1
|
Dou B, Zhou H, Han X, Wang P. Wedged DNA Walker Coupled with a Bimetallic Metal-Organic Framework Electrocatalyst for Rapid and Sensitive Monitoring of DNA Methylation. Anal Chem 2023; 95:994-1001. [PMID: 36601781 DOI: 10.1021/acs.analchem.2c03669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The dissociation of the walking strand from the track gives rise to decreased efficiency and long reaction time of DNA walkers. In this work, we constructed a DNA walker combining the introduction of a wedge segment with a bimetallic metal-organic framework (MOF) electrocatalyst to solve this problem. The target methylated DNA acted as a single-legged walker, and the immobilization probe assembled on the track contained a wedge segment that was complementary to the target methylated DNA persistently, inhibiting its dissociation from the track. The fuel strand modified with a bimetallic MOF would drive the target strand to conduct branch migration and move processively along the track. The stepwise movement of the target strand resulted in the loading of numerous bimetallic MOF catalysts to reduce H2O2 at the electrode interface, thereby a significantly increased current response would be obtained for the detection of methylated DNA. This DNA walker achieved a detection limit of 200 aM within 20 min and effectively distinguished DNA with different methylation statuses, which would pave a way for rapid and sensitive monitoring of DNA methylation.
Collapse
Affiliation(s)
- Baoting Dou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Hui Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiguang Han
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
2
|
Farhana FZ, Umer M, Saeed A, Pannu AS, Husaini S, Sonar P, Firoz SH, Shiddiky MJA. e-MagnetoMethyl IP: a magnetic nanoparticle-mediated immunoprecipitation and electrochemical detection method for global DNA methylation. Analyst 2021; 146:3654-3665. [PMID: 33949437 DOI: 10.1039/d1an00345c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The quantification of global 5-methylcytosine (5mC) content has emerged as a promising approach for the diagnosis and prognosis of cancers. However, conventional methods for the global 5mC analysis require large quantities of DNA and may not be useful for liquid biopsy applications, where the amount of DNA available is limited. Herein, we report magnetic nanoparticles-assisted methylated DNA immunoprecipitation (e-MagnetoMethyl IP) coupled with electrochemical quantification of global DNA methylation. Carboxyl (-COOH) group-functionalized iron oxide nanoparticles (C-IONPs) synthesized by a novel starch-assisted gel formation method were conjugated with anti-5mC antibodies through EDC/NHS coupling (anti-5mC/C-IONPs). Anti-5mC/C-IONPs were subsequently mixed with DNA samples, in which they acted as dispersible capture agents to selectively bind 5mC residues and capture the methylated fraction of genomic DNA. The target-bound Anti-5mC/C-IONPs were magnetically separated and directly adsorbed onto the gold electrode surface using gold-DNA affinity interaction. The amount of DNA adsorbed on the electrode surface, which corresponds to the DNA methylation level in the sample, was electrochemically estimated by differential pulse voltammetric (DPV) study of an electroactive indicator [Ru(NH3)6]3+ bound to the surface-adsorbed DNA. Using a 200 ng DNA sample, the assay could successfully detect differences as low as 5% in global DNA methylation levels with high reproducibility (relative standard deviation (% RSD) = <5% for n = 3). The method could also reproducibly analyze various levels of global DNA methylation in synthetic samples as well as in cell lines. The method avoids bisulfite treatment, does not rely on enzymes for signal generation, and can detect global DNA methylation using clinically relevant quantities of sample DNA without PCR amplification. We believe that this proof-of-concept method could potentially find applications for liquid biopsy-based global DNA methylation analysis in point-of-care settings.
Collapse
Affiliation(s)
- Fatema Zerin Farhana
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh.
| | - Muhammad Umer
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia.
| | - Ayad Saeed
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia.
| | - Amandeep Singh Pannu
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane 4000, Australia and Centre for Material Science, Queensland University of Technology (QUT), Brisbane 4000, Australia
| | - Sediqa Husaini
- School of Environment and Science (ESC), Griffith University, Nathan Campus, QLD 4111, Australia
| | - Prashant Sonar
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane 4000, Australia and Centre for Material Science, Queensland University of Technology (QUT), Brisbane 4000, Australia
| | - Shakhawat H Firoz
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh.
| | - Muhammad J A Shiddiky
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia. and School of Environment and Science (ESC), Griffith University, Nathan Campus, QLD 4111, Australia
| |
Collapse
|
3
|
Wang Y, Zheng J, Duan C, Jiao J, Gong Y, Shi H, Xiang Y. Detection of locus-specific N6-methyladenosine modification based on Ag +-assisted ligation and supersandwich signal amplification. Analyst 2021; 146:1355-1360. [PMID: 33393556 DOI: 10.1039/d0an02214d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Emerging evidence reveals that the epitranscriptomic mark N6-methyladenosine (m6A) plays vital roles in organisms, including gene regulation and disease progression. However, developing sensitive methods to detect m6A modification, especially the identification of m6A marks at the single-site level, remains a challenge. Therefore, based on target-specific triggered signal amplification, we developed a highly sensitive electrochemical method to detect site-specific m6A modifications in DNA. In this work, the m6A site in DNA can restrict the ligation assisted by Ag+, and this restriction effect can activate the subsequent strand displacement reaction and hybridization chain reaction (HCR), thus achieving signal amplification from the m6A site, and finally realizing high sensitivity analysis of m6A methylation. Benefiting from the high specificity of base pairs and the extremely weak binding affinity between Ag+ and m6A, the proposed method was used for not only detecting the target DNA with a putative m6A site, but also identifying m6A marks at the single-site level in DNA. In addition, this study does not rely on antibodies and radiolabeling, so it has the advantage of cost-effectiveness. Therefore, we believe that the proposed strategy may provide a new perspective for methylation research, which can be used to test more clinical samples in further research.
