gao C, Wang Y, Yuan S, Xue J, Cao B, Yu J. Engineering anatase hierarchically cactus-like TiO 2 arrays for photoelectrochemical and visualized sensing platform. Biosens Bioelectron 2017; 90:336-342. [DOI: 10.1016/j.bios.2016.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/22/2016] [Accepted: 12/01/2016] [Indexed: 02/08/2023]
|
25
|
Roucka M, Zimmermann K, Fido M, Nechansky A. Application of Lectin Array Technology for Biobetter Characterization: Its Correlation with FcγRIII Binding and ADCC. MICROARRAYS 2016; 6:microarrays6010001. [PMID: 28029136 PMCID: PMC5374361 DOI: 10.3390/microarrays6010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/25/2016] [Accepted: 12/07/2016] [Indexed: 11/16/2022]
Abstract
Lectin microarray technology was applied to compare the glycosylation pattern of the monoclonal antibody MB311 expressed in SP2.0 cells to an antibody-dependent cellular cytotoxic effector function (ADCC)-optimized variant (MB314). MB314 was generated by a plant expression system that uses genetically modified moss protoplasts (Physcomitrella patens) to generate a de-fucosylated version of MB311. In contrast to MB311, no or very low interactions of MB314 with lectins Aspergillus oryzae l-fucose (AOL), Pisum sativum agglutinin (PSA), Lens culinaris agglutinin (LCA), and Aleuria aurantia lectin (AAL) were observed. These lectins are specific for mono-/biantennary N-glycans containing a core fucose residue. Importantly, this fucose indicative lectin-binding pattern correlated with increased MB314 binding to CD16 (FcγRIII; receptor for the constant region of an antibody)—whose affinity is mediated through core fucosylation—and stronger ADCC. In summary, these results demonstrate that lectin microarrays are useful orthogonal methods during antibody development and for characterization.
Collapse
Affiliation(s)
- Markus Roucka
- Vela Labs GmbH, Brunner Str. 69/ Obj. 3, 1230 Vienna, Austria.
| | | | - Markus Fido
- Vela Labs GmbH, Brunner Str. 69/ Obj. 3, 1230 Vienna, Austria.
| | - Andreas Nechansky
- Vela Labs GmbH, Brunner Str. 69/ Obj. 3, 1230 Vienna, Austria.
- JHL Biotech, Zhubei City, Hsinchu County 302, Taiwan.
| |
Collapse
|
26
|
Reatini BS, Ensink E, Liau B, Sinha JY, Powers TW, Partyka K, Bern M, Brand RE, Rudd PM, Kletter D, Drake R, Haab BB. Characterizing Protein Glycosylation through On-Chip Glycan Modification and Probing. Anal Chem 2016; 88:11584-11592. [PMID: 27809484 PMCID: PMC5290727 DOI: 10.1021/acs.analchem.6b02998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycans are critical to protein biology and are useful as disease biomarkers. Many studies of glycans rely on clinical specimens, but the low amount of sample available for some specimens limits the experimental options. Here we present a method to obtain information about protein glycosylation using a minimal amount of protein. We treat proteins that were captured or directly spotted in small microarrays (2.2 mm × 2.2 mm) with exoglycosidases to successively expose underlying features, and then we probe the native or exposed features using a panel of lectins or glycan-binding reagents. We developed an algorithm to interpret the data and provide predictions about the glycan motifs that are present in the sample. We demonstrated the efficacy of the method to characterize differences between glycoproteins in their sialic acid linkages and N-linked glycan branching, and we validated the assignments by comparing results from mass spectrometry and chromatography. The amount of protein used on-chip was about 11 ng. The method also proved effective for analyzing the glycosylation of a cancer biomarker in human plasma, MUC5AC, using only 20 μL of the plasma. A glycan on MUC5AC that is associated with cancer had mostly 2,3-linked sialic acid, whereas other glycans on MUC5AC had a 2,6 linkage of sialic acid. The on-chip glycan modification and probing (on-chip GMAP) method provides a platform for analyzing protein glycosylation in clinical specimens and could complement the existing toolkit for studying glycosylation in disease.
Collapse
Affiliation(s)
| | - Elliot Ensink
- Van Andel Research Institute, Grand Rapids, Michigan
| | - Brian Liau
- Bioprocessing Technology Institute, Singapore
| | | | - Thomas W. Powers
- Medical University of South Carolina, Charleston, South Carolina
| | - Katie Partyka
- Van Andel Research Institute, Grand Rapids, Michigan
| | | | - Randall E. Brand
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Pauline M. Rudd
- Bioprocessing Technology Institute, Singapore
- National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | | | | | - Brian B. Haab
- Van Andel Research Institute, Grand Rapids, Michigan
| |
Collapse
|
27
|
GlycoMine struct: a new bioinformatics tool for highly accurate mapping of the human N-linked and O-linked glycoproteomes by incorporating structural features. Sci Rep 2016; 6:34595. [PMID: 27708373 PMCID: PMC5052564 DOI: 10.1038/srep34595] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022] Open
Abstract
Glycosylation plays an important role in cell-cell adhesion, ligand-binding and subcellular recognition. Current approaches for predicting protein glycosylation are primarily based on sequence-derived features, while little work has been done to systematically assess the importance of structural features to glycosylation prediction. Here, we propose a novel bioinformatics method called GlycoMinestruct(http://glycomine.erc.monash.edu/Lab/GlycoMine_Struct/) for improved prediction of human N- and O-linked glycosylation sites by combining sequence and structural features in an integrated computational framework with a two-step feature-selection strategy. Experiments indicated that GlycoMinestruct outperformed NGlycPred, the only predictor that incorporated both sequence and structure features, achieving AUC values of 0.941 and 0.922 for N- and O-linked glycosylation, respectively, on an independent test dataset. We applied GlycoMinestruct to screen the human structural proteome and obtained high-confidence predictions for N- and O-linked glycosylation sites. GlycoMinestruct can be used as a powerful tool to expedite the discovery of glycosylation events and substrates to facilitate hypothesis-driven experimental studies.
