1
|
Stefanik O, Majerova P, Kovac A, Mikus P, Piestansky J. Capillary electrophoresis in the analysis of therapeutic peptides-A review. Electrophoresis 2024; 45:120-164. [PMID: 37705480 DOI: 10.1002/elps.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
Therapeutic peptides are a growing class of innovative drugs with high efficiency and a low risk of adverse effects. These biomolecules fall within the molecular mass range between that of small molecules and proteins. However, their inherent instability and potential for degradation underscore the importance of reliable and effective analytical methods for pharmaceutical quality control, therapeutic drug monitoring, and compliance testing. Liquid chromatography-mass spectrometry (LC-MS) has long time been the "gold standard" conventional method for peptide analysis, but capillary electrophoresis (CE) is increasingly being recognized as a complementary and, in some cases, superior, highly efficient, green, and cost-effective alternative technique. CE can separate peptides composed of different amino acids owing to differences in their net charge and size, determining their migration behavior in an electric field. This review provides a comprehensive overview of therapeutic peptides that have been used in the clinical environment for the last 25 years. It describes the properties, classification, current trends in development, and clinical use of therapeutic peptides. From the analytical point of view, it discusses the challenges associated with the analysis of therapeutic peptides in pharmaceutical and biological matrices, as well as the evaluation of CE as a whole and the comparison with LC methods. The article also highlights the use of microchip electrophoresis, nonaqueous CE, and nonconventional hydrodynamically closed CE systems and their applications. Overall, the article emphasizes the importance of developing new CE-based analytical methods to ensure the high quality, safety, and efficacy of therapeutic peptides in clinical practice.
Collapse
Affiliation(s)
- Ondrej Stefanik
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
2
|
Fan KT, Hsu CW, Chen YR. Mass spectrometry in the discovery of peptides involved in intercellular communication: From targeted to untargeted peptidomics approaches. MASS SPECTROMETRY REVIEWS 2023; 42:2404-2425. [PMID: 35765846 DOI: 10.1002/mas.21789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Endogenous peptide hormones represent an essential class of biomolecules, which regulate cell-cell communications in diverse physiological processes of organisms. Mass spectrometry (MS) has been developed to be a powerful technology for identifying and quantifying peptides in a highly efficient manner. However, it is difficult to directly identify these peptide hormones due to their diverse characteristics, dynamic regulations, low abundance, and existence in a complicated biological matrix. Here, we summarize and discuss the roles of targeted and untargeted MS in discovering peptide hormones using bioassay-guided purification, bioinformatics screening, or the peptidomics-based approach. Although the peptidomics approach is expected to discover novel peptide hormones unbiasedly, only a limited number of successful cases have been reported. The critical challenges and corresponding measures for peptidomics from the steps of sample preparation, peptide extraction, and separation to the MS data acquisition and analysis are also discussed. We also identify emerging technologies and methods that can be integrated into the discovery platform toward the comprehensive study of endogenous peptide hormones.
Collapse
Affiliation(s)
- Kai-Ting Fan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Wei Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Sterling FR, D'Amico J, Brumfield AM, Huegel KL, Vaughan PS, Morris K, Schwarz S, Joyce MV, Boggess B, Champion MM, Maciuba K, Allen P, Marasco E, Koch G, Gonzalez P, Hodges S, Leahy S, Gerstbauer E, Hinchcliffe EH, Vaughan KT. StARD9 is a novel lysosomal kinesin required for membrane tubulation, cholesterol transport and Purkinje cell survival. J Cell Sci 2023; 136:292582. [PMID: 36861884 DOI: 10.1242/jcs.260662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/18/2023] [Indexed: 03/03/2023] Open
Abstract
The pathological accumulation of cholesterol is a signature feature of Niemann-Pick type C (NPC) disease, in which excessive lipid levels induce Purkinje cell death in the cerebellum. NPC1 encodes a lysosomal cholesterol-binding protein, and mutations in NPC1 drive cholesterol accumulation in late endosomes and lysosomes (LE/Ls). However, the fundamental role of NPC proteins in LE/L cholesterol transport remains unclear. Here, we demonstrate that NPC1 mutations impair the projection of cholesterol-containing membrane tubules from the surface of LE/Ls. A proteomic survey of purified LE/Ls identified StARD9 as a novel lysosomal kinesin responsible for LE/L tubulation. StARD9 contains an N-terminal kinesin domain, a C-terminal StART domain, and a dileucine signal shared with other lysosome-associated membrane proteins. Depletion of StARD9 disrupts LE/L tubulation, paralyzes bidirectional LE/L motility and induces accumulation of cholesterol in LE/Ls. Finally, a novel StARD9 knock-out mouse recapitulates the progressive loss of Purkinje cells in the cerebellum. Together, these studies identify StARD9 as a microtubule motor protein responsible for LE/L tubulation and provide support for a novel model of LE/L cholesterol transport that becomes impaired in NPC disease.
Collapse
Affiliation(s)
- Felicity R Sterling
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jon D'Amico
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | - Kara L Huegel
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Patricia S Vaughan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kathryn Morris
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shelby Schwarz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michelle V Joyce
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.,University of Notre Dame Proteomics and Mass Spectrometry Facility, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bill Boggess
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.,University of Notre Dame Proteomics and Mass Spectrometry Facility, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.,University of Notre Dame Proteomics and Mass Spectrometry Facility, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kevin Maciuba
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Philip Allen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Eric Marasco
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Grant Koch
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Peter Gonzalez
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shannon Hodges
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shannon Leahy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Erica Gerstbauer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | - Kevin T Vaughan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
4
|
|
5
|
Yi L, Piehowski PD, Shi T, Smith RD, Qian WJ. Advances in microscale separations towards nanoproteomics applications. J Chromatogr A 2017; 1523:40-48. [PMID: 28765000 PMCID: PMC6042839 DOI: 10.1016/j.chroma.2017.07.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 01/22/2023]
Abstract
Microscale separation (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. In recent decades significant advances have been achieved in MS-based proteomics. However, the current proteomics platforms still face an analytical challenge in overall sensitivity towards nanoproteomics applications for starting materials of less than 1μg total proteins (e.g., cellular heterogeneity in tissue pathologies). Herein, we review recent advances in microscale separation techniques and integrated sample processing strategies that improve the overall sensitivity and proteome coverage of the proteomics workflow, and their contributions towards nanoproteomics applications.
Collapse
Affiliation(s)
- Lian Yi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Paul D Piehowski
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States.
| |
Collapse
|
6
|
Boley DA, Zhang Z, Dovichi NJ. Multisegment injections improve peptide identification rates in capillary zone electrophoresis-based bottom-up proteomics. J Chromatogr A 2017; 1523:123-126. [PMID: 28732593 DOI: 10.1016/j.chroma.2017.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 02/03/2023]
Abstract
While capillary zone electrophoresis (CZE) provides dramatically improved numbers of peptide identifications compared with reversed-phase chromatography for bottom-up proteomics of mass limited samples, CZE inevitably produces lower numbers of peptide identifications than RPLC for larger samples. One reason for this poorer performance is the dead time between injection of samples and subsequent appearance of the fastest moving component. This dead time is typically 25% of the separation window in CZE, but is only 5% of the separation window in gradient elution RPLC. This dead time can be eliminated in CZE by use of a multisegment injection mode where a series of samples is analyzed by injecting each sample while the preceding sample is still being separated. In this paper, we demonstrate that capillary zone electrophoresis employing sequential injections can produce a doubling in peptide identification rate with no degradation in separation efficiency.
