1
|
Zhang S, Zhang Y, Chen X, Xu J, Fang H, Li Y, Liu Y, He H. Design and Structural Optimization of Orally Bioavailable SOS1 Inhibitors for the Treatment of KRAS-Driven Carcinoma. J Med Chem 2022; 65:15856-15877. [PMID: 36384290 DOI: 10.1021/acs.jmedchem.2c01517] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
KRAS mutations (G12C, G12D, etc.) are implicated in the oncogenesis and progression of many refractory cancers. Son of sevenless homolog 1 (SOS1) is a key regulator of KRAS to modulate KRAS from inactive to active states. Herein, we disclosed efficacy-improving tetra-cyclic quinazoline derivatives as an enhanced scaffold for inhibiting the SOS1-KRAS interaction. Compound 37, which conjugated 1-carbonitrile-cyclopropane to tetra-cyclic quinazoline, showed a twofold higher oral drug exposure and 2.5-fold longer half-life than BI-3406 in CD-1 mouse plasma. In a Mia-paca-2 xenograft model, 37 administrated alone inhibited tumor growth by 71%. Preclinical investigations demonstrated that 37 had a limited inhibition of CYP and hERG. Overall, our studies showed that 37 was a promising drug candidate for treatment of KRAS-driven cancer.
Collapse
Affiliation(s)
- Silong Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan430081, P. R. China.,Wuhan Yuxiang Pharmaceutial Technology Co., Ltd., Wuhan430200, P. R. China
| | - Yu Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan430081, P. R. China
| | - Xin Chen
- School of Life Science and Technology & School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan430023, P. R. China
| | - Juan Xu
- Wuhan Yuxiang Pharmaceutial Technology Co., Ltd., Wuhan430200, P. R. China.,College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi435003, P. R. China
| | - Huaxiang Fang
- Wuhan Yuxiang Pharmaceutial Technology Co., Ltd., Wuhan430200, P. R. China
| | - Yuanyuan Li
- School of Life Science and Technology & School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan430023, P. R. China.,Wuhan Yuxiang Pharmaceutial Technology Co., Ltd., Wuhan430200, P. R. China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan430081, P. R. China.,School of Life Science and Technology & School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan430023, P. R. China.,State Key Laboratory of Membrane Separation and Membrane Process & Engineering Research Center of Precision Diagnosis and Treatment Technology and Equipment (MOE), School of Chemistry, Tiangong University, Tianjin300387, P. R. China
| | - Huan He
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan430081, P. R. China.,Wuhan Yuxiang Pharmaceutial Technology Co., Ltd., Wuhan430200, P. R. China
| |
Collapse
|
2
|
Kopra K, Sharina I, Martin E, Härmä H. Homogeneous single-label cGMP detection platform for the functional study of nitric oxide-sensitive (soluble) guanylyl cyclases and cGMP-specific phosphodiesterases. Sci Rep 2020; 10:17469. [PMID: 33060787 PMCID: PMC7562898 DOI: 10.1038/s41598-020-74611-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/07/2020] [Indexed: 11/09/2022] Open
Abstract
Cardiovascular diseases are the number one death worldwide. Nitric oxide (NO)-NO-sensitive (soluble) guanylyl cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway regulates diverse set of important physiological functions, including maintenance of cardiovascular homeostasis. Resting and activated sGC enzyme converts guanosine triphosphate to an important second messenger cGMP. In addition to traditional NO generators, a number of sGC activators and stimulators are currently in clinical trials aiming to support or increase sGC activity in various pathological conditions. cGMP-specific phosphodiesterases (PDEs), which degrade cGMP to guanosine monophosphate, play key role in controlling the cGMP level and the strength or length of the cGMP-dependent cellular signaling. Thus, PDE inhibitors also have clear clinical applications. Here, we introduce a homogeneous quenching resonance energy transfer (QRET) for cGMP to monitor both sGC and PDE activities using high throughput screening adoptable method. We demonstrate that using cGMP-specific antibody, sGC or PDE activity and the effect of small molecules modulating their function can be studied with sub-picomole cGMP sensitivity. The results further indicate that the method is suitable for monitoring enzyme reactions also in complex biological cellular homogenates and mixture.
