1
|
Benazza R, Letissier L, Papadakos G, Thom J, Diemer H, Cotton G, Cianférani S, Hernandez-Alba O. Development of Top-Down Mass Spectrometry Strategies in the Chromatographic Time Scale (LC-TD-MS) for the Extended Characterization of an Anti-EGFR Single-Domain Antibody-Drug Conjugate in Both Reduced and Nonreduced Forms. Anal Chem 2025. [PMID: 39889214 DOI: 10.1021/acs.analchem.4c03323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Even though mAbs have attracted the biggest interest in the development of therapeutic proteins, next-generation therapeutics such as single-domain antibodies (sdAb) are propelling increasing attention as new alternatives with appealing applications in different clinical areas. These constructs are small therapeutic proteins formed by a variable domain of the heavy chain of an antibody with multiple therapeutic and production benefits compared with their mAb counterparts. These proteins can be subjected to different bioconjugation processes to form single-domain antibody-drug conjugates (sdADCs) and hence increase their therapeutic potency, and akin to other therapeutic proteins, nanobodies and related products require dedicated analytical strategies to fully characterize their primary structure prior to their release to the market. In this study, we report for the first time the extensive sequence characterization of a conjugated anti-EGFR 14 kDa sdADC by using state-of-the-art top-down mass spectrometry strategies in combination with liquid chromatography (LC-TD-MS). Mass analysis revealed a highly homogeneous sample with one conjugated molecule. Subsequently, the reduced sdADC was submitted to different fragmentation techniques, namely, higher-energy collisional dissociation, electron-transfer dissociation, and electron-transfer higher-energy collision dissociation, allowing to unambiguously assess the conjugation site with 24 diagnostic fragment ions and 85% of global sequence coverage. The sequence coverage of the nonreduced protein was significantly lower (around 16%); however, the analysis of the fragmentation spectra corroborated the presence of the intramolecular disulfide bridge along with the localization of the conjugation site. Altogether, our results pinpoint the difficulties and challenges associated with the fragmentation of sdAb-derived formats in the LC time scale due to their remarkable stability as a consequence of the intramolecular disulfide bridge. However, the use of complementary activation techniques along with the identification of specific ion fragments allows an improved sequence coverage, the characterization of the intramolecular disulfide bond, and the unambiguous localization of the conjugation site.
Collapse
Affiliation(s)
- Rania Benazza
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, 67087 Strasbourg, France
| | - Léa Letissier
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, 67087 Strasbourg, France
| | - Greg Papadakos
- Edinburgh Technopole, Almac Discovery, Milton Bridge, Penicuik, Scotland EH26 0BE, United Kingdom
| | - Jen Thom
- Edinburgh Technopole, Almac Discovery, Milton Bridge, Penicuik, Scotland EH26 0BE, United Kingdom
| | - Helene Diemer
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, 67087 Strasbourg, France
| | - Graham Cotton
- Edinburgh Technopole, Almac Discovery, Milton Bridge, Penicuik, Scotland EH26 0BE, United Kingdom
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, 67087 Strasbourg, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, 67087 Strasbourg, France
| |
Collapse
|
2
|
Oates RN, Lieu LB, Kline JT, Mullen C, Srzentić K, Huguet R, McAlister GC, Huang J, Bergen D, Melani RD, Zabrouskov V, Durbin KR, Syka JEP, Fornelli L. Towards a universal method for middle-down analysis of antibodies via proton transfer charge reduction-Orbitrap mass spectrometry. Anal Bioanal Chem 2024; 416:6463-6472. [PMID: 39283368 DOI: 10.1007/s00216-024-05534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 11/05/2024]
Abstract
Modern mass spectrometry technology allows for extensive sequencing of the ~ 25 kDa subunits of monoclonal antibodies (mAbs) produced by IdeS proteolysis followed by disulfide bond reduction, an approach known as middle-down mass spectrometry (MD MS). However, the spectral congestion of tandem mass spectra of large polypeptides dramatically complicates fragment ion assignment. Here, we report the development and benchmark of an MD MS strategy based on the combination of different ion fragmentation techniques with proton transfer charge reduction (PTCR) to simplify the gas-phase sequencing of mAb subunits. Applied on the liquid chromatography time scale using an Orbitrap Tribrid mass spectrometer, PTCR produces easy-to-interpret mass spectra with limited ion signal overlap. We demonstrate that the accurate estimation of the number of charges submitted to the Orbitrap mass analyzer after PTCR allows for the detection of charge-reduced product ions over a wide mass-over-charge (m/z) window with low parts per million m/z accuracy. Therefore, PTCR-based MD MS analysis increases not only sequence coverage, number of uniquely identified fragments, and number of assigned complementary ion pairs, but also the general confidence in the assignment of subunit fragments. This data acquisition method can be readily applied to any class of mAbs without an apparent need for optimization, and benefits from the high resolving power of the Orbitrap mass analyzer to return sequence coverage of individual subunits exceeding 80% in a single run, and > 90% when just two experiments are combined.
Collapse
Affiliation(s)
- Ryan N Oates
- Department Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73109, USA
| | - Linda B Lieu
- Department Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73109, USA
| | - Jake T Kline
- School of Biological Sciences, University of Oklahoma, Richards Hall 411B, 730 Van Vleet Oval, Norman, OK, 73109, USA
| | | | | | | | | | | | - David Bergen
- Thermo Fisher Scientific, San Jose, CA, 35134, USA
| | | | | | | | | | - Luca Fornelli
- Department Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73109, USA.
- School of Biological Sciences, University of Oklahoma, Richards Hall 411B, 730 Van Vleet Oval, Norman, OK, 73109, USA.
| |
Collapse
|
3
|
Oates RN, Lieu LB, Srzentić K, Damoc E, Fornelli L. Characterization of a Monoclonal Antibody by Native and Denaturing Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2197-2208. [PMID: 39105725 PMCID: PMC11774622 DOI: 10.1021/jasms.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Established in recent years as an important approach to unraveling the heterogeneity of intact monoclonal antibodies, native mass spectrometry has been rarely utilized for sequencing these complex biomolecules via tandem mass spectrometry. Typically, top-down mass spectrometry has been performed starting from highly charged precursor ions obtained via electrospray ionization under denaturing conditions (i.e., in the presence of organic solvents and acidic pH). Here we systematically benchmark four distinct ion dissociation methods─namely, higher-energy collisional dissociation, electron transfer dissociation, electron transfer dissociation/higher-energy collisional dissociation, and 213 nm ultraviolet photodissociation─in their capability to characterize a therapeutic monoclonal antibody, trastuzumab, starting from denatured and native-like precursor ions. Interestingly, native top-down mass spectrometry results in higher sequence coverage than the experiments carried out under denaturing conditions, with the exception of ultraviolet photodissociation. Globally, electron transfer dissociation followed by collision-based activation of product ions generates the largest number of backbone cleavages in disulfide protected regions, including the complementarity determining regions, regardless of electrospray ionization conditions. Overall, these findings suggest that native mass spectrometry can certainly be used for the gas-phase sequencing of whole monoclonal antibodies, although the dissociation of denatured precursor ions still returns a few backbone cleavages not identified in native experiments. Finally, a comparison of the fragmentation maps obtained under denaturing and native conditions strongly points toward disulfide bonds as the primary reason behind the largely overlapping dissociation patterns.
Collapse
Affiliation(s)
- Ryan N. Oates
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019 USA
| | - Linda B. Lieu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019 USA
| | | | - Eugen Damoc
- Thermo Fisher Scientific, Bremen, DE-HB 28199 Germany
| | - Luca Fornelli
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019 USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019 USA
| |
Collapse
|
4
|
Wei B, Lantz C, Loo RRO, Campuzano IDG, Loo JA. Internal Fragments Enhance Middle-Down Mass Spectrometry Structural Characterization of Monoclonal Antibodies and Antibody-Drug Conjugates. Anal Chem 2024; 96:2491-2499. [PMID: 38294207 PMCID: PMC11001303 DOI: 10.1021/acs.analchem.3c04526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) are important large biotherapeutics (∼150 kDa) and high structural complexity that require extensive sequence and structure characterization. Middle-down mass spectrometry (MD-MS) is an emerging technique that sequences and maps subunits larger than those released by trypsinolysis. It avoids potentially introducing artifactual modifications that may occur in bottom-up MS while achieving higher sequence coverage compared to top-down MS. However, returning complete sequence information by MD-MS is still challenging. Here, we show that assigning internal fragments in direct infusion MD-MS of a mAb and an ADC substantially improves their structural characterization. For MD-MS of the reduced NIST mAb, including internal fragments recovers nearly 100% of the sequence by accessing the middle sequence region that is inaccessible by terminal fragments. The identification of important glycosylations can also be improved after the inclusion of internal fragments. For the reduced lysine-linked IgG1-DM1 ADC, we show that considering internal fragments increases the DM1 conjugation sites coverage to 80%, comparable to the reported 83% coverage achieved by peptide mapping on the same ADC (Luo et al. Anal. Chem. 2016, 88, 695-702). This study expands our work on the application of internal fragment assignments in top-down MS of mAbs and ADCs and can be extended to other heterogeneous therapeutic molecules such as multispecifics and fusion proteins for more widespread applications.
Collapse
Affiliation(s)
- Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Iain D. G. Campuzano
- Center for Research Acceleration by Digital Innovation, Molecular Analytics, Amgen Research, Thousand Oaks, CA, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Dhenin J, Lafont V, Dupré M, Krick A, Mauriac C, Chamot-Rooke J. Monitoring mAb proteoforms in mouse plasma using an automated immunocapture combined with top-down and middle-down mass spectrometry. Proteomics 2024; 24:e2300069. [PMID: 37480175 DOI: 10.1002/pmic.202300069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Monoclonal antibodies (mAbs) have established themselves as the leading biopharmaceutical therapeutic modality. Once the developability of a mAb drug candidate has been assessed, an important step is to check its in vivo stability through pharmacokinetics (PK) studies. The gold standard is ligand-binding assay (LBA) and liquid chromatography-mass spectrometry (LC-MS) performed at the peptide level (bottom-up approach). However, these analytical techniques do not allow to address the different mAb proteoforms that can arise from biotransformation. In recent years, top-down and middle-down mass spectrometry approaches have gained popularity to characterize proteins at the proteoform level but are not yet widely used for PK studies. We propose here a workflow based on an automated immunocapture followed by top-down and middle-down liquid chromatography-tandem mass spectrometry (LC-MS/MS) approaches to characterize mAb proteoforms spiked in mouse plasma. We demonstrate the applicability of our workflow on a large concentration range using pembrolizumab as a model. We also compare the performance of two state-of-the-art Orbitrap platforms (Tribrid Eclipse and Exploris 480) for these studies. The added value of our workflow for an accurate and sensitive characterization of mAb proteoforms in mouse plasma is highlighted.