Collapse
Affiliation(s)
- Yanxia Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Ji Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Jin Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Youjing Gong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Hai Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
4
|
Niwa O, Ohta S, Takahashi S, Zhang Z, Kamata T, Kato D, Shiba S. Hybrid Carbon Film Electrodes for Electroanalysis. ANAL SCI 2021; 37:37-47. [PMID: 33071269 DOI: 10.2116/analsci.20sar15] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 11/23/2022]
Abstract
Carbon materials have been widely used for electrochemical analysis and include carbon nanotubes, graphene, and boron-doped diamond electrodes in addition to conventional carbon electrodes, such as those made of glassy carbon and graphite. Of the carbon-based electrodes, carbon film has advantages because it can be fabricated reproducibly and micro- or nanofabricated into electrodes with a wide range of shapes and sizes. Here, we report two categories of hybrid-type carbon film electrodes for mainly electroanalytical applications. The first category consists of carbon films doped or surface terminated with other atoms such as nitrogen, oxygen and fluorine, which can control surface hydrophilicity and lipophilicity or electrocatalytic performance, and are used to detect various electroactive biochemicals. The second category comprises metal nanoparticles embedded in carbon film electrodes fabricated by co-sputtering, which exhibits high electrocatalytic activity for environmental and biological samples including toxic heavy metal ions and clinical sugar markers, which are difficult to detect at pure carbon-based electrodes.
Collapse
Affiliation(s)
- Osamu Niwa
- Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji Fukaya Saitama, 369-0293, Japan.
| | - Saki Ohta
- Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji Fukaya Saitama, 369-0293, Japan
| | - Shota Takahashi
- Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji Fukaya Saitama, 369-0293, Japan
| | - Zixin Zhang
- Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji Fukaya Saitama, 369-0293, Japan
| | - Tomoyuki Kamata
- Health and Medical Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Dai Kato
- Health and Medical Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Shunsuke Shiba
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering Ehime University, 3-Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| |
Collapse
|
5
|
Kojima N, Suda T, Fujii S, Hirano K, Namihira M, Kurita R. Quantitative analysis of global 5-methyl- and 5-hydroxymethylcytosine in TET1 expressed HEK293T cells. Biosens Bioelectron 2020; 167:112472. [PMID: 32763827 DOI: 10.1016/j.bios.2020.112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022]
Abstract
DNA methylation at the 5-position of cytosine bases (5-methylcytosine, 5mC) in genomic DNA is representative epigenetic modification and is involved in many cellular processes, including gene expression and embryonic development. The hydroxylation of 5mC provide 5-hydroxymethylcytosine (5hmC), the so-called sixth base rediscovered recently in mammalian cells, is also considered to act as an epigenetic regulator. We report herein the immunochemical assessment of 5hmC achieved by an enzyme-linked immunosorbent assay (ELISA) using our linker technology. The keys to this assay are 1) the immobilization of genomic DNA with the bifunctional linker molecule, and 2) quantitative analysis by using guaranteed standard samples containing defined amounts of 5hmC. We succeeded in the sensitive and quantitative detection of 5hmC as well as 5mC in HEK293T cells transfected with TET1, and also monitored the effect of ascorbate on the TET1 catalyzed conversion of 5mC to 5hmC. Our linker technology enables the rapid and stable immobilization of genomic samples and thus contributes to the realization of a reproducible 5hmC evaluation method.
Collapse
Affiliation(s)
- Naoshi Kojima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB) and DBT-AIST International Center for Translational & Environmental Research (DAICENTER), AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Tomomi Suda
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shinichiro Fujii
- National Metrology Institute of Japan (NMIJ), AIST, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan
| | - Kazumi Hirano
- Biomedical Research Institute, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Masakazu Namihira
- Biomedical Research Institute, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Ryoji Kurita
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB) and DBT-AIST International Center for Translational & Environmental Research (DAICENTER), AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan; Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
6
|
Ban DK, Liu Y, Wang Z, Ramachandran S, Sarkar N, Shi Z, Liu W, Karkisaval AG, Martinez-Loran E, Zhang F, Glinsky G, Bandaru PR, Fan C, Lal R. Direct DNA Methylation Profiling with an Electric Biosensor. ACS NANO 2020; 14:6743-6751. [PMID: 32407064 DOI: 10.1021/acsnano.9b10085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
DNA methylation is one of the principal epigenetic mechanisms that control gene expression in humans, and its profiling provides critical information about health and disease. Current profiling methods require chemical modification of bases followed by sequencing, which is expensive and time-consuming. Here, we report a direct and rapid determination of DNA methylation using an electric biosensor. The device consists of a DNA-tweezer probe integrated on a graphene field-effect transistor for label-free, highly sensitive, and specific methylation profiling. The device performance was evaluated with a target DNA that harbors a sequence of the methylguanine-DNA methyltransferase, a promoter of glioblastoma multiforme, a lethal brain tumor. The results show that we successfully profiled the methylated and nonmethylated forms at picomolar concentrations. Further, fluorescence kinetics and molecular dynamics simulations revealed that the position of the methylation site(s), their proximity, and accessibility to the toe-hold region of the tweezer probe are the primary determinants of the device performance.
Collapse
Affiliation(s)
- Deependra Kumar Ban
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yushuang Liu
- School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Zejun Wang
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Srinivasan Ramachandran
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Nirjhar Sarkar
- Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ze Shi
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Wenhan Liu
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Abhijith G Karkisaval
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Erick Martinez-Loran
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Feng Zhang
- School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
- State Key Laboratory of Respiratory Disease, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Gennadi Glinsky
- Institute of Engineering in Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Prabhakar R Bandaru
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Chunhai Fan
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ratnesh Lal
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
7
|
Feng Q, Qin L, Wang M, Wang P. Signal-on electrochemical detection of DNA methylation based on the target-induced conformational change of a DNA probe and exonuclease III-assisted target recycling. Biosens Bioelectron 2019; 149:111847. [PMID: 31733487 DOI: 10.1016/j.bios.2019.111847] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 11/16/2022]
Abstract
A promising electrochemical system was explored for DNA methylation detection according to the construction of a signal-on biosensor. Based on the ingenious design of probe DNA and auxiliary DNA, methylated target DNA triggered the exonuclease III (Exo III) digestion of auxiliary DNA from 3'-terminus, resulting in the conformational change of probe DNA with an electroactive methylene blue (MB) tag at 5'-terminus. Consequently, the MB tag in the probe DNA was close to the electrode surface for electron transfer, generating an increased current signal. Because of the target recycling of methylated DNA, significant signal amplification was obtained. Moreover, bisulfite conversion conferred an efficient approach for the universal analysis of any CpG sites without the restriction of specific DNA sequence. As a result, the target DNA with different methylation statuses were clearly recognized, and the fully methylated DNA was quantified in a wide range from 10 fM to 100 pM, with a detection limit of 4 fM. The present work realized the assay of methylated target DNA in serum samples with satisfactory results, illustrating the application performance of the system in complex sample matrix.