Collapse
|
28
|
Syed P, Gidwani K, Kekki H, Leivo J, Pettersson K, Lamminmäki U. Role of lectin microarrays in cancer diagnosis. Proteomics 2016; 16:1257-65. [PMID: 26841254 DOI: 10.1002/pmic.201500404] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/22/2022]
Abstract
The majority of cell differentiation associated tumor markers reported to date are either glycoproteins or glycolipids. Despite there being a large number of glycoproteins reported as candidate markers for various cancers, only a handful are approved by the US Food and Drug Administration. Lectins, which bind to the glycan part of the glycoproteins, can be exploited to identify aberrant glycosylation patterns, which in turn would help in enhancing the specificity of cancer diagnosis. Although conventional techniques such as HPLC and MS have been instrumental in performing the glycomic analyses, these techniques lack multiplexity. Lectin microarrays have proved to be useful in studying multiple lectin-glycan interactions in a single experiment and, with the advances made in the field, hold a promise of enabling glycomic profiling of cancers in a fast and efficient manner.
Collapse
Affiliation(s)
- Parvez Syed
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Kamlesh Gidwani
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Henna Kekki
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Janne Leivo
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Kim Pettersson
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| |
Collapse
|
29
|
Etxebarria J, Reichardt NC. Methods for the absolute quantification of N-glycan biomarkers. Biochim Biophys Acta Gen Subj 2016; 1860:1676-87. [PMID: 26953846 DOI: 10.1016/j.bbagen.2016.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Many treatment options especially for cancer show a low efficacy for the majority of patients demanding improved biomarker panels for patient stratification. Changes in glycosylation are a hallmark of many cancers and inflammatory diseases and show great potential as clinical disease markers. The large inter-subject variability in glycosylation due to hereditary and environmental factors can complicate rapid transfer of glycan markers into the clinical practice but also presents an opportunity for personalized medicine. SCOPE OF REVIEW This review discusses opportunities of glycan biomarkers in personalized medicine and reviews the methodology for N-glycan analysis with a specific focus on methods for absolute quantification. MAJOR CONCLUSIONS The entry into the clinical practice of glycan markers is delayed in large part due to a lack of adequate methodology for the precise and robust quantification of protein glycosylation. Only absolute glycan quantification can provide a complete picture of the disease related changes and will provide the method robustness required by clinical applications. GENERAL SIGNIFICANCE Glycan biomarkers have a huge potential as disease markers for personalized medicine. The use of stable isotope labeled glycans as internal standards and heavy-isotope labeling methods will provide the necessary method precision and robustness acceptable for clinical use. This article is part of a Special Issue entitled "Glycans in personalized medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Juan Etxebarria
- CIC biomaGUNE, Paseo Miramon 182, 20009 San Sebastian, Spain
| | - Niels-Christian Reichardt
- CIC biomaGUNE, Paseo Miramon 182, 20009 San Sebastian, Spain; CIBER-BBN, Paseo Miramon 182, 20009 San Sebastian, Spain.
| |
Collapse
|
30
|
Applications in high-content functional protein microarrays. Curr Opin Chem Biol 2016; 30:21-27. [DOI: 10.1016/j.cbpa.2015.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/11/2015] [Indexed: 12/19/2022]
|
31
|
Sonawane MD, Nimse SB, Song KS, Kim T. Detection, quantification, and profiling of PSA: current microarray technologies and future directions. RSC Adv 2016. [DOI: 10.1039/c5ra20313a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The death rate of 13% among the men diagnosed with prostate cancer makes it a second leading cause of cancer death. This critical review evaluates DNA and protein microarray based methods for detection, quantification, and profiling of PSA.
Collapse
Affiliation(s)
| | - Satish Balasaheb Nimse
- Institute for Applied Chemistry and Department of Chemistry
- Hallym University
- Chuncheon
- Korea
| | | | - Taisun Kim
- Institute for Applied Chemistry and Department of Chemistry
- Hallym University
- Chuncheon
- Korea
| |
Collapse
|
32
|
Pihíková D, Belicky Š, Kasák P, Bertok T, Tkac J. Sensitive detection and glycoprofiling of a prostate specific antigen using impedimetric assays. Analyst 2015; 141:1044-51. [PMID: 26647853 DOI: 10.1039/c5an02322j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study presents a proof-of-concept for the development of an impedimetric biosensor for ultra-sensitive glycoprofiling of prostate specific antigen (PSA). The biosensor exhibits three unique characteristics: (1) analysis of PSA with limit of detection (LOD) down to 4 aM; (2) analysis of the glycan part of PSA with LOD down to 4 aM level and; (3) both assays (i.e., PSA quantification and PSA glycoprofiling) can be performed on the same interface due to label-free analysis.