Collapse
Affiliation(s)
- Jonathan Dhenin
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, France
- Université Paris Cité, Sorbonne Paris Cité, Paris, France
- DMPK, Sanofi R&D, Chilly-Mazarin, France
| | | | | | | | | | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, France
| |
Collapse
|
6
|
Bondt A, Hoek M, Dingess K, Tamara S, de Graaf B, Peng W, den Boer MA, Damen M, Zwart C, Barendregt A, van Rijswijck DMH, Schulte D, Grobben M, Tejjani K, van Rijswijk J, Völlmy F, Snijder J, Fortini F, Papi A, Volta CA, Campo G, Contoli M, van Gils MJ, Spadaro S, Rizzo P, Heck AJR. Into the Dark Serum Proteome: Personalized Features of IgG1 and IgA1 Repertoires in Severe COVID-19 Patients. Mol Cell Proteomics 2024; 23:100690. [PMID: 38065436 PMCID: PMC10784693 DOI: 10.1016/j.mcpro.2023.100690] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023] Open
Abstract
Serum proteomics has matured and is now able to monitor hundreds of proteins quantitatively in large cohorts of patients. However, the fine characteristics of some of the most dominant proteins in serum, the immunoglobulins, are in these studies often ignored, due to their vast, and highly personalized, diversity in sequences. Here, we focus exclusively on these personalized features in the serum proteome and distinctively chose to study individual samples from a low diversity population: elderly donors infected by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). By using mass spectrometry-based methods, immunoglobulin IgG1 and IgA1 clonal repertoires were monitored quantitatively and longitudinally in more than 50 individual serum samples obtained from 17 Corona virus disease 2019 patients admitted to intensive care units. These clonal profiles were used to examine how each patient reacted to a severe SARS-CoV-2 infection. All 17 donors revealed unique polyclonal repertoires and substantial changes over time, with several new clones appearing following the infection, in a few cases leading to a few, very high, abundant clones dominating their repertoire. Several of these clones were de novo sequenced through combinations of top-down, middle-down, and bottom-up proteomics approaches. This revealed sequence features in line with sequences deposited in the SARS-CoV-specific antibody database. In other patients, the serological Ig profiles revealed the treatment with tocilizumab, that subsequently dominated their serological IgG1 repertoire. Tocilizumab clearance could be monitored, and a half-life of approximately 6 days was established. Overall, our longitudinal monitoring of IgG1 and IgA1 repertoires of individual donors reveals that antibody responses are highly personalized traits of each patient, affected by the disease and the chosen clinical treatment. The impact of these observations argues for a more personalized and longitudinal approach in patients' diagnostics, both in serum proteomics as well as in monitoring immune responses.
Collapse
Affiliation(s)
- Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Kelly Dingess
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Bastiaan de Graaf
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Weiwei Peng
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Maurits A den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Mirjam Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Ceri Zwart
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Danique M H van Rijswijck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Douwe Schulte
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacqueline van Rijswijk
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Franziska Völlmy
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | | | - Alberto Papi
- Respiratory Section, Department of Translational Medicine, University of Ferrara, Ferrara, Italy; Respiratory Disease Unit, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Carlo Alberto Volta
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy; Intensive Care Unit, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Gianluca Campo
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, University of Ferrara, Ferrara, Italy
| | - Marco Contoli
- Respiratory Section, Department of Translational Medicine, University of Ferrara, Ferrara, Italy; Respiratory Disease Unit, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Savino Spadaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy; Intensive Care Unit, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy; Department of Translational Medicine and Laboratory for Technology of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Lai YH, Wang YS. Advances in high-resolution mass spectrometry techniques for analysis of high mass-to-charge ions. MASS SPECTROMETRY REVIEWS 2023; 42:2426-2445. [PMID: 35686331 DOI: 10.1002/mas.21790] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/27/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
A major challenge in modern mass spectrometry (MS) is achieving high mass resolving power and accuracy for precision analyses in high mass-to-charge (m/z) regions. To advance the capability of MS for increasingly demanding applications, understanding limitations of state-of-the-art techniques and their status in applied sciences is essential. This review summarizes important instruments in high-resolution mass spectrometry (HRMS) and related advances to extend their working range to high m/z regions. It starts with an overview of HRMS techniques that provide adequate performance for macromolecular analysis, including Fourier-transform, time-of-flight (TOF), quadrupole-TOF, and related data-processing techniques. Methodologies and applications of HRMS for characterizing macromolecules in biochemistry and material sciences are summarized, such as top-down proteomics, native MS, drug discovery, structural virology, and polymer analyses.
Collapse
Affiliation(s)
- Yin-Hung Lai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, R.O.C
- Department of Chemical Engineering, National United University, Miaoli, Taiwan, R.O.C
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
| | - Yi-Sheng Wang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, R.O.C
| |
Collapse
|
8
|
Kline JT, Melani RD, Fornelli L. Mass spectrometry characterization of antibodies at the intact and subunit levels: from targeted to large-scale analysis. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2023; 492:117117. [PMID: 38855125 PMCID: PMC11160972 DOI: 10.1016/j.ijms.2023.117117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Antibodies are one of the most formidable molecular weapons available to our immune system. Their high specificity against a target (antigen) and capability of triggering different immune responses (e.g., complement system activation and antibody-dependent cell-mediated cytotoxicity) make them ideal drugs to fight many different human diseases. Currently, both monoclonal antibodies and more complex molecules based on the antibody scaffold are used as biologics. Naturally, such highly heterogeneous molecules require dedicated analytical methodologies for their accurate characterization. Mass spectrometry (MS) can define the presence and relative abundance of multiple features of antibodies, including critical quality attributes. The combination of small and large variations within a single molecule can only be determined by analyzing intact antibodies or their large (25 to 100 kDa) subunits. Hence, top-down (TD) and middle-down (MD) MS approaches have gained popularity over the last decade. In this Young Scientist Feature we discuss the evolution of TD and MD MS analysis of antibodies, including the new frontiers that go beyond biopharma applications. We will show how this field is now moving from the "quality control" analysis of a known, single antibody to the high-throughput investigation of complex antibody repertoires isolated from clinical samples, where the ultimate goal is represented by the complete gas-phase sequencing of antibody molecules without the need of any a priori knowledge.
Collapse
Affiliation(s)
- Jake T. Kline
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Rafael D. Melani
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Luca Fornelli
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
9
|
Bana AA, Sajeev N, Halder S, Abbas Masi H, Patel S, Mehta P. Comparative stability study and aggregate analysis of Bevacizumab marketed formulations using advanced analytical techniques. Heliyon 2023; 9:e19478. [PMID: 37810070 PMCID: PMC10558615 DOI: 10.1016/j.heliyon.2023.e19478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
Bevacizumab (Bvz) is the most preferred recombinant humanized monoclonal antibody in biosimilar development due to its prominence as a standard treatment in the oncology space. Therapeutic monoclonal antibodies are typically more complex and unlikely to produce a replica. As a result, regulatory agencies allow approval of biosimilars that differ structurally and functionally from their reference product, but these differences should not have any clinical significance. To identify these significant discrepancies, it is essential to perform a thorough characterization of critical product attributes both in real-time and after storage until the product's expiration. In the present study, two Bvz biosimilar brands (Bio-1 and Bio-2) marketed in India were evaluated and compared with the reference product Avastin® to assess their degree of similarity. A comprehensive physicochemical characterization of biosimilars and reference product was performed using orthogonal techniques including LC-ESI-QTOF, MALDI-TOF, FTIR-ATR, iCIEF, rCE, nrCE, UV280, and RP-HPLC. Furthermore, Bvz formulations under study were subjected to various stress conditions of thermal (elevated temperature 50 ± 2 °C), chemical (acidic pH 3.0 ± 0.2, neutral pH 7.0 ± 0.2, and basic pH 10.0 ± 0.2), and mechanical (agitation 200 rpm) for comparative stability evaluation. Any alteration in the secondary structure of the native protein was detected and quantified using far-UV circular dichroism (CD), indicating an average of 15% and 11% loss in native antiparallel β-sheet conformation respectively in Bio-1 and Bio-2 upon exposure to elevated temperature and high pH. Additionally, covalent or non-covalent aggregates formed as a function of elevated temperature and agitation were quantified using SEC-MALS.
Collapse
Affiliation(s)
- Arpit Arunkumar Bana
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India
| | - Nithin Sajeev
- Center for Cellular and Molecular Platform (C-CAMP), Bengaluru, 560065, Karnataka, India
| | - Sabyasachi Halder
- Center for Cellular and Molecular Platform (C-CAMP), Bengaluru, 560065, Karnataka, India
| | - Haidar Abbas Masi
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, 382011, Gujarat, India
| | - Shikha Patel
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India
| | - Priti Mehta
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India
| |
Collapse
|
10
|
Wei B, Lantz C, Liu W, Viner R, Loo RRO, Campuzano IDG, Loo JA. Added Value of Internal Fragments for Top-Down Mass Spectrometry of Intact Monoclonal Antibodies and Antibody-Drug Conjugates. Anal Chem 2023; 95:9347-9356. [PMID: 37278738 PMCID: PMC10954349 DOI: 10.1021/acs.analchem.3c01426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) are two of the most important therapeutic drug classes that require extensive characterization, whereas their large size and structural complexity make them challenging to characterize and demand the use of advanced analytical methods. Top-down mass spectrometry (TD-MS) is an emerging technique that minimizes sample preparation and preserves endogenous post-translational modifications (PTMs); however, TD-MS of large proteins suffers from low fragmentation efficiency, limiting the sequence and structure information that can be obtained. Here, we show that including the assignment of internal fragments in native TD-MS of an intact mAb and an ADC can improve their molecular characterization. For the NIST mAb, internal fragments can access the sequence region constrained by disulfide bonds to increase the TD-MS sequence coverage to over 75%. Important PTM information, including intrachain disulfide connectivity and N-glycosylation sites, can be revealed after including internal fragments. For a heterogeneous lysine-linked ADC, we show that assigning internal fragments improves the identification of drug conjugation sites to achieve a coverage of 58% of all putative conjugation sites. This proof-of-principle study demonstrates the potential value of including internal fragments in native TD-MS of intact mAbs and ADCs, and this analytical strategy can be extended to bottom-up and middle-down MS approaches to achieve even more comprehensive characterization of important therapeutic molecules.
Collapse
Affiliation(s)
- Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
| | - Weijing Liu
- Thermo Fisher Scientific, San Jose, CA, 95134 USA
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA, 95134 USA
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
| | - Iain D. G. Campuzano
- Amgen Research, Center for Research Acceleration and Digital Innovation, Molecular Analytics, Thousand Oaks, CA, 91320 USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA, 90095 USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
| |
Collapse
|
11
|
Dhenin J, Dupré M, Druart K, Krick A, Mauriac C, Chamot-Rooke J. A multiparameter optimization in middle-down analysis of monoclonal antibodies by LC-MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4909. [PMID: 36822210 DOI: 10.1002/jms.4909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In antibody-based drug research, a complete characterization of antibody proteoforms covering both the amino acid sequence and all posttranslational modifications remains a major concern. The usual mass spectrometry-based approach to achieve this goal is bottom-up proteomics, which relies on the digestion of antibodies but does not allow the diversity of proteoforms to be assessed. Middle-down and top-down approaches have recently emerged as attractive alternatives but are not yet mastered and thus used in routine by many analytical chemistry laboratories. The work described here aims at providing guidelines to achieve the best sequence coverage for the fragmentation of intact light and heavy chains generated from a simple reduction of intact antibodies using Orbitrap mass spectrometry. Three parameters were found crucial to this aim: the use of an electron-based activation technique, the multiplex selection of precursor ions of different charge states, and the combination of replicates.
