1
|
Chakraborty I, Olsson RT, Andersson RL, Pandey A. Glucose-based biofuel cells and their applications in medical implants: A review. Heliyon 2024; 10:e33615. [PMID: 39040310 PMCID: PMC11261083 DOI: 10.1016/j.heliyon.2024.e33615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
In glucose biofuel cells (G-BFCs), glucose oxidation at the anode and oxygen reduction at the cathode yield electrons, which generate electric energy that can power a wide range of electronic devices. Research associated with the development of G-BFCs has increased in popularity among researchers because of the eco-friendly nature of G-BFCs (as related to their construction) and their evolution from inexpensive bio-based materials. In addition, their excellent specificity towards glucose as an energy source, and other properties, such as small size and weight, make them attractive within various demanding applied environments. For example, G-BFCs have received much attention as implanted devices, especially for uses related to cardiac activities. Envisioned pacemakers and defibrillators powered by G-BFCs would not be required to have conventional lithium batteries exchanged every 5-10 years. However, future research is needed to develop G-BFCs demonstrating more stable power consistency and improved lifespan, as well as solving the challenges in converting laboratory-made implantable G-BFCs into implanted devices in the human body. The categorization of G-BFCs as a subcategory of different biofuel cells and their performance is reviewed in this article.
Collapse
Affiliation(s)
| | - Richard T. Olsson
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH – Royal Institute of Technology, Teknikringen 56-58, 100 44, Stockholm, Sweden
| | - Richard L. Andersson
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH – Royal Institute of Technology, Teknikringen 56-58, 100 44, Stockholm, Sweden
| | - Annu Pandey
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH – Royal Institute of Technology, Teknikringen 56-58, 100 44, Stockholm, Sweden
| |
Collapse
|
2
|
Wu KY, Dave A, Carbonneau M, Tran SD. Smart Contact Lenses in Ophthalmology: Innovations, Applications, and Future Prospects. MICROMACHINES 2024; 15:856. [PMID: 39064367 PMCID: PMC11279085 DOI: 10.3390/mi15070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Smart contact lenses represent a breakthrough in the intersection of medical science and innovative technology, offering transformative potential in ophthalmology. This review article delves into the technological underpinnings of smart contact lenses, emphasizing the current landscape and advancements in biosensors, power supply, biomaterials, and the transmission of ocular information. This review further applies new innovations to their emerging role in the diagnosis, monitoring, and management of various ocular conditions. Moreover, we explore the impact of technical innovations on the application of smart contact lenses in monitoring glaucoma, managing postoperative care, and dry eye syndrome, further elucidating the non-invasive nature of these devices in continuous ocular health monitoring. The therapeutic potential of smart contact lenses such as treatment through targeted drug delivery and the monitoring of inflammatory biomarkers is also highlighted. Despite promising advancements, the implementation of smart contact lenses faces technical, regulatory, and patient compliance challenges. This review synthesizes the recent advances to provide an outlook on the state of smart contact lens technology. Furthermore, we discuss future directions, focusing on potential technological enhancements and new applications within ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Archan Dave
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Marjorie Carbonneau
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
3
|
Bocu R. Extended Review Concerning the Integration of Electrochemical Biosensors into Modern IoT and Wearable Devices. BIOSENSORS 2024; 14:214. [PMID: 38785688 PMCID: PMC11117989 DOI: 10.3390/bios14050214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Electrochemical biosensors include a recognition component and an electronic transducer, which detect the body fluids with a high degree of accuracy. More importantly, they generate timely readings of the related physiological parameters, and they are suitable for integration into portable, wearable and implantable devices that are significant relative to point-of-care diagnostics scenarios. As an example, the personal glucose meter fundamentally improves the management of diabetes in the comfort of the patients' homes. This review paper analyzes the principles of electrochemical biosensing and the structural features of electrochemical biosensors relative to the implementation of health monitoring and disease diagnostics strategies. The analysis particularly considers the integration of the biosensors into wearable, portable, and implantable systems. The fundamental aim of this paper is to present and critically evaluate the identified significant developments in the scope of electrochemical biosensing for preventive and customized point-of-care diagnostic devices. The paper also approaches the most important engineering challenges that should be addressed in order to improve the sensing accuracy, and enable multiplexing and one-step processes, which mediate the integration of electrochemical biosensing devices into digital healthcare scenarios.