Collapse
Affiliation(s)
- D Pihíková
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovak Republic.
| | | | | | | | | |
Collapse
|
33
|
Dan X, Liu W, Ng TB. Development and Applications of Lectins as Biological Tools in Biomedical Research. Med Res Rev 2015; 36:221-47. [PMID: 26290041 DOI: 10.1002/med.21363] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 01/08/2023]
Abstract
As a new and burgeoning area following genomics and proteomics, glycomics has become a hot issue due to its pivotal roles in many physiological and pathological processes. Glycans are much more complicated than genes or proteins since glycans are highly branched and dynamic. Antibodies and lectins are the two major molecular tools applied for glycan profiling. Though the study of antibodies and lectins started at almost the same time in 1880s, lectins gained much less attention than the antibodies until recent decades when the importance and difficulties of glycomics were realized. The present review summarizes the discovery history of lectins and their biological functions with a special emphasis on their various applications as biological tools. Both older techniques that had been developed in the last century and new technologies developed in recent years, especially lectin microarrays and lectin-based biosensors, are included in this account.
Collapse
Affiliation(s)
- Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wenlong Liu
- Department of Orthopaedics & Traumatology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
34
|
Agniel R, Vendrely C, Poulouin L, Bascetin R, Benachour H, Gallet O, Leroy-Dudal J. Lectins as probes for assessing the accessibility ofN-linked glycans in relation to the conformational changes of fibronectin. J Mol Recognit 2015; 28:731-41. [DOI: 10.1002/jmr.2487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Rémy Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122); Université de Cergy-Pontoise, F-95000 Cergy-Pontoise; 2 Avenue Adolphe Chauvin Cergy-Pontoise Cedex 95302 France
| | - Charlotte Vendrely
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122); Université de Cergy-Pontoise, F-95000 Cergy-Pontoise; 2 Avenue Adolphe Chauvin Cergy-Pontoise Cedex 95302 France
| | - Laurent Poulouin
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122); Université de Cergy-Pontoise, F-95000 Cergy-Pontoise; 2 Avenue Adolphe Chauvin Cergy-Pontoise Cedex 95302 France
- Orange; Direction Nord de France; 2 rue Trémière Villeneuve d'Ascq F-59650 France
| | - Rümeyza Bascetin
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122); Université de Cergy-Pontoise, F-95000 Cergy-Pontoise; 2 Avenue Adolphe Chauvin Cergy-Pontoise Cedex 95302 France
| | - Hamanou Benachour
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122); Université de Cergy-Pontoise, F-95000 Cergy-Pontoise; 2 Avenue Adolphe Chauvin Cergy-Pontoise Cedex 95302 France
| | - Olivier Gallet
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122); Université de Cergy-Pontoise, F-95000 Cergy-Pontoise; 2 Avenue Adolphe Chauvin Cergy-Pontoise Cedex 95302 France
| | - Johanne Leroy-Dudal
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122); Université de Cergy-Pontoise, F-95000 Cergy-Pontoise; 2 Avenue Adolphe Chauvin Cergy-Pontoise Cedex 95302 France
| |
Collapse
|
35
|
Zheng L, Fu Y, Jiang X, Man S, Ran W, Feng M, Liu S, Cheng X, Sui G. Microfluidic system for high-throughput immunoglobulin-E analysis from clinical serum samples. Talanta 2015; 143:83-89. [PMID: 26078132 DOI: 10.1016/j.talanta.2015.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/03/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
Rapid and high-throughput analytical techniques for IgE that requires a small serum amount are very important, especially for pediatric patients. In these patients, blood is collected from veins, which is painful compared to fingertip blood collection. Herein, a novel microfluidic system capable of high-throughput parallel analyses of allergen-specific IgE from small amounts of patient serum was successfully developed. A six-plex immunoassay was constructed within a microfluidic chip, and the entire system was validated using samples from clinical patients. Major antigens from house dust mite (Dermatophagoides farinae and Blomia tropicalis), cat (Felis domesticus), fungus (Cladosporium herbarum), ragweed (Humulus japonicas), and tree pollen (Platanus acerifolia) were used as analysis targets. Sample consumption decreased to <0.05 µL compared with the 480µL serum consumption by fluoroenzyme immunoassay (UniCAP system Pharmacia Diagnostics AB, Uppsala, Sweden), the 50 µL serum consumption by enzyme-linked immune sorbent assay (ELISA), or the 1.5 µL serum consumption by conventional protein chip analysis. Analysis duration, reagent cost, and total cost for each measurement were also considerably decreased. The assay showed good accuracy and sensitivity toward the clinical samples. A significant correlation of allergen-specific IgE levels was found among the microfluidic assay, UniCAP system, and ELISA.