Collapse
Affiliation(s)
- Danielle A Boley
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Zhenbin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
7
|
Choi SB, Zamarbide M, Manzini MC, Nemes P. Tapered-Tip Capillary Electrophoresis Nano-Electrospray Ionization Mass Spectrometry for Ultrasensitive Proteomics: the Mouse Cortex. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:597-607. [PMID: 27853976 DOI: 10.1007/s13361-016-1532-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Ultrasensitive characterization of the proteome raises the potential to understand how differential gene expression orchestrates cell heterogeneity in the brain. Here, we report a microanalytical capillary electrophoresis nano-flow electrospray ionization (CE-nanoESI) interface for mass spectrometry to enable the measurement of limited amounts of proteins in the mouse cortex. Our design integrates a custom-built CE system to a tapered-tip metal emitter in a co-axial sheath-flow configuration. This interface can be constructed in <15 min using readily available components, facilitating broad adaptation. Tapered-tip CE-nanoESI generates stable electrospray by reproducibly anchoring the Taylor cone, minimizes sample dilution in the ion source, and ensures efficient ion generation by sustaining the cone-jet spraying regime. Parallel reaction monitoring provided a 260-zmol lower limit of detection for angiotensin II (156,000 copies). CE was able to resolve a complex mixture of peptides in ~330,000 theoretical plates and identify ~15 amol (~1 pg) of BSA or cytochrome c. Over 30 min of separation, 1 ng protein digest from the mouse cortex yielded 217 nonredundant proteins encompassing a ~3-log-order concentration range using a quadrupole time-of-flight mass spectrometer. Identified proteins included many products from genes that are traditionally used to mark oligodendrocytes, astrocytes, and microglia. Finally, key proteins involved in neurodegenerative disorders were detected (e.g., parkinsonism and spastic paraplegia). CE-nanoESI-HRMS delivers sufficient sensitivity to detect proteins in limited amounts of tissues and cell populations to help understand how gene expression differences maintain cell heterogeneity in the brain. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sam B Choi
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Marta Zamarbide
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, 20037, USA
| | - M Chiara Manzini
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, 20037, USA
| | - Peter Nemes
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
8
|
Parr MK, Montacir O, Montacir H. Physicochemical characterization of biopharmaceuticals. J Pharm Biomed Anal 2016; 130:366-389. [DOI: 10.1016/j.jpba.2016.05.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
|
9
|
A simple sheathless CE-MS interface with a sub-micrometer electrical contact fracture for sensitive analysis of peptide and protein samples. Anal Chim Acta 2016; 936:157-67. [PMID: 27566351 DOI: 10.1016/j.aca.2016.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022]
Abstract
Online coupling of capillary electrophoresis (CE) to electrospray ionization mass spectrometry (MS) has shown considerable potential, however, technical challenges have limited its use. In this study, we have developed a simple and sensitive sheathless CE-MS interface based on the novel concept of forming a sub-micrometer fracture directly in the capillary. The simple interface design allowed the generation of a stable ESI spray capable of ionization at low nanoliter flow-rates (45-90 nL/min) for high sensitivity MS analysis of challenging samples like those containing proteins and peptides. By analysis of a model peptide (leucine enkephalin), a limit of detection (LOD) of 0.045 pmol/μL (corresponding to 67 attomol in a sample volume of ∼15 nL) was obtained. The merit of the CE-MS approach was demonstrated by analysis of bovine serum albumin (BSA) tryptic peptides. A well-resolved separation profile was achieved and comparable sequence coverage was obtained by the CE-MS method (73%) compared to a representative UPLC-MS method (77%). The CE-MS interface was subsequently used to analyse a more complex sample of pharmaceutically relevant human proteins including insulin, tissue factor and α-synuclein. Efficient separation and protein ESI mass spectra of adequate quality could be achieved using only a small amount of sample (30 fmol). In addition, analysis of ubiquitin samples under both native and denatured conditions, indicate that the CE-MS setup can facilitate native MS applications to probe the conformational properties of proteins. Thus, the described CE-MS setup should be useful for a wide range of high-sensitivity applications in protein research.
Collapse
|
10
|
Heemskerk AAM, Deelder AM, Mayboroda OA. CE-ESI-MS for bottom-up proteomics: Advances in separation, interfacing and applications. MASS SPECTROMETRY REVIEWS 2016; 35:259-271. [PMID: 24852088 DOI: 10.1002/mas.21432] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/27/2014] [Indexed: 06/03/2023]
Abstract
With the development of more sensitive hyphenation strategies for capillary electrophoresis-electrospray-mass spectrometry the technique has reemerged as technique with high separation power combined with high sensitivity in the analysis of peptides and protein digests. This review will discuss the newly developed hyphenation strategies for CE-ESI-MS and their application in bottom-up proteomics as well as the applications in the same time span, 2009 to present, using co-axial sheathliquid. Subsequently all separate aspects in the development of a CE-ESI-MS method for bottom-up proteomics shall be discussed, highlighting certain applications and discussing pros and cons of the various choices. The separation of peptides in a capillary electrophoresis system is discussed including the great potential for modeling of this migration of peptides due to the simple electrophoretic separation process. Furthermore, the technical aspects of method development are discussed, namely; background electrolyte choice, coating of the separation capillary and chosen loading method. Finally, conclusions and an outlook on future developments in the field of bottom-up proteomics by CE-ESI-MS will be provided.
Collapse
Affiliation(s)
- Anthonius A M Heemskerk
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, The Netherlands
| | - André M Deelder
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, The Netherlands
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300, RC, Leiden, The Netherlands
| |
Collapse
|
11
|
Gong X, Xiong X, Wang S, Li Y, Zhang S, Fang X, Zhang X. Desalting by crystallization: detection of attomole biomolecules in picoliter buffers by mass spectrometry. Anal Chem 2015; 87:9745-51. [PMID: 26312607 DOI: 10.1021/acs.analchem.5b01877] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sensitive detection of biomolecules in small-volume samples by mass spectrometry is, in many cases, challenging because of the use of buffers to maintain the biological activities of proteins and cells. Here, we report a highly effective desalting method for picoliter samples. It was based on the spontaneous separation of biomolecules from salts during crystallization of the salts. After desalting, the biomolecules were deposited in the tip of the quartz pipet because of the evaporation of the solvent. Subsequent detection of the separated biomolecules was achieved using solvent assisted electric field induced desorption/ionization (SAEFIDI) coupled with mass spectrometry. It allowed for direct desorption/ionization of the biomolecules in situ from the tip of the pipet. The organic component in the assistant solvent inhibited the desorption/ionization of salts, thus assured successful detection of biomolecules. Proteins and peptides down to 50 amol were successfully detected using our method even if there were 3 × 10(5) folds more amount of salts in the sample. The concentration and ion species of the salts had little influence on the detection results.