Collapse
Affiliation(s)
- Razvan Bocu
- Department of Mathematics and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania
| |
Collapse
|
4
|
Yue O, Wang X, Xie L, Bai Z, Zou X, Liu X. Biomimetic Exogenous "Tissue Batteries" as Artificial Power Sources for Implantable Bioelectronic Devices Manufacturing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307369. [PMID: 38196276 PMCID: PMC10953594 DOI: 10.1002/advs.202307369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Implantable bioelectronic devices (IBDs) have gained attention for their capacity to conformably detect physiological and pathological signals and further provide internal therapy. However, traditional power sources integrated into these IBDs possess intricate limitations such as bulkiness, rigidity, and biotoxicity. Recently, artificial "tissue batteries" (ATBs) have diffusely developed as artificial power sources for IBDs manufacturing, enabling comprehensive biological-activity monitoring, diagnosis, and therapy. ATBs are on-demand and designed to accommodate the soft and confining curved placement space of organisms, minimizing interface discrepancies, and providing ample power for clinical applications. This review presents the near-term advancements in ATBs, with a focus on their miniaturization, flexibility, biodegradability, and power density. Furthermore, it delves into material-screening, structural-design, and energy density across three distinct categories of TBs, distinguished by power supply strategies. These types encompass innovative energy storage devices (chemical batteries and supercapacitors), power conversion devices that harness power from human-body (biofuel cells, thermoelectric nanogenerators, bio-potential devices, piezoelectric harvesters, and triboelectric devices), and energy transfer devices that receive and utilize external energy (radiofrequency-ultrasound energy harvesters, ultrasound-induced energy harvesters, and photovoltaic devices). Ultimately, future challenges and prospects emphasize ATBs with the indispensability of bio-safety, flexibility, and high-volume energy density as crucial components in long-term implantable bioelectronic devices.
Collapse
Affiliation(s)
- Ouyang Yue
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xuechuan Wang
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- College of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Long Xie
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- College of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Zhongxue Bai
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xiaoliang Zou
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xinhua Liu
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| |
Collapse
|
5
|
Hong W. Advances and Opportunities of Mobile Health in the Postpandemic Era: Smartphonization of Wearable Devices and Wearable Deviceization of Smartphones. JMIR Mhealth Uhealth 2024; 12:e48803. [PMID: 38252596 PMCID: PMC10823426 DOI: 10.2196/48803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/08/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Mobile health (mHealth) with continuous real-time monitoring is leading the era of digital medical convergence. Wearable devices and smartphones optimized as personalized health management platforms enable disease prediction, prevention, diagnosis, and even treatment. Ubiquitous and accessible medical services offered through mHealth strengthen universal health coverage to facilitate service use without discrimination. This viewpoint investigates the latest trends in mHealth technology, which are comprehensive in terms of form factors and detection targets according to body attachment location and type. Insights and breakthroughs from the perspective of mHealth sensing through a new form factor and sensor-integrated display overcome the problems of existing mHealth by proposing a solution of smartphonization of wearable devices and the wearable deviceization of smartphones. This approach maximizes the infinite potential of stagnant mHealth technology and will present a new milestone leading to the popularization of mHealth. In the postpandemic era, innovative mHealth solutions through the smartphonization of wearable devices and the wearable deviceization of smartphones could become the standard for a new paradigm in the field of digital medicine.