Collapse
Affiliation(s)
- Lulu Zheng
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Yongfeng Fu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Xiran Jiang
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Suqin Man
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Wei Ran
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Sixiu Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China; Institute of Biomedical Science, Fudan University, Shanghai 200433, PR China.
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, PR China; Institute of Biomedical Science, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
36
|
Identification of sialylated glycoproteins from metabolically oligosaccharide engineered pancreatic cells. Clin Proteomics 2015; 12:11. [PMID: 25987888 PMCID: PMC4434541 DOI: 10.1186/s12014-015-9083-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/23/2015] [Indexed: 12/24/2022] Open
Abstract
In this study, we investigated the use of metabolic oligosaccharide engineering and bio-orthogonal ligation reactions combined with lectin microarray and mass spectrometry to analyze sialoglycoproteins in the SW1990 human pancreatic cancer line. Specifically, cells were treated with the azido N-acetylmannosamine analog, 1,3,4-Bu3ManNAz, to label sialoglycoproteins with azide-modified sialic acids. The metabolically labeled sialoglyproteins were then biotinylated via the Staudinger ligation, and sialoglycopeptides containing azido-sialic acid glycans were immobilized to a solid support. The peptides linked to metabolically labeled sialylated glycans were then released from sialoglycopeptides and analyzed by mass spectrometry; in parallel, the glycans from azido-sialoglycoproteins were characterized by lectin microarrays. This method identified 75 unique N-glycosite-containing peptides from 55 different metabolically labeled sialoglycoproteins of which 42 were previously linked to cancer in the literature. A comparison of two of these glycoproteins, LAMP1 and ORP150, in histological tumor samples showed overexpression of these proteins in the cancerous tissue demonstrating that our approach constitutes a viable strategy to identify and discover sialoglycoproteins associated with cancer, which can serve as biomarkers for cancer diagnosis or targets for therapy.
Collapse
|
37
|
Pilobello KT, Agrawal P, Rouse R, Mahal LK. Advances in lectin microarray technology: optimized protocols for piezoelectric print conditions. ACTA ACUST UNITED AC 2015; 5:1-23. [PMID: 23788322 DOI: 10.1002/9780470559277.ch120035] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lectin microarray technology has been used to profile the glycosylation of a multitude of biological and clinical samples, leading to new clinical biomarkers and advances in glycobiology. Lectin microarrays, which include >90 plant lectins, recombinant lectins, and selected antibodies, are used to profile N-linked, O-linked, and glycolipid glycans. The specificity and depth of glycan profiling depends upon the carbohydrate-binding proteins arrayed. The current set targets mammalian carbohydrates including fucose, high mannose, branched and complex N-linked, α- and β-galactose and GalNAc, α-2,3- and α-2,6-sialic acid, LacNAc, and Lewis X epitopes. Previous protocols have described the use of a contact microarray printer for lectin microarray production. Here, an updated protocol that uses a non-contact, piezoelectric printer, which leads to increased lectin activity on the array, is presented. Optimization of print and sample hybridization conditions and methods of analysis are discussed.
Collapse
Affiliation(s)
- Kanoelani T Pilobello
- Department of Chemistry, Biomedical Chemistry Institute, New York University, New York, USA
| | | | | | | |
Collapse
|
38
|
Yang H, Li Z, Shan M, Li C, Qi H, Gao Q, Wang J, Zhang C. Electrogenerated chemiluminescence biosensing for the detection of prostate PC-3 cancer cells incorporating antibody as capture probe and ruthenium complex-labelled wheat germ agglutinin as signal probe. Anal Chim Acta 2015; 863:1-8. [DOI: 10.1016/j.aca.2014.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/24/2014] [Accepted: 09/02/2014] [Indexed: 01/01/2023]
|
39
|
Boesch AW, Brown EP, Cheng HD, Ofori MO, Normandin E, Nigrovic PA, Alter G, Ackerman ME. Highly parallel characterization of IgG Fc binding interactions. MAbs 2015; 6:915-27. [PMID: 24927273 DOI: 10.4161/mabs.28808] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Because the variable ability of the antibody constant (Fc) domain to recruit innate immune effector cells and complement is a major factor in antibody activity in vivo, convenient means of assessing these binding interactions is of high relevance to the development of enhanced antibody therapeutics, and to understanding the protective or pathogenic antibody response to infection, vaccination, and self. Here, we describe a highly parallel microsphere assay to rapidly assess the ability of antibodies to bind to a suite of antibody receptors. Fc and glycan binding proteins such as FcγR and lectins were conjugated to coded microspheres and the ability of antibodies to interact with these receptors was quantified. We demonstrate qualitative and quantitative assessment of binding preferences and affinities across IgG subclasses, Fc domain point mutants, and antibodies with variant glycosylation. This method can serve as a rapid proxy for biophysical methods that require substantial sample quantities, high-end instrumentation, and serial analysis across multiple binding interactions, thereby offering a useful means to characterize monoclonal antibodies, clinical antibody samples, and antibody mimics, or alternatively, to investigate the binding preferences of candidate Fc receptors.