Collapse
Affiliation(s)
- Jonathan Dhenin
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, 75015, France
- Université Paris Cité, Sorbonne Paris Cité, Paris, France
- DMPK, Sanofi, Chilly-Mazarin, 91385, France
| | - Mathieu Dupré
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, 75015, France
| | - Karen Druart
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, 75015, France
| | | | | | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, 75015, France
| |
Collapse
|
12
|
Kazieva LS, Farafonova TE, Zgoda VG. [Antibody proteomics]. BIOMEDITSINSKAIA KHIMIIA 2023; 69:5-18. [PMID: 36857423 DOI: 10.18097/pbmc20236901005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Antibodies represent an essential component of humoral immunity; therefore their study is important for molecular biology and medicine. The unique property of antibodies to specifically recognize and bind a certain molecular target (an antigen) determines their widespread application in treatment and diagnostics of diseases, as well as in laboratory and biotechnological practices. High specificity and affinity of antibodies is determined by the presence of primary structure variable regions, which are not encoded in the human genome and are unique for each antibody-producing B cell clone. Hence, there is little or no information about amino acid sequences of the variable regions in the databases. This differs identification of antibody primary structure from most of the proteomic studies because it requires either B cell genome sequencing or de novo amino acid sequencing of the antibody. The present review demonstrates some examples of proteomic and proteogenomic approaches and the methodological arsenal that proteomics can offer for studying antibodies, in particular, for identification of primary structure, evaluation of posttranslational modifications and application of bioinformatics tools for their decoding.
Collapse
Affiliation(s)
- L Sh Kazieva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
13
|
Lanzillotti M, Brodbelt JS. Comparison of Top-Down Protein Fragmentation Induced by 213 and 193 nm UVPD. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:279-285. [PMID: 36594540 DOI: 10.1021/jasms.2c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The growing interest in advancing tandem mass spectrometry strategies for top-down proteomics has motivated efforts to optimize ion activation strategies for intact proteins, including the comparison of 193 and 213 nm wavelengths for ultraviolet photodissociation (UVPD). The present study focuses on the performance and outcomes of UVPD for five proteins, ubiquitin, cytochrome C, frataxin, myoglobin, and carbonic anhydrase, with an emphasis on evaluating the similarities and differences in fragmentation promoted by UVPD using 193 nm versus 213 nm photons. Mass spectra were collected as a function of the number of laser pulses, and precursor depletion levels were monitored and controlled to provide consistent energy deposition between 213 and 193 nm UVPD. Fragment ions were confirmed on the basis of their isotopic distributions in m/z space to preserve both charge state and abundance information and were classified on the basis of ion type and frequency. A large portion of the total fragment ion abundance was attributable to preferential cleavages, particularly ones adjacent to proline residues. These cleavages were examined on the basis of the backbone site and abundances, revealing that a and y-2 ions N-terminal to proline residues appeared at disproportionately high abundances in 213 nm UVPD spectra as compared to 193 nm UVPD spectra, highlighting one notable difference in the top-down spectra. We theorize that these fragments are formed more efficiently in 213 nm UVPD than in 193 nm UVPD due to increased absorption of 213 nm photons at the proline amide bond.
Collapse
Affiliation(s)
- Michael Lanzillotti
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Watts E, Thyer R, Ellington AD, Brodbelt JS. Integrated Top-Down and Bottom-Up Mass Spectrometry for Characterization of Diselenide Bridging Patterns of Synthetic Selenoproteins. Anal Chem 2022; 94:11175-11184. [PMID: 35930618 DOI: 10.1021/acs.analchem.2c01433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the rapid acceleration in the design and development of new biotherapeutics, ensuring consistent quality and understanding degradation pathways remain paramount, requiring an array of analytical methods including mass spectrometry. The incorporation of non-canonical amino acids, such as for synthetic selenoproteins, creates additional challenges. A comprehensive strategy to characterize selenoproteins should serve dual purposes of providing sequence confirmation and mapping of selenocysteine bridge locations and the identification of unanticipated side products. In the present study, a combined approach exploiting the benefits of both top-down and bottom-up mass spectrometry was developed. Both electron-transfer/higher-energy collision dissociation and 213 nm ultraviolet photodissociation were utilized to provide complementary information, allowing high quality characterization, localization of diselenide bridges for complex proteins, and the identification of previously unreported selenoprotein dimers.
Collapse
Affiliation(s)
- Eleanor Watts
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ross Thyer
- Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Nagornov KO, Kozhinov AN, Gasilova N, Menin L, Tsybin YO. Characterization of the Time-Domain Isotopic Beat Patterns of Monoclonal Antibodies in Fourier Transform Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1113-1125. [PMID: 35638743 DOI: 10.1021/jasms.1c00336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The time-domain transients in the Fourier transform mass spectrometry (FTMS) analysis of monoclonal antibodies (mAbs) are known to exhibit characteristic isotopic beat patterns. These patterns are defined by the isotopic distributions of all gaseous mAb ions present in the FTMS mass analyzer, originating from single or multiple charge states, and from single or multiple proteoforms. For an isolated charge state of a single proteoform, the mAb isotopic beat pattern resembles narrow splashes of signal amplitude (beats), spaced periodically in the time-domain transient, with broad (often exceeding 1 s) "valleys" between them. Here, we reinforce the importance of isotopic beat patterns for the accurate interpretation and presentation of FTMS data in the analysis of mAbs and other large biopolymers. An updated, mAb-grade version of the transient-mediated FTMS data simulation and visualization tool, FTMS Simulator is introduced and benchmarked. We then apply this tool to evaluate the charge-state dependent characteristics of isotopic beats in mAbs analyses with modern models of Orbitrap and ion cyclotron resonance (ICR) FTMS instruments, including detection of higher-order harmonics. We demonstrate the impact of the isotopic beat patterns on the analytical characteristics of the resulting mass spectra of individual and overlapping mAb proteoforms. The results reported here detail highly nonlinear dependences of resolution and signal-to-noise ratio on the time-domain transient period, absorption or magnitude mode spectra representation, and apodization functions. The provided description and the demonstrated ability to routinely conduct accurate simulations of FTMS data for large biopolymers should aid the end-users of Orbitrap and ICR FTMS instruments in the analysis of mAbs and other biopolymers, including viruses.
Collapse
Affiliation(s)
| | | | - Natalia Gasilova
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Laure Menin
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
16
|
Liu R, Xia S, Li H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. MASS SPECTROMETRY REVIEWS 2022:e21793. [PMID: 35757976 DOI: 10.1002/mas.21793] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Progress in structural biology research has led to a high demand for powerful and yet complementary analytical tools for structural characterization of proteins and protein complexes. This demand has significantly increased interest in native mass spectrometry (nMS), particularly native top-down mass spectrometry (nTDMS) in the past decade. This review highlights recent advances in nTDMS for structural research of biological assemblies, with a particular focus on the extra multi-layers of information enabled by TDMS. We include a short introduction of sample preparation and ionization to nMS, tandem fragmentation techniques as well as mass analyzers and software/analysis pipelines used for nTDMS. We highlight unique structural information offered by nTDMS and examples of its broad range of applications in proteins, protein-ligand interactions (metal, cofactor/drug, DNA/RNA, and protein), therapeutic antibodies and antigen-antibody complexes, membrane proteins, macromolecular machineries (ribosome, nucleosome, proteosome, and viruses), to endogenous protein complexes. The challenges, potential, along with perspectives of nTDMS methods for the analysis of proteins and protein assemblies in recombinant and biological samples are discussed.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shujun Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Bana A, Mehta P. Similarity assessment of charge variants for bevacizumab biosimilar formulations using imaged capillary isoelectric focusing. J LIQ CHROMATOGR R T 2022. [DOI: 10.1080/10826076.2022.2072329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Arpit Bana
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Priti Mehta
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
18
|
Tucholski T, Ge Y. Fourier-transform ion cyclotron resonance mass spectrometry for characterizing proteoforms. MASS SPECTROMETRY REVIEWS 2022; 41:158-177. [PMID: 32894796 PMCID: PMC7936991 DOI: 10.1002/mas.21653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 05/05/2023]
Abstract
Proteoforms contribute functional diversity to the proteome and aberrant proteoforms levels have been implicated in biological dysfunction and disease. Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), with its ultrahigh mass-resolving power, mass accuracy, and versatile tandem MS capabilities, has empowered top-down, middle-down, and native MS-based approaches for characterizing proteoforms and their complexes in biological systems. Herein, we review the features which make FT-ICR MS uniquely suited for measuring proteoform mass with ultrahigh resolution and mass accuracy; obtaining in-depth proteoform sequence coverage with expansive tandem MS capabilities; and unambiguously identifying and localizing post-translational and noncovalent modifications. We highlight examples from our body of work in which we have quantified and comprehensively characterized proteoforms from cardiac and skeletal muscle to better understand conditions such as chronic heart failure, acute myocardial infarction, and sarcopenia. Structural characterization of monoclonal antibodies and their proteoforms by FT-ICR MS and emerging applications, such as native top-down FT-ICR MS and high-throughput top-down FT-ICR MS-based proteomics at 21 T, are also covered. Historically, the information gleaned from FT-ICR MS analyses have helped provide biological insights. We predict FT-ICR MS will continue to enable the study of proteoforms of increasing size from increasingly complex endogenous mixtures and facilitate the benchmarking of sensitive and specific assays for clinical diagnostics. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53706
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53705
| |
Collapse
|
19
|
de Graaf SC, Hoek M, Tamara S, Heck AJR. A perspective toward mass spectrometry-based de novo sequencing of endogenous antibodies. MAbs 2022; 14:2079449. [PMID: 35699511 PMCID: PMC9225641 DOI: 10.1080/19420862.2022.2079449] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A key step in therapeutic and endogenous humoral antibody characterization is identifying the amino acid sequence. So far, this task has been mainly tackled through sequencing of B-cell receptor (BCR) repertoires at the nucleotide level. Mass spectrometry (MS) has emerged as an alternative tool for obtaining sequence information directly at the – most relevant – protein level. Although several MS methods are now well established, analysis of recombinant and endogenous antibodies comes with a specific set of challenges, requiring approaches beyond the conventional proteomics workflows. Here, we review the challenges in MS-based sequencing of both recombinant as well as endogenous humoral antibodies and outline state-of-the-art methods attempting to overcome these obstacles. We highlight recent examples and discuss remaining challenges. We foresee a great future for these approaches making de novo antibody sequencing and discovery by MS-based techniques feasible, even for complex clinical samples from endogenous sources such as serum and other liquid biopsies.