Collapse
Affiliation(s)
- Xiaoyun Gong
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University , Beijing 100084, China.,National Institute of Metrology , Beijing 100013, China
| | | | - Song Wang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Yanyan Li
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Sichun Zhang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Xiang Fang
- National Institute of Metrology , Beijing 100013, China
| | - Xinrong Zhang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University , Beijing 100084, China
| |
Collapse
|
12
|
Romanova EV, Sweedler JV. Peptidomics for the discovery and characterization of neuropeptides and hormones. Trends Pharmacol Sci 2015; 36:579-86. [PMID: 26143240 DOI: 10.1016/j.tips.2015.05.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/31/2022]
Abstract
The discovery of neuropeptides as signaling molecules with paracrine or hormonal regulatory functions has led to trailblazing advances in physiology and fostered the characterization of numerous neuropeptide-binding G protein-coupled receptors (GPCRs) as potential drug targets. The impact on human health has been tremendous: approximately 30% of commercial drugs act via the GPCR pathway. However, about 25% of the GPCRs encoded by the mammalian genome still lack their pharmacological identity. Searching for the orphan GPCR endogenous ligands that are likely to be neuropeptides has proved to be a formidable task. Here we describe the mass spectrometry (MS)-based technologies and experimental strategies that have been successful in achieving high-throughput characterization of endogenous peptides in nervous and endocrine systems.
Collapse
Affiliation(s)
- Elena V Romanova
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
13
|
Zhao Y, Riley NM, Sun L, Hebert AS, Yan X, Westphall MS, Rush MJP, Zhu G, Champion MM, Medie FM, DiGiuseppe Champion PA, Coon JJ, Dovichi NJ. Coupling capillary zone electrophoresis with electron transfer dissociation and activated ion electron transfer dissociation for top-down proteomics. Anal Chem 2015; 87:5422-9. [PMID: 25893372 PMCID: PMC4439324 DOI: 10.1021/acs.analchem.5b00883] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Top-down proteomics offers the potential for full protein characterization, but many challenges remain for this approach, including efficient protein separations and effective fragmentation of intact proteins. Capillary zone electrophoresis (CZE) has shown great potential for separation of intact proteins, especially for differentially modified proteoforms of the same gene product. To date, however, CZE has been used only with collision-based fragmentation methods. Here we report the first implementation of electron transfer dissociation (ETD) with online CZE separations for top-down proteomics, analyzing a mixture of four standard proteins and a complex protein mixture from the Mycobacterium marinum bacterial secretome. Using a multipurpose dissociation cell on an Orbitrap Elite system, we demonstrate that CZE is fully compatible with ETD as well as higher energy collisional dissociation (HCD), and that the two complementary fragmentation methods can be used in tandem on the electrophoretic time scale for improved protein characterization. Furthermore, we show that activated ion electron transfer dissociation (AI-ETD), a recently introduced method for enhanced ETD fragmentation, provides useful performance with CZE separations to greatly increase protein characterization. When combined with HCD, AI-ETD improved the protein sequence coverage by more than 200% for proteins from both standard and complex mixtures, highlighting the benefits electron-driven dissociation methods can add to CZE separations.
Collapse
Affiliation(s)
- Yimeng Zhao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nicholas M. Riley
- Department of Biomolecular Chemistry, Genome Center of Wisconsin, and Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Alexander S. Hebert
- Department of Biomolecular Chemistry, Genome Center of Wisconsin, and Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Xiaojing Yan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael S. Westphall
- Department of Biomolecular Chemistry, Genome Center of Wisconsin, and Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Matthew J. P. Rush
- Department of Biomolecular Chemistry, Genome Center of Wisconsin, and Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew M. Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Felix Mba Medie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | - Joshua J. Coon
- Department of Biomolecular Chemistry, Genome Center of Wisconsin, and Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Norman J. Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
14
|
Sun L, Zhu G, Zhang Z, Mou S, Dovichi NJ. Third-generation electrokinetically pumped sheath-flow nanospray interface with improved stability and sensitivity for automated capillary zone electrophoresis-mass spectrometry analysis of complex proteome digests. J Proteome Res 2015; 14:2312-21. [PMID: 25786131 DOI: 10.1021/acs.jproteome.5b00100] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We have reported a set of electrokinetically pumped sheath flow nanoelectrospray interfaces to couple capillary zone electrophoresis with mass spectrometry. A separation capillary is threaded through a cross into a glass emitter. A side arm provides fluidic contact with a sheath buffer reservoir that is connected to a power supply. The potential applied to the sheath buffer drives electro-osmosis in the emitter to pump the sheath fluid at nanoliter per minute rates. Our first-generation interface placed a flat-tipped capillary in the emitter. Sensitivity was inversely related to orifice size and to the distance from the capillary tip to the emitter orifice. A second-generation interface used a capillary with an etched tip that allowed the capillary exit to approach within a few hundred micrometers of the emitter orifice, resulting in a significant increase in sensitivity. In both the first- and second-generation interfaces, the emitter diameter was typically 8 μm; these narrow orifices were susceptible to plugging and tended to have limited lifetime. We now report a third-generation interface that employs a larger diameter emitter orifice with very short distance between the capillary tip and the emitter orifice. This modified interface is much more robust and produces much longer lifetime than our previous designs with no loss in sensitivity. We evaluated the third-generation interface for a 5000 min (127 runs, 3.5 days) repetitive analysis of bovine serum albumin digest using an uncoated capillary. We observed a 10% relative standard deviation in peak area, an average of 160,000 theoretical plates, and very low carry-over (much less than 1%). We employed a linear-polyacrylamide (LPA)-coated capillary for single-shot, bottom-up proteomic analysis of 300 ng of Xenopus laevis fertilized egg proteome digest and identified 1249 protein groups and 4038 peptides in a 110 min separation using an LTQ-Orbitrap Velos mass spectrometer; peak capacity was ∼330. The proteome data set using this third-generation interface-based CZE-MS/MS is similar in size to that generated using a commercial ultraperformance liquid chromatographic analysis of the same sample with the same mass spectrometer and similar analysis time.
Collapse
Affiliation(s)
- Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Zhenbin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Si Mou
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
15
|
Parker SJ, Raedschelders K, Van Eyk JE. Emerging proteomic technologies for elucidating context-dependent cellular signaling events: A big challenge of tiny proportions. Proteomics 2015; 15:1486-502. [PMID: 25545106 DOI: 10.1002/pmic.201400448] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/31/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022]
Abstract
Aberrant cell signaling events either drive or compensate for nearly all pathologies. A thorough description and quantification of maladaptive signaling flux in disease is a critical step in drug development, and complex proteomic approaches can provide valuable mechanistic insights. Traditional proteomics-based signaling analyses rely heavily on in vitro cellular monoculture. The characterization of these simplified systems generates a rich understanding of the basic components and complex interactions of many signaling networks, but they cannot capture the full complexity of the microenvironments in which pathologies are ultimately made manifest. Unfortunately, techniques that can directly interrogate signaling in situ often yield mass-limited starting materials that are incompatible with traditional proteomics workflows. This review provides an overview of established and emerging techniques that are applicable to context-dependent proteomics. Analytical approaches are illustrated through recent proteomics-based studies in which selective sample acquisition strategies preserve context-dependent information, and where the challenge of minimal starting material is met by optimized sensitivity and coverage. This review is organized into three major technological themes: (i) LC methods in line with MS; (ii) antibody-based approaches; (iii) MS imaging with a discussion of data integration and systems modeling. Finally, we conclude with future perspectives and implications of context-dependent proteomics.