Collapse
Affiliation(s)
- Austin W Boesch
- Thayer School of Engineering, Dartmouth College, Hanover, NH USA
| | - Eric P Brown
- Thayer School of Engineering, Dartmouth College, Hanover, NH USA
| | - Hao D Cheng
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH USA
| | - Maame Ofua Ofori
- Thayer School of Engineering, Dartmouth College, Hanover, NH USA
| | - Erica Normandin
- Thayer School of Engineering, Dartmouth College, Hanover, NH USA
| | - Peter A Nigrovic
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA USA
| | - Galit Alter
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH USA; Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH USA; Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, NH USA
| |
Collapse
|
40
|
Tang H, Hsueh P, Kletter D, Bern M, Haab B. The detection and discovery of glycan motifs in biological samples using lectins and antibodies: new methods and opportunities. Adv Cancer Res 2015; 126:167-202. [PMID: 25727148 DOI: 10.1016/bs.acr.2014.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent research has uncovered unexpected ways that glycans contribute to biology, as well as new strategies for combatting disease using approaches involving glycans. To make full use of glycans for clinical applications, we need more detailed information on the location, nature, and dynamics of glycan expression in vivo. Such studies require the use of specimens acquired directly from patients. Effective studies of clinical specimens require low-volume assays, high precision measurements, and the ability to process many samples. Assays using affinity reagents-lectins and glycan-binding antibodies-can meet these requirements, but further developments are needed to make the methods routine and effective. Recent advances in the use of glycan-binding proteins involve improved determination of specificity using glycan arrays; the availability of databases for mining and analyzing glycan array data; lectin engineering methods; and the ability to quantitatively interpret lectin measurements. Here, we describe many of the challenges and opportunities involved in the application of these new approaches to the study of biological samples. The new tools hold promise for developing methods to improve the outcomes of patients afflicted with diseases characterized by aberrant glycan expression.
Collapse
Affiliation(s)
- Huiyuan Tang
- Van Andel Research Institute, Grand Rapids, MI, USA
| | - Peter Hsueh
- Van Andel Research Institute, Grand Rapids, MI, USA
| | | | | | - Brian Haab
- Van Andel Research Institute, Grand Rapids, MI, USA.
| |
Collapse
|
41
|
Yuan S, Li Q, Zhang Y, Huang C, Wu H, Li Y, Liu Y, Yu N, Zhang H, Lu G, Gao Y, Gao Y, Guo X. Changes in anti-thyroglobulin IgG glycosylation patterns in Hashimoto's thyroiditis patients. J Clin Endocrinol Metab 2015; 100:717-24. [PMID: 25380293 PMCID: PMC4318900 DOI: 10.1210/jc.2014-2921] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Sera of Hashimoto's thyroiditis (HT) patients are known to exhibit elevated levels of anti-thyroglobulin IgG (TgAb IgG). Therefore, TgAb IgG represents a hallmark of this debilitating autoimmune disease. The aim of our study was to investigate the differential expression of specific glycosylation patterns of TgAb IgG from HT patients and healthy blood donors. METHODS HT patients (n = 32) were divided into two subgroups, medium level group (mHT, n = 15) and high level group (hHT, n = 17), according to the serum levels of TgAb detected by electrochemiluminescence immunoassay. TgAb IgG was purified by affinity chromatography from the sera of the HT group and control group (n = 15). MALDI-QIT-TOF-MS/MS spectrometry was performed to identify the glycosylation profiles of purified TgAb IgG. Lectin microarray technology was used to compare the abundance of different glycans found on TgAb IgG between HT patients and controls, and between the mHT and hHT groups. RESULTS The results by MALDI-QIT-TOF-MS/MS showed that the glycosylation profiles of TgAb IgG were similar between the mHT, hHT, and control groups. Furthermore, the lectin microarray showed that compared to the control group (all P < .001), there were higher levels present of (1) mannose (detected as lectin LCA, VFA, and MNA-M); (2) terminal sialic acid (detected as SNA-I and PSA); (3) core fucose (detected as LcH); and (4) Gal(β1-4)GlcNAc(β1-2)Man glycans (detected as PHA-L) on TgAb IgG from the HT group. A similar trend was observed between the hHT and mHT group, with elevated levels of mannose, terminal sialic acid, core fucose, and Gal(β1-4)GlcNAc(β1-2)Man glycans on TgAb IgG found in the hHT group compared with the mHT group (all P < .05). CONCLUSIONS TgAb IgG of HT patients exhibits higher glycosylation levels than those observed for TgAb IgG of healthy controls. Our results provide new clues for exploring the role of TgAb in the pathogenesis of HT.