Collapse
Affiliation(s)
- Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Li Qin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mengying Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
8
|
Feng Q, Wang M, Qin L, Wang P. Dual-Signal Readout of DNA Methylation Status Based on the Assembly of a Supersandwich Electrochemical Biosensor without Enzymatic Reaction. ACS Sens 2019; 4:2615-2622. [PMID: 31507174 DOI: 10.1021/acssensors.9b00720] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A highly sensitive and selective biosensing system was designed to analyze DNA methylation using a dual-signal readout technique in combination with the signal amplification of supersandwich DNA structure. Through the ingenious design of target-triggered cascade of hybridization chain reaction, one target DNA could initiate the formation of supersandwich structure with multiple signal probes. As a result, one-to-multiple amplification effect was achieved, which conferred high sensitivity to target molecular recognition. Based on probe 1 labeled with ferrocene and probe 2 modified with methylene blue, the target DNA was clearly recognized by two electrochemical signals at independent potentials, which was helpful for the acquisition of more accurate detection results. Taking advantage of bisulfite conversion, the methylation status of cytosine (C) was changed to nucleic acid sequence status, which facilitated the hybridization-based detection without enzymatic reaction. Consequently, the methylated DNA was detected at the femtomolar level with satisfactory analytical parameters. The proposed system was effectively used to assess methylated DNA in human blood serum samples, illuminating the possibility of the sensing platform for applications in disease diagnosis and biochemistry research.
Collapse
Affiliation(s)
- Qiumei Feng
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| | - Mengying Wang
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| | - Li Qin
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| | - Po Wang
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
9
|
Sato S, Nishi Y, Takenaka S. Electrochemical Aberrant Methylation Detection Based on Ferrocenyl Naphthalene Diimide Carrying β‐Cyclodextrin, FNC. ELECTROANAL 2019. [DOI: 10.1002/elan.201900282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shinobu Sato
- Department of Applied ChemistryKyushu Institute of Technology Fukuoka 804-8550 Japan
- Research Center for Bio-microsensing TechnologyKyushu Institute of Technology Fukuoka 804-8550 Japan
| | - Yukiko Nishi
- Department of Applied ChemistryKyushu Institute of Technology Fukuoka 804-8550 Japan
| | - Shigeori Takenaka
- Department of Applied ChemistryKyushu Institute of Technology Fukuoka 804-8550 Japan
- Research Center for Bio-microsensing TechnologyKyushu Institute of Technology Fukuoka 804-8550 Japan
| |
Collapse
|
10
|
Electrooxidation of cytosine on bare screen-printed carbon electrodes studied by online electrochemistry-capillary electrophoresis-mass spectrometry. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2018.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Huang J, Zhang S, Mo F, Su S, Chen X, Li Y, Fang L, Huang H, Deng J, Liu H, Yang X, Zheng J. An electrochemical DNA biosensor analytic technique for identifying DNA methylation specific sites and quantify DNA methylation level. Biosens Bioelectron 2018; 127:155-160. [PMID: 30597434 DOI: 10.1016/j.bios.2018.12.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 11/28/2022]
Abstract
We herein developed a novel electrochemical biosensor to detect DNA methylation level, and to quantitatively analyze multiple methylated sites. Graphene oxide was modified with anti-5-methylcytosine antibody to specifically bind CpG methylation sites, and horseradish peroxidase (HRP)-labeled IgG secondary antibody was bound to the former antibody. In buffer containing H2O2 and hydroquinone, HRP-IgG catalyzed the oxidation of hydroquinone into benzoquinone over H2O2, thereby generating electrochemical reduction signals. The number of 5-methylcytosine was directly proportional to current signal, thereby allowing accurate quantification of methylation level. We also analyzed monomethylated target sequences with different sites. After different methylated sites were captured by the probe, the steric hindrance differences between -CH3 hydrophobic sphere and the electrode surface were induced. The peak current decreased with reducing distance from the electrode surface, so DNA methylation sites were identified by measuring corresponding peak current responses. With a low detection limit (1 fM), this DNA biosensor was suitable for ultrasensitive DNA methylation detection. The linear detection range was 10-15 M to 10-8 M. Meanwhile, this method had high specificity, stability and repeatability, thus being widely applicable to the clinical detection of DNA methylation.
Collapse
Affiliation(s)
- Jian Huang
- Department of Clinical and military Laboratory Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China; Department of Clinical Biochemistry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Shu Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Medical Laboratory, Guizhou Medical University, Guiyang 550525, China
| | - Fei Mo
- Department of Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Medical Laboratory, Guizhou Medical University, Guiyang 550525, China
| | - Shasha Su
- Medical Laboratory, Guizhou Medical University, Guiyang 550525, China
| | - Xi Chen
- Medical Laboratory, Guizhou Medical University, Guiyang 550525, China
| | - Yan Li
- Department of Clinical and military Laboratory Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Lichao Fang
- Department of Clinical and military Laboratory Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Hui Huang
- Department of Clinical and military Laboratory Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jun Deng
- Department of Clinical and military Laboratory Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Huamin Liu
- Department of Clinical and military Laboratory Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Xiaoli Yang
- Department of laboratory medicine, the General Hospital of Chinese People's Armed Police Forces, Beijing 100039, China.
| | - Junsong Zheng
- Department of Clinical and military Laboratory Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China.