Collapse
Affiliation(s)
- Sarah J Parker
- Department of Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA; Advanced Clinical Biosystems Research Institute, Los Angeles, CA, USA; Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | |
Collapse
|
16
|
He M, Xue Z, Zhang Y, Huang Z, Fang X, Qu F, Ouyang Z, Xu W. Development and Characterizations of a Miniature Capillary Electrophoresis Mass Spectrometry System. Anal Chem 2015; 87:2236-41. [PMID: 25597704 DOI: 10.1021/ac504868w] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Muyi He
- Department
of Biomedical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhenhua Xue
- Department
of Biomedical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yinna Zhang
- Department
of Biomedical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zejian Huang
- National Institute of Metrology, Beijing 100013, China
| | - Xiang Fang
- National Institute of Metrology, Beijing 100013, China
| | - Feng Qu
- Department
of Biomedical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zheng Ouyang
- Biomedical
Engineering Department, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wei Xu
- Department
of Biomedical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
17
|
Klepárník K. Recent advances in combination of capillary electrophoresis with mass spectrometry: Methodology and theory. Electrophoresis 2014; 36:159-78. [DOI: 10.1002/elps.201400392] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno Czech Republic
| |
Collapse
|
18
|
Lindenburg PW, Haselberg R, Rozing G, Ramautar R. Developments in Interfacing Designs for CE–MS: Towards Enabling Tools for Proteomics and Metabolomics. Chromatographia 2014. [DOI: 10.1007/s10337-014-2795-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Champion MM, Williams EA, Pinapati RS, Champion PAD. Correlation of phenotypic profiles using targeted proteomics identifies mycobacterial esx-1 substrates. J Proteome Res 2014; 13:5151-64. [PMID: 25106450 PMCID: PMC4227905 DOI: 10.1021/pr500484w] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
The
Esx/WXG-100 (ESAT-6/Wss) exporters are multiprotein complexes
that promote protein translocation across the cytoplasmic membrane
in a diverse range of pathogenic and nonpathogenic bacterial species.
The Esx-1 (ESAT-6 System-1) system mediates virulence factor translocation
in mycobacterial pathogens, including the human pathogen Mycobacterium
tuberculosis. Although several genes have been associated
with Esx-1-mediated transport and virulence, the contribution of individual
Esx-1 genes to export is largely undefined. A unique aspect of Esx-1
export is that several substrates require each other for export/stability.
We exploited substrate “codependency” to identify Esx-1
substrates. We simultaneously quantified changes in the levels of
13 Esx-1 proteins from both secreted and cytosolic protein fractions
generated from 16 Esx-1-deficient Mycobacterium marinum strains in a single experiment using MRM/SRM targeted mass spectrometry.
This expansion of measurable Esx-1 proteins allowed us to define statistical
rules for assigning novel substrates using phenotypic profiles of
known Esx-1 substrates. Using this approach, we identified three additional
Esx-1 substrates encoded by the esx-1 region. Our
studies begin to address how disruption of specific genes affects
several proteins in the Esx-1 complex. Overall, our findings illuminate
relationships between Esx-1 proteins and create a framework for the
identification of secreted substrates applicable to other protein
exporters and pathways.
Collapse
Affiliation(s)
- Matthew M Champion
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, §Eck Institute for Global Health, and ∥Center for Rare and Neglected Diseases, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | | | |
Collapse
|
20
|
Sun L, Zhu G, Mou S, Zhao Y, Champion MM, Dovichi NJ. Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for quantitative parallel reaction monitoring of peptide abundance and single-shot proteomic analysis of a human cell line. J Chromatogr A 2014; 1359:303-8. [PMID: 25082526 DOI: 10.1016/j.chroma.2014.07.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/25/2014] [Accepted: 07/10/2014] [Indexed: 12/14/2022]
Abstract
We coupled capillary zone electrophoresis (CZE) with an ultrasensitive electrokinetically pumped nanospray ionization source for tandem mass spectrometry (MS/MS) analysis of complex proteomes. We first used the system for the parallel reaction monitoring (PRM) analysis of angiotensin II spiked in 0.45mg/mL of bovine serum albumin (BSA) digest. A calibration curve was generated between the loading amount of angiotensin II and intensity of angiotensin II fragment ions. CZE-PRM generated a linear calibration curve across over 4.5 orders of magnitude dynamic range corresponding to angiotensin II loading amount from 2amole to 150fmole. The relative standard deviations (RSDs) of migration time were <4% and the RSDs of fragment ion intensity were ∼20% or less except 150fmole angiotensin II loading amount data (∼36% RSD). We further applied the system for the first bottom up proteomic analysis of a human cell line using CZE-MS/MS. We generated 283 protein identifications from a 1h long, single-shot CZE MS/MS analysis of the MCF7 breast cancer cell line digest, corresponding to ∼80ng loading amount. The MCF7 digest was fractionated using a C18 solid phase extraction column; single-shot analysis of a single fraction resulted in 468 protein identifications, which is by far the largest number of protein identifications reported for a mammalian proteomic sample using CZE.
Collapse
Affiliation(s)
- Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Si Mou
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yimeng Zhao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
21
|
Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae. Sci Rep 2014; 3:2494. [PMID: 23986098 PMCID: PMC3756343 DOI: 10.1038/srep02494] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/07/2013] [Indexed: 11/08/2022] Open
Abstract
We recently characterized 24-hr daily rhythmic patterns of gene expression in Anopheles gambiae mosquitoes. These include numerous odorant binding proteins (OBPs), soluble odorant carrying proteins enriched in olfactory organs. Here we demonstrate that multiple rhythmically expressed genes including OBPs and takeout proteins, involved in regulating blood feeding behavior, have corresponding rhythmic protein levels as measured by quantitative proteomics. This includes AgamOBP1, previously shown as important to An. gambiae odorant sensing. Further, electrophysiological investigations demonstrate time-of-day specific differences in olfactory sensitivity of antennae to major host-derived odorants. The pre-dusk/dusk peaks in OBPs and takeout gene expression correspond with peak protein abundance at night, and in turn coincide with the time of increased olfactory sensitivity to odorants requiring OBPs and times of increased blood-feeding behavior. This suggests an important role for OBPs in modulating temporal changes in odorant sensitivity, enabling the olfactory system to coordinate with the circadian niche of An. gambiae.