Collapse
Affiliation(s)
- Shanshan Yuan
- Department of Endocrinology (S.Y., Y.Z., Yal.L., N.Y., H.Z., G.L., Ya.G., Yi.G., X.G.), Peking University First Hospital, Beijing 100034, China; Institute of Biophysics (Q.L., C.H., H.W., Yan.L.), Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li QK, Chen L, Ao MH, Chiu JH, Zhang Z, Zhang H, Chan DW. Serum fucosylated prostate-specific antigen (PSA) improves the differentiation of aggressive from non-aggressive prostate cancers. Theranostics 2015; 5:267-76. [PMID: 25553114 PMCID: PMC4279190 DOI: 10.7150/thno.10349] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 11/01/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Clinically, it is still challenging to differentiate aggressive from non-aggressive prostate cancers (Pca) by non-invasive approaches. Our recent studies showed that overexpression of alpha (1-6) fucosyltransferase played an important role in Pca cells. In this study, we have investigated levels of glycoproteins and their fucosylated glycoforms in sera of Pca patients, as well as the potential utility of fucosylated glycoproteins in the identification of aggressive Pca. MATERIAL AND METHODS Serum samples from histomorphology-proven Pca cases were included. Prostate-specific antigen (PSA), tissue inhibitor of metallopeptidase 1 (TIMP1) and tissue plasminogen activator (tPA), and their fucosylated glycoforms were captured by Aleuria Aurantia Lectin (AAL), followed by the multiplex magnetic bead-based immunoassay. The level of fucosylated glycoproteins was correlated with patients' Gleason score of the tumor. RESULT Among three fucosylated glycoproteins, the fucosylated PSA was significantly increased and correlated with the tumor Gleason score (p<0.05). The ratio of fucosylated PSA showed a marked increase in aggressive tumors in comparison to non-aggressive tumors. ROC analysis also showed an improved predictive power of fucosylated PSA in the identification of aggressive Pca. CONCLUSIONS Our data demonstrated that fucosylated PSA has a better predictive power to differentiate aggressive tumors from non-aggressive tumors, than that of native PSA and two other glycoproteins. The fucosylated PSA has the potential to be used as a surrogate biomarker.
Collapse
Affiliation(s)
- Qing Kay Li
- Departments of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Baycin Hizal D, Wolozny D, Colao J, Jacobson E, Tian Y, Krag SS, Betenbaugh MJ, Zhang H. Glycoproteomic and glycomic databases. Clin Proteomics 2014; 11:15. [PMID: 24725457 PMCID: PMC3996109 DOI: 10.1186/1559-0275-11-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/20/2014] [Indexed: 11/17/2022] Open
Abstract
Protein glycosylation serves critical roles in the cellular and biological processes of many organisms. Aberrant glycosylation has been associated with many illnesses such as hereditary and chronic diseases like cancer, cardiovascular diseases, neurological disorders, and immunological disorders. Emerging mass spectrometry (MS) technologies that enable the high-throughput identification of glycoproteins and glycans have accelerated the analysis and made possible the creation of dynamic and expanding databases. Although glycosylation-related databases have been established by many laboratories and institutions, they are not yet widely known in the community. Our study reviews 15 different publicly available databases and identifies their key elements so that users can identify the most applicable platform for their analytical needs. These databases include biological information on the experimentally identified glycans and glycopeptides from various cells and organisms such as human, rat, mouse, fly and zebrafish. The features of these databases - 7 for glycoproteomic data, 6 for glycomic data, and 2 for glycan binding proteins are summarized including the enrichment techniques that are used for glycoproteome and glycan identification. Furthermore databases such as Unipep, GlycoFly, GlycoFish recently established by our group are introduced. The unique features of each database, such as the analytical methods used and bioinformatical tools available are summarized. This information will be a valuable resource for the glycobiology community as it presents the analytical methods and glycosylation related databases together in one compendium. It will also represent a step towards the desired long term goal of integrating the different databases of glycosylation in order to characterize and categorize glycoproteins and glycans better for biomedical research.
Collapse
Affiliation(s)
- Deniz Baycin Hizal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel Wolozny
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph Colao
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Elena Jacobson
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yuan Tian
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Sharon S Krag
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
44
|
Xin AJ, Cheng L, Diao H, Wang P, Gu YH, Wu B, Wu YC, Chen GW, Zhou SM, Guo SJ, Shi HJ, Tao SC. Comprehensive profiling of accessible surface glycans of mammalian sperm using a lectin microarray. Clin Proteomics 2014; 11:10. [PMID: 24629138 PMCID: PMC4003823 DOI: 10.1186/1559-0275-11-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/04/2014] [Indexed: 11/10/2022] Open
Abstract
It is well known that cell surface glycans or glycocalyx play important roles in sperm motility, maturation and fertilization. A comprehensive profile of the sperm surface glycans will greatly facilitate both basic research (sperm glycobiology) and clinical studies, such as diagnostics of infertility. As a group of natural glycan binders, lectin is an ideal tool for cell surface glycan profiling. However, because of the lack of effective technology, only a few lectins have been tested for lectin-sperm binding profiles. To address this challenge, we have developed a procedure for high-throughput probing of mammalian sperm with 91 lectins on lectin microarrays. Normal sperm from human, boar, bull, goat and rabbit were collected and analyzed on the lectin microarrays. Positive bindings of a set of ~50 lectins were observed for all the sperm of 5 species, which indicated a wide range of glycans are on the surface of mammalian sperm. Species specific lectin bindings were also observed. Clustering analysis revealed that the distances of the five species according to the lectin binding profiles are consistent with that of the genome sequence based phylogenetic tree except for rabbit. The procedure that we established in this study could be generally applicable for sperm from other species or defect sperm from the same species. We believe the lectin binding profiles of the mammalian sperm that we established in this study are valuable for both basic research and clinical studies.
