1
|
Davison-Gates L, Ewing AV, Clark D, Clarke FC. High-throughput optimisations for 3D chemical imaging of pharmaceutical solid oral dosage forms. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39494640 DOI: 10.1039/d4ay01806k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Chemical imaging of pharmaceutical solid oral dosage forms is a key technique for quality assurance and issue diagnosis. This technique can be further augmented using 3D chemical imaging via serial sections and image stacking. However, the additional collection time this entails means that 3D imaging is utilised for a very niche set of applications. Previous attempts have been made to optimize the process but have often compromised the quality of the resulting chemical images to achieve the gains in process time. In this study, several optimisation strategies are employed to increase the efficiency of 3D chemical image collection without sacrificing the quality of the final chemical images. The use of automated microscope macros and a kinematic mounting system allowed for rapid sample processing and efficient utilisation of equipment time. The automated macros allow the Raman microscope to collect mapping data continuously from multiple samples without the need for operator intervention steps. The kinematic mounting system allows rapid and accurate sample transfer and positioning between instruments. These optimisations resulted in a three times speed increase in collection time while keeping the same signal-to-noise ratio of the resulting chemical images. These optimisations will allow the rapid collection of statistically robust 3D chemical image data within a set time frame that is more amenable to an industrial workflow.
Collapse
Affiliation(s)
| | | | - Don Clark
- Pfizer Ltd, Ramsgate Road, Sandwich, CT19 9NJ, UK.
| | | |
Collapse
|
2
|
Enguita AMA, Harju E, Wurr L, Tomberg T, Auvinen O, Peltonen L, Strachan C, Saarinen J. Insights into pharmaceutical co-crystallization using coherent Raman microscopy. J Pharm Sci 2024:S0022-3549(24)00505-7. [PMID: 39491673 DOI: 10.1016/j.xphs.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Formulating active pharmaceutical ingredients (APIs) as co-crystals requires a thorough understanding of co-crystallization behavior under different process conditions. This study employs two forms of coherent Raman microscopy, narrowband coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) with spectral focusing, to study co-crystallization via liquid-assisted ball milling. Indomethacin and nicotinamide served as the model API and co-former, and the results were compared with established analytical methods. Narrowband CARS, with univariate peak position analysis, was useful to visualize co-crystal formation, but suffered some degree of signal mixing that affected component identification. Hyperspectral SRS imaging, combined with classical least squares multivariate analysis, separated the different components with high confidence and proved to be a robust and rapid tool to qualitatively and quantitatively image co-crystallization. The coherent Raman imaging results explained divergent co-crystallization endpoints obtained with the conventional solid-state analysis methods. CARS and SRS microscopies also revealed the presence of otherwise undetected trace forms. Finally, we also demonstrated the dramatic reversal of partial co-crystal formation during milling, depending on ethanol content. Overall, the study demonstrates the added value coherent Raman microscopy can provide for analysis of co-crystallization processes.
Collapse
Affiliation(s)
- Alba M Arbiol Enguita
- Division of Pharmaceutical Chemistry and Technology, Viikinkaari 5E, 00014 University of Helsinki, Finland
| | - Elina Harju
- Division of Pharmaceutical Chemistry and Technology, Viikinkaari 5E, 00014 University of Helsinki, Finland
| | - Lea Wurr
- Division of Pharmaceutical Chemistry and Technology, Viikinkaari 5E, 00014 University of Helsinki, Finland
| | - Teemu Tomberg
- Division of Pharmaceutical Chemistry and Technology, Viikinkaari 5E, 00014 University of Helsinki, Finland
| | - Oona Auvinen
- Division of Pharmaceutical Chemistry and Technology, Viikinkaari 5E, 00014 University of Helsinki, Finland
| | - Leena Peltonen
- Division of Pharmaceutical Chemistry and Technology, Viikinkaari 5E, 00014 University of Helsinki, Finland
| | - Clare Strachan
- Division of Pharmaceutical Chemistry and Technology, Viikinkaari 5E, 00014 University of Helsinki, Finland
| | - Jukka Saarinen
- Division of Pharmaceutical Chemistry and Technology, Viikinkaari 5E, 00014 University of Helsinki, Finland.
| |
Collapse
|
3
|
Razumtcev A, Li M, Simpson GJ. Parts-per-Million Detection of Trace Crystal Forms Using AF-PTIR Microscopy. Anal Chem 2022; 94:13100-13107. [PMID: 36099561 DOI: 10.1021/acs.analchem.2c02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Autofluorescence-detected photothermal mid-infrared (AF-PTIR) microscopy was shown to enable parts-per-million detection of α-indomethacin impurity in γ-indomethacin samples. Subtle differences in the photothermal response of the UV-autofluorescence of two indomethacin crystal polymorphs were used for sub-micron chemical discrimination based on fingerprint region mid-IR spectroscopy. The AF-PTIR assignment was independently confirmed by second harmonic generation (SHG) microscopy, which was shown to reduce the total analysis time by rapidly identifying the suitable fields of view. AF-PTIR microscopy has the potential to assist in the early identification of crystal form impurities in the solid dosage forms development pipeline.