Collapse
|
22
|
Weigel KJ, Jakimenko A, Conti BA, Chapman SE, Kaliney WJ, Leevy WM, Champion MM, Schafer ZT. CAF-Secreted IGFBPs Regulate Breast Cancer Cell Anoikis. Mol Cancer Res 2014; 12:855-66. [DOI: 10.1158/1541-7786.mcr-14-0090] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Zhao Y, Sun L, Champion MM, Knierman MD, Dovichi NJ. Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for top-down characterization of the Mycobacterium marinum secretome. Anal Chem 2014; 86:4873-8. [PMID: 24725189 PMCID: PMC4033641 DOI: 10.1021/ac500092q] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Capillary zone electrophoresis (CZE) with an electrokinetically pumped sheath-flow nanospray interface was coupled with a high-resolution Q-Exactive mass spectrometer for the analysis of culture filtrates from Mycobacterium marinum. We confidently identified 22 gene products from the wildtype M. marinum secretome in a single CZE-tandem mass spectrometry (MS/MS) run. A total of 58 proteoforms were observed with post-translational modifications including signal peptide removal, N-terminal methionine excision, and acetylation. The conductivities of aqueous acetic acid and formic acid solutions were measured from 0.1% to 100% concentration (v/v). Acetic acid (70%) provided lower conductivity than 0.25% formic acid and was evaluated as low ionic-strength and a CZE-MS compatible sample buffer with good protein solubility.
Collapse
Affiliation(s)
- Yimeng Zhao
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | | | | | |
Collapse
|
24
|
Li Y, Compton PD, Tran JC, Ntai I, Kelleher NL. Optimizing capillary electrophoresis for top-down proteomics of 30-80 kDa proteins. Proteomics 2014; 14:1158-64. [PMID: 24596178 DOI: 10.1002/pmic.201300381] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/08/2014] [Accepted: 02/27/2014] [Indexed: 01/01/2023]
Abstract
The direct analysis of intact proteins via MS offers compelling advantages in comparison to alternative methods due to the direct and unambiguous identification and characterization of protein sequences it provides. The inability to efficiently analyze proteins in the "middle mass range," defined here as proteins from 30 to 80 kDa, in a robust fashion has limited the adoption of these "top-down" methods. Largely, a result of poor liquid chromatographic performance, the limitations in this mass range may be addressed by alternative separations that replace chromatography. Herein, the short migration times of CZE-ESI-MS/MS have been extended to size-sorted whole proteins in complex mixtures from Pseudomonas aeruginosa PA01. An electrokinetically pumped nanospray interface, a coated capillary, and a stacking method for on-column sample concentration were developed to achieve high-loading capacity and separation resolution. We achieved full width at half maximum of 8-16 s for model proteins up to 29 kDa and identified 30 proteins in the mass range of 30-80 kDa from P. aeruginosa PA01 whole cell lysate. These results suggest that CZE-ESI-MS/MS is capable of identifying proteins in the middle mass range in top-down proteomics.
Collapse
Affiliation(s)
- Yihan Li
- Departments of Chemistry and Molecular Biosciences, Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | | | | | | | | |
Collapse
|
25
|
Zhu G, Sun L, Linkous T, Kernaghan D, McGivney JB, Dovichi NJ. Absolute quantitation of host cell proteins in recombinant human monoclonal antibodies with an automated CZE-ESI-MS/MS system. Electrophoresis 2014; 35:1448-52. [DOI: 10.1002/elps.201300545] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/31/2023]
Affiliation(s)
- Guijie Zhu
- Department of Chemistry and Biochemistry; University of Notre Dame; Notre Dame IN USA
| | - Liangliang Sun
- Department of Chemistry and Biochemistry; University of Notre Dame; Notre Dame IN USA
| | - Travis Linkous
- Department of Analytical Biotechnology; MedImmune; Gaithersburg MD USA
| | - Dawn Kernaghan
- Department of Analytical Biotechnology; MedImmune; Gaithersburg MD USA
| | - James B. McGivney
- Department of Analytical Biotechnology; MedImmune; Gaithersburg MD USA
| | - Norman J. Dovichi
- Department of Chemistry and Biochemistry; University of Notre Dame; Notre Dame IN USA
| |
Collapse
|
26
|
A novel ESX-1 locus reveals that surface-associated ESX-1 substrates mediate virulence in Mycobacterium marinum. J Bacteriol 2014; 196:1877-88. [PMID: 24610712 DOI: 10.1128/jb.01502-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EsxA (ESAT-6) and EsxB (CFP-10) are virulence factors exported by the ESX-1 system in mycobacterial pathogens. In Mycobacterium marinum, an established model for ESX-1 secretion in Mycobacterium tuberculosis, genes required for ESX-1 export reside at the extended region of difference 1 (RD1) locus. In this study, a novel locus required for ESX-1 export in M. marinum was identified outside the RD1 locus. An M. marinum strain bearing a transposon-insertion between the MMAR_1663 and MMAR_1664 genes exhibited smooth-colony morphology, was deficient for ESX-1 export, was nonhemolytic, and was attenuated for virulence. Genetic complementation revealed a restoration of colony morphology and a partial restoration of virulence in cell culture models. Yet hemolysis and the export of ESX-1 substrates into the bacteriological medium in vitro as measured by both immunoblotting and quantitative proteomics were not restored. We show that genetic complementation of the transposon insertion strain partially restored the translocation of EsxA and EsxB to the mycobacterial cell surface. Our findings indicate that the export of EsxA and EsxB to the cell surface, rather than secretion into the bacteriological medium, correlates with virulence in M. marinum. Together, these findings not only expand the known genetic loci required for ESX-1 secretion in M. marinum but also provide an explanation for the observed disparity between in vitro ESX-1 export and virulence.
Collapse
|
27
|
Sun L, Zhu G, Yan X, Champion MM, Dovichi NJ. Capillary zone electrophoresis for analysis of complex proteomes using an electrokinetically pumped sheath flow nanospray interface. Proteomics 2014; 14:622-8. [PMID: 24277677 PMCID: PMC3947435 DOI: 10.1002/pmic.201300295] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/18/2013] [Accepted: 09/02/2013] [Indexed: 12/14/2022]
Abstract
The vast majority of proteomic studies employ RP-HPLC coupled with MS/MS for analysis of the tryptic digest of a cellular lysate. This technology is quite mature, and typically provides identification of hundreds to thousands of peptides, which is used to infer the identity of hundreds to thousands of proteins. These studies usually require milligrams to micrograms of starting material. CZE provides an interesting alternative separation method based on a different separation mechanism than HPLC. CE received some attention for protein analysis beginning 25 years ago. Those efforts stalled because of the limited performance of the electrospray interfaces and the limited speed and sensitivity of mass spectrometers of that era. This review considers a new electrospray interface design coupled with Orbitrap Velos and linear Q-trap mass spectrometers. CZE coupled with this interface and these detectors provides single shot detection of >1250 peptides from an Escherichia coli digest in less than 1 h, identification of nearly 5000 peptides from analysis of seven fractions produced by SPE of the E. coli digest in a 6 h total analysis time, low attomole detection limits for peptides generated from standard proteins, and high zeptomole detection limits for selected ion monitoring of peptides. Incorporation of an integrated on-line immobilized trypsin microreactor allows digestion and analysis of picogram amounts of a complex eukaryotic proteome.