Collapse
Affiliation(s)
- Wonki Hong
- Department of Digital Healthcare, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Garland NT, Kaveti R, Bandodkar AJ. Biofluid-Activated Biofuel Cells, Batteries, and Supercapacitors: A Comprehensive Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303197. [PMID: 37358398 DOI: 10.1002/adma.202303197] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Recent developments in wearable and implanted devices have resulted in numerous, unprecedented capabilities that generate increasingly detailed information about a user's health or provide targeted therapy. However, options for powering such systems remain limited to conventional batteries which are large and have toxic components and as such are not suitable for close integration with the human body. This work provides an in-depth overview of biofluid-activated electrochemical energy devices, an emerging class of energy sources judiciously designed for biomedical applications. These unconventional energy devices are composed of biocompatible materials that harness the inherent chemistries of various biofluids to produce useable electrical energy. This work covers examples of such biofluid-activated energy devices in the form of biofuel cells, batteries, and supercapacitors. Advances in materials, design engineering, and biotechnology that form the basis for high-performance, biofluid-activated energy devices are discussed. Innovations in hybrid manufacturing and heterogeneous integration of device components to maximize power output are also included. Finally, key challenges and future scopes of this nascent field are provided.
Collapse
Affiliation(s)
- Nate T Garland
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Rajaram Kaveti
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|
7
|
Seo H, Chung WG, Kwon YW, Kim S, Hong YM, Park W, Kim E, Lee J, Lee S, Kim M, Lim K, Jeong I, Song H, Park JU. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem Rev 2023; 123:11488-11558. [PMID: 37748126 PMCID: PMC10571045 DOI: 10.1021/acs.chemrev.3c00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yong Won Kwon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yeon-Mi Hong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Wonjung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sanghoon Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Kyeonghee Lim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Inhea Jeong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hayoung Song
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
- Department
of Neurosurgery, Yonsei University College
of Medicine, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic
of Korea
| |
Collapse
|
8
|
Yuan W, Zhao F, Liu X, Xu J. Development of corneal contact lens materials and current clinical application of contact lenses: A review. Biointerphases 2023; 18:050801. [PMID: 37756594 DOI: 10.1116/6.0002618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Unlike conventional glasses, corneal contact lenses (CLs) can directly contact the surface of the tear film through the application of biopolymer materials, to achieve therapeutic and cosmetic purposes. Since the advent of polymethylmethacrylate, a material that has gained widespread use and attention, statistically, there are now more than 150 × 106 people around the world who wear corneal contact lenses. However, the associated complications caused by the interaction of contact lenses with the ocular surface, tear film, endogenous and environmental microorganisms, and components of the solution affect nearly one-third of the wearer population. The application of corneal contact lenses in correcting vision and myopia control has been widely recognized. With the development of related materials, corneal contact lenses are applied to the treatment of ocular surface diseases, including corneal bandage lenses, drug-loaded corneal contact lenses, biosensors, and other new products, while minimizing the side effects associated with CL wear. This paper summarized the development history and material properties of CLs, focused on the current main clinical applications and mechanisms, as well as clarified the possible complications in wearing therapeutic contact lenses and the direction for improvement in the future.
Collapse
Affiliation(s)
- Weichen Yuan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110005, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110005, China
| | - Xiaoyu Liu
- Department of Ophthalmology, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian 116033, China
| | - Jun Xu
- Department of Ophthalmology, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian 116033, China
| |
Collapse
|
9
|
Qureshi A, Niazi JH. Graphene-interfaced flexible and stretchable micro-nano electrodes: from fabrication to sweat glucose detection. MATERIALS HORIZONS 2023; 10:1580-1607. [PMID: 36880340 DOI: 10.1039/d2mh01517j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Flexible and stretchable wearable electronic devices have received tremendous attention for their non-invasive and personal health monitoring applications. These devices have been fabricated by integrating flexible substrates and graphene nanostructures for non-invasive detection of physiological risk biomarkers from human bodily fluids, such as sweat, and monitoring of human physical motion tracking parameters. The extraordinary properties of graphene nanostructures in fully integrated wearable devices have enabled improved sensitivity, electronic readouts, signal conditioning and communication, energy harvesting from power sources through electrode design and patterning, and graphene surface modification or treatment. This review explores advances made toward the fabrication of graphene-interfaced wearable sensors, flexible and stretchable conductive graphene electrodes, as well as their potential applications in electrochemical sensors and field-effect-transistors (FETs) with special emphasis on monitoring sweat biomarkers, mainly in glucose-sensing applications. The review emphasizes flexible wearable sweat sensors and provides various approaches thus far employed for the fabrication of graphene-enabled conductive and stretchable micro-nano electrodes, such as photolithography, electron-beam evaporation, laser-induced graphene designing, ink printing, chemical-synthesis and graphene surface modification. It further explores existing graphene-interfaced flexible wearable electronic devices utilized for sweat glucose sensing, and their technological potential for non-invasive health monitoring applications.