Collapse
Affiliation(s)
- Aleksandr Razumtcev
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Minghe Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Garth J Simpson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Carruthers H, Clark D, Clarke FC, Faulds K, Graham D. Evaluation of laser direct infrared imaging for rapid analysis of pharmaceutical tablets. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1862-1871. [PMID: 35502820 DOI: 10.1039/d2ay00471b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vibrational spectroscopic chemical imaging is an important tool in the pharmaceutical industry for characterising the spatial distribution of components within final drug products. The applicability of these techniques is currently limited by the long data acquisition times required to obtain high-definition chemical images of a sample surface. Advancements in quantum cascade laser (QCL) technology have provided an exciting new opportunity for infrared (IR) imaging. Instead of collecting a full IR spectrum at each point, it is possible to focus on distinct spectral bands to reduce imaging data collection time. This study explores a laser direct infrared (LDIR) chemical imaging approach that couples QCL technology with rapid scanning optics to provide high-definition chemical images at an order of magnitude faster than traditional imaging techniques. The capabilities of LDIR chemical imaging were evaluated for pharmaceutical formulations and compared with other established spectroscopic chemical imaging techniques including Raman, near-infrared (NIR) and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) spectroscopy with regards to data acquisition time and image quality. The study showed that LDIR imaging provided high-definition component distribution maps comparable to Raman and SEM-EDX at orders of magnitude faster in terms of time. The ability to obtain high-definition chemical images of the whole tablet surface in relatively fast time frames indicates LDIR imaging could be a promising tool in the pharmaceutical industry to rapidly characterise the size and distribution of components within tablets and could help enhance drug product manufacturing understanding.
Collapse
Affiliation(s)
- Hannah Carruthers
- University of Strathclyde, Department of Pure and Applied Chemistry, George Street, Glasgow, G1 1RD, UK.
- Pfizer Ltd., Ramsgate Road, Sandwich, CT19 9NJ, UK
| | - Don Clark
- Pfizer Ltd., Ramsgate Road, Sandwich, CT19 9NJ, UK
| | | | - Karen Faulds
- University of Strathclyde, Department of Pure and Applied Chemistry, George Street, Glasgow, G1 1RD, UK.
| | - Duncan Graham
- University of Strathclyde, Department of Pure and Applied Chemistry, George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
5
|
Xu S, Camp CH, Lee YJ. Coherent
anti‐Stokes
Raman scattering microscopy for polymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuyu Xu
- Biosystems and Biomaterials Division National Institute of Standards and Technology Gaithersburg Maryland USA
| | - Charles H. Camp
- Biosystems and Biomaterials Division National Institute of Standards and Technology Gaithersburg Maryland USA
| | - Young Jong Lee
- Biosystems and Biomaterials Division National Institute of Standards and Technology Gaithersburg Maryland USA
| |
Collapse
|
6
|
Zeng J, Zhao W, Yue S. Coherent Raman Scattering Microscopy in Oncology Pharmacokinetic Research. Front Pharmacol 2021; 12:630167. [PMID: 33613294 PMCID: PMC7887381 DOI: 10.3389/fphar.2021.630167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 11/28/2022] Open
Abstract
The high attrition rates of anti-cancer drugs during clinical development remains a bottleneck problem in pharmaceutical industry. This is partially due to the lack of quantitative, selective, and rapid readouts of anti-cancer drug activity in situ with high resolution. Although fluorescence microscopy has been commonly used in oncology pharmacological research, fluorescent labels are often too large in size for small drug molecules, and thus may disturb the function or metabolism of these molecules. Such challenge can be overcome by coherent Raman scattering microscopy, which is capable of chemically selective, highly sensitive, high spatial resolution, and high-speed imaging, without the need of any labeling. Coherent Raman scattering microscopy has tremendously improved the understanding of pharmaceutical materials in the solid state, pharmacokinetics of anti-cancer drugs and nanocarriers in vitro and in vivo. This review focuses on the latest applications of coherent Raman scattering microscopy as a new emerging platform to facilitate oncology pharmacokinetic research.
Collapse
Affiliation(s)
- Junjie Zeng
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wenying Zhao
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shuhua Yue
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Paing HW, Bryant TJ, Quarles CD, Marcus RK. Coupling of Laser Ablation and the Liquid Sampling-Atmospheric Pressure Glow Discharge Plasma for Simultaneous, Comprehensive Mapping: Elemental, Molecular, and Spatial Analysis. Anal Chem 2020; 92:12622-12629. [PMID: 32856899 DOI: 10.1021/acs.analchem.0c02677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The spatial distributions of elemental and molecular species are vital pieces of information for a broad number of applications such as material development and bio/environmental analysis. There is currently no single analytical method that can simultaneously acquire elemental, molecular, and spatial information from a single sample. This paper presents the coupling of an NWR213 laser ablation (LA) system to the liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma for combined atomic and molecular (CAM) analysis. The work demonstrates a fundamental balance that must be considered between the extent of fragmentation of molecules and ionization of atoms for CAM analysis. Detailed studies showed that the interelectrode gap to be a critical parameter for controlling the ionization efficiency of atomic and molecular species. Utilizing Design-of-Experiment (DoE) procedures, the discharge current was also found to be a significant parameter to control. Elemental lead, caffeine, and simultaneous lead and caffeine analysis via LA-LS-APGD-MS was made possible through improved understanding of the influence of plasma parameters on the product mass spectra of laser-ablated particles. Finally, a chemical map of elemental lead and molecular caffeine, from lead nitrate and caffeine residues, was generated, demonstrating the comprehensive mapping capabilities of LA-LS-APGD-MS. The practical relevance of the capabilities is demonstrated by mapping glutamic acid from a cryosectioned chicken breast with a thallium spike deposited within the tissue. It is believed that the LA-LS-APGD-MS could be a valuable methodology for the simultaneous mapping of elemental and molecular species from a variety of samples.