Collapse
Affiliation(s)
- Ai-Jie Xin
- Shanghai Jiai Genetics & IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 20037, China
| | - Li Cheng
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Diao
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Shanghai 200032, China
| | - Peng Wang
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Shanghai 200032, China
| | - Yi-Hua Gu
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Shanghai 200032, China
| | - Bin Wu
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Shanghai 200032, China
| | - Yan-Cheng Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 20037, China
| | - Guo-Wu Chen
- Shanghai Jiai Genetics & IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| | - Shu-Min Zhou
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China
| | - Shu-Juan Guo
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui-Juan Shi
- China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Shanghai 200032, China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
45
|
Wu J, Zhu J, Yin H, Buckanovich RJ, Lubman DM. Analysis of glycan variation on glycoproteins from serum by the reverse lectin-based ELISA assay. J Proteome Res 2014; 13:2197-204. [PMID: 24575722 PMCID: PMC3993964 DOI: 10.1021/pr401061c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Altered
glycosylation in glycoproteins is associated with carcinogenesis,
and certain glycan structures and glycoproteins are well-known markers
for tumor progression. To identify potential diagnostic candidate
markers, we have developed a novel method for analysis of glycosylation
changes of glycoproteins from crude serum samples using lectin-based
glycoprotein capture followed by detection with biotin/HRP-conjugated
antibodies. The amount of lectin coated on the microplate well was
optimized to achieve low background and improved S/N compared with
current lectin ELISA methods. In the presence of competing sugars
of lectin AAL or with sialic acid removed from the glycoproteins,
we confirmed that this method specifically detects glycosylation changes
of proteins rather than protein abundance variation. Using our reverse
lectin-based ELISA assay, increased fucosylated haptoglobin was observed
in sera of patients with ovarian cancer, while the protein level of
haptoglobin remained the same between cancers and noncases. The combination
of fucosylated haptoglobin and CA125 (AUC = 0.88) showed improved
performance for distinguishing stage-III ovarian cancer from noncases
compared with CA125 alone (AUC = 0.86). In differentiating early-stage
ovarian cancer from noncases, fucosylated haptoglobin showed comparable
performance to CA125. The combination of CA125 and fucosylated haptoglobin
resulted in an AUC of 0.855, which outperforms CA125 to distinguish
early-stage cancer from noncases. Our study provides an alternative
method to quantify glycosylation changes of proteins from serum samples,
which will be essential for biomarker discovery and validation studies.
Collapse
Affiliation(s)
- Jing Wu
- University of Michigan , Department of Surgery, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | | | | | | | | |
Collapse
|
46
|
Li QK, Gabrielson E, Askin F, Chan DW, Zhang H. Glycoproteomics using fluid-based specimens in the discovery of lung cancer protein biomarkers: promise and challenge. Proteomics Clin Appl 2014; 7:55-69. [PMID: 23112109 DOI: 10.1002/prca.201200105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/29/2022]
Abstract
Lung cancer is the leading cancer in the United States and worldwide. In spite of the rapid progression in personalized treatments, the overall survival rate of lung cancer patients is still suboptimal. Over the past decade, tremendous efforts have been focused on the discovery of protein biomarkers to facilitate the early detection and monitoring of lung cancer progression during treatment. In addition to tumor tissues and cancer cell lines, a variety of biological material has been studied. Particularly in recent years, studies using fluid-based specimen or so-called "fluid-biopsy" specimens have progressed rapidly. Fluid specimens are relatively easier to collect than tumor tissue, and they can be repeatedly sampled during the disease progression. Glycoproteins are the major content of fluid specimens and have long been recognized to play fundamental roles in many physiological and pathological processes. In this review, we focus the discussion on recent advances of glycoproteomics, particularly in the identification of potential glyco protein biomarkers using fluid-based specimens in lung cancer. The purpose of this review is to summarize current strategies, achievements, and perspectives in the field. This insight will highlight the discovery of tumor-associated glycoprotein biomarkers in lung cancer and their potential clinical applications.
Collapse
Affiliation(s)
- Qing Kay Li
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
47
|
Kuno A, Matsuda A, Unno S, Tan B, Hirabayashi J, Narimatsu H. Differential glycan analysis of an endogenous glycoprotein: toward clinical implementation--from sample pretreatment to data standardization. Methods Mol Biol 2014; 1200:265-285. [PMID: 25117242 DOI: 10.1007/978-1-4939-1292-6_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
There are huge numbers of clinical specimens being stored that contain potential diagnostic marker molecules buried by the coexistence of high-abundance proteins. To utilize such valuable stocks efficiently, we must develop appropriate techniques to verify the molecules. Glycoproteins with disease-related glycosylation changes are a group of useful molecules that have long been recognized, but their application is not fully implemented. The technology for comparative analysis of such glycoproteins in biological specimens has tended to be left behind, which often leads to loss of useful information without it being recognized. In this chapter, we feature antibody-assisted lectin profiling employing antibody-overlay lectin microarray, the most suitable technology for comparative glycoanalysis of a trace amount of glycoproteins contained in biological specimens. We believe that sharing this detailed protocol will accelerate the glycoproteomics-based discovery of glyco-biomarkers that has attracted recent attention; simultaneously, it will increase the value of clinical specimens as a gold mine of information that has yet to be exploited.