Collapse
Affiliation(s)
- Kari Kopra
- Department of Chemistry, Chemistry of Drug Development, University of Turku, Vatselankatu 2, 20500, Turku, Finland.
| | - Iraida Sharina
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical School At Houston, 1941 East Road, Houston, TX, 77054, USA
| | - Emil Martin
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical School At Houston, 1941 East Road, Houston, TX, 77054, USA
| | - Harri Härmä
- Department of Chemistry, Chemistry of Drug Development, University of Turku, Vatselankatu 2, 20500, Turku, Finland
| |
Collapse
|
3
|
Kopra K, Seppälä T, Rabara D, Abreu-Blanco M, Kulmala S, Holderfield M, Härmä H. Label-Free Time-Gated Luminescent Detection Method for the Nucleotides with Varying Phosphate Content. SENSORS 2018; 18:s18113989. [PMID: 30453509 PMCID: PMC6264117 DOI: 10.3390/s18113989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 01/26/2023]
Abstract
A new label-free molecular probe for luminescent nucleotide detection in neutral aqueous solution is presented. Phosphate-containing molecules, such as nucleotides possess vital role in cell metabolism, energy economy, and various signaling processes. Thus, the monitoring of nucleotide concentration and nucleotide related enzymatic reactions is of high importance. Two component lanthanide complex formed from Tb(III) ion carrier and light harvesting antenna, readily distinguishes nucleotides containing different number of phosphates and enable direct detection of enzymatic reactions converting nucleotide triphosphate (NTP) to nucleotide di/monophosphate or the opposite. Developed sensor enables the detection of enzymatic activity with a low nanomolar sensitivity, as highlighted with K-Ras and apyrase enzymes in their hydrolysis assays performed in a high throughput screening compatible 384-well plate format.
Collapse
Affiliation(s)
- Kari Kopra
- Materials Chemistry and Chemical Analysis, University of Turku, Vatselankatu 2, 20500 Turku, Finland.
| | - Tanja Seppälä
- Materials Chemistry and Chemical Analysis, University of Turku, Vatselankatu 2, 20500 Turku, Finland.
| | - Dana Rabara
- NCI-RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA.
| | - Maria Abreu-Blanco
- NCI-RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA.
| | - Sakari Kulmala
- Laboratory of Analytical Chemistry, Department of Chemistry, Aalto University, P.O. Box 16100, 00076 Aalto, Finland.
| | - Matthew Holderfield
- NCI-RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA.
| | - Harri Härmä
- Materials Chemistry and Chemical Analysis, University of Turku, Vatselankatu 2, 20500 Turku, Finland.
| |
Collapse
|
4
|
Hewitt SH, Butler SJ. Application of lanthanide luminescence in probing enzyme activity. Chem Commun (Camb) 2018; 54:6635-6647. [PMID: 29790500 DOI: 10.1039/c8cc02824a] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enzymes play critical roles in the regulation of cellular function and are implicated in numerous disease conditions. Reliable and practicable assays are required to study enzyme activity, to facilitate the discovery of inhibitors and activators of enzymes related to disease. In recent years, a variety of enzyme assays have been devised that utilise luminescent lanthanide(iii) complexes, taking advantage of their high detection sensitivities, long luminescence lifetimes, and line-like emission spectra that permit ratiometric and time-resolved analyses. In this Feature article, we focus on recent progress in the development of enzyme activity assays based on lanthanide(iii) luminescence, covering a variety of strategies including Ln(iii)-labelled antibodies and proteins, Ln(iii) ion encapsulation within defined peptide sequences, reactivity-based Ln(iii) probes, and discrete Ln(iii) complexes. Emerging approaches for monitoring enzyme activity are discussed, including the use of anion responsive lanthanide(iii) complexes, capable of molecular recognition and luminescence signalling of polyphosphate anions.
Collapse
Affiliation(s)
- Sarah H Hewitt
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK.
| | | |
Collapse
|
5
|
Kopra K, van Adrichem AJ, Salo-Ahen OMH, Peltonen J, Wennerberg K, Härmä H. High-Throughput Dual Screening Method for Ras Activities and Inhibitors. Anal Chem 2017; 89:4508-4516. [PMID: 28318223 DOI: 10.1021/acs.analchem.6b04904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ras GTPases act as "molecular switches", alternating between inactive GDP-bound and active GTP-bound conformation. Ras-oncogenes were discovered over three decades ago, but there are still no effective therapies for Ras-driven cancers. So far, drug discovery strategies have been unsuccessful, because of a lack of suitable screening methodologies and well-defined binding pockets on the Ras proteins. Here, we addressed the former by introducing a homogeneous quenching resonance energy transfer (QRET) technique-based screening strategy for Ras interfacial and competitive inhibitors. We demonstrate that using a unique GTP-specific antibody fragment to monitor GTPase cycling in the presence of a guanine nucleotide exchange factor (GEF) and a GTPase activating protein (GAP) is an efficient method for Ras inhibitor high-throughput screening. When compared to a conventional GEF-stimulated nucleotide exchange assay in a proof-of-concept screen, we identified an overlapping set of potential inhibitor compounds but also compounds found exclusively with the new GTP hydrolysis monitoring-based GTPase cycling assay.