Collapse
Affiliation(s)
- Htoo W Paing
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, South Carolina 29634, United States
| | - Tyler J Bryant
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, South Carolina 29634, United States
| | - C Derrick Quarles
- Elemental Scientific, Inc., 7277 World Communications Dr., Omaha, Nebraska 68122, United States
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
8
|
Brinkmann M, Fast A, Hellwig T, Pence I, Evans CL, Fallnich C. Portable all-fiber dual-output widely tunable light source for coherent Raman imaging. BIOMEDICAL OPTICS EXPRESS 2019; 10:4437-4449. [PMID: 31565500 PMCID: PMC6757451 DOI: 10.1364/boe.10.004437] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 05/06/2023]
Abstract
We present a rapidly tunable dual-output all-fiber light source for coherent Raman imaging, based on a dispersively matched mode-locked laser pumping a parametric oscillator. Output pump and Stokes pulses with a maximal power of 170 and 400 mW, respectively, and equal durations of 7 ps could be generated. The tuning mechanism required no mechanical delay line, enabling all-electronic arbitrary wavelength switching across more than 2700 cm - 1 in less than 5 ms. The compact setup showed a reliable operation despite mechanical shocks of more than 25 m / s 2 and is, thus, well suited for operation in a mobile cart. Imaging mouse and human skin tissue with both the portable light source and a commercial laboratory-bound reference system yielded qualitatively equal results and verified the portable light source being well suited for coherent Raman microscopy.
Collapse
Affiliation(s)
- Maximilian Brinkmann
- Institute of Applied Physics, Corrensstr. 2, 48149 Münster, Germany
- Refined Laser Systems UG (haftungsbeschränkt), Münster, Germany
- Shared first author
| | - Alexander Fast
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Shared first author
| | - Tim Hellwig
- Institute of Applied Physics, Corrensstr. 2, 48149 Münster, Germany
- Refined Laser Systems UG (haftungsbeschränkt), Münster, Germany
| | - Isaac Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Carsten Fallnich
- Institute of Applied Physics, Corrensstr. 2, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| |
Collapse
|
9
|
Smith CJ, Dinh J, Schmitt PD, Stroud PA, Hinds J, Johnson MJ, Simpson GJ. Calibration-Free Second Harmonic Generation (SHG) Image Analysis for Quantification of Trace Crystallinity Within Final Dosage Forms of Amorphous Solid Dispersions. APPLIED SPECTROSCOPY 2018; 72:1594-1605. [PMID: 29896972 DOI: 10.1177/0003702818786506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A statistical model enables auto-calibration of second harmonic generation (SHG) images for quantifying trace crystallinity within amorphous solid dispersions (ASDs) over a wide dynamic range of crystallinity. In this paper, we demonstrate particle-counting approaches for quantifying trace crystallinity, combined with analytical expressions correcting for particle overlap bias in higher crystallinity regimes to extend the continuous dynamic range of standard particle-counting algorithms through to the signal averaging regime. The reliability of the values recovered by these expressions was demonstrated with simulated data as well as experimental data obtained for an amorphous solid dispersion formulation containing evacetrapib, an Eli Lilly and Company compound. Since particle counting independently recovers the crystalline volume and the SHG intensity, the average SHG intensity per unit volume can be used as an internal calibrant for quantifying crystallinity at higher volume fractions, for which particle counting is no longer applicable.
Collapse
Affiliation(s)
- Casey J Smith
- 1 Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Janny Dinh
- 1 Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Paul D Schmitt
- 3 Department of Chemistry, Wabash College, Crawfordsville, IN, USA
| | | | | | | | - Garth J Simpson
- 1 Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
10
|
Novakovic D, Isomäki A, Pleunis B, Fraser-Miller SJ, Peltonen L, Laaksonen T, Strachan CJ. Understanding Dissolution and Crystallization with Imaging: A Surface Point of View. Mol Pharm 2018; 15:5361-5373. [PMID: 30247922 PMCID: PMC6221374 DOI: 10.1021/acs.molpharmaceut.8b00840] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The tendency for crystallization
during storage and administration
is the most considerable hurdle for poorly water-soluble drugs formulated
in the amorphous form. There is a need to better detect often subtle
and complex surface crystallization phenomena and understand their
influence on the critical quality attribute of dissolution. In this
study, the interplay between surface crystallization of the amorphous
form during storage and dissolution testing, and its influence on
dissolution behavior, is analyzed for the first time with multimodal
nonlinear optical imaging (coherent anti-Stokes Raman scattering (CARS)
and sum frequency generation (SFG)). Complementary analyses are provided
with scanning electron microscopy, X-ray diffraction and infrared
and Raman spectroscopies. Amorphous indomethacin tablets were prepared
and subjected to two different storage conditions (30 °C/23%
RH and 30 °C/75% RH) for various durations and then dissolution
testing using a channel flow-through device. Trace levels of surface
crystallinity previously imaged with nonlinear optics after 1 or 2
days of storage did not significantly decrease dissolution and supersaturation
compared to the freshly prepared amorphous tablets while more extensive
crystallization after longer storage times did. Multimodal nonlinear
optical imaging of the tablet surfaces after 15 min of dissolution
revealed complex crystallization behavior that was affected by both
storage condition and time, with up to four crystalline polymorphs
simultaneously observed. In addition to the well-known α- and
γ-forms, the less reported metastable ε- and η-forms
were also observed, with the ε-form being widely observed in
samples that had retained significant surface amorphousness during
storage. This form was also prepared in the pure form and further
characterized. Overall, this study demonstrates the potential value
of nonlinear optical imaging, together with more established solid-state
analysis methods, to understand complex surface crystallization behavior
and its influence on drug dissolution during the development of amorphous
drugs and dosage forms.