Collapse
Affiliation(s)
- Anjum Qureshi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey.
| | - Javed H Niazi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey.
| |
Collapse
|
10
|
Feng X, Ning Y, Wu Z, Li Z, Xu C, Li G, Hu Z. Defect-Enriched Graphene Nanoribbons Tune the Adsorption Behavior of the Mediator to Boost the Lactate/Oxygen Biofuel Cell. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1089. [PMID: 36985983 PMCID: PMC10058110 DOI: 10.3390/nano13061089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Owing to the high efficiency and specificity in moderate conditions, enzymatic biofuel cells (EBFCs) have gained significant interest as a promising energy source for wearable devices. However, the instability of the bioelectrode and the lack of efficient electrical communication between the enzymes and electrodes are the main obstacles. Herein, defect-enriched 3D graphene nanoribbons (GNRs) frameworks are fabricated by unzipping multiwall carbon nanotubes, followed by thermal annealing. It is found that defective carbon shows stronger adsorption energy towards the polar mediators than the pristine carbon, which is beneficial to improving the stability of the bioelectrodes. Consequently, the EBFCs equipped with the GNRs exhibit a significantly enhanced bioelectrocatalytic performance and operational stability, delivering an open-circuit voltage and power density of 0.62 V, 70.7 μW/cm2, and 0.58 V, 18.6 μW/cm2 in phosphate buffer solution and artificial tear, respectively, which represent the high levels among the reported literature. This work provides a design principle according to which defective carbon materials could be more suitable for the immobilization of biocatalytic components in the application of EBFCs.
Collapse
Affiliation(s)
- Xiaoyu Feng
- College of Textiles and Clothing, Xinjiang University, Urumqi 830046, China
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yongyue Ning
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- Key Laboratory of Nanobiosensing and Nanobioanalysis, Universities of Jilin Province, Northeast Normal University, Changchun 130024, China
| | - Zhongdong Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zihan Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- Key Laboratory of Nanobiosensing and Nanobioanalysis, Universities of Jilin Province, Northeast Normal University, Changchun 130024, China
| | - Cuixing Xu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Gangyong Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- Key Laboratory of Hunan Province for Advanced Carbon-Based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
11
|
A Systematic Review on the Advanced Techniques of Wearable Point-of-Care Devices and Their Futuristic Applications. Diagnostics (Basel) 2023; 13:diagnostics13050916. [PMID: 36900059 PMCID: PMC10001196 DOI: 10.3390/diagnostics13050916] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Personalized point-of-care testing (POCT) devices, such as wearable sensors, enable quick access to health monitoring without the use of complex instruments. Wearable sensors are gaining popularity owing to their ability to offer regular and continuous monitoring of physiological data by dynamic, non-invasive assessments of biomarkers in biofluids such as tear, sweat, interstitial fluid and saliva. Current advancements have concentrated on the development of optical and electrochemical wearable sensors as well as advances in non-invasive measurements of biomarkers such as metabolites, hormones and microbes. For enhanced wearability and ease of operation, microfluidic sampling, multiple sensing, and portable systems have been incorporated with materials that are flexible. Although wearable sensors show promise and improved dependability, they still require more knowledge about interaction between the target sample concentrations in blood and non-invasive biofluids. In this review, we have described the importance of wearable sensors for POCT, their design and types of these devices. Following which, we emphasize on the current breakthroughs in the application of wearable sensors in the realm of wearable integrated POCT devices. Lastly, we discuss the present obstacles and forthcoming potentials including the use of Internet of Things (IoT) for offering self-healthcare using wearable POCT.