| |
Collapse
|
12
|
Bhattacharjee R, Moriam S, Umer M, Nguyen NT, Shiddiky MJA. DNA methylation detection: recent developments in bisulfite free electrochemical and optical approaches. Analyst 2018; 143:4802-4818. [PMID: 30226502 DOI: 10.1039/c8an01348a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA methylation is one of the significant epigenetic modifications involved in mammalian development as well as in the initiation and progression of various diseases like cancer. Over the past few decades, an enormous amount of research has been carried out for the quantification of DNA methylation in the mammalian genome. Earlier, most of these methodologies used bisulfite treatment. However, the low conversion, false reading, longer assay time and complex chemical reaction are the common limitations of this method that hinder their application in routine clinical screening. Thus, as an alternative to bisulfite conversion-based DNA methylation detection, numerous bisulfite-free methods have been proposed. In this regard, electrochemical biosensors have gained much attention in recent years for being highly sensitive yet cost-effective, portable, and simple to operate. On the other hand, biosensors with optical readouts enable direct real time detection of biological molecules and are easily adaptable to multiplexing. Incorporation of electrochemical and optical readouts into bisulfite free DNA methylation analysis is paving the way for the translation of this important biomarker into standard patient care. In this review, we provide a critical overview of recent advances in the development of electrochemical and optical readout based bisulfite free DNA methylation assays.
Collapse
Affiliation(s)
- Ripon Bhattacharjee
- School of Environment and Science, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia.
| | | | | | | | | |
Collapse
|
13
|
KATO D, KAMATA T, KURITA R, YOSHIOKA K, SHIBA S, KURAYA E, KUNITAKE M, NIWA O. Nanocarbon Film Electrodes Can Expand the Possibility of Electroanalysis. BUNSEKI KAGAKU 2018. [DOI: 10.2116/bunsekikagaku.67.635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Dai KATO
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Tomoyuki KAMATA
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Ryoji KURITA
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Kyoko YOSHIOKA
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology
| | | | | | | | | |
Collapse
|
14
|
Syedmoradi L, Esmaeili F, Norton ML. Towards DNA methylation detection using biosensors. Analyst 2018; 141:5922-5943. [PMID: 27704092 DOI: 10.1039/c6an01649a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA methylation, a stable and heritable covalent modification which mostly occurs in the context of a CpG dinucleotide, has great potential as a biomarker to detect disease, provide prognoses and predict therapeutic responses. It can be detected in a quantitative manner by many different approaches both genome-wide and at specific gene loci, in various biological fluids such as urine, plasma, and serum, which can be obtained without invasive procedures. The current, classical methods are effective in studying DNA methylation patterns, however, for the most part; they have major drawbacks such as expensive instruments, complicated and time consuming protocols as well as relatively low sensitivity, and high false positive rates. To overcome these obstacles, great efforts have been made toward the development of reliable sensor devices to solve these limitations, providing sensitive, fast and cost-effective measurements. The use of biosensors for DNA methylation biomarkers has increased in recent years, because they are portable, simple, rapid, and inexpensive which offers a straightforward way to detect methylated biomarkers. In this review, we give an overview of the conventional techniques for the detection of DNA methylation and then will focus on recent advances in biosensor based methylation detection that eliminate bisulfite conversion and PCR amplification.
Collapse
Affiliation(s)
- Leila Syedmoradi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael L Norton
- Department of Chemistry, Marshall University, One John Marshall Drive, Huntington, WV 25755, USA.
| |
Collapse
|
15
|
Povedano E, Vargas E, Montiel VRV, Torrente-Rodríguez RM, Pedrero M, Barderas R, Segundo-Acosta PS, Peláez-García A, Mendiola M, Hardisson D, Campuzano S, Pingarrón JM. Electrochemical affinity biosensors for fast detection of gene-specific methylations with no need for bisulfite and amplification treatments. Sci Rep 2018; 8:6418. [PMID: 29686400 PMCID: PMC5913137 DOI: 10.1038/s41598-018-24902-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
This paper describes two different electrochemical affinity biosensing approaches for the simple, fast and bisulfite and PCR-free quantification of 5-methylated cytosines (5-mC) in DNA using the anti-5-mC antibody as biorecognition element. One of the biosensing approaches used the anti-5-mC as capture bioreceptor and a sandwich type immunoassay, while the other one involved the use of a specific DNA probe and the anti-5-mC as a detector bioreceptor of the captured methylated DNA. Both strategies, named for simplicity in the text as immunosensor and DNA sensor, respectively, were implemented on the surface of magnetic microparticles and the transduction was accomplished by amperometry at screen-printed carbon electrodes by means of the hydrogen peroxide/hydroquinone system. The resulting amperometric biosensors demonstrated reproducibility throughout the entire protocol, sensitive determination with no need for using amplification strategies, and competitiveness with the conventional enzyme-linked immunosorbent assay methodology and the few electrochemical biosensors reported so far in terms of simplicity, sensitivity and assay time. The DNA sensor exhibited higher sensitivity and allowed the detection of the gene-specific methylations conversely to the immunosensor, which detected global DNA methylation. In addition, the DNA sensor demonstrated successful applicability for 1 h-analysis of specific methylation in two relevant tumor suppressor genes in spiked biological fluids and in genomic DNA extracted from human glioblastoma cells.