Collapse
Affiliation(s)
- Dunja Novakovic
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy , University of Helsinki , Viikinkaari 5 E , 00014 Helsinki , Finland
| | - Antti Isomäki
- Biomedicum Imaging Unit, Faculty of Medicine , University of Helsinki , Haartmaninkatu 8 , 00014 Helsinki , Finland
| | - Bibi Pleunis
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy , University of Helsinki , Viikinkaari 5 E , 00014 Helsinki , Finland
| | - Sara J Fraser-Miller
- Dodd-Walls Center for Photonic and Quantum Technologies, Department of Chemistry , University of Otago , Dunedin 9016 , New Zealand
| | - Leena Peltonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy , University of Helsinki , Viikinkaari 5 E , 00014 Helsinki , Finland
| | - Timo Laaksonen
- Laboratory of Chemistry and Bioengineering , Tampere University of Technology , Korkeakoulunkatu 8 , 33720 Tampere , Finland
| | - Clare J Strachan
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy , University of Helsinki , Viikinkaari 5 E , 00014 Helsinki , Finland
| |
Collapse
|
11
|
Ojarinta R, Saarinen J, Strachan CJ, Korhonen O, Laitinen R. Preparation and characterization of multi-component tablets containing co-amorphous salts: Combining multimodal non-linear optical imaging with established analytical methods. Eur J Pharm Biopharm 2018; 132:112-126. [PMID: 30248394 DOI: 10.1016/j.ejpb.2018.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 11/29/2022]
Abstract
Co-amorphous mixtures have rarely been formulated as oral dosage forms, even though they have been shown to stabilize amorphous drugs in the solid state and enhance the dissolution properties of poorly soluble drugs. In the present study we formulated tablets consisting of either spray dried co-amorphous ibuprofen-arginine or indomethacin-arginine, mannitol or xylitol and polyvinylpyrrolidone K30 (PVP). Experimental design was used for the selection of tablet compositions, and the effect of tablet composition on tablet characteristics was modelled. Multimodal non-linear imaging, including coherent anti-Stokes Raman scattering (CARS) and sum frequency/second harmonic generation (SFG/SHG) microscopies, as well as scanning electron microscopy, X-ray diffractometry and Fourier-transform infrared spectroscopy were utilized to characterize the tablets. The tablets possessed sufficient strength, but modelling produced no clear evidence about the compaction characteristics of co-amorphous salts. However, co-amorphous drug-arginine mixtures resulted in enhanced dissolution behaviour, and the PVP in the tableting mixture stabilized the supersaturation. The co-amorphous mixtures were physically stable during compaction, but the excipient selection affected the long term stability of the ibuprofen-arginine mixture. CARS and SFG/SHG proved feasible techniques in imaging the component distribution on the tablet surfaces, but possibly due to the limited imaging area, recrystallization detected with x-ray diffraction was not detected.
Collapse
Affiliation(s)
- Rami Ojarinta
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Jukka Saarinen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 University of Helsinki, Finland
| | - Clare J Strachan
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 University of Helsinki, Finland
| | - Ossi Korhonen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Riikka Laitinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
12
|
Ewing AV, Kazarian SG. Recent advances in the applications of vibrational spectroscopic imaging and mapping to pharmaceutical formulations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 197:10-29. [PMID: 29290567 DOI: 10.1016/j.saa.2017.12.055] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Vibrational spectroscopic imaging and mapping approaches have continued in their development and applications for the analysis of pharmaceutical formulations. Obtaining spatially resolved chemical information about the distribution of different components within pharmaceutical formulations is integral for improving the understanding and quality of final drug products. This review aims to summarise some key advances of these technologies over recent years, primarily since 2010. An overview of FTIR, NIR, terahertz spectroscopic imaging and Raman mapping will be presented to give a perspective of the current state-of-the-art of these techniques for studying pharmaceutical samples. This will include their application to reveal spatial information of components that reveals molecular insight of polymorphic or structural changes, behaviour of formulations during dissolution experiments, uniformity of materials and detection of counterfeit products. Furthermore, new advancements will be presented that demonstrate the continuing novel applications of spectroscopic imaging and mapping, namely in FTIR spectroscopy, for studies of microfluidic devices. Whilst much of the recently developed work has been reported by academic groups, examples of the potential impacts of utilising these imaging and mapping technologies to support industrial applications have also been reviewed.