Collapse
Affiliation(s)
- Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | | | | | | | | |
Collapse
|
28
|
Zhu G, Sun L, Yan X, Dovichi NJ. Stable, reproducible, and automated capillary zone electrophoresis-tandem mass spectrometry system with an electrokinetically pumped sheath-flow nanospray interface. Anal Chim Acta 2014; 810:94-8. [PMID: 24439510 PMCID: PMC3918410 DOI: 10.1016/j.aca.2013.11.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/24/2013] [Accepted: 11/29/2013] [Indexed: 01/31/2023]
Abstract
A PrinCE autosampler was coupled to a Q-Exactive mass spectrometer by an electrokinetically pumped sheath-flow nanospray interface to perform automated capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-MS/MS). 20ng aliquots of an Escherichia coli digest were injected to evaluate the system. Eight sequential injections over an 8-h period identified 1115±70 (relative standard deviation, RSD=6%) peptides and 270±8 (RSD=3%) proteins per run. The average RSDs of migration time, peak intensity, and peak area were 3%, 24% and 19%, respectively, for 340 peptides with high intensity. This is the first report of an automated CZE-ESI-MS/MS system using the electrokinetically pumped sheath-flow nanospray interface. The results demonstrate that this system is capable of reproducibly identifying over 1000 peptides from an E. coli tryptic digest in a 1-h analysis time.
Collapse
Affiliation(s)
- Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xiaojing Yan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
29
|
Human herpesvirus 7 U21 tetramerizes to associate with class I major histocompatibility complex molecules. J Virol 2014; 88:3298-308. [PMID: 24390327 DOI: 10.1128/jvi.02639-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The U21 gene product from human herpesvirus 7 binds to and redirects class I major histocompatibility complex (MHC) molecules to a lysosomal compartment. The molecular mechanism by which U21 reroutes class I MHC molecules to lysosomes is not known. Here, we have reconstituted the interaction between purified soluble U21 and class I MHC molecules, suggesting that U21 does not require additional cellular proteins to interact with class I MHC molecules. Our results demonstrate that U21, itself predicted to contain an MHC class I-like protein fold, interacts tightly with class I MHC molecules as a tetramer, in a 4:2 stoichiometry. These observations have helped to elucidate a refined model describing the mechanism by which U21 escorts class I MHC molecules to the lysosomal compartment. IMPORTANCE In this report, we show that the human herpesvirus 7 (HHV-7) immunoevasin U21, itself a class I MHC-like protein, binds with high affinity to class I MHC molecules as a tetramer and escorts them to lysosomes, where they are degraded. While many class I MHC-like molecules have been described in detail, this unusual viral class I-like protein functions as a tetramer, associating with class I MHC molecules in a 4:2 ratio, illuminating a functional significance of homooligomerization of a class I MHC-like protein.
Collapse
|
30
|
Sun L, Li Y, Champion MM, Zhu G, Wojcik R, Dovichi NJ. Capillary zone electrophoresis-multiple reaction monitoring from 100 pg of RAW 264.7 cell lysate digest. Analyst 2013; 138:3181-8. [PMID: 23591184 DOI: 10.1039/c3an00287j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Capillary zone electrophoresis-multiple/single reaction monitoring (CZE-MRM/SRM), which employed an electrokinetically driven sheath-flow electrospray interface, was used for the rapid and highly sensitive detection of protein analytes in complex tryptic digests. MRM channels were developed against a commercial exponential mixture of bovine proteins. Five proteins spanning four orders of magnitude concentration range were confidently detected from only 2.5 ng of the digest mixture; the mass detection limits (S/N = 3) of two detected proteins, alpha-casein and glutamate dehydrogenase were about 600 zmol and 30 amol, respectively. This technique was then applied to a RAW 264.7 cell lysate digest. Three proteins were confidently and reproducibly detected from 100 pg of this digest. The sample amount corresponds to the approximate protein content from a single cell, which suggests that CZE-MRM may be a useful analytical tool in chemical cytometry. In addition to providing highly sensitive detection of proteins in complex mixtures, this system is highly rapid; migration time of the protein digests was less than 10 min.
Collapse
Affiliation(s)
- Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | |
Collapse
|
31
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2011-2013). Electrophoresis 2013; 35:69-95. [PMID: 24255019 DOI: 10.1002/elps.201300331] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 01/15/2023]
Abstract
The review presents a comprehensive survey of recent developments and applications of capillary and microchip electroseparation methods (zone electrophoresis, ITP, IEF, affinity electrophoresis, EKC, and electrochromatography) for analysis, isolation, purification, and physicochemical and biochemical characterization of peptides. Advances in the investigation of electromigration properties of peptides, in the methodology of their analysis, including sample preseparation, preconcentration and derivatization, adsorption suppression and EOF control, as well as in detection of peptides, are presented. New developments in particular CE and CEC modes are reported and several types of their applications to peptide analysis are described: conventional qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. Some micropreparative peptide separations are shown and capabilities of CE and CEC techniques to provide relevant physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
32
|
Mou S, Sun L, Dovichi NJ. Accurate determination of peptide phosphorylation stoichiometry via automated diagonal capillary electrophoresis coupled with mass spectrometry: proof of principle. Anal Chem 2013; 85:10692-6. [PMID: 24144020 DOI: 10.1021/ac402858a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While reversible protein phosphorylation plays an important role in many cellular processes, simple and reliable measurement of the stoichiometry of phosphorylation can be challenging. This measurement is confounded by differences in the ionization efficiency of phosphorylated and unphosphorylated sites during analysis by mass spectrometry. Here, we demonstrate diagonal capillary electrophoresis-mass spectrometry for the accurate determination of this stoichiometry. Diagonal capillary electrophoresis is a two-dimensional separation method that incorporates an immobilized alkaline phosphatase microreactor at the distal end of the first capillary and employs identical electrophoretic separation modes in both dimensions. The first dimension is used to separate a mixture of the phosphorylated and unphosphorylated forms of a peptide. Fractions are parked in the reactor where they undergo complete dephosphorylation. The products are then periodically transferred to the second capillary and analyzed by mass spectrometry (MS). Because the phosphorylated and unphosphorylated forms differ in charge, they are well resolved in the first dimension separation. Because the unphosphorylated and dephosphorylated peptides are identical, there is no bias in ionization efficiency, and phosphorylation stoichiometry can be determined by the ratio of the signal of the two forms. A calibration curve was generated from mixtures of a phosphorylated standard peptide and its unphosphorylated form, prepared in a bovine serum albumin tryptic digest. This proof of principle experiment demonstrated a linear response across nearly 2 orders of magnitude in stoichiometry.
Collapse
Affiliation(s)
- Si Mou
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | |
Collapse
|
33
|
Sun L, Zhu G, Zhao Y, Yan X, Mou S, Dovichi NJ. Ultrasensitive and Fast Bottom-up Analysis of Femtogram Amounts of Complex Proteome Digests. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
Sun L, Zhu G, Zhao Y, Yan X, Mou S, Dovichi NJ. Ultrasensitive and fast bottom-up analysis of femtogram amounts of complex proteome digests. Angew Chem Int Ed Engl 2013; 52:13661-4. [PMID: 24173663 DOI: 10.1002/anie.201308139] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Indexed: 12/16/2022]
Abstract
Femtogram proteomics: An ultrasensitive capillary zone electrophoresis-mass spectrometry system that is based on an improved nanospray interface has been developed. This system is used for the analysis of picogram to femtogram amounts of E. coli digests; for example, over 100 proteins were identified from 16 pg digests by tandem mass spectrometry. AMTs=accurate mass and time tags.