Collapse
|
12
|
Wu J, Liu H, Chen W, Ma B, Ju H. Device integration of electrochemical biosensors. NATURE REVIEWS BIOENGINEERING 2023; 1:346-360. [PMID: 37168735 PMCID: PMC9951169 DOI: 10.1038/s44222-023-00032-w] [Citation(s) in RCA: 108] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 05/13/2023]
Abstract
Electrochemical biosensors incorporate a recognition element and an electronic transducer for the highly sensitive detection of analytes in body fluids. Importantly, they can provide rapid readouts and they can be integrated into portable, wearable and implantable devices for point-of-care diagnostics; for example, the personal glucose meter enables at-home assessment of blood glucose levels, greatly improving the management of diabetes. In this Review, we discuss the principles of electrochemical biosensing and the design of electrochemical biosensor devices for health monitoring and disease diagnostics, with a particular focus on device integration into wearable, portable and implantable systems. Finally, we outline the key engineering challenges that need to be addressed to improve sensing accuracy, enable multiplexing and one-step processes, and integrate electrochemical biosensing devices in digital health-care pathways.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Weiwei Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Biao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
13
|
In-situ growth of enzyme/copper phosphate hybrids on carbon cloth surface as self-powered electrochemical glucose biosensor. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
14
|
Chen C, Feng J, Li J, Guo Y, Shi X, Peng H. Functional Fiber Materials to Smart Fiber Devices. Chem Rev 2023; 123:613-662. [PMID: 35977344 DOI: 10.1021/acs.chemrev.2c00192] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of fiber materials has accompanied the evolution of human civilization for centuries. Recent advances in materials science and chemistry offered fibers new applications with various functions, including energy harvesting, energy storing, displaying, health monitoring and treating, and computing. The unique one-dimensional shape of fiber devices endows them advantages to work as human-interfaced electronics due to the small size, lightweight, flexibility, and feasibility for integration into large-scale textile systems. In this review, we first present a discussion of the basics of fiber materials and the design principles of fiber devices, followed by a comprehensive analysis on recently developed fiber devices. Finally, we provide the current challenges facing this field and give an outlook on future research directions. With novel fiber devices and new applications continuing to be discovered after two decades of research, we envision that new fiber devices could have an important impact on our life in the near future.
Collapse
Affiliation(s)
- Chuanrui Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jiaxin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yue Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xiang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
15
|
Wang Y, Li T, Li Y, Yang R, Zhang G. 2D-Materials-Based Wearable Biosensor Systems. BIOSENSORS 2022; 12:bios12110936. [PMID: 36354445 PMCID: PMC9687877 DOI: 10.3390/bios12110936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 05/24/2023]
Abstract
As an evolutionary success in life science, wearable biosensor systems, which can monitor human health information and quantify vital signs in real time, have been actively studied. Research in wearable biosensor systems is mainly focused on the design of sensors with various flexible materials. Among them, 2D materials with excellent mechanical, optical, and electrical properties provide the expected characteristics to address the challenges of developing microminiaturized wearable biosensor systems. This review summarizes the recent research progresses in 2D-materials-based wearable biosensors including e-skin, contact lens sensors, and others. Then, we highlight the challenges of flexible power supply technologies for smart systems. The latest advances in biosensor systems involving wearable wristbands, diabetic patches, and smart contact lenses are also discussed. This review will enable a better understanding of the design principle of 2D biosensors, offering insights into innovative technologies for future biosensor systems toward their practical applications.
Collapse
Affiliation(s)
- Yi Wang
- School of Physics and Electronics, Hunan University, Changsha 410082, China
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Tong Li
- School of Physics and Electronics, Hunan University, Changsha 410082, China
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Yangfeng Li
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Rong Yang
- School of Physics and Electronics, Hunan University, Changsha 410082, China
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Guangyu Zhang
- Songshan Lake Materials Laboratory, Dongguan 523808, China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
16
|
Kang D, Lee JI, Maeng B, Lee S, Kwon Y, Kang MS, Park J, Kim J. Safe, Durable, and Sustainable Self-Powered Smart Contact Lenses. ACS NANO 2022; 16:15827-15836. [PMID: 36069332 DOI: 10.1021/acsnano.2c05452] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Smart contact lenses have the potential to serve as noninvasive healthcare devices or virtual displays. However, their implementation is limited by the lack of suitable power sources for microelectronic devices. This Article demonstrates smart contact lenses with fully embedded glucose fuel cells that are safe, flexible, and durable against deformations. These fuel cells produced stable power throughout the day or during intermittent use after storage for weeks. When the lenses were exposed to 0.05 mM glucose solution, a steady-state maximum power density of 4.4 μW/cm2 was achieved by optimizing the chemistry and porous structure of the fuel cell components. Additionally, even after bending the lenses in half 100 times, the fuel cell performance was maintained without any mechanical failure. Lastly, when the fuel cells were connected to electroresponsive hydrogel capacitors, we could clearly distinguish between the tear glucose levels under normal and diabetic conditions through the naked eye.