Collapse
Affiliation(s)
- Andrew V Ewing
- Imperial College London, Department of Chemical Engineering, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Sergei G Kazarian
- Imperial College London, Department of Chemical Engineering, South Kensington Campus, London SW7 2AZ, United Kingdom.
| |
Collapse
|
13
|
Zhang S, Song Z, Godaliyadda GMDP, Ye DH, Chowdhury AU, Sengupta A, Buzzard GT, Bouman CA, Simpson GJ. Dynamic Sparse Sampling for Confocal Raman Microscopy. Anal Chem 2018; 90:4461-4469. [PMID: 29521493 PMCID: PMC6025898 DOI: 10.1021/acs.analchem.7b04749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The total number of data points required for image generation in Raman microscopy was greatly reduced using sparse sampling strategies, in which the preceding set of measurements informed the next most information-rich sampling location. Using this approach, chemical images of pharmaceutical materials were obtained with >99% accuracy from 15.8% sampling, representing an ∼6-fold reduction in measurement time relative to full field of view rastering with comparable image quality. This supervised learning approach to dynamic sampling (SLADS) has the distinct advantage of being directly compatible with standard confocal Raman instrumentation. Furthermore, SLADS is not limited to Raman imaging, potentially providing time-savings in image reconstruction whenever the single-pixel measurement time is the limiting factor in image generation.
Collapse
Affiliation(s)
- Shijie Zhang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhengtian Song
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - G. M. Dilshan P. Godaliyadda
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47097, United States
| | - Dong Hye Ye
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47097, United States
| | - Azhad U. Chowdhury
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Atanu Sengupta
- Dr. Reddy’s Laboratories, IPDO, Bachupally Campus, Hyderabad, Telengana 500090, India
| | - Gregery T. Buzzard
- Department of Mathematics, Purdue University, West Lafayette, Indiana 47097, United States
| | - Charles A. Bouman
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47097, United States
| | - Garth J. Simpson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
14
|
Capitaine E, Moussa NO, Louot C, Bardet SM, Kano H, Duponchel L, Lévêque P, Couderc V, Leproux P. Fast epi-detected broadband multiplex CARS and SHG imaging of mouse skull cells. BIOMEDICAL OPTICS EXPRESS 2018; 9:245-253. [PMID: 29359100 PMCID: PMC5772578 DOI: 10.1364/boe.9.000245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 05/08/2023]
Abstract
We present a bimodal imaging system able to obtain epi-detected mutiplex coherent anti-Stokes Raman scattering (M-CARS) and second harmonic generation (SHG) signals coming from biological samples. We studied a fragment of mouse parietal bone and could detect broadband anti-Stokes and SHG responses originating from bone cells and collagen respectively. In addition we compared two post-processing methods to retrieve the imaginary part of the third-order nonlinear susceptibility related to the spontaneous Raman scattering.
Collapse
Affiliation(s)
- Erwan Capitaine
- XLIM UMR 7252, CNRS-Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex,
France
| | - Nawel Ould Moussa
- XLIM UMR 7252, CNRS-Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex,
France
| | - Christophe Louot
- XLIM UMR 7252, CNRS-Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex,
France
| | - Sylvia M. Bardet
- XLIM UMR 7252, CNRS-Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex,
France
| | - Hideaki Kano
- Department of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573,
Japan
- Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573,
Japan
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571,
Japan
| | - Ludovic Duponchel
- LASIR UMR 8516, CNRS-Université Lille 1, Sciences et Technologies, 59655 Villeneuve d’Ascq Cedex,
France
| | - Philippe Lévêque
- XLIM UMR 7252, CNRS-Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex,
France
| | - Vincent Couderc
- XLIM UMR 7252, CNRS-Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex,
France
| | - Philippe Leproux
- XLIM UMR 7252, CNRS-Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex,
France
| |
Collapse
|
15
|
Novakovic D, Saarinen J, Rojalin T, Antikainen O, Fraser-Miller SJ, Laaksonen T, Peltonen L, Isomäki A, Strachan CJ. Multimodal Nonlinear Optical Imaging for Sensitive Detection of Multiple Pharmaceutical Solid-State Forms and Surface Transformations. Anal Chem 2017; 89:11460-11467. [PMID: 28950703 DOI: 10.1021/acs.analchem.7b02639] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two nonlinear imaging modalities, coherent anti-Stokes Raman scattering (CARS) and sum-frequency generation (SFG), were successfully combined for sensitive multimodal imaging of multiple solid-state forms and their changes on drug tablet surfaces. Two imaging approaches were used and compared: (i) hyperspectral CARS combined with principal component analysis (PCA) and SFG imaging and (ii) simultaneous narrowband CARS and SFG imaging. Three different solid-state forms of indomethacin-the crystalline gamma and alpha forms, as well as the amorphous form-were clearly distinguished using both approaches. Simultaneous narrowband CARS and SFG imaging was faster, but hyperspectral CARS and SFG imaging has the potential to be applied to a wider variety of more complex samples. These methodologies were further used to follow crystallization of indomethacin on tablet surfaces under two storage conditions: 30 °C/23% RH and 30 °C/75% RH. Imaging with (sub)micron resolution showed that the approach allowed detection of very early stage surface crystallization. The surfaces progressively crystallized to predominantly (but not exclusively) the gamma form at lower humidity and the alpha form at higher humidity. Overall, this study suggests that multimodal nonlinear imaging is a highly sensitive, solid-state (and chemically) specific, rapid, and versatile imaging technique for understanding and hence controlling (surface) solid-state forms and their complex changes in pharmaceuticals.