Collapse
Affiliation(s)
- Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 (USA)
| | | | | | | | | | | |
Collapse
|
35
|
Wang C, Lee CS, Smith RD, Tang K. Capillary isotachophoresis-nanoelectrospray ionization-selected reaction monitoring MS via a novel sheathless interface for high sensitivity sample quantification. Anal Chem 2013; 85:7308-15. [PMID: 23789856 PMCID: PMC3744340 DOI: 10.1021/ac401202c] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A novel sheathless capillary isotachophoresis (CITP/CZE)-mass spectrometry (MS) interface featuring a large inner diameter (i.d.) separation capillary, and a detachable small i.d. porous electrospray ionization (ESI) emitter was developed in this study to simultaneously achieve large sample loading capacity and stable nanoESI operation. Crucial operating parameters, including sample loading volume, flow rate, and separation window, were systematically investigated to attain optimum CITP/CZE separation efficiency and MS detection sensitivity. The performance of CITP/CZE-nanoESI-MS using the new sheathless interface was evaluated for its achievable low limit of quantification (LOQ) by analyzing targeted peptides, leu-enkephalin and angiotensin II, spiked in a BSA tryptic digest matrix at different concentrations. A linear dynamic range spanning 4.5 orders of magnitude and a 10 pM LOQ with measurement reproducibility of the CV < 22% were obtained experimentally for both targeted peptides, representing a 5-fold sensitivity improvement as compared to using the sheath liquid interface developed previously.1.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Cheng S. Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Keqi Tang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| |
Collapse
|
36
|
Sun L, Zhu G, Yan X, Dovichi NJ. High sensitivity capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for the rapid analysis of complex proteomes. Curr Opin Chem Biol 2013; 17:795-800. [PMID: 23911612 DOI: 10.1016/j.cbpa.2013.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 12/15/2022]
Abstract
The vast majority of bottom-up proteomic studies employ reversed-phase separation of tryptic digests coupled with electrospray ionization tandem mass spectrometry. These studies are remarkably successful for the analysis of samples containing micrograms of protein. However, liquid chromatography tends to perform poorly for samples containing nanogram amounts of protein, presumably due to loss of trace-level peptides within the chromatographic system. Capillary zone electrophoresis provides a much simpler flow system and would appear to be an attractive alternative to liquid chromatography for separation of small peptide samples before electrospray ionization and mass spectrometry detection. However, capillary zone electrophoresis has received very little attention as a tool for analysis of complex proteomes. In 2012, we reported the use of capillary zone electrophoresis for the analysis of the secretome of Mycobacterium marinum, a model system for tuberculosis. Roughly 400 peptides and over 100 proteins were identified from this medium-complexity proteome; this identification required analysis of a set of 11 fractions and occupied three hours of mass spectrometer time. We have recently employed an improved capillary zone electrophoresis system for the analysis of 100 ng of the Escherichia coli proteome and observed over 1300 peptides and nearly 350 proteins in a single separation. More interestingly, analysis of 1 ng of the E. coli proteome yielded over 600 peptide and 140 protein groups. This sample size approaches that of a large eukaryotic cell, suggesting that capillary zone electrophoresis may ultimately be a useful tool for chemical cytometry.
Collapse
Affiliation(s)
- Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xiaojing Yan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
37
|
Zhu G, Sun L, Keithley RB, Dovichi NJ. Capillary isoelectric focusing-tandem mass spectrometry and reversed-phase liquid chromatography-tandem mass spectrometry for quantitative proteomic analysis of differentiating PC12 cells by eight-plex isobaric tags for relative and absolute quantification. Anal Chem 2013; 85:7221-9. [PMID: 23822771 DOI: 10.1021/ac4009868] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report the application of capillary isoelectric focusing for quantitative analysis of a complex proteome. Biological duplicates were generated from PC12 cells at days 0, 3, 7, and 12 following treatment with nerve growth factor. These biological duplicates were digested with trypsin, labeled using eight-plex isobaric tags for relative and absolute quantification (iTRAQ) chemistry, and pooled. The pooled peptides were separated into 25 fractions using reversed-phase liquid chromatography (RPLC). Technical duplicates of each fraction were separated by capillary isoelectric focusing (cIEF) using a set of amino acids as ampholytes. The cIEF column was interfaced to an Orbitrap Velos mass spectrometer with an electrokinetically pumped sheath-flow nanospray interface. This HPLC-cIEF-electrospray-tandem mass spectrometry (ESI-MS/MS) approach identified 835 protein groups and produced 2,329 unique peptides IDs. The biological duplicates were analyzed in parallel using conventional strong-cation exchange (SCX)-RPLC-ESI-MS/MS. The iTRAQ peptides were first separated into eight fractions using SCX. Each fraction was then analyzed by RPLC-ESI-MS/MS. The SCX-RPLC approach generated 1,369 protein groups and 3,494 unique peptide IDs. For protein quantitation, 96 and 198 differentially expressed proteins were obtained with RPLC-cIEF and SCX-RPLC, respectively. The combined set identified 231 proteins. Protein expression changes measured by RPLC-cEIF and SCX-RPLC were highly correlated.
Collapse
Affiliation(s)
- Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | | | | | | |
Collapse
|
38
|
Sun L, Knierman MD, Zhu G, Dovichi NJ. Fast top-down intact protein characterization with capillary zone electrophoresis-electrospray ionization tandem mass spectrometry. Anal Chem 2013; 85:5989-95. [PMID: 23692435 DOI: 10.1021/ac4008122] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Capillary zone electrophoresis (CZE)-electrospray ionization tandem mass spectrometry (ESI-MS/MS) was applied for rapid top-down intact protein characterization. A mixture containing four model proteins (cytochrome c, myoglobin, bovine serum albumin (BSA), and β-casein) was used as the sample. The CZE-ESI-MS system was first evaluated with the mixture. The four model proteins and five impurities were baseline-separated within 12 min. The limits of detection [signal-to-noise ratio (S/N) = 3] of the four model proteins ranged from 20 (cytochrome c) to 800 amol (BSA). The relative standard deviations of migration time and intensity for the four model proteins were less than 3% and 30%, respectively, in quintuplicate runs. CZE-ESI-MS/MS was then applied for top-down characterization of the mixture. Three of the model proteins (all except BSA) and an impurity (bovine transthyretin) were confidently identified by database searching of the acquired tandem spectra from protein fragmentation. Modifications including phosphorylation, N-terminal acetylation, and heme group binding were identified.