Collapse
Affiliation(s)
- Sebastiaan C de Graaf
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| |
Collapse
|
20
|
Greisch JF, den Boer MA, Lai SH, Gallagher K, Bondt A, Commandeur J, Heck AJR. Extending Native Top-Down Electron Capture Dissociation to MDa Immunoglobulin Complexes Provides Useful Sequence Tags Covering Their Critical Variable Complementarity-Determining Regions. Anal Chem 2021; 93:16068-16075. [PMID: 34813704 PMCID: PMC8655740 DOI: 10.1021/acs.analchem.1c03740] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Native top-down mass
spectrometry (MS) is gaining traction for
the analysis and sequencing of intact proteins and protein assemblies,
giving access to their mass and composition, as well as sequence information
useful for identification. Herein, we extend and apply native top-down
MS, using electron capture dissociation, to two submillion Da IgM-
and IgG-based oligomeric immunoglobulins. Despite structural similarities,
these two systems are quite different. The ∼895 kDa noncovalent
IgG hexamer consists of six IgG subunits hexamerizing in solution
due to three specifically engineered mutations in the Fc region, whereas
the ∼935 kDa IgM oligomer results from the covalent assembly
of one joining (J) chain and 5 IgM subunits into an asymmetric “pentamer”
stabilized by interchain disulfide bridges. Notwithstanding their
size, structural differences, and complexity, we observe that their
top-down electron capture dissociation spectra are quite similar and
straightforward to interpret, specifically providing informative sequence
tags covering the highly variable CDR3s and FR4s of the Ig subunits
they contain. Moreover, we show that the electron capture dissociation
fragmentation spectra of immunoglobulin oligomers are essentially
identical to those obtained for their respective monomers. Demonstrated
for recombinantly produced systems, the approach described here opens
up new prospects for the characterization and identification of IgMs
circulating in plasma, which is important since IgMs play a critical
role in the early immune response to pathogens such as viruses and
bacteria.
Collapse
Affiliation(s)
- Jean-Francois Greisch
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Maurits A den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Szu-Hsueh Lai
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Kelly Gallagher
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jan Commandeur
- MSVision, Televisieweg 40, 1322 AM Almere, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
21
|
Yin Z, Du M, Chen D, Zhang W, Huang W, Wu X, Yan S. Rapid structural discrimination of IgG antibodies by multicharge-state collision-induced unfolding. RSC Adv 2021; 11:36502-36510. [PMID: 35494361 PMCID: PMC9043582 DOI: 10.1039/d1ra06486j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/06/2021] [Indexed: 11/29/2022] Open
Abstract
Immunoglobulin G (IgG) antibodies are an important class of biotherapeutics that target various diseases, such as cancers, neurodegenerative disorders, and autoimmune diseases, yet rapid discrimination of IgG antibodies remains a great challenge due to heterogeneity, flexibility, and large size. Herein, we demonstrate a simplified multicharge-state collision-induced unfolding (CIU) method for rapid differentiation of four IgG isotypes that differ in terms of the numbers and patterns of disulfide bonds, bypassing tedious single charge-state selection in advance. The results presented herein reveal that gas-phase unfolding behaviors have a strong dependence on charge states outside IgG surfaces; therefore, multicharge-state CIU analysis of IgG subtypes could offer a great opportunity to gain deeper insights into their gas-phase structural differentiation. The full discrimination of IgG antibody isoforms that possess different disulfide bond numbers and even subtle disulfide bonding patterns can be achieved based on their charge-dependent gas-phase unfolding behaviors and root-mean square deviation in CIU difference spectra. Taken together, the incorporation of all charge states observed in a native ion mobility-mass spectrometry (IM-MS) experiment to CIU analysis could make this strategy sensitive to more subtle structural discrepancies, facilitating the rapid discrimination and evaluation of innovative structurally similar biotherapeutic candidates with unexplored functions.
Collapse
Affiliation(s)
- Zhibin Yin
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Mingyi Du
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
| | - Dong Chen
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
| | - Wenyang Zhang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Xinzhou Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| |
Collapse
|
22
|
Kline JT, Mullen C, Durbin KR, Oates RN, Huguet R, Syka JEP, Fornelli L. Sequential Ion-Ion Reactions for Enhanced Gas-Phase Sequencing of Large Intact Proteins in a Tribrid Orbitrap Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2334-2345. [PMID: 33900069 DOI: 10.1021/jasms.1c00062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Obtaining extensive sequencing of an intact protein is essential in order to simultaneously determine both the nature and exact localization of chemical and genetic modifications which distinguish different proteoforms arising from the same gene. To effectively achieve such characterization, it is necessary to take advantage of the analytical potential offered by the top-down mass spectrometry approach to protein sequence analysis. However, as a protein increases in size, its gas-phase dissociation produces overlapping, low signal-to-noise fragments. The application of advanced ion dissociation techniques such as electron transfer dissociation (ETD) and ultraviolet photodissociation (UVPD) can improve the sequencing results compared to slow-heating techniques such as collisional dissociation; nonetheless, even ETD- and UVPD-based approaches have thus far fallen short in their capacity to reliably enable extensive sequencing of proteoforms ≥30 kDa. To overcome this issue, we have applied proton transfer charge reduction (PTCR) to limit signal overlap in tandem mass spectra (MS2) produced by ETD (alone or with supplemental ion activation, EThcD). Compared to conventional MS2 experiments, following ETD/EThcD MS2 with PTCR MS3 prior to m/z analysis of deprotonated product ions in the Orbitrap mass analyzer proved beneficial for the identification of additional large protein fragments (≥10 kDa), thus improving the overall sequencing and in particular the coverage of the central portion of all four analyzed proteins spanning from 29 to 56 kDa. Specifically, PTCR-based data acquisition led to 39% sequence coverage for the 56 kDa glutamate dehydrogenase, which was further increased to 44% by combining fragments obtained via HCD followed by PTCR MS3.
Collapse
Affiliation(s)
- Jake T Kline
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, Oklahoma 73019, United States
| | - Christopher Mullen
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | | | - Ryan N Oates
- Department of Chemistry and Biochemistry, University of Oklahoma, 730 Van Vleet Oval, Norman, Oklahoma 73019, United States
| | - Romain Huguet
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - John E P Syka
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Luca Fornelli
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, Oklahoma 73019, United States
| |
Collapse
|
23
|
Campuzano IDG, Sandoval W. Denaturing and Native Mass Spectrometric Analytics for Biotherapeutic Drug Discovery Research: Historical, Current, and Future Personal Perspectives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1861-1885. [PMID: 33886297 DOI: 10.1021/jasms.1c00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mass spectrometry (MS) plays a key role throughout all stages of drug development and is now as ubiquitous as other analytical techniques such as surface plasmon resonance, nuclear magnetic resonance, and supercritical fluid chromatography, among others. Herein, we aim to discuss the history of MS, both electrospray and matrix-assisted laser desorption ionization, specifically for the analysis of antibodies, evolving through to denaturing and native-MS analysis of newer biologic moieties such as antibody-drug conjugates, multispecific antibodies, and interfering nucleic acid-based therapies. We discuss challenging therapeutic target characterization such as membrane protein receptors. Importantly, we compare and contrast the MS and hyphenated analytical chromatographic methods used to characterize these therapeutic modalities and targets within biopharmaceutical research and highlight the importance of appropriate MS deconvolution software and its essential contribution to project progression. Finally, we describe emerging applications and MS technologies that are still predominantly within either a development or academic stage of use but are poised to have significant impact on future drug development within the biopharmaceutic industry once matured. The views reflected herein are personal and are not meant to be an exhaustive list of all relevant MS performed within biopharmaceutical research but are what we feel have been historically, are currently, and will be in the future the most impactful for the drug development process.
Collapse
MESH Headings
- Antibodies, Monoclonal/analysis
- Automation, Laboratory
- Biopharmaceutics/methods
- Chromatography, Liquid
- Drug Discovery/methods
- Drug Industry/history
- History, 20th Century
- History, 21st Century
- Humans
- Immunoconjugates/analysis
- Immunoconjugates/chemistry
- Protein Denaturation
- Protein Processing, Post-Translational
- Proteins/analysis
- Spectrometry, Mass, Electrospray Ionization/history
- Spectrometry, Mass, Electrospray Ionization/instrumentation
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/history
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Iain D G Campuzano
- Discovery Attribute Sciences, Amgen Research, 1 Amgen Center Drive, Thousand Oaks, California 92130, United States
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
24
|
Greisch JF, den Boer MA, Beurskens F, Schuurman J, Tamara S, Bondt A, Heck AJR. Generating Informative Sequence Tags from Antigen-Binding Regions of Heavily Glycosylated IgA1 Antibodies by Native Top-Down Electron Capture Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1326-1335. [PMID: 33570406 PMCID: PMC8176452 DOI: 10.1021/jasms.0c00461] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Immunoglobulins A (IgA) include some of the most abundant human antibodies and play an important role in defending mucosal surfaces against pathogens. The unique structural features of the heavy chain of IgA subclasses (called IgA1 and IgA2) enable them to polymerize via the joining J-chain, resulting in IgA dimers but also higher oligomers. While secretory sIgA oligomers are dominant in milk and saliva, IgAs exist primarily as monomers in serum. No method currently allows disentangling the millions of unique IgAs potentially present in the human antibody repertoire. Obtaining unambiguous sequence reads of their hypervariable antigen-binding regions is a prerequisite for IgA identification. We here report a mass spectrometric method that uses electron capture dissociation (ECD) to produce straightforward-to-read sequence ladders of the variable parts of both the light and heavy chains of IgA1s, in particular, of the functionally critical CDR3 regions. We directly compare the native top-down ECD spectra of a heavily and heterogeneously N- and O-glycosylated anti-CD20 IgA1, the corresponding N-glycosylated anti-CD20 IgG1, and their Fab parts. We show that while featuring very different MS1 spectra, the native top-down ECD MS2 spectra of all four species are nearly identical, with cleavages occurring specifically within the CDR3 and FR4 regions of both the heavy and light chain. From the sequence-informative ECD data of an intact glycosylated IgA1, we foresee that native top-down ECD will become a valuable complementary tool for the de novo sequencing of IgA1s from milk, saliva, or serum.