Collapse
Affiliation(s)
- Eloy Povedano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Eva Vargas
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | | | - Rebeca M Torrente-Rodríguez
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - María Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Rodrigo Barderas
- Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Pablo San Segundo-Acosta
- Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Alberto Peláez-García
- Department of Pathology, Molecular Pathology and Therapeutic Targets Group, Hospital Universitario La Paz IdiPAZ, Madrid, Spain
| | - Marta Mendiola
- Molecular Pathology and Therapeutic Targets Group and Molecular Pathology Section, INGEMM, Hospital Universitario La Paz IdiPAZ, Madrid, Spain
| | - David Hardisson
- Department of Pathology, Molecular Pathology and Therapeutic Targets Group, Hospital Universitario La Paz IdiPAZ, Madrid, Spain.,Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| |
Collapse
|
16
|
Campuzano S, Pingarrón JM. Electrochemical Sensing of Cancer-related Global and Locus-specific DNA Methylation Events. ELECTROANAL 2018. [DOI: 10.1002/elan.201800004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas; Universidad Complutense de Madrid; E-28040 Madrid Spain
| | - José M. Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas; Universidad Complutense de Madrid; E-28040 Madrid Spain
| |
Collapse
|
17
|
Liu W, Dong H, Zhang L, Tian Y. Development of an Efficient Biosensor for the In Vivo Monitoring of Cu+
and pH in the Brain: Rational Design and Synthesis of Recognition Molecules. Angew Chem Int Ed Engl 2017; 56:16328-16332. [DOI: 10.1002/anie.201710863] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Wei Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Hui Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Limin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| |
Collapse
|
18
|
Liu W, Dong H, Zhang L, Tian Y. Development of an Efficient Biosensor for the In Vivo Monitoring of Cu+
and pH in the Brain: Rational Design and Synthesis of Recognition Molecules. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710863] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Wei Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Hui Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Limin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; Dongchuan Road 500 Shanghai 200241 China
| |
Collapse
|
19
|
Wang Q, Pan M, Wei J, Liu X, Wang F. Evaluation of DNA Methyltransferase Activity and Inhibition via Isothermal Enzyme-Free Concatenated Hybridization Chain Reaction. ACS Sens 2017; 2:932-939. [PMID: 28750535 DOI: 10.1021/acssensors.7b00168] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methyltransferase (MTase)-catalyzed DNA methylation plays a vital role in the biological epigenetic processes of key diseases and has attracted increasing attention, making the amplified detection of MTase activity of great significance in clinical disease diagnosis and treatment. Herein, we developed an isothermal, enzyme-free, and autonomous strategy for analyzing MTase activity based on concatenated hybridization chain reaction (C-HCR)-mediated Förster resonance energy transfer (FRET). In a typical C-HCR procedure without MTase (Dam), Y-shaped initiator DNA activates upstream HCR-1 to assemble a double-stranded DNA (dsDNA) copolymeric nanowire consisting of multiple tandem DNA trigger units that motivate downstream HCR-2 to successively bring a fluorophore donor/acceptor (FAM/TAMRA) pair into close proximity, leading to the generation of an amplified FRET readout signal. The target Dam MTase and auxiliary DpnI endonuclease can sequentially and specifically recognize/methylate and cleave the Y-shaped initiator oligonucleotide, respectively, and thus prohibit the C-HCR process and FRET signal generation, resulting in the construction of a signal-on sensing platform for MTase assay. Our proposed isothermal enzyme-free C-HCR amplification approach was further utilized for screening MTase inhibitors. Furthermore, the proposed C-HCR approach can be easily adapted for probing other different MTases and for screening the corresponding inhibitors just by changing the recognition sequence of Y-shaped initiator DNA through a "plug-and-play" format. It provides a versatile and robust tool for highly sensitive detection of various biotransformations and thus holds great promise in clinical assessment and diagnosis.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Min Pan
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jie Wei
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaoqing Liu
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Fuan Wang
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
20
|
Krejcova L, Richtera L, Hynek D, Labuda J, Adam V. Current trends in electrochemical sensing and biosensing of DNA methylation. Biosens Bioelectron 2017. [PMID: 28641203 DOI: 10.1016/j.bios.2017.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA methylation plays an important role in physiological and pathological processes. Several genetic diseases and most malignancies tend to be associated with aberrant DNA methylation. Among other analytical methods, electrochemical approaches have been successfully employed for characterisation of DNA methylation patterns that are essential for the diagnosis and treatment of particular diseases. This article discusses current trends in the electrochemical sensing and biosensing of DNA methylation. Particularly, it provides an overview of applied electrode materials, electrode modifications and biorecognition elements applications with an emphasis on strategies that form the core DNA methylation detection approaches. The three main strategies as (i) bisulfite treatment, (ii) cleavage by restriction endonucleases, and (iii) immuno/affinity reaction were described in greater detail. Additionally, the availability of the reviewed platforms for early cancer diagnosis and the approval of methylation inhibitors for anticancer therapy were discussed.
Collapse
Affiliation(s)
- Ludmila Krejcova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, CZ-166 28 Prague, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Jan Labuda
- Institute of Analytical Chemistry, Slovak University of Technology in Bratislava, Radlinskeho 9, SK-812 37 Bratislava, Slovakia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic.
| |
Collapse
|
21
|
Ouyang L, Hu Y, Zhu L, Cheng GJ, Irudayaraj J. A reusable laser wrapped graphene-Ag array based SERS sensor for trace detection of genomic DNA methylation. Biosens Bioelectron 2017; 92:755-762. [DOI: 10.1016/j.bios.2016.09.072] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/01/2016] [Accepted: 09/21/2016] [Indexed: 10/21/2022]
|
22
|
Haque MH, Gopalan V, Islam MN, Masud MK, Bhattacharjee R, Hossain MSA, Nguyen NT, Lam AK, Shiddiky MJA. Quantification of gene-specific DNA methylation in oesophageal cancer via electrochemistry. Anal Chim Acta 2017; 976:84-93. [PMID: 28576321 DOI: 10.1016/j.aca.2017.04.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023]
Abstract
Development of simple and inexpensive method for the analysis of gene-specific DNA methylation is important for the diagnosis and prognosis of patients with cancer. Herein, we report a relatively simple and inexpensive electrochemical method for the sensitive and selective detection of gene-specific DNA methylation in oesophageal cancer. The underlying principle of the method relies on the affinity interaction between DNA bases and unmodified gold electrode. Since the affinity trend of DNA bases towards the gold surface follows as adenine (A) > cytosine (C) > guanine (G)> thymine (T), a relatively larger amount of bisulfite-treated adenine-enriched unmethylated DNA adsorbs on the screen-printed gold electrodes (SPE-Au) in comparison to the guanine-enriched methylated sample. The methylation levels were (i.e., different level of surface attached DNA molecules due to the base dependent differential adsorption pattern) quantified by measuring saturated amount of charge-compensating [Ru(NH3)6]3+ molecules in the surface-attached DNAs by chronocoulometry as redox charge of the [Ru(NH3)6]3+ molecules quantitatively reflects the amount of the adsorbed DNA confined at the electrode surface. The assay could successfully distinguish methylated and unmethylated DNA sequences at single CpG resolution and as low as 10% differences in DNA methylation. In addition, the assay showed fairly good reproducibility (% RSD= <5%) with better sensitivity and specificity by analysing various levels of methylation in two cell lines and eight fresh tissues samples from patients with oesophageal squamous cell carcinoma. Finally, the method was validated with methylation specific-high resolution melting curve analysis and Sanger sequencing methods.