Collapse
Affiliation(s)
- Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
39
|
Stalmach A, Albalat A, Mullen W, Mischak H. Recent advances in capillary electrophoresis coupled to mass spectrometry for clinical proteomic applications. Electrophoresis 2013; 34:1452-64. [DOI: 10.1002/elps.201200708] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/07/2013] [Accepted: 02/14/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Angelique Stalmach
- Department of Proteomics and Systems Medicine; BHF Glasgow Cardiovascular Research Centre; Institute of Cardiovascular and Medical Sciences; College of Medical Veterinary and Life Sciences; University of Glasgow; Glasgow; UK
| | - Amaya Albalat
- Department of Proteomics and Systems Medicine; BHF Glasgow Cardiovascular Research Centre; Institute of Cardiovascular and Medical Sciences; College of Medical Veterinary and Life Sciences; University of Glasgow; Glasgow; UK
| | - William Mullen
- Department of Proteomics and Systems Medicine; BHF Glasgow Cardiovascular Research Centre; Institute of Cardiovascular and Medical Sciences; College of Medical Veterinary and Life Sciences; University of Glasgow; Glasgow; UK
| | | |
Collapse
|
40
|
Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013; 113:2343-94. [PMID: 23438204 PMCID: PMC3751594 DOI: 10.1021/cr3003533] [Citation(s) in RCA: 986] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaoyang Zhang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bryan R. Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bing Shan
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Moon-Chang Baek
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
41
|
Sun L, Zhu G, Dovichi NJ. Integrated capillary zone electrophoresis-electrospray ionization tandem mass spectrometry system with an immobilized trypsin microreactor for online digestion and analysis of picogram amounts of RAW 264.7 cell lysate. Anal Chem 2013; 85:4187-94. [PMID: 23510126 DOI: 10.1021/ac400523x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A capillary zone electrophoresis (CZE) electrospray ionization (ESI) tandem mass spectrometry (MS/MS) system was integrated with an immobilized trypsin microreactor. The system was evaluated and then applied for online digestion and analysis of picogram loadings of RAW 264.7 cell lysate. Protein samples were dissolved in a buffer containing 50% (v/v) acetonitrile (ACN), and then directly loaded into the capillary for digestion, followed by CZE separation and MS/MS identification. The organic solvent (50% (v/v) ACN) assisted the immobilized trypsin digestion and simplified the protein sample preparation protocol. Neither protein reduction nor alkylation steps were employed, which minimized sample loss and contamination. The integrated CZE-ESI-MS/MS system generated confident identification of bovine serum albumin (BSA) with 19% sequence coverage and 14 peptide identifications (IDs) when 20 fmol was loaded. When only 1 fmol of BSA was injected, one BSA peptide was consistently detected. For the analysis of a standard protein mixture, the integrated system produced efficient protein digestion and confident identification for proteins with different molecular weights and isoelectric points when a low-femtomole amount was loaded for each protein. We further applied the system for triplicate analysis of a RAW 264.7 cell lysate; 2 ± 1 and 7 ± 2 protein groups were confidently identified from only 300 pg and 3 ng loadings, respectively. The 300 pg sample loading corresponds to the protein content of three RAW 264.7 cells. In addition to high-sensitivity analysis, the integrated CZE-ESI-MS/MS system produces good reproducibility in terms of peptide and protein IDs, peptide migration time, and peptide intensity.
Collapse
Affiliation(s)
- Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | | | | |
Collapse
|
42
|
Zhu G, Sun L, Yan X, Dovichi NJ. Single-shot proteomics using capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry with production of more than 1250 Escherichia coli peptide identifications in a 50 min separation. Anal Chem 2013; 85:2569-73. [PMID: 23394296 DOI: 10.1021/ac303750g] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Capillary zone electrophoresis (CZE)-electrospray ionization-tandem mass spectrometry (ESI-MS/MS) was optimized and applied for analysis of 1-100 ng Escherichia coli protein digests in a single run (single-shot analysis). The system employed an electrokinetically pumped nanospray interface, a coated capillary, and stacking conditions for sample injection. More than 1 250 peptides were identified by optimized single-shot CZE-ESI-MS/MS with 100 ng digest loaded and 50 min analysis time. When 10 ng and 1 ng digests were loaded, about 1 000 and 600 peptides were identified in a single-shot analysis, respectively. Compared with single-shot ultraperformance liquid chromatography (UPLC)-ESI-MS/MS, CZE-ESI-MS/MS produced fewer peptide IDs (1 377 ± 128 vs 1 875 ± 32) for large sample loading amounts (100 ng) with the same mass spectrometer time (50 min). However, when the loaded digest was mass limited (1 ng), CZE-ESI-MS/MS generated many more peptide identifications than UPLC-ESI-MS/MS (627 ± 38 vs 342 ± 113). In addition, CZE-ESI-MS/MS and UPLC-ESI -MS/MS provided complementary peptide level identifications. These results suggest that CZE-ESI-MS/MS may be useful for large-scale, comprehensive, and confident proteomics analysis.
Collapse
|
43
|
Wang C, Lee CS, Smith RD, Tang K. Ultrasensitive sample quantitation via selected reaction monitoring using CITP/CZE-ESI-triple quadrupole MS. Anal Chem 2012; 84:10395-403. [PMID: 23140208 DOI: 10.1021/ac302616m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We demonstrate the direct coupling of transient capillary isotachophoresis/capillary zone electrophoresis (CITP/CZE) with a high-sensitivity triple quadrupole mass spectrometer operating in selected reaction monitoring (SRM) mode for sample quantitation. The capability of CITP/CZE for in situ sample enrichment and separation has been shown to significantly improve the analytical figures of merit. A linear dynamic range spanning 4 orders of magnitude was observed. An average signal-to-noise ratio (S/N) of 49.6 was observed for 50 amol of targeted peptide in the presence of a complex and much more abundant bovine serum albumin (BSA) digest. Correlation of variation (CV) of <10% for peak area was measured from triplicate sample analyses at 50 pM peptide concentration, showing good reproducibility of this online CITP/CZE-SRM mass spectrometry (MS) platform, and with limit of quantitation (LOQ) demonstrated to be well below 50 pM.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 20742, United States
| | | | | | | |
Collapse
|
44
|
Sun L, Zhu G, Li Y, Yang P, Dovichi NJ. Coupling methanol denaturation, immobilized trypsin digestion, and accurate mass and time tagging for liquid-chromatography-based shotgun proteomics of low nanogram amounts of RAW 264.7 cell lysate. Anal Chem 2012; 84:8715-21. [PMID: 22971241 PMCID: PMC3477608 DOI: 10.1021/ac3019608] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the shotgun proteomic analysis of mammalian cell lysates that contain low nanogram amounts of protein. Proteins were denatured using methanol, digested using immobilized trypsin, and analyzed by UPLC-ESI-MS/MS. The approach generated more peptides and higher sequence coverage for a mixture of three standard proteins than the use of free trypsin solution digestion of heat- or urea-denatured proteins. We prepared triplicate RAW 264.7 cell lysates that contained 6, 30, 120, and 300 ng of protein. An average of 2 ± 1, 23 ± 2, 134 ± 11, and 218 ± 26 proteins were detected for each sample size, respectively. The numbers of both protein and peptide IDs scaled linearly with the amount of sample taken for analysis. Our approach also outperformed traditional methods (free trypsin digestion of heat- or urea-denatured proteins) for 6-300 ng RAW 264.7 cell protein analysis in terms of number of peptides and proteins identified. The use of accurate mass and time (AMT) tags resulted in the identification of an additional 16 proteins based on 20 peptides from the 6 ng cell lysate prepared with our approach. When AMT analysis was performed for the 6 ng cell lysate prepared with traditional methods, no reasonable peptide signal could be obtained. In all cases, roughly ∼30% of the digested sample was taken for analysis, corresponding to the analysis of a 2 ng aliquot of homogenate from the 6 ng cell lysate.
Collapse
Affiliation(s)
- Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yihan Li
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ping Yang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Norman J. Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|