Collapse
Affiliation(s)
- Jean-Francois Greisch
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Frank Beurskens
- Genmab,
Utrecht, Uppsalalaan
15, 3584 CT Utrecht, The Netherlands
| | - Janine Schuurman
- Genmab,
Utrecht, Uppsalalaan
15, 3584 CT Utrecht, The Netherlands
| | - Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert Bondt
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
25
|
den Boer MA, Greisch JF, Tamara S, Bondt A, Heck AJR. Selectivity over coverage in de novo sequencing of IgGs. Chem Sci 2020; 11:11886-11896. [PMID: 33520151 PMCID: PMC7814886 DOI: 10.1039/d0sc03438j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/06/2020] [Indexed: 12/26/2022] Open
Abstract
Although incredibly diverse in specificity, millions of unique Immunoglobulin G (IgG) molecules in the human antibody repertoire share most of their amino acid sequence. These constant parts of IgG do not yield any useful information in attempts to sequence antibodies de novo. Therefore, methods focusing solely on the variable regions and providing unambiguous sequence reads are strongly advantageous. We report a mass spectrometry-based method that uses electron capture dissociation (ECD) to provide straightforward-to-read sequence ladders for the variable parts of both the light and heavy chains, with a preference for the functionally important CDR3. We optimized this method on the therapeutic antibody Trastuzumab and demonstrate its applicability on two monoclonal quartets of the four IgG subclasses, IgG1, IgG2, IgG3 and IgG4. The method is based on proteolytically separating the variable F(ab')2 part from the conserved Fc part, whereafter the F(ab')2 portions are mass-analyzed and fragmented by ECD. Pure ECD, without additional collisional activation, leads to straightforward-to-read sequence tags covering the CDR3 of both the light and heavy chains. Using molecular modelling and structural analysis, we discuss and explain this selective fragmentation behavior and describe how structural features of the different IgG subclasses lead to distinct fragmentation patterns. Overall, we foresee that pure ECD on F(ab')2 or Fab molecules can become a valuable tool for the de novo sequencing of serum antibodies.
Collapse
Affiliation(s)
- Maurits A den Boer
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Jean-Francois Greisch
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research , Utrecht Institute of Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands . .,Netherlands Proteomics Center , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| |
Collapse
|
26
|
Srzentić K, Fornelli L, Tsybin YO, Loo JA, Seckler H, Agar JN, Anderson LC, Bai DL, Beck A, Brodbelt JS, van der Burgt YEM, Chamot-Rooke J, Chatterjee S, Chen Y, Clarke DJ, Danis PO, Diedrich JK, D'Ippolito RA, Dupré M, Gasilova N, Ge Y, Goo YA, Goodlett DR, Greer S, Haselmann KF, He L, Hendrickson CL, Hinkle JD, Holt MV, Hughes S, Hunt DF, Kelleher NL, Kozhinov AN, Lin Z, Malosse C, Marshall AG, Menin L, Millikin RJ, Nagornov KO, Nicolardi S, Paša-Tolić L, Pengelley S, Quebbemann NR, Resemann A, Sandoval W, Sarin R, Schmitt ND, Shabanowitz J, Shaw JB, Shortreed MR, Smith LM, Sobott F, Suckau D, Toby T, Weisbrod CR, Wildburger NC, Yates JR, Yoon SH, Young NL, Zhou M. Interlaboratory Study for Characterizing Monoclonal Antibodies by Top-Down and Middle-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1783-1802. [PMID: 32812765 PMCID: PMC7539639 DOI: 10.1021/jasms.0c00036] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The Consortium for Top-Down Proteomics (www.topdownproteomics.org) launched the present study to assess the current state of top-down mass spectrometry (TD MS) and middle-down mass spectrometry (MD MS) for characterizing monoclonal antibody (mAb) primary structures, including their modifications. To meet the needs of the rapidly growing therapeutic antibody market, it is important to develop analytical strategies to characterize the heterogeneity of a therapeutic product's primary structure accurately and reproducibly. The major objective of the present study is to determine whether current TD/MD MS technologies and protocols can add value to the more commonly employed bottom-up (BU) approaches with regard to confirming protein integrity, sequencing variable domains, avoiding artifacts, and revealing modifications and their locations. We also aim to gather information on the common TD/MD MS methods and practices in the field. A panel of three mAbs was selected and centrally provided to 20 laboratories worldwide for the analysis: Sigma mAb standard (SiLuLite), NIST mAb standard, and the therapeutic mAb Herceptin (trastuzumab). Various MS instrument platforms and ion dissociation techniques were employed. The present study confirms that TD/MD MS tools are available in laboratories worldwide and provide complementary information to the BU approach that can be crucial for comprehensive mAb characterization. The current limitations, as well as possible solutions to overcome them, are also outlined. A primary limitation revealed by the results of the present study is that the expert knowledge in both experiment and data analysis is indispensable to practice TD/MD MS.
Collapse
Affiliation(s)
- Kristina Srzentić
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Luca Fornelli
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Yury O Tsybin
- Spectroswiss, EPFL Innovation Park, Building I, 1015 Lausanne, Switzerland
| | - Joseph A Loo
- University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Henrique Seckler
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Jeffrey N Agar
- Northeastern University, Boston, Massachusetts 02115, United States
| | - Lissa C Anderson
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Dina L Bai
- University of Virginia, Charlottesville, Virginia 22901, United States
| | - Alain Beck
- Centre d'immunologie Pierre Fabre, 74160 Saint-Julien-en-Genevois, France
| | | | | | | | | | - Yunqiu Chen
- Biogen, Inc., Cambridge, Massachusetts 02142-1031, United States
| | - David J Clarke
- The University of Edinburgh, EH9 3FJ Edinburgh, United Kingdom
| | - Paul O Danis
- Consortium for Top-Down Proteomics, Cambridge, Massachusetts 02142, United States
| | - Jolene K Diedrich
- The Scripps Research Institute, La Jolla, California 92037, United States
| | | | | | - Natalia Gasilova
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ying Ge
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Young Ah Goo
- University of Maryland, Baltimore, Maryland 21201, United States
| | - David R Goodlett
- University of Maryland, Baltimore, Maryland 21201, United States
| | - Sylvester Greer
- University of Texas at Austin, Austin, Texas 78712-1224, United States
| | | | - Lidong He
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | | | - Joshua D Hinkle
- University of Virginia, Charlottesville, Virginia 22901, United States
| | - Matthew V Holt
- Baylor College of Medicine, Houston, Texas 77030-3411, United States
| | - Sam Hughes
- The University of Edinburgh, EH9 3FJ Edinburgh, United Kingdom
| | - Donald F Hunt
- University of Virginia, Charlottesville, Virginia 22901, United States
| | - Neil L Kelleher
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Anton N Kozhinov
- Spectroswiss, EPFL Innovation Park, Building I, 1015 Lausanne, Switzerland
| | - Ziqing Lin
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | - Alan G Marshall
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Florida State University, Tallahassee, Florida 32310-4005, United States
| | - Laure Menin
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Robert J Millikin
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | - Simone Nicolardi
- Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Ljiljana Paša-Tolić
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Neil R Quebbemann
- University of California-Los Angeles, Los Angeles, California 90095, United States
| | | | - Wendy Sandoval
- Genentech, Inc., South San Francisco, California 94080-4990, United States
| | - Richa Sarin
- Biogen, Inc., Cambridge, Massachusetts 02142-1031, United States
| | | | | | - Jared B Shaw
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Lloyd M Smith
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Frank Sobott
- University of Antwerp, 2000 Antwerp, Belgium
- University of Leeds, LS2 9JT Leeds, United Kingdom
| | | | - Timothy Toby
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Chad R Weisbrod
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Norelle C Wildburger
- Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - John R Yates
- The Scripps Research Institute, La Jolla, California 92037, United States
| | - Sung Hwan Yoon
- University of Maryland, Baltimore, Maryland 21201, United States
| | - Nicolas L Young
- Baylor College of Medicine, Houston, Texas 77030-3411, United States
| | - Mowei Zhou
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
27
|
Native high-resolution mass spectrometry analysis of noncovalent protein complexes up to 450 kDa. Bioanalysis 2020; 12:1353-1362. [PMID: 32830519 DOI: 10.4155/bio-2020-0145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
D’Ippolito RA, Panepinto MC, Mahoney KE, Bai DL, Shabanowitz J, Hunt DF. Sequencing a Bispecific Antibody by Controlling Chain Concentration Effects When Using an Immobilized Nonspecific Protease. Anal Chem 2020; 92:10470-10477. [PMID: 32597636 PMCID: PMC8106826 DOI: 10.1021/acs.analchem.0c01126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Complete sequence coverage of monospecific antibodies was previously achieved using immobilized aspergillopepsin I in a single LC-MS/MS analysis. Bispecific antibodies are asymmetrical compared to their monospecific antibody counterparts, resulting in a decrease in the concentration of individual subunits. Four standard proteins were used to characterize the effect of a decrease in concentration when using this immobilized enzyme reactor. Low concentration samples resulted in the elimination of large peptide products due to a greater number of enzymatic cleavages. A competitive inhibitor rich in arginine residues reduced the number of enzymatic cleavages to the protein and retained large molecular weight products. The digestion of a bispecific antibody with competitive inhibition of aspergillopepsin I maintained large peptide products better suited for sequence reconstruction, resulting in complete sequence coverage from a single LC-MS/MS analysis.
Collapse
Affiliation(s)
- Robert A. D’Ippolito
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Maria C. Panepinto
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Keira E. Mahoney
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Dina L. Bai
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Donald F. Hunt
- Department of Chemistry and Department of Pathology, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
29
|
Lodge JM, Schauer KL, Brademan DR, Riley NM, Shishkova E, Westphall MS, Coon JJ. Top-Down Characterization of an Intact Monoclonal Antibody Using Activated Ion Electron Transfer Dissociation. Anal Chem 2020; 92:10246-10251. [PMID: 32608969 DOI: 10.1021/acs.analchem.0c00705] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Monoclonal antibodies (mAbs) are important therapeutic glycoproteins, but their large size and structural complexity make them difficult to rapidly characterize. Top-down mass spectrometry (MS) has the potential to overcome challenges of other common approaches by minimizing sample preparation and preserving endogenous modifications. However, comprehensive mAb characterization requires generation of many, well-resolved fragments and remains challenging. While ETD retains modifications and cleaves disulfide bonds-making it attractive for mAb characterization-it can be less effective for precursors having high m/z values. Activated ion electron transfer dissociation (AI-ETD) uses concurrent infrared photoactivation to promote product ion generation and has proven effective in increasing sequence coverage of intact proteins. Here, we present the first application of AI-ETD to mAb sequencing. For the standard NIST mAb, we observe a high degree of complementarity between fragments generated using standard ETD with a short reaction time and AI-ETD with a long reaction time. Most importantly, AI-ETD reveals disulfide-bound regions that have been intractable, thus far, for sequencing with top-down MS. We conclude AI-ETD has the potential to rapidly and comprehensively analyze intact mAbs.