Collapse
Affiliation(s)
- Dongwon Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Jong Ik Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Bohee Maeng
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Seyeon Lee
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Yongseok Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Moon Sung Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
- Institute of Emergent Materials, Sogang University, Seoul 04107, Republic of Korea
| | - Jungyul Park
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Jungwook Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
17
|
Plekhanova YV, Reshetilov AN. Nanomaterials for Controlled Adjustment of the Parameters of Electrochemical Biosensors and Biofuel Cells. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022040124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Jeon HJ, Kim HS, Chung E, Lee DY. Nanozyme-based colorimetric biosensor with a systemic quantification algorithm for noninvasive glucose monitoring. Theranostics 2022; 12:6308-6338. [PMID: 36168630 PMCID: PMC9475463 DOI: 10.7150/thno.72152] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/20/2022] [Indexed: 11/10/2022] Open
Abstract
Diabetes mellitus accompanies an abnormally high glucose level in the bloodstream. Early diagnosis and proper glycemic management of blood glucose are essential to prevent further progression and complications. Biosensor-based colorimetric detection has progressed and shown potential in portable and inexpensive daily assessment of glucose levels because of its simplicity, low-cost, and convenient operation without sophisticated instrumentation. Colorimetric glucose biosensors commonly use natural enzymes that recognize glucose and chromophores that detect enzymatic reaction products. However, many natural enzymes have inherent defects, limiting their extensive application. Recently, nanozyme-based colorimetric detection has drawn attention due to its merits including high sensitivity, stability under strict reaction conditions, flexible structural design with low-cost materials, and adjustable catalytic activities. This review discusses various nanozyme materials, colorimetric analytic methods and mechanisms, recent machine learning based analytic methods, quantification systems, applications and future directions for monitoring and managing diabetes.
Collapse
Affiliation(s)
- Hee-Jae Jeon
- Weldon School of Biomedical Engineering, Purdue University, Indiana 47906, USA
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- AI Graduate School, GIST, Gwangju 61005, Republic of Korea
- Research Center for Photon Science Technology, GIST, Gwangju 61005, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul 04763, Republic of Korea
- Elixir Pharmatech Inc., Seoul 07463, Republic of Korea
| |
Collapse
|
19
|
Li MS, Wong HL, Ip YL, Peng Z, Yiu R, Yuan H, Wai Wong JK, Chan YK. Current and Future Perspectives on Microfluidic Tear Analytic Devices. ACS Sens 2022; 7:1300-1314. [PMID: 35579258 DOI: 10.1021/acssensors.2c00569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most current invasive analytic devices for disease diagnosis and monitoring require the collection of blood, which causes great discomfort for patients and may potentially cause infection. This explains the great need for noninvasive devices that utilize other bodily fluids like sweat, saliva, tears, or urine. Among them, eye tears are easily accessible, less complex in composition, and less susceptible to dilution. Tears also contain valuable clinical information for the diagnosis of ocular and systemic diseases as the tear analyte level shows great correlation with the blood analyte level. These unique advantages make tears a promising platform for use in clinical settings. As the volume of tear film and the rate of tear flow are only microliters in size, the use of microfluidic technology in analytic devices allows minimal sample consumption. Hence, more and more microfluidic tear analytic devices have been proposed, and their working mechanisms can be broadly categorized into four main types: (a) electrochemical, (b) photonic crystals, (c) fluorescence, and (d) colorimetry. These devices are being developed toward the application of point-of-care tests with rapid yet accurate results. This review aims to provide a general overview of the recent developmental trend of microfluidic devices for tear analysis. Moreover, the fundamental principle behind each type of device along with their strengths and weaknesses will be discussed, especially in terms of their abilities and potential in being used in point-of-care settings.