Collapse
Affiliation(s)
- Md Hakimul Haque
- Cancer Molecular Pathology Laboratory in Menzies Health Institute Queensland, Griffith University and School of Medicine, Gold Coast, QLD 4222, Australia; School of Natural Sciences, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology Laboratory in Menzies Health Institute Queensland, Griffith University and School of Medicine, Gold Coast, QLD 4222, Australia.
| | - Md Nazmul Islam
- School of Natural Sciences, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia; Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Mostafa Kamal Masud
- School of Natural Sciences, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia; Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, NSW 2519, Australia
| | - Ripon Bhattacharjee
- School of Natural Sciences, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia; Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Md Shahriar Al Hossain
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, NSW 2519, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Alfred K Lam
- Cancer Molecular Pathology Laboratory in Menzies Health Institute Queensland, Griffith University and School of Medicine, Gold Coast, QLD 4222, Australia.
| | - Muhammad J A Shiddiky
- School of Natural Sciences, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia; Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia.
| |
Collapse
|
23
|
Hossain T, Mahmudunnabi G, Masud MK, Islam MN, Ooi L, Konstantinov K, Hossain MSA, Martinac B, Alici G, Nguyen NT, Shiddiky MJA. Electrochemical biosensing strategies for DNA methylation analysis. Biosens Bioelectron 2017; 94:63-73. [PMID: 28259051 DOI: 10.1016/j.bios.2017.02.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 12/31/2022]
Abstract
DNA methylation is one of the key epigenetic modifications of DNA that results from the enzymatic addition of a methyl group at the fifth carbon of the cytosine base. It plays a crucial role in cellular development, genomic stability and gene expression. Aberrant DNA methylation is responsible for the pathogenesis of many diseases including cancers. Over the past several decades, many methodologies have been developed to detect DNA methylation. These methodologies range from classical molecular biology and optical approaches, such as bisulfite sequencing, microarrays, quantitative real-time PCR, colorimetry, Raman spectroscopy to the more recent electrochemical approaches. Among these, electrochemical approaches offer sensitive, simple, specific, rapid, and cost-effective analysis of DNA methylation. Additionally, electrochemical methods are highly amenable to miniaturization and possess the potential to be multiplexed. In recent years, several reviews have provided information on the detection strategies of DNA methylation. However, to date, there is no comprehensive evaluation of electrochemical DNA methylation detection strategies. Herein, we address the recent developments of electrochemical DNA methylation detection approaches. Furthermore, we highlight the major technical and biological challenges involved in these strategies and provide suggestions for the future direction of this important field.
Collapse
Affiliation(s)
- Tanvir Hossain
- Department of Biochemistry & Molecular Biology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Golam Mahmudunnabi
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Mostafa Kamal Masud
- Department of Biochemistry & Molecular Biology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh; Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW 2519, Australia; Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Md Nazmul Islam
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Natural Sciences, Griffith University (Nathan Campus), Nathan, QLD 4111, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW 2519, Australia
| | - Md Shahriar Al Hossain
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW 2519, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Gursel Alici
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Natural Sciences, Griffith University (Nathan Campus), Nathan, QLD 4111, Australia.
| |
Collapse
|
24
|
Zhang L, Liu F, Sun X, Wei GF, Tian Y, Liu ZP, Huang R, Yu Y, Peng H. Engineering Carbon Nanotube Fiber for Real-Time Quantification of Ascorbic Acid Levels in a Live Rat Model of Alzheimer’s Disease. Anal Chem 2017; 89:1831-1837. [DOI: 10.1021/acs.analchem.6b04168] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Limin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical
Processes, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai, 200062, P. R. China
| | - Fangling Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical
Processes, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai, 200062, P. R. China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers,
Department of Macromolecular Science and Laboratory of Advanced Materials,
and Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Guang-feng Wei
- State Key Laboratory of Molecular Engineering of Polymers,
Department of Macromolecular Science and Laboratory of Advanced Materials,
and Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical
Processes, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai, 200062, P. R. China
| | - Zhi-pan Liu
- State Key Laboratory of Molecular Engineering of Polymers,
Department of Macromolecular Science and Laboratory of Advanced Materials,
and Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Rong Huang
- Key
Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai, 200062, P. R. China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research
and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu 221004, P.R. China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers,
Department of Macromolecular Science and Laboratory of Advanced Materials,
and Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
25
|
Zhao J, Gao Q, Zhang F, Sun W, Bai Y. Synthesis, Characterization and Theoretical Calculations of a New Fluorescent Probe for Detection Cu2+. Polycycl Aromat Compd 2016. [DOI: 10.1080/10406638.2016.1138973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Junxia Zhao
- Ministry of Education, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, P. R. China
| | - Qi Gao
- Ministry of Education, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, P. R. China
| | - Feifei Zhang
- Ministry of Education, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, P. R. China
| | - Wei Sun
- Ministry of Education, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, P. R. China
| | - Yinjuan Bai
- Ministry of Education, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, P. R. China
| |
Collapse
|
26
|
Xu Y, Gao X, Zhang L, Chen D, Dai Z, Zou X. Simultaneous detection of double gene-specific methylation loci based on hairpin probes tagged with electrochemical quantum dots barcodes. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.06.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Development of an electrochemical detection system for measuring DNA methylation levels using methyl CpG-binding protein and glucose dehydrogenase-fused zinc finger protein. Biosens Bioelectron 2016; 93:118-123. [PMID: 27666367 DOI: 10.1016/j.bios.2016.09.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/30/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022]
Abstract
DNA methylation level at a certain gene region is considered as a new type of biomarker for diagnosis and its miniaturized and rapid detection system is required for diagnosis. Here we have developed a simple electrochemical detection system for DNA methylation using methyl CpG-binding domain (MBD) and a glucose dehydrogenase (GDH)-fused zinc finger protein. This analytical system consists of three steps: (1) methylated DNA collection by MBD, (2) PCR amplification of a target genomic region among collected methylated DNA, and (3) electrochemical detection of the PCR products using a GDH-fused zinc finger protein. With this system, we have successfully measured the methylation levels at the promoter region of the androgen receptor gene in 106 copies of genomic DNA extracted from PC3 and TSU-PR1 cancer cell lines. Since no sequence analysis or enzymatic digestion is required for this detection system, DNA methylation levels can be measured within 3h with a simple procedure.