Collapse
|
30
|
Watts E, Williams JD, Miesbauer LJ, Bruncko M, Brodbelt JS. Comprehensive Middle-Down Mass Spectrometry Characterization of an Antibody–Drug Conjugate by Combined Ion Activation Methods. Anal Chem 2020; 92:9790-9798. [DOI: 10.1021/acs.analchem.0c01232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Eleanor Watts
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | | | | | - Milan Bruncko
- AbbVie, North Chicago, Illinois 60064-1802, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| |
Collapse
|
31
|
Temporini C, Colombo R, Calleri E, Tengattini S, Rinaldi F, Massolini G. Chromatographic tools for plant-derived recombinant antibodies purification and characterization. J Pharm Biomed Anal 2020; 179:112920. [DOI: 10.1016/j.jpba.2019.112920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 01/13/2023]
|
32
|
Fornelli L, Srzentić K, Toby TK, Doubleday PF, Huguet R, Mullen C, Melani RD, Dos Santos Seckler H, DeHart CJ, Weisbrod CR, Durbin KR, Greer JB, Early BP, Fellers RT, Zabrouskov V, Thomas PM, Compton PD, Kelleher NL. Thorough Performance Evaluation of 213 nm Ultraviolet Photodissociation for Top-down Proteomics. Mol Cell Proteomics 2020; 19:405-420. [PMID: 31888965 PMCID: PMC7000117 DOI: 10.1074/mcp.tir119.001638] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/29/2019] [Indexed: 11/06/2022] Open
Abstract
Top-down proteomics studies intact proteoform mixtures and offers important advantages over more common bottom-up proteomics technologies, as it avoids the protein inference problem. However, achieving complete molecular characterization of investigated proteoforms using existing technologies remains a fundamental challenge for top-down proteomics. Here, we benchmark the performance of ultraviolet photodissociation (UVPD) using 213 nm photons generated by a solid-state laser applied to the study of intact proteoforms from three organisms. Notably, the described UVPD setup applies multiple laser pulses to induce ion dissociation, and this feature can be used to optimize the fragmentation outcome based on the molecular weight of the analyzed biomolecule. When applied to complex proteoform mixtures in high-throughput top-down proteomics, 213 nm UVPD demonstrated a high degree of complementarity with the most employed fragmentation method in proteomics studies, higher-energy collisional dissociation (HCD). UVPD at 213 nm offered higher average proteoform sequence coverage and degree of proteoform characterization (including localization of post-translational modifications) than HCD. However, previous studies have shown limitations in applying database search strategies developed for HCD fragmentation to UVPD spectra which contains up to nine fragment ion types. We therefore performed an analysis of the different UVPD product ion type frequencies. From these data, we developed an ad hoc fragment matching strategy and determined the influence of each possible ion type on search outcomes. By paring down the number of ion types considered in high-throughput UVPD searches from all types down to the four most abundant, we were ultimately able to achieve deeper proteome characterization with UVPD. Lastly, our detailed product ion analysis also revealed UVPD cleavage propensities and determined the presence of a product ion produced specifically by 213 nm photons. All together, these observations could be used to better elucidate UVPD dissociation mechanisms and improve the utility of the technique for proteomic applications.
Collapse
Affiliation(s)
- Luca Fornelli
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Kristina Srzentić
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Timothy K Toby
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Peter F Doubleday
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Romain Huguet
- Thermo Fisher Scientific, San Jose, California 95134
| | | | - Rafael D Melani
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Henrique Dos Santos Seckler
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Caroline J DeHart
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | | | - Kenneth R Durbin
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208; Proteinaceous Inc., Evanston, Illinois 60201
| | - Joseph B Greer
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Bryan P Early
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Ryan T Fellers
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | | | - Paul M Thomas
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208.
| |
Collapse
|
33
|
Shaw JB, Liu W, Vasil′ev YV, Bracken CC, Malhan N, Guthals A, Beckman JS, Voinov VG. Direct Determination of Antibody Chain Pairing by Top-down and Middle-down Mass Spectrometry Using Electron Capture Dissociation and Ultraviolet Photodissociation. Anal Chem 2020; 92:766-773. [PMID: 31769659 PMCID: PMC7819135 DOI: 10.1021/acs.analchem.9b03129] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One challenge associated with the discovery and development of monoclonal antibody (mAb) therapeutics is the determination of heavy chain and light chain pairing. Advances in MS instrumentation and MS/MS methods have greatly enhanced capabilities for the analysis of large intact proteins yielding much more detailed and accurate proteoform characterization. Consequently, direct interrogation of intact antibodies or F(ab')2 and Fab fragments has the potential to significantly streamline therapeutic mAb discovery processes. Here, we demonstrate for the first time the ability to efficiently cleave disulfide bonds linking heavy and light chains of mAbs using electron capture dissociation (ECD) and 157 nm ultraviolet photodissociation (UVPD). The combination of intact mAb, Fab, or F(ab')2 mass, intact LC and Fd masses, and CDR3 sequence coverage enabled determination of heavy chain and light chain pairing from a single experiment and experimental condition. These results demonstrate the potential of top-down and middle-down proteomics to significantly streamline therapeutic antibody discovery.
Collapse
Affiliation(s)
- Jared B. Shaw
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Weijing Liu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Yury V. Vasil′ev
- e-MSion Inc., 2121 NE Jack London Drive, Corvallis, Oregon 97330, United States
- Linus Pauling Institute and the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Carter C. Bracken
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Neha Malhan
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Adrian Guthals
- Mapp Biopharmaceutical Inc., 6160 Lusk Boulevard #105, San Diego, California 92121, United States
| | - Joseph S. Beckman
- e-MSion Inc., 2121 NE Jack London Drive, Corvallis, Oregon 97330, United States
- Linus Pauling Institute and the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Valery G. Voinov
- e-MSion Inc., 2121 NE Jack London Drive, Corvallis, Oregon 97330, United States
- Linus Pauling Institute and the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
34
|
Wei B, Han G, Tang J, Sandoval W, Zhang YT. Native Hydrophobic Interaction Chromatography Hyphenated to Mass Spectrometry for Characterization of Monoclonal Antibody Minor Variants. Anal Chem 2019; 91:15360-15364. [DOI: 10.1021/acs.analchem.9b04467] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bingchuan Wei
- Department of Protein Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Guanghui Han
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jia Tang
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yonghua Taylor Zhang
- Department of Protein Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
35
|
Hernandez-Alba O, Houel S, Hessmann S, Erb S, Rabuka D, Huguet R, Josephs J, Beck A, Drake PM, Cianférani S. A Case Study to Identify the Drug Conjugation Site of a Site-Specific Antibody-Drug-Conjugate Using Middle-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2419-2429. [PMID: 31429052 DOI: 10.1007/s13361-019-02296-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Middle-down mass spectrometry (MD MS) has emerged as a promising alternative to classical bottom-up approaches for protein characterization. Middle-level experiments after enzymatic digestion are routinely used for subunit analysis of monoclonal antibody (mAb)-related compounds, providing information on drug load distribution and average drug-to-antibody ratio (DAR). However, peptide mapping is still the gold standard for primary amino acid sequence assessment, post-translational modifications (PTM), and drug conjugation identification and localization. However, peptide mapping strategies can be challenging when dealing with more complex and heterogeneous mAb formats, like antibody-drug conjugates (ADCs). We report here, for the first time, MD MS analysis of a third-generation site-specific DAR4 ADC using different fragmentation techniques, including higher-energy collisional- (HCD), electron-transfer (ETD) dissociation and 213 nm ultraviolet photodissociation (UVPD). UVPD used as a standalone technique for ADC subunit analysis afforded, within the same liquid chromatography-MS/MS run, enhanced performance in terms of primary sequence coverage compared to HCD- or ETD-based MD approaches, and generated substantially more MS/MS fragments containing either drug conjugation or glycosylation site information, leading to confident drug/glycosylation site identification. In addition, our results highlight the complementarity of ETD and UVPD for both primary sequence validation and drug conjugation/glycosylation site assessment. Altogether, our results highlight the potential of UVPD for ADC MD MS analysis for drug conjugation/glycosylation site assessment, and indicate that MD MS strategies can improve structural characterization of empowered next-generation mAb-based formats, especially for PTMs and drug conjugation sites validation.
Collapse
Affiliation(s)
- Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS IPHC UMR 7178, Université de Strasbourg, ECPM R5-0 - 25 Rue Becquerel, Cedex 2, 67087, Strasbourg, France
| | - Stéphane Houel
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, CA, 95134, USA
| | - Steve Hessmann
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS IPHC UMR 7178, Université de Strasbourg, ECPM R5-0 - 25 Rue Becquerel, Cedex 2, 67087, Strasbourg, France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS IPHC UMR 7178, Université de Strasbourg, ECPM R5-0 - 25 Rue Becquerel, Cedex 2, 67087, Strasbourg, France
| | - David Rabuka
- Catalent Biologics West, 5703 Hollis Street, Emeryville, CA, 94530, USA
| | - Romain Huguet
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, CA, 95134, USA
| | - Jonathan Josephs
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, CA, 95134, USA
| | - Alain Beck
- IRPF, Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Penelope M Drake
- Catalent Biologics West, 5703 Hollis Street, Emeryville, CA, 94530, USA
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS IPHC UMR 7178, Université de Strasbourg, ECPM R5-0 - 25 Rue Becquerel, Cedex 2, 67087, Strasbourg, France.
| |
Collapse
|
36
|
Melani RD, Srzentić K, Gerbasi VR, McGee JP, Huguet R, Fornelli L, Kelleher NL. Direct measurement of light and heavy antibody chains using ion mobility and middle-down mass spectrometry. MAbs 2019; 11:1351-1357. [PMID: 31607219 PMCID: PMC6816405 DOI: 10.1080/19420862.2019.1668226] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The analysis of monoclonal antibodies (mAbs) by a middle-down mass spectrometry (MS) approach is a growing field that attracts the attention of many researchers and biopharmaceutical companies. Usually, liquid fractionation techniques are used to separate mAbs polypeptides chains before MS analysis. Gas-phase fractionation techniques such as high-field asymmetric waveform ion mobility spectrometry (FAIMS) can replace liquid-based separations and reduce both analysis time and cost. Here, we present a rapid FAIMS tandem MS method capable of characterizing the polypeptide sequence of mAbs light and heavy chains in an unprecedented, easy, and fast fashion. This new method uses commercially available instruments and takes ~24 min, which is 40-60% faster than regular liquid chromatography-MS/MS analysis, to acquire fragmentation data using different dissociation methods.
Collapse
Affiliation(s)
- Rafael D Melani
- Departments of Chemistry, Molecular Biosciences, and Chemical and Biological Engineering; the Chemistry of Life Processes Institute; and the Proteomics Center of Excellence, Northwestern University , Evanston , IL , USA
| | | | - Vincent R Gerbasi
- Departments of Chemistry, Molecular Biosciences, and Chemical and Biological Engineering; the Chemistry of Life Processes Institute; and the Proteomics Center of Excellence, Northwestern University , Evanston , IL , USA
| | - John P McGee
- Departments of Chemistry, Molecular Biosciences, and Chemical and Biological Engineering; the Chemistry of Life Processes Institute; and the Proteomics Center of Excellence, Northwestern University , Evanston , IL , USA
| | | | - Luca Fornelli
- Department of Biology, University of Oklahoma , Norman , OK , USA
| | - Neil L Kelleher
- Departments of Chemistry, Molecular Biosciences, and Chemical and Biological Engineering; the Chemistry of Life Processes Institute; and the Proteomics Center of Excellence, Northwestern University , Evanston , IL , USA
| |
Collapse
|
37
|
Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation, cyclization, and elimination reactions. Amino Acids 2019; 51:1409-1431. [DOI: 10.1007/s00726-019-02787-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
AbstractPeptides and proteins are preponderantly emerging in the drug market, as shown by the increasing number of biopharmaceutics already approved or under development. Biomolecules like recombinant monoclonal antibodies have high therapeutic efficacy and offer a valuable alternative to small-molecule drugs. However, due to their complex three-dimensional structure and the presence of many functional groups, the occurrence of spontaneous conformational and chemical changes is much higher for peptides and proteins than for small molecules. The characterization of biotherapeutics with modern and sophisticated analytical methods has revealed the presence of contaminants that mainly arise from oxidation- and elimination-prone amino-acid side chains. This review focuses on protein chemical modifications that may take place during storage due to (1) oxidation (methionine, cysteine, histidine, tyrosine, tryptophan, and phenylalanine), (2) intra- and inter-residue cyclization (aspartic and glutamic acid, asparagine, glutamine, N-terminal dipeptidyl motifs), and (3) β-elimination (serine, threonine, cysteine, cystine) reactions. It also includes some examples of the impact of such modifications on protein structure and function.