Collapse
Affiliation(s)
- Dunja Novakovic
- Division of Pharmaceutical Chemistry and Technology, University of Helsinki , Viikinkaari 5E, 00014 Helsinki, Finland
| | - Jukka Saarinen
- Division of Pharmaceutical Chemistry and Technology, University of Helsinki , Viikinkaari 5E, 00014 Helsinki, Finland
| | - Tatu Rojalin
- Division of Pharmaceutical Biosciences, University of Helsinki , Viikinkaari 5E, 00014 Helsinki, Finland
| | - Osmo Antikainen
- Division of Pharmaceutical Chemistry and Technology, University of Helsinki , Viikinkaari 5E, 00014 Helsinki, Finland
| | - Sara J Fraser-Miller
- Division of Pharmaceutical Chemistry and Technology, University of Helsinki , Viikinkaari 5E, 00014 Helsinki, Finland.,Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago , Dunedin 9016, New Zealand
| | - Timo Laaksonen
- Division of Pharmaceutical Biosciences, University of Helsinki , Viikinkaari 5E, 00014 Helsinki, Finland.,Laboratory of Chemistry and Bioengineering, Tampere University of Technology , Korkeakoulunkatu 8, 33720 Tampere, Finland
| | - Leena Peltonen
- Division of Pharmaceutical Chemistry and Technology, University of Helsinki , Viikinkaari 5E, 00014 Helsinki, Finland
| | - Antti Isomäki
- Biomedicum Imaging Unit, University of Helsinki , Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Clare J Strachan
- Division of Pharmaceutical Chemistry and Technology, University of Helsinki , Viikinkaari 5E, 00014 Helsinki, Finland
| |
Collapse
|
16
|
Understanding the process-product-performance interplay of spray dried drug-polymer systems through complete structural and chemical characterization of single spray dried particles. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.07.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Schmitt PD. Recent Advances in Nonlinear Optical Analyses of Pharmaceutical Materials in the Solid State. Mol Pharm 2017; 14:555-565. [PMID: 28125239 DOI: 10.1021/acs.molpharmaceut.6b00809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The past decade has seen an increase in the use of nonlinear optical (NLO) techniques such as second harmonic generation, coherent antistokes Raman scattering, stimulated Raman scattering, and two-photon fluorescence for the solid-state characterization of pharmaceutical materials. These combined techniques offer several advantages (e.g., speed, selectivity, quantitation) of potential interest to the pharmaceutical community, as decreased characterization times in formulation development and testing could help decrease the time required to bring new, higher quality drugs to market. The large body of literature recently published in this field merits a review. Literature will be discussed in order of drug development, starting with applications in initial therapeutic molecule crystallization and polymorphic analysis, followed by final dosage form characterization, and ending with drug product performance testing.
Collapse
Affiliation(s)
- Paul D Schmitt
- Department of Chemistry, Wabash College , Crawfordsville, Indiana 47933, United States
| |
Collapse
|
18
|
Krafft C, Schie IW, Meyer T, Schmitt M, Popp J. Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications. Chem Soc Rev 2016; 45:1819-49. [PMID: 26497570 DOI: 10.1039/c5cs00564g] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
First, the potential role of Raman-based techniques in biomedicine is introduced. Second, an overview about the instrumentation for spontaneous and coherent Raman scattering microscopic imaging is given with a focus of recent developments. Third, imaging strategies are summarized including sequential registration with laser scanning microscopes, line imaging and global or wide-field imaging. Finally, examples of biomedical applications are presented in the context of single cells, laser tweezers, tissue sections, biopsies and whole animals.
Collapse
Affiliation(s)
- C Krafft
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - I W Schie
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - T Meyer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - M Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - J Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany. and Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
19
|
Sun Y, Østergaard J. Application of UV Imaging in Formulation Development. Pharm Res 2016; 34:929-940. [PMID: 27766463 DOI: 10.1007/s11095-016-2047-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/03/2016] [Indexed: 12/18/2022]
Abstract
Efficient drug delivery is dependent on the drug substance dissolving in the body fluids, being released from dosage forms and transported to the site of action. A fundamental understanding of the interplay between the physicochemical properties of the active compound and pharmaceutical excipients defining formulation behavior after exposure to the aqueous environments and pharmaceutical performance is critical in pharmaceutical development, manufacturing and quality control of drugs. UV imaging has been explored as a tool for qualitative and quantitative characterization of drug dissolution and release with the characteristic feature of providing real-time visualization of the solution phase drug transport in the vicinity of the formulation. Events occurring during drug dissolution and release, such as polymer swelling, drug precipitation/recrystallization, or solvent-mediated phase transitions related to the structural properties of the drug substance or formulation can be monitored. UV imaging is a non-intrusive and simple-to-operate analytical technique which holds potential for providing a mechanistic foundation for formulation development. This review aims to cover applications of UV imaging in the early and late phase pharmaceutical development with a special focus on the relation between structural properties and performance. Potential areas of future advancement and application are also discussed.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark
| | - Jesper Østergaard
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark.
| |
Collapse
|
20
|
Cicerone M. Molecular imaging with CARS micro-spectroscopy. Curr Opin Chem Biol 2016; 33:179-85. [PMID: 27400394 PMCID: PMC5018446 DOI: 10.1016/j.cbpa.2016.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/14/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
Abstract
After more than a decade of instrument and method development, broadband coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy is beginning to live up to its potential as a label-free imaging modality that can rapidly generate high resolution images with full vibrational spectra at each image pixel. Presently these instruments are able to obtain quantitative, spatially resolved information on lipids from the CH stretch region of the Raman spectrum, and some instrument designs facilitate acquisition of high quality fingerprint spectra, containing information on a host of molecular species including structural proteins, nucleotides, and metabolites. While most of the existing instruments are research projects themselves, it appears that the relevant technologies are maturing so that commercially available instruments may not be too far in the future, making this remarkable imaging modality widely available.