Collapse
Affiliation(s)
- Atsushi Kuno
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan,
| | | | | | | | | | | |
Collapse
|
48
|
Wang H, Li H, Zhang W, Wei L, Yu H, Yang P. Multiplex profiling of glycoproteins using a novel bead-based lectin array. Proteomics 2013; 14:78-86. [PMID: 24243643 DOI: 10.1002/pmic.201200544] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 10/17/2013] [Accepted: 10/23/2013] [Indexed: 01/08/2023]
Abstract
Lectin array is becoming important in profiling targeted glycan/glycoprotein, but weak interaction between lectin and glycan causes low sensitivity of the approach. This study aims to develop a bead-based lectin array for improving the sensitivity of glycosylation profiling. Lectins are chemically coupled to fluorescent dye coated microbeads, and glycan-lectin recognition is carried out three dimensionally. The performance of this platform was evaluated, and the LOD of lectin Ricinus communis agglutinin 120 (RCA120) was 50 pg/mL (1 pM) of asialofetuin, providing the bead-based lectin microarray with the highest sensitivity among the reported lectin microarrays. Furthermore, multiplexed assay was performed, which allowed the simultaneous detection of multiple carbohydrate epitopes in a single reaction vessel. The glycosylation patterns of hepatocellular carcinoma associated immunoglobulin G were analyzed, and increased (α-1,6) core fucosylation and (α-2,6) sialylation patterns were observed, which may provide significant clinical evidence for disease diagnosis.
Collapse
Affiliation(s)
- Hong Wang
- Department of Chemistry, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China; Shanghai Institute for food and drug control, Shanghai, China
| | | | | | | | | | | |
Collapse
|
49
|
Haab BB, Partyka K, Cao Z. Using antibody arrays to measure protein abundance and glycosylation: considerations for optimal performance. ACTA ACUST UNITED AC 2013; 73:27.6.1-27.6.16. [PMID: 24510592 DOI: 10.1002/0471140864.ps2706s73] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antibody arrays provide a valuable method for obtaining multiple protein measurements from small volumes of biological samples. Antibody arrays can be designed to target not only core protein abundances (relative or absolute abundances, depending on the availability of standards for calibration), but also posttranslational modifications, provided antibodies or other affinity reagents are available to detect them. Glycosylation is a common modification that has important and diverse functions in both normal and disease biology. Significant progress has been made in developing methods for measuring glycan levels on multiple specific proteins using antibody arrays and glycan-binding reagents. This unit describes practical approaches for developing, optimizing, and using antibody array assays to determine both protein abundance and glycosylation state. Low-volume arrays can be used to reduce sample consumption, and a new way to improve the binding strength of particular glycan-binding reagents through multimerization is discussed. These methods can be useful for a wide range of biological studies in which glycosylation may change and/or affect protein function.
Collapse
Affiliation(s)
- Brian B Haab
- Van Andel Research Institute, Grand Rapids, Michigan
| | - Katie Partyka
- Van Andel Research Institute, Grand Rapids, Michigan
| | - Zheng Cao
- Van Andel Research Institute, Grand Rapids, Michigan
| |
Collapse
|
50
|
McCarter C, Kletter D, Tang H, Partyka K, Ma Y, Singh S, Yadav J, Bern M, Haab BB. Prediction of glycan motifs using quantitative analysis of multi-lectin binding: Motifs on MUC1 produced by cultured pancreatic cancer cells. Proteomics Clin Appl 2013; 7:632-41. [PMID: 23956151 DOI: 10.1002/prca.201300069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 01/05/2023]
Abstract
PURPOSE Lectins are valuable tools for detecting specific glycans in biological samples, but the interpretation of the measurements can be ambiguous due to the complexities of lectin specificities. Here, we present an approach to improve the accuracy of interpretation by converting lectin measurements into quantitative predictions of the presence of various glycan motifs. EXPERIMENTAL DESIGN The conversion relies on a database of analyzed glycan array data that provides information on the specificities of the lectins for each of the motifs. We tested the method using measurements of lectin binding to glycans on glycan arrays and then applied the method to predicting motifs on the protein mucin 1 (MUC1) expressed in eight different pancreatic cancer cell lines. RESULTS The combined measurements from several lectins were more accurate than individual measurements for predicting the presence or absence of motifs on arrayed glycans. The analysis of MUC1 revealed that each cell line expressed a unique pattern of glycoforms, and that the glycoforms significantly differed between MUC1 collected from conditioned media and MUC1 collected from cell lysates. CONCLUSIONS AND CLINICAL RELEVANCE This new method could provide more accurate analyses of glycans in biological sample and make the use of lectins more practical and effective for a broad range of researchers.
Collapse
Affiliation(s)
| | | | - Huiyuan Tang
- Van Andel Research Institute, Grand Rapids, MI, USA
| | | | - Yinjiao Ma
- Van Andel Research Institute, Grand Rapids, MI, USA.,Genetics Program, Michigan State University, East Lansing MI, USA
| | - Sudhir Singh
- Van Andel Research Institute, Grand Rapids, MI, USA
| | | | | | - Brian B Haab
- Van Andel Research Institute, Grand Rapids, MI, USA
| |
Collapse
|