Collapse
|
38
|
Révész Á, Rokob TA, Jeanne Dit Fouque D, Hüse D, Háda V, Turiák L, Memboeuf A, Vékey K, Drahos L. Optimal Collision Energies and Bioinformatics Tools for Efficient Bottom-up Sequence Validation of Monoclonal Antibodies. Anal Chem 2019; 91:13128-13135. [PMID: 31518108 DOI: 10.1021/acs.analchem.9b03362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rigorous validation of amino acid sequence is fundamental in the characterization of original and biosimilar protein biopharmaceuticals. Widely accepted workflows are based on bottom-up mass spectrometry, and they often require multiple techniques and significant manual work. Here, we demonstrate that optimization of a set of tandem mass spectroscopy (MS/MS) collision energies and automated combination of all available information in the measurements can increase the sequence validated by one technique close to the inherent limits. We created a software (called "Serac") that consumes results of the Mascot database search engine and identifies the amino acids validated by bottom-up MS/MS experiments using the most rigorous, industrially acceptable definition of sequence coverage (we term this "confirmed sequence coverage"). The software can combine spectra at the level of amino acids or fragment ions to exploit complementarity, provides full transparency to justify validation, and reduces manual effort. With its help, we investigated collision energy dependence of confirmed sequence coverage of individual peptides and full proteins on trypsin-digested monoclonal antibody samples (rituximab and trastuzumab). We found the energy dependence to be modest, but we demonstrated the benefit of using spectra taken at multiple energies. We describe a workflow based on 2-3 LC-MS/MS runs, carefully selected collision energies, and a fragment ion level combination, which yields ∼85% confirmed sequence coverage, 25%-30% above that from a basic proteomics protocol. Further increase can mainly be expected from alternative digestion enzymes or fragmentation techniques, which can be seamlessly integrated to the processing, thereby allowing effortless validation of full sequences.
Collapse
Affiliation(s)
- Ágnes Révész
- MS Proteomics Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - Tibor András Rokob
- Theoretical Chemistry Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - Dany Jeanne Dit Fouque
- UMR CNRS 6521, CEMCA , Université de Bretagne Occidentale , 6 Av. Le Gorgeu , 29238 Brest Cedex 3 , France
| | - Dániel Hüse
- Analytical Department of Biotechnology , Gedeon Richter Plc , POB 27, H-1475 Budapest 10 , Hungary
| | - Viktor Háda
- Analytical Department of Biotechnology , Gedeon Richter Plc , POB 27, H-1475 Budapest 10 , Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - Antony Memboeuf
- UMR CNRS 6521, CEMCA , Université de Bretagne Occidentale , 6 Av. Le Gorgeu , 29238 Brest Cedex 3 , France
| | - Károly Vékey
- MS Proteomics Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| |
Collapse
|
39
|
Chen B, Lin Z, Zhu Y, Jin Y, Larson E, Xu Q, Fu C, Zhang Z, Zhang Q, Pritts WA, Ge Y. Middle-Down Multi-Attribute Analysis of Antibody-Drug Conjugates with Electron Transfer Dissociation. Anal Chem 2019; 91:11661-11669. [PMID: 31442030 DOI: 10.1021/acs.analchem.9b02194] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antibody-drug conjugates (ADCs) are designed to combine the target specificity of monoclonal antibodies and potent cytotoxin drugs to achieve better therapeutic outcomes. Comprehensive evaluation of the quality attributes of ADCs is critical for drug development but remains challenging due to heterogeneity of the construct. Currently, peptide mapping with reversed-phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) is the predominant approach to characterize ADCs. However, it is suboptimal for sequence characterization and quantification of ADCs because it lacks a comprehensive view of coexisting variants and suffers from varying ionization effects of drug-conjugated peptides compared to unconjugated counterparts. Here, we present the first middle-down RPLC-MS analysis of both cysteine (Adcetris; BV) and lysine (Kadcyla; T-DM1) conjugated ADCs at the subunit level (∼25 kDa) with electron transfer dissociation (ETD). We successfully achieved high-resolution separation of subunit isomers arising from different drug conjugation and subsequently localized the conjugation sites. Moreover, we obtained a comprehensive overview of the microvariants associated with each subunits and characterized them such as oxidized variants with different sites. Furthermore, we observed relatively high levels of conjugation near complementarity-determining regions (CDRs) from the heavy chain but no drug conjugation near CDRs of light chain (Lc) from lysine conjugated T-DM1. Based on the extracted ion chromatograms, we accurately measured average drug to antibody ratio (DAR) values and relative occupancy of drug-conjugated subunits. Overall, the middle-down MS approach enables the evaluation of multiple quality attributes including DAR, positional isomers, conjugation sites, occupancy, and microvariants, which potentially opens up a new avenue to characterize ADCs.
Collapse
Affiliation(s)
- Bifan Chen
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Ziqing Lin
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Yutong Jin
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Eli Larson
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Qingge Xu
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Cexiong Fu
- Process Analytical , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Zhaorui Zhang
- Process Analytical , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Qunying Zhang
- Process Analytical , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Wayne A Pritts
- Process Analytical , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Ying Ge
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
40
|
Mao Y, Zhang L, Kleinberg A, Xia Q, Daly TJ, Li N. Fast protein sequencing of monoclonal antibody by real-time digestion on emitter during nanoelectrospray. MAbs 2019; 11:767-778. [PMID: 30919719 PMCID: PMC6601538 DOI: 10.1080/19420862.2019.1599633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Growth in the pharmaceutical industry has led to an increasing demand for rapid characterization of therapeutic monoclonal antibodies. The current methods for antibody sequence confirmation (e.g., N-terminal Edman sequencing and traditional peptide mapping methods) are not sufficient; thus, we developed a fast method for sequencing recombinant monoclonal antibodies using a novel digestion-on-emitter technology. Using this method, a monoclonal antibody can be denatured, reduced, digested, and sequenced in less than an hour. High throughput and satisfactory protein sequence coverage were achieved by using a non-specific protease from Aspergillus saitoi, protease XIII, to digest the denatured and reduced monoclonal antibody on an electrospray emitter, while electrospray high voltage was applied to the digestion mixture through the emitter. Tandem mass spectrometry data was acquired over the course of enzyme digestion, generating similar information compared to standard peptide mapping experiments in much less time. We demonstrated that this fast protein sequencing method provided sufficient sequence information for bovine serum albumin and two commercially available monoclonal antibodies, mouse IgG1 MOPC21 and humanized IgG1 NISTmAb. For two monoclonal antibodies, we obtained sequence coverage of 90.5–95.1% for the heavy chains and 98.6–99.1% for the light chains. We found that on-emitter digestion by protease XIII generated peptides of various lengths during the digestion process, which was critical for achieving sufficient sequence coverage. Moreover, we discovered that the enzyme-to-substrate ratio was an important parameter that affects protein sequence coverage. Due to its highly automatable and efficient design, our method offers a major advantage over N-terminal Edman sequencing and traditional peptide mapping methods in the identification of protein sequence, and is capable of meeting an ever-increasing demand for monoclonal antibody sequence confirmation in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Yuan Mao
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| | - Lichao Zhang
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| | - Andrew Kleinberg
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| | - Qiangwei Xia
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| | - Thomas J Daly
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| | - Ning Li
- a Department of Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., New York , NY , USA
| |
Collapse
|
41
|
He L, Anderson LC, Barnidge DR, Murray DL, Dasari S, Dispenzieri A, Hendrickson CL, Marshall AG. Classification of Plasma Cell Disorders by 21 Tesla Fourier Transform Ion Cyclotron Resonance Top-Down and Middle-Down MS/MS Analysis of Monoclonal Immunoglobulin Light Chains in Human Serum. Anal Chem 2019; 91:3263-3269. [DOI: 10.1021/acs.analchem.8b03294] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lidong He
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32310, United States
| | - Lissa C. Anderson
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Dr., Tallahassee, Florida 32310, United States
| | | | | | | | | | - Christopher L. Hendrickson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32310, United States
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Dr., Tallahassee, Florida 32310, United States
| | - Alan G. Marshall
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32310, United States
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Dr., Tallahassee, Florida 32310, United States
| |
Collapse
|
42
|
Beck A, D’Atri V, Ehkirch A, Fekete S, Hernandez-Alba O, Gahoual R, Leize-Wagner E, François Y, Guillarme D, Cianférani S. Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: present and future. Expert Rev Proteomics 2019; 16:337-362. [DOI: 10.1080/14789450.2019.1578215] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alain Beck
- Biologics CMC and Developability, IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Anthony Ehkirch
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Rabah Gahoual
- Unité de Technologies Biologiques et Chimiques pour la Santé (UTCBS), Paris 5-CNRS UMR8258 Inserm U1022, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Emmanuel Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140, Université de Strasbourg, CNRS, Strasbourg, France
| | - Yannis François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140, Université de Strasbourg, CNRS, Strasbourg, France
| | - Davy Guillarme
- Biologics CMC and Developability, IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
43
|
van der Burgt YEM, Kilgour DPA, Tsybin YO, Srzentić K, Fornelli L, Beck A, Wuhrer M, Nicolardi S. Structural Analysis of Monoclonal Antibodies by Ultrahigh Resolution MALDI In-Source Decay FT-ICR Mass Spectrometry. Anal Chem 2019; 91:2079-2085. [PMID: 30571088 PMCID: PMC6365908 DOI: 10.1021/acs.analchem.8b04515] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
The
emergence of complex protein therapeutics in general and monoclonal
antibodies (mAbs) in particular have stimulated analytical chemists
to develop new methods and strategies for their structural characterization.
Mass spectrometry plays a key role in providing information on the
primary amino acid sequence, post-translational modifications, and
other structure characteristics that must be monitored during the
manufacturing process and subsequent quality control assessment. In
this study, we present a novel method that allows structural characterization
of mAbs based on MALDI in-source decay (ISD) fragmentation, coupled
with Fourier transform ion cyclotron resonance (FT-ICR) MS. The method
benefits from higher resolution of absorption mode FT mass spectra,
compared to magnitude mode, which enables simultaneous identification
of ISD fragments from both the heavy and light chains with a higher
confidence in a wide mass range up to m/z 13 500. This method was applied to two standard mAbs, namely
NIST mAb and trastuzumab, in preparation for method application in
an interlaboratory study on mAbs structural analysis coordinated by
the Consortium for Top-Down Proteomics. Extensive sequence coverage
was obtained from the middle-down analysis (IdeS- and GingisKHAN-digested
mAbs) that complemented the top-down analysis of intact mAbs. In addition,
MALDI FT-ICR MS of IdeS-digested mAbs allowed isotopic-level profiling
of proteoforms with regard to heavy chain N-glycosylation.