Collapse
|
28
|
Haque MH, Gopalan V, Yadav S, Islam MN, Eftekhari E, Li Q, Carrascosa LG, Nguyen NT, Lam AK, Shiddiky MJA. Detection of regional DNA methylation using DNA-graphene affinity interactions. Biosens Bioelectron 2016; 87:615-621. [PMID: 27616287 DOI: 10.1016/j.bios.2016.09.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/29/2016] [Accepted: 09/04/2016] [Indexed: 12/26/2022]
Abstract
We report a new method for the detection of regional DNA methylation using base-dependent affinity interaction (i.e., adsorption) of DNA with graphene. Due to the strongest adsorption affinity of guanine bases towards graphene, bisulfite-treated guanine-enriched methylated DNA leads to a larger amount of the adsorbed DNA on the graphene-modified electrodes in comparison to the adenine-enriched unmethylated DNA. The level of the methylation is quantified by monitoring the differential pulse voltammetric current as a function of the adsorbed DNA. The assay is sensitive to distinguish methylated and unmethylated DNA sequences at single CpG resolution by differentiating changes in DNA methylation as low as 5%. Furthermore, this method has been used to detect methylation levels in a collection of DNA samples taken from oesophageal cancer tissues.
Collapse
Affiliation(s)
- Md Hakimul Haque
- Cancer Molecular Pathology Laboratory in School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia; School of Natural Sciences, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology Laboratory in School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia.
| | - Sharda Yadav
- School of Natural Sciences, Griffith University, Nathan Campus, QLD 4111, Australia; Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Md Nazmul Islam
- School of Natural Sciences, Griffith University, Nathan Campus, QLD 4111, Australia; Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Ehsan Eftekhari
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia; School of Engineering, Griffith University, Nathan, QLD 4111, Australia
| | - Qin Li
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia; School of Engineering, Griffith University, Nathan, QLD 4111, Australia
| | | | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Alfred K Lam
- Cancer Molecular Pathology Laboratory in School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia.
| | - Muhammad J A Shiddiky
- School of Natural Sciences, Griffith University, Nathan Campus, QLD 4111, Australia; Queensland Micro and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia.
| |
Collapse
|
29
|
Zhang L, Liu Y, Li Y, Zhao Y, Wei W, Liu S. Sensitive electrochemical assaying of DNA methyltransferase activity based on mimic-hybridization chain reaction amplified strategy. Anal Chim Acta 2016; 933:75-81. [DOI: 10.1016/j.aca.2016.05.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 11/29/2022]
|
30
|
Brotons A, Sanjuán I, Foster CW, Banks CE, Vidal-Iglesias FJ, Solla-Gullón J, Iniesta J. A Facile and Cost-effective Electroanalytical Strategy for the Quantification of Deoxyguanosine and Deoxyadenosine in Oligonucleotides Using Screen-printed Graphite Electrodes. ELECTROANAL 2016. [DOI: 10.1002/elan.201600272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ariadna Brotons
- Institute of Electrochemistry; University of Alicante; 03690 San Vicente del Raspeig Alicante Spain
| | - Ignacio Sanjuán
- Institute of Electrochemistry; University of Alicante; 03690 San Vicente del Raspeig Alicante Spain
| | - Christopher W. Foster
- Faculty of Science and Engineering; School of Science and the Environment; Division of Chemistry and Environmental Science; Manchester Metropolitan University; Chester Street Manchester M1 5GD UK
| | - Craig E. Banks
- Faculty of Science and Engineering; School of Science and the Environment; Division of Chemistry and Environmental Science; Manchester Metropolitan University; Chester Street Manchester M1 5GD UK
| | | | - José Solla-Gullón
- Institute of Electrochemistry; University of Alicante; 03690 San Vicente del Raspeig Alicante Spain
| | - Jesús Iniesta
- Institute of Electrochemistry; University of Alicante; 03690 San Vicente del Raspeig Alicante Spain
- Physical Chemistry Department; University of Alicante; 03690 San Vicente del Raspeig Alicante Spain
| |
Collapse
|
31
|
Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016; 116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmoud Labib
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | | | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
32
|
Oda A, Kato D, Yoshioka K, Tanaka M, Kamata T, Todokoro M, Niwa O. Fluorinated Nanocarbon Film Electrode Capable of Signal Amplification for Lipopolysaccharide Detection. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
|
34
|
Daneshpour M, moradi LS, Izadi P, Omidfar K. Femtomolar level detection of RASSF1A tumor suppressor gene methylation by electrochemical nano-genosensor based on Fe 3 O 4 /TMC/Au nanocomposite and PT-modified electrode. Biosens Bioelectron 2016; 77:1095-103. [DOI: 10.1016/j.bios.2015.11.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/20/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
|
35
|
Zhou J, Zhang L, Tian Y. Micro Electrochemical pH Sensor Applicable for Real-Time Ratiometric Monitoring of pH Values in Rat Brains. Anal Chem 2016; 88:2113-8. [DOI: 10.1021/acs.analchem.5b03634] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jie Zhou
- Department
of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Limin Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, North Zhoangshan Road 3663, Shanghai 200062, China
| | - Yang Tian
- Department
of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, North Zhoangshan Road 3663, Shanghai 200062, China
| |
Collapse
|
36
|
Wang L, Yu F, Wang F, Chen Z. Electrochemical detection of DNA methylation using a glassy carbon electrode modified with a composite made from carbon nanotubes and β-cyclodextrin. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3122-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Zhang W, Zhu S, Luque R, Han S, Hu L, Xu G. Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chem Soc Rev 2016; 45:715-52. [DOI: 10.1039/c5cs00297d] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