Collapse
Affiliation(s)
- Marcus Cicerone
- NIST, 100 Bureau Drive, Gaithersburg, MD 20899, United States.
| |
Collapse
|
21
|
Liao CS, Cheng JX. In Situ and In Vivo Molecular Analysis by Coherent Raman Scattering Microscopy. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:69-93. [PMID: 27306307 PMCID: PMC5367927 DOI: 10.1146/annurev-anchem-071015-041627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Coherent Raman scattering (CRS) microscopy is a high-speed vibrational imaging platform with the ability to visualize the chemical content of a living specimen by using molecular vibrational fingerprints. We review technical advances and biological applications of CRS microscopy. The basic theory of CRS and the state-of-the-art instrumentation of a CRS microscope are presented. We further summarize and compare the algorithms that are used to separate the Raman signal from the nonresonant background, to denoise a CRS image, and to decompose a hyperspectral CRS image into concentration maps of principal components. Important applications of single-frequency and hyperspectral CRS microscopy are highlighted. Potential directions of CRS microscopy are discussed.
Collapse
Affiliation(s)
- Chien-Sheng Liao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907;
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907;
| |
Collapse
|
22
|
Glenn R, Dantus M. Single Broadband Phase-Shaped Pulse Stimulated Raman Spectroscopy for Standoff Trace Explosive Detection. J Phys Chem Lett 2016; 7:117-125. [PMID: 26654188 DOI: 10.1021/acs.jpclett.5b01894] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent success with trace explosives detection based on the single ultrafast pulse excitation for remote stimulated Raman scattering (SUPER-SRS) prompts us to provide new results and a Perspective that describes the theoretical foundation of the strategy used for achieving the desired sensitivity and selectivity. SUPER-SRS provides fast and selective imaging while being blind to optical properties of the substrate such as color, texture, or laser speckle. We describe the strategy of combining coherent vibrational excitation with a reference pulse in order to detect stimulated Raman gain or loss. A theoretical model is used to reproduce experimental spectra and to determine the ideal pulse parameters for best sensitivity, selectivity, and resolution when detecting one or more compounds simultaneously.
Collapse
Affiliation(s)
- Rachel Glenn
- Department of Chemistry and ‡Department of Physics and Astronomy, Michigan State University , East Lansing, Michigan 48824, United States
| | - Marcos Dantus
- Department of Chemistry and ‡Department of Physics and Astronomy, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
23
|
Nie H, Liu Z, Marks BC, Taylor LS, Byrn SR, Marsac PJ. Analytical approaches to investigate salt disproportionation in tablet matrices by Raman spectroscopy and Raman mapping. J Pharm Biomed Anal 2016; 118:328-337. [DOI: 10.1016/j.jpba.2015.10.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 10/22/2022]
|
24
|
Cheng JX, Xie XS. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science 2015; 350:aaa8870. [PMID: 26612955 DOI: 10.1126/science.aaa8870] [Citation(s) in RCA: 404] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vibrational spectroscopy has been extensively applied to the study of molecules in gas phase, in condensed phase, and at interfaces. The transition from spectroscopy to spectroscopic imaging of living systems, which allows the spectrum of biomolecules to act as natural contrast, is opening new opportunities to reveal cellular machinery and to enable molecule-based diagnosis. Such a transition, however, involves more than a simple combination of spectrometry and microscopy. We review recent efforts that have pushed the boundary of the vibrational spectroscopic imaging field in terms of spectral acquisition speed, detection sensitivity, spatial resolution, and imaging depth. We further highlight recent applications in functional analysis of single cells and in label-free detection of diseases.
Collapse
Affiliation(s)
- Ji-Xin Cheng
- Weldon School of Biomedical Engineering and Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - X Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
25
|
Alhijjaj M, Reading M, Belton P, Qi S. Thermal Analysis by Structural Characterization as a Method for Assessing Heterogeneity in Complex Solid Pharmaceutical Dosage Forms. Anal Chem 2015; 87:10848-55. [DOI: 10.1021/acs.analchem.5b02192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Muqdad Alhijjaj
- School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom, NR4 7TJ
- College of Pharmacy, University of Basrah, Basrah, Iraq
| | - Mike Reading
- Department
of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom, HD1 3DH
| | - Peter Belton
- School
of Chemistry, University of East Anglia, Norwich, Norfolk United Kingdom, NR4 7TJ
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom, NR4 7TJ
| |
Collapse
|
26
|
Winterhalder MJ, Zumbusch A. Beyond the borders--Biomedical applications of non-linear Raman microscopy. Adv Drug Deliv Rev 2015; 89:135-44. [PMID: 25959426 DOI: 10.1016/j.addr.2015.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/17/2015] [Accepted: 04/29/2015] [Indexed: 11/26/2022]
Abstract
Raman spectroscopy offers great promise for label free imaging in biomedical applications. Its use, however, is hampered by the long integration times required and the presence of autofluorescence in many samples which outshines the Raman signals. In order to overcome these limitations, a variety of different non-linear Raman imaging techniques have been developed over the last decade. This review describes biomedical applications of these novel but already mature imaging techniques.