Collapse
Affiliation(s)
- Kari Kopra
- Institute of Biomedicine, University of Turku , Kiinamyllynkatu 10 C, FI-20520 Turku, Finland
| | - Arjan J van Adrichem
- Institute for Molecular Medicine Finland, University of Helsinki , Tukholmankatu 8, FI-00290 Helsinki, Finland
| | - Outi M H Salo-Ahen
- Structural Bioinformatics Laboratory and Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Biochemistry and Pharmacy, Åbo Akademi University , Tykistökatu 6A, FI-20520 Turku, Finland
| | - Juha Peltonen
- Institute of Biomedicine, University of Turku , Kiinamyllynkatu 10 C, FI-20520 Turku, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, University of Helsinki , Tukholmankatu 8, FI-00290 Helsinki, Finland
| | - Harri Härmä
- Institute of Biomedicine, University of Turku , Kiinamyllynkatu 10 C, FI-20520 Turku, Finland
| |
Collapse
|
6
|
Shen L, Yan M, He L. D5 receptor agonist 027075 promotes cognitive function recovery and neurogenesis in a Aβ 1-42 -induced mouse model. Neuropharmacology 2016; 105:72-83. [DOI: 10.1016/j.neuropharm.2016.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/24/2015] [Accepted: 01/04/2016] [Indexed: 11/27/2022]
|
7
|
Tong-Ochoa N, Kopra K, Syrjänpää M, Legrand N, Härmä H. Homogeneous single-label tyrosine kinase activity assay for high throughput screening. Anal Chim Acta 2015; 897:96-101. [PMID: 26515010 DOI: 10.1016/j.aca.2015.09.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 11/17/2022]
Abstract
Protein post-translational modifications (PTMs) are regulatory mechanisms carried out by different enzymes in a cell. Kinase catalyzed phosphorylation is one of the most important PTM affecting the protein activity and function. We have developed a single-label quenching resonance energy transfer (QRET) assay to monitor tyrosine phosphorylation in a homogeneous high throughput compatible format. Epidermal growth factor receptor (EGFR) induced phosphorylation was monitored using Eu(3+)-chelate labeled peptide and label-free phosphotyrosine specific antibody in presence of a soluble quencher molecule. In the QRET kinase assay, antibody binding to phosphorylated Eu(3+)-peptide protects the Eu(3+)-chelate from luminescence quenching, monitoring high time-resolved luminescence (TRL) signals. In the presence of specific kinase inhibitor, antibody recognition and Eu(3+)-chelate protection is prevented, allowing an efficient luminescence quenching. The assay functionality was demonstrated with a panel of EGFR inhibitors (AG-1478, compound 56, erlotinib, PD174265, and staurosporine). The monitored IC50 values ranged from 0.08 to 155.3 nM and were comparable to those found in the literature. EGFR activity and inhibition assays were performed using low nanomolar enzyme and antibody concentration in a 384-well plate format, demonstrating its compatibility for high throughput screening (HTS).
Collapse
Affiliation(s)
- Natalia Tong-Ochoa
- Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Kiinamyllynkatu 10, 3rd Floor, FI-20520 Turku, Finland.
| | - Kari Kopra
- Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Kiinamyllynkatu 10, 3rd Floor, FI-20520 Turku, Finland
| | - Markku Syrjänpää
- Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Kiinamyllynkatu 10, 3rd Floor, FI-20520 Turku, Finland; Department of Biotechnology, University of Turku, Finland
| | - Nicolas Legrand
- Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Kiinamyllynkatu 10, 3rd Floor, FI-20520 Turku, Finland
| | - Harri Härmä
- Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Kiinamyllynkatu 10, 3rd Floor, FI-20520 Turku, Finland
| |
Collapse
|
8
|
Kopra K, Rozwandowicz-Jansen A, Syrjänpää M, Blaževitš O, Ligabue A, Veltel S, Lamminmäki U, Abankwa D, Härmä H. GTP-specific fab fragment-based GTPase activity assay. Anal Chem 2015; 87:3527-34. [PMID: 25707436 DOI: 10.1021/acs.analchem.5b00117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
GTPases are central cellular signaling proteins, which cycle between a GDP-bound inactive and a GTP-bound active conformation in a controlled manner. Ras GTPases are frequently mutated in cancer and so far only few experimental inhibitors exist. The most common methods for monitoring GTP hydrolysis rely on luminescent GDP- or GTP-analogs. In this study, the first GTP-specific Fab fragment and its application are described. We selected Fab fragments using the phage display technology. Six Fab fragments were found against 2'/3'-GTP-biotin and 8-GTP-biotin. Selected antibody fragments allowed specific detection of endogenous, free GTP. The most potent Fab fragment (2A4(GTP)) showed over 100-fold GTP-specificity over GDP, ATP, or CTP and was used to develop a heterogeneous time-resolved luminescence based assay for the monitoring of GTP concentration. The method allows studying the GEF dependent H-Ras activation (GTP binding) and GAP-catalyzed H-Ras deactivation (GTP hydrolysis) at nanomolar protein concentrations.