New synthetic approaches, materials, properties, electroanalytical applications and perspectives of carbon materials are presented.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Shuyun Zhu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Rafael Luque
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Shuang Han
- Shenyang University of Chemical Technology
- Shenyang
- China
| | - Lianzhe Hu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
38
|
Direct potential resolution and simultaneous detection of cytosine and 5-methylcytosine based on the construction of polypyrrole functionalized graphene nanowall interface. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.09.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
39
|
Yang N, Swain GM, Jiang X. Nanocarbon Electrochemistry and Electroanalysis: Current Status and Future Perspectives. ELECTROANAL 2015. [DOI: 10.1002/elan.201500577] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Luo Y, Zhang L, Liu W, Yu Y, Tian Y. A Single Biosensor for Evaluating the Levels of Copper Ion and
L
‐Cysteine in a Live Rat Brain with Alzheimer's Disease. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508635] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yongping Luo
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai 200062 (P.R. China)
- Xinyu Institute of New Energy, Xinyu University, Sunshine Avenue 2666, Xinyu 338004 (China)
| | - Limin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai 200062 (P.R. China)
| | - Wei Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai 200062 (P.R. China)
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, Xuzhou Medical College, Xuzhou 221004 (China)
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai 200062 (P.R. China)
| |
Collapse
|
41
|
Luo Y, Zhang L, Liu W, Yu Y, Tian Y. A Single Biosensor for Evaluating the Levels of Copper Ion andL-Cysteine in a Live Rat Brain with Alzheimer's Disease. Angew Chem Int Ed Engl 2015; 54:14053-6. [DOI: 10.1002/anie.201508635] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/08/2015] [Indexed: 11/06/2022]
|
42
|
Aoki H. Electrochemical Label-Free Nucleotide Sensors. Chem Asian J 2015; 10:2560-73. [PMID: 26227073 DOI: 10.1002/asia.201500449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/20/2015] [Indexed: 11/10/2022]
Abstract
Numerous researchers have devoted a great deal of effort over the last few decades to the development of electrochemical oligonucleotide detection techniques, owing to their advantages of simple design, inherently small dimensions, and low power requirements. Their simplicity and rapidity of detection makes label-free oligonucleotide sensors of great potential use as first-aid screening tools in the analytical field of environmental measurements and healthcare management. This review article covers label-free oligonucleotide sensors, focusing specifically on topical electrochemical techniques, including intrinsic redox reaction of bases, conductive polymers, the use of electrochemical indicators, and highly ordered probe structures.
Collapse
Affiliation(s)
- Hiroshi Aoki
- Environmental Management Research Institute, National Institute of Advanced Industrial, Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| |
Collapse
|
43
|
Zhou M, Guo S. Electrocatalytic Interface Based on Novel Carbon Nanomaterials for Advanced Electrochemical Sensors. ChemCatChem 2015. [DOI: 10.1002/cctc.201500198] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Taleat Z, Mathwig K, Sudhölter EJ, Rassaei L. Detection strategies for methylated and hypermethylated DNA. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Zhang L, Han Y, Zhao F, Shi G, Tian Y. A Selective and Accurate Ratiometric Electrochemical Biosensor for Monitoring of Cu2+ Ions in a Rat Brain. Anal Chem 2015; 87:2931-6. [DOI: 10.1021/ac504448m] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Limin Zhang
- Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, China
| | - Yingying Han
- Department
of Chemistry, Tongji University, Shanghai 200092, China
| | - Fan Zhao
- Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, China
| | - Guoyue Shi
- Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, China
| | - Yang Tian
- Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, China
| |
Collapse
|
46
|
Kuraya E, Nagatomo S, Sakata K, Kato D, Niwa O, Nishimi T, Kunitake M. Simultaneous Electrochemical Analysis of Hydrophilic and Lipophilic Antioxidants in Bicontinuous Microemulsion. Anal Chem 2015; 87:1489-93. [DOI: 10.1021/ac5044576] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Eisuke Kuraya
- Science
and Technology Division, Okinawa National College of Technology, 905 Henoko, Okinawa 905-2192, Japan
- Graduate
School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Shota Nagatomo
- Graduate
School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Kouhei Sakata
- Graduate
School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Dai Kato
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Osamu Niwa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Taisei Nishimi
- Fujifilm Corporation, 577 Ushijima,
Kaisei-machi, Ashigarakami-gun, Kanagawa 258-9577, Japan
| | - Masashi Kunitake
- Graduate
School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| |
Collapse
|
47
|
Wei W, Gao C, Xiong Y, Zhang Y, Liu S, Pu Y. A fluorescence method for detection of DNA and DNA methylation based on graphene oxide and restriction endonuclease HpaII. Talanta 2015; 131:342-7. [DOI: 10.1016/j.talanta.2014.07.094] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 07/25/2014] [Accepted: 07/30/2014] [Indexed: 01/07/2023]
|
48
|
Gao C, Li H, Liu Y, Wei W, Zhang Y, Liu S. Label-free fluorescence detection of DNA methylation and methyltransferase activity based on restriction endonuclease HpaII and exonuclease III. Analyst 2014; 139:6387-92. [DOI: 10.1039/c4an01359j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
49
|
Wang GL, Luo HQ, Li NB. Gold nanorods-based FRET assay for ultrasensitive detection of DNA methylation and DNA methyltransferase activity. Analyst 2014; 139:4572-7. [DOI: 10.1039/c4an00206g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Microdevices for detecting locus-specific DNA methylation at CpG resolution. Biosens Bioelectron 2014; 56:278-85. [DOI: 10.1016/j.bios.2014.01.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 12/15/2022]
|