Collapse
|
27
|
Schie IW, Krafft C, Popp J. Applications of coherent Raman scattering microscopies to clinical and biological studies. Analyst 2015; 140:3897-909. [PMID: 25811305 DOI: 10.1039/c5an00178a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coherent anti-Stokes Raman scattering (CARS) microscopy and stimulated Raman scattering (SRS) microscopy are two nonlinear optical imaging modalities that are at the frontier of label-free and chemical specific biological and clinical diagnostics. The applications of coherent Raman scattering (CRS) microscopies are multifold, ranging from investigation of basic aspects of cell biology to the label-free detection of pathologies. This review summarizes recent progress of biological and clinical applications of CRS between 2008 and 2014, covering applications such as lipid droplet research, single cell analysis, tissue imaging and multiphoton histopathology of atherosclerosis, myelin sheaths, skin, hair, pharmaceutics, and cancer and surgical margin detection.
Collapse
Affiliation(s)
- Iwan W Schie
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany.
| | | | | |
Collapse
|
28
|
Kamali T, Považay B, Kumar S, Silberberg Y, Hermann B, Werkmeister R, Drexler W, Unterhuber A. Hybrid single-source online Fourier transform coherent anti-Stokes Raman scattering/optical coherence tomography. OPTICS LETTERS 2014; 39:5709-12. [PMID: 25360965 DOI: 10.1364/ol.39.005709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We demonstrate a multimodal optical coherence tomography (OCT) and online Fourier transform coherent anti-Stokes Raman scattering (FTCARS) platform using a single sub-12 femtosecond (fs) Ti:sapphire laser enabling simultaneous extraction of structural and chemical ("morphomolecular") information of biological samples. Spectral domain OCT prescreens the specimen providing a fast ultrahigh (4×12 μm axial and transverse) resolution wide field morphologic overview. Additional complementary intrinsic molecular information is obtained by zooming into regions of interest for fast label-free chemical mapping with online FTCARS spectroscopy. Background-free CARS is based on a Michelson interferometer in combination with a highly linear piezo stage, which allows for quick point-to-point extraction of CARS spectra in the fingerprint region in less than 125 ms with a resolution better than 4 cm(-1) without the need for averaging. OCT morphology and CARS spectral maps indicating phosphate and carbonate bond vibrations from human bone samples are extracted to demonstrate the performance of this hybrid imaging platform.
Collapse
|
29
|
Forney‐Stevens KM, Pelletier MJ, Shalaev EY, Pikal MJ, Bogner RH. Optimization of a Raman Microscopy Technique to Efficiently Detect Amorphous–Amorphous Phase Separation in Freeze‐Dried Protein Formulations. J Pharm Sci 2014; 103:2749-2758. [DOI: 10.1002/jps.23882] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Gohad NV, Aldred N, Hartshorn CM, Jong Lee Y, Cicerone MT, Orihuela B, Clare AS, Rittschof D, Mount AS. Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae. Nat Commun 2014; 5:4414. [DOI: 10.1038/ncomms5414] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 06/16/2014] [Indexed: 12/23/2022] Open
|
31
|
Camp CH, Lee YJ, Heddleston JM, Hartshorn CM, Hight Walker AR, Rich JN, Lathia JD, Cicerone MT. High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues. NATURE PHOTONICS 2014; 8:627-634. [PMID: 25621002 PMCID: PMC4304702 DOI: 10.1038/nphoton.2014.145] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
An imaging platform based on broadband coherent anti-Stokes Raman scattering (BCARS) has been developed which provides an advantageous combination of speed, sensitivity and spectral breadth. The system utilizes a configuration of laser sources that probes the entire biologically-relevant Raman window (500 cm-1 to 3500 cm-1) with high resolution (< 10 cm-1). It strongly and efficiently stimulates Raman transitions within the typically weak "fingerprint" region using intrapulse 3-colour excitation, and utilizes the nonresonant background (NRB) to heterodyne amplify weak Raman signals. We demonstrate high-speed chemical imaging in two- and three-dimensional views of healthy murine liver and pancreas tissues and interfaces between xenograft brain tumours and the surrounding healthy brain matter.
Collapse
Affiliation(s)
- Charles H. Camp
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD 20899, USA
| | - Young Jong Lee
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD 20899, USA
| | - John M. Heddleston
- Semiconductor and Dimensional Metrology Division, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD 20899, USA
| | - Christopher M. Hartshorn
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD 20899, USA
| | - Angela R. Hight Walker
- Semiconductor and Dimensional Metrology Division, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD 20899, USA
| | - Jeremy N. Rich
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Justin D. Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Marcus T. Cicerone
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD 20899, USA
- Correspondence and requests for materials should be addressed to M.T.C
| |
Collapse
|
32
|
Brown C, DiNunzio J, Eglesia M, Forster S, Lamm M, Lowinger M, Marsac P, McKelvey C, Meyer R, Schenck L, Terife G, Troup G, Smith-Goettler B, Starbuck C. Hot-Melt Extrusion for Solid Dispersions: Composition and Design Considerations. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1007/978-1-4939-1598-9_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Affiliation(s)
- Karen A. Antonio
- University of Notre Dame, Department of
Chemistry and Biochemistry, Notre
Dame, Indiana 46556, United States
| | - Zachary D. Schultz
- University of Notre Dame, Department of
Chemistry and Biochemistry, Notre
Dame, Indiana 46556, United States
| |
Collapse
|