Collapse
Affiliation(s)
- Kari Kopra
- †Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Kiinamyllynkatu 10, Third Floor, FI-20520 Turku, Finland
| | | | | | - Olga Blaževitš
- ∥Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
| | - Alessio Ligabue
- ∥Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
| | - Stefan Veltel
- ⊥University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Daniel Abankwa
- ∥Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
| | - Harri Härmä
- †Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Kiinamyllynkatu 10, Third Floor, FI-20520 Turku, Finland
| |
Collapse
|
9
|
Kopra K, Härmä H. Quenching resonance energy transfer (QRET): a single-label technique for inhibitor screening and interaction studies. N Biotechnol 2015; 32:575-80. [PMID: 25721971 DOI: 10.1016/j.nbt.2015.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 12/01/2022]
Abstract
The increased number of therapeutic targets has led to a growing need for screening methods enabling possible inhibitor compound selection. Information for new therapeutic targets has been found mostly from sequencing of the human genome but this knowledge cannot be directly converted into clinically relevant drug molecules. After target identification, the multistep drug development process takes many years and hundreds of millions of dollars are spent without certainty of the outcome. The first and the most critical step in the drug development process is hit selection. The optimal high throughput screening method should provide the highest possible number of true positive hits for further studies and lead discovery. The result should be achieved with low material consumption in a rapid and automated process. Radioactive label based methods are sensitive, but due to the problems arising from the radioactivity, luminescence-based methods have become increasingly popular in screening. In this review, the time-resolved luminescence based quenching resonance energy transfer (QRET) technique is discussed for primary screening.
Collapse
Affiliation(s)
- Kari Kopra
- Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Kiinamyllynkatu 10, 3rd Floor, FI-20520 Turku, Finland.
| | - Harri Härmä
- Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Kiinamyllynkatu 10, 3rd Floor, FI-20520 Turku, Finland
| |
Collapse
|
10
|
A homogeneous quenching resonance energy transfer assay for the kinetic analysis of the GTPase nucleotide exchange reaction. Anal Bioanal Chem 2014; 406:4147-56. [PMID: 24760397 DOI: 10.1007/s00216-014-7795-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/04/2014] [Accepted: 03/26/2014] [Indexed: 01/09/2023]
Abstract
A quenching resonance energy transfer (QRET) assay for small GTPase nucleotide exchange kinetic monitoring is demonstrated using nanomolar protein concentrations. Small GTPases are central signaling proteins in all eukaryotic cells acting as a "molecular switches" that are active in the GTP-state and inactive in the GDP-state. GTP-loading is highly regulated by guanine nucleotide exchange factors (GEFs). In several diseases, most prominently cancer, this process in misregulated. The kinetics of the nucleotide exchange reaction reports on the enzymatic activity of the GEF reaction system and is, therefore, of special interest. We determined the nucleotide exchange kinetics using europium-labeled GTP (Eu-GTP) in the QRET assay for small GTPases. After GEF catalyzed GTP-loading of a GTPase, a high time-resolved luminescence signal was found to be associated with GTPase bound Eu-GTP, whereas the non-bound Eu-GTP fraction was quenched by soluble quencher. The association kinetics of the Eu-GTP was measured after GEF addition, whereas the dissociation kinetics could be determined after addition of unlabeled GTP. The resulting association and dissociation rates were in agreement with previously published values for H-Ras(Wt), H-Ras(Q61G), and K-Ras(Wt), respectively. The broader applicability of the QRET assay for small GTPases was demonstrated by determining the kinetics of the Ect2 catalyzed RhoA(Wt) GTP-loading. The QRET assay allows the use of nanomolar protein concentrations, as more than 3-fold signal-to-background ratio was achieved with 50 nM GTPase and GEF proteins. Thus, small GTPase exchange kinetics can be efficiently determined in a HTS compatible 384-well plate format.
Collapse
|
11
|
Time-Resolved Förster Resonance Energy Transfer-Based Technologies to Investigate G Protein-Coupled Receptor Machinery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 113:275-312. [DOI: 10.1016/b978-0-12-386932-6.00007-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|