Collapse
Affiliation(s)
- Yuri E M van der Burgt
- Center for Proteomics and Metabolomics , Leiden University Medical Center (LUMC) , PO Box 9600, 2300 RC , Leiden , The Netherlands
| | - David P A Kilgour
- Department of Chemistry , Nottingham Trent University , Nottingham , NG11 0JN , U.K
| | - Yury O Tsybin
- Spectroswiss , EPFL Innovation Park , 1015 Lausanne , Switzerland
| | - Kristina Srzentić
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence , Northwestern University , 2145 N. Sheridan Road , Evanston , Illinois 60208 , United States
| | - Luca Fornelli
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence , Northwestern University , 2145 N. Sheridan Road , Evanston , Illinois 60208 , United States
| | - Alain Beck
- Centre d'Immunologie Pierre Fabre , 74160 St. Julien-en-Genevois , France
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics , Leiden University Medical Center (LUMC) , PO Box 9600, 2300 RC , Leiden , The Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics , Leiden University Medical Center (LUMC) , PO Box 9600, 2300 RC , Leiden , The Netherlands
| |
Collapse
|
44
|
Jin Y, Lin Z, Xu Q, Fu C, Zhang Z, Zhang Q, Pritts WA, Ge Y. Comprehensive characterization of monoclonal antibody by Fourier transform ion cyclotron resonance mass spectrometry. MAbs 2019; 11:106-115. [PMID: 30230956 PMCID: PMC6343775 DOI: 10.1080/19420862.2018.1525253] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
The pharmaceutical industry's interest in monoclonal antibodies (mAbs) and their derivatives has spurred rapid growth in the commercial and clinical pipeline of these effective therapeutics. The complex micro-heterogeneity of mAbs requires in-depth structural characterization for critical quality attribute assessment and quality assurance. Currently, mass spectrometry (MS)-based methods are the gold standard in mAb analysis, primarily with a bottom-up approach in which immunoglobulins G (IgGs) and their variants are digested into peptides to facilitate the analysis. Comprehensive characterization of IgGs and the micro-variants remains challenging at the proteoform level. Here, we used both top-down and middle-down MS for in-depth characterization of a human IgG1 using ultra-high resolution Fourier transform MS. Our top-down MS analysis provided characteristic fingerprinting of the IgG1 proteoforms at unit mass resolution. Subsequently, the tandem MS analysis of intact IgG1 enabled the detailed sequence characterization of a representative IgG1 proteoform at the intact protein level. Moreover, we used the middle-down MS analysis to characterize the primary glycoforms and micro-variants. Micro-variants such as low-abundance glycoforms, C-terminal glycine clipping, and C-terminal proline amidation were characterized with bond cleavages higher than 44% at the subunit level. By combining top-down and middle-down analysis, 76% of bond cleavage (509/666 amino acid bond cleaved) of IgG1 was achieved. Taken together, we demonstrated the combination of top-down and middle-down MS as powerful tools in the comprehensive characterization of mAbs.
Collapse
Affiliation(s)
- Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ziqing Lin
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Qingge Xu
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cexiong Fu
- Process Analytical, AbbVie Inc, North Chicago, Illinois, USA
| | - Zhaorui Zhang
- Process Analytical, AbbVie Inc, North Chicago, Illinois, USA
| | - Qunying Zhang
- Process Analytical, AbbVie Inc, North Chicago, Illinois, USA
| | - Wayne A. Pritts
- Process Analytical, AbbVie Inc, North Chicago, Illinois, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
45
|
Srzentić K, Nagornov KO, Fornelli L, Lobas AA, Ayoub D, Kozhinov AN, Gasilova N, Menin L, Beck A, Gorshkov MV, Aizikov K, Tsybin YO. Multiplexed Middle-Down Mass Spectrometry as a Method for Revealing Light and Heavy Chain Connectivity in a Monoclonal Antibody. Anal Chem 2018; 90:12527-12535. [DOI: 10.1021/acs.analchem.8b02398] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kristina Srzentić
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Luca Fornelli
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Anna A. Lobas
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Daniel Ayoub
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Natalia Gasilova
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Laure Menin
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alain Beck
- Centre d’Immunologie Pierre Fabre, 74160 St. Julien-en-Genevois, France
| | - Mikhail V. Gorshkov
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
- Moscow Institute of Physics and Technology State University, 141707 Dolgoprudny, Moscow Region, Russia
| | | | - Yury O. Tsybin
- Spectroswiss, EPFL Innovation Park, 1015 Lausanne, Switzerland
| |
Collapse
|
46
|
Exploration of variations in proteome and metabolome for predictive diagnostics and personalized treatment algorithms: Innovative approach and examples for potential clinical application. J Proteomics 2018; 188:30-40. [DOI: 10.1016/j.jprot.2017.08.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/06/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022]
|
47
|
Háda V, Bagdi A, Bihari Z, Timári SB, Fizil Á, Szántay C. Recent advancements, challenges, and practical considerations in the mass spectrometry-based analytics of protein biotherapeutics: A viewpoint from the biosimilar industry. J Pharm Biomed Anal 2018; 161:214-238. [PMID: 30205300 DOI: 10.1016/j.jpba.2018.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023]
Abstract
The extensive analytical characterization of protein biotherapeutics, especially of biosimilars, is a critical part of the product development and registration. High-resolution mass spectrometry became the primary analytical tool used for the structural characterization of biotherapeutics. Its high instrumental sensitivity and methodological versatility made it possible to use this technique to characterize both the primary and higher-order structure of these proteins. However, even by using high-end instrumentation, analysts face several challenges with regard to how to cope with industrial and regulatory requirements, that is, how to obtain accurate and reliable analytical data in a time- and cost-efficient way. New sample preparation approaches, measurement techniques and data evaluation strategies are available to meet those requirements. The practical considerations of these methods are discussed in the present review article focusing on hot topics, such as reliable and efficient sequencing strategies, minimization of artefact formation during sample preparation, quantitative peptide mapping, the potential of multi-attribute methodology, the increasing role of mass spectrometry in higher-order structure characterization and the challenges of MS-based identification of host cell proteins. On the basis of the opportunities in new instrumental techniques, methodological advancements and software-driven data evaluation approaches, for the future one can envision an even wider application area for mass spectrometry in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Viktor Háda
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary.
| | - Attila Bagdi
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Zsolt Bihari
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | | | - Ádám Fizil
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Csaba Szántay
- Spectroscopic Research Department, Gedeon Richter Plc, Hungary.
| |
Collapse
|
48
|
Fornelli L, Srzentić K, Huguet R, Mullen C, Sharma S, Zabrouskov V, Fellers RT, Durbin KR, Compton PD, Kelleher NL. Accurate Sequence Analysis of a Monoclonal Antibody by Top-Down and Middle-Down Orbitrap Mass Spectrometry Applying Multiple Ion Activation Techniques. Anal Chem 2018; 90:8421-8429. [PMID: 29894161 DOI: 10.1021/acs.analchem.8b00984] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Targeted top-down (TD) and middle-down (MD) mass spectrometry (MS) offer reduced sample manipulation during protein analysis, limiting the risk of introducing artifactual modifications to better capture sequence information on the proteoforms present. This provides some advantages when characterizing biotherapeutic molecules such as monoclonal antibodies, particularly for the class of biosimilars. Here, we describe the results obtained analyzing a monoclonal IgG1, either in its ∼150 kDa intact form or after highly specific digestions yielding ∼25 and ∼50 kDa subunits, using an Orbitrap mass spectrometer on a liquid chromatography (LC) time scale with fragmentation from ion-photon, ion-ion, and ion-neutral interactions. Ultraviolet photodissociation (UVPD) used a new 213 nm solid-state laser. Alternatively, we applied high-capacity electron-transfer dissociation (ETD HD), alone or in combination with higher energy collisional dissociation (EThcD). Notably, we verify the degree of complementarity of these ion activation methods, with the combination of 213 nm UVPD and ETD HD producing a new record sequence coverage of ∼40% for TD MS experiments. The addition of EThcD for the >25 kDa products from MD strategies generated up to 90% of complete sequence information in six LC runs. Importantly, we determined an optimal signal-to-noise threshold for fragment ion deconvolution to suppress false positives yet maximize sequence coverage and implemented a systematic validation of this process using the new software TDValidator. This rigorous data analysis should elevate confidence for assignment of dense MS2 spectra and represents a purposeful step toward the application of TD and MD MS for deep sequencing of monoclonal antibodies.
Collapse
Affiliation(s)
- Luca Fornelli
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Kristina Srzentić
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Romain Huguet
- Thermo Fisher Scientific , 355 River Oaks Parkway , San Jose , California 95134 , United States
| | - Christopher Mullen
- Thermo Fisher Scientific , 355 River Oaks Parkway , San Jose , California 95134 , United States
| | - Seema Sharma
- Thermo Fisher Scientific , 355 River Oaks Parkway , San Jose , California 95134 , United States
| | - Vlad Zabrouskov
- Thermo Fisher Scientific , 355 River Oaks Parkway , San Jose , California 95134 , United States
| | - Ryan T Fellers
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Kenneth R Durbin
- Proteinaceous, Incorporated , Evanston , Illinois 60201 , United States
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence , Northwestern University , 2145 North Sheridan Road , Evanston , Illinois 60208 , United States
| |
Collapse
|
49
|
Lu M, Zhan X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J 2018; 9:77-102. [PMID: 29515689 PMCID: PMC5833337 DOI: 10.1007/s13167-018-0128-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/29/2018] [Indexed: 02/06/2023]
Abstract
Cancer with heavily economic and social burden is the hot point in the field of medical research. Some remarkable achievements have been made; however, the exact mechanisms of tumor initiation and development remain unclear. Cancer is a complex, whole-body disease that involves multiple abnormalities in the levels of DNA, RNA, protein, metabolite and medical imaging. Biological omics including genomics, transcriptomics, proteomics, metabolomics and radiomics aims to systematically understand carcinogenesis in different biological levels, which is driving the shift of cancer research paradigm from single parameter model to multi-parameter systematical model. The rapid development of various omics technologies is driving one to conveniently get multi-omics data, which accelerates predictive, preventive and personalized medicine (PPPM) practice allowing prediction of response with substantially increased accuracy, stratification of particular patients and eventual personalization of medicine. This review article describes the methodology, advances, and clinically relevant outcomes of different "omics" technologies in cancer research, and especially emphasizes the importance and scientific merit of integrating multi-omics in cancer research and clinically relevant outcomes.
Collapse
Affiliation(s)
- Miaolong Lu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
- The State Key Laboratory of Medical Genetics, Central South University, 88 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| |
Collapse
|
50
|
Affiliation(s)
- Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|