Collapse
Affiliation(s)
- Man Shek Li
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Ho Lam Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Yan Lam Ip
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Zhiting Peng
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Rachel Yiu
- Department of Ophthalmology, Grantham Hospital, Hong Kong West Cluster, Hong Kong SAR 000000
| | - Hao Yuan
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P R China
| | - Jasper Ka Wai Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
- Department of Ophthalmology, Grantham Hospital, Hong Kong West Cluster, Hong Kong SAR 000000
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| |
Collapse
|
20
|
ZnS Quantum Dots Decorated on One-Dimensional Scaffold of MWCNT/PANI Conducting Nanocomposite as an Anode for Enzymatic Biofuel Cell. Polymers (Basel) 2022; 14:polym14071321. [PMID: 35406194 PMCID: PMC9040719 DOI: 10.3390/polym14071321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 01/10/2023] Open
Abstract
This study aims to design a new nanocomposite as a supporting material for wiring the enzyme to develop a bioanode in the enzymatic biofuel cell (EBFC). In this work, polyaniline-based nanocomposite was synthesized by in situ polymerization of aniline monomer. The zeta potential study of the nanofillers was carried out, which reveals the interaction between the nanofillers. The synthesized nanocomposite (MWCNT/ZnS/AgNWs/PANI) was characterized by analytical techniques, such as Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction spectroscopy (XRD). Furthermore, the surface morphology and the in-depth information of the synthesized nanocomposite were displayed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. In addition, the as-synthesized nanocomposite and the designed bioanode underwent the electrochemical assessment using different electrochemical techniques such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) for evaluating the electrochemical behavior of the fabricated anodes. The electrochemically regulated bioanode (MWCNT/ZnS/AgNWs/PANI/Frt/GOx) obtained an open-circuit voltage of 0.55 V and produced a maximal current density of 7.6 mA cm−2 at a glucose concentration of 50 mM prepared in phosphate buffer solution (PBS) (pH 7.0) as a supporting electrolyte at a scan rate of 100 mV s−1.
Collapse
|
21
|
Mirzajani H, Mirlou F, Istif E, Singh R, Beker L. Powering smart contact lenses for continuous health monitoring: Recent advancements and future challenges. Biosens Bioelectron 2022; 197:113761. [PMID: 34800926 DOI: 10.1016/j.bios.2021.113761] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/15/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022]
Abstract
As the tear is noninvasively and continuously available, it has been turned into a convenient biological interface as a wearable medical device for out-of-hospital and self-monitoring applications. Recent progress in integrated circuits (ICs) and biosensors coupled with wireless data communication techniques have led to the implementation of smart contact lenses that can continuously sample tear fluid, analyze physiological conditions, and wirelessly transmit data to an electronic device such as smartphone, which can send data to relevant healthcare units. Continuous analyte monitoring is one of the significant characteristics of wearable biosensors. However, despite several advantages over other on-skin wearable medical devices, batteries cannot be incorporated on smart contact lenses for continuous electrical power supply due to the limited area. Herein, we review the progress of power delivery techniques of smart contact lenses for the first time. Different approaches, including wireless power transmission (WPT), biofuel cells, supercapacitors, flexible batteries, wired connections, and hybrid methods, are thoroughly discussed to understand the principles of self-sustainable contact lens biosensors comprehensively. Additionally, recent progress in contact lens biosensors is reviewed in detail, thereby providing the prospects for further developments of smart contact lenses as a common biosensing platform for various disease monitoring and diagnostic applications.
Collapse
Affiliation(s)
- Hadi Mirzajani
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Fariborz Mirlou
- Department of Electrical and Electronics Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Emin Istif
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Rahul Singh
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Levent Beker
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey; Koç University Research Center for Translational Research (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey.
| |
Collapse
|
22
|
Nakagawa T, Abe H, Gessei T, Takeda K, Igarashi K, Nakamura N. Biorefinery of galacturonic acid using a biofuel cell as a reactor. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00202g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reactor based on an enzymatic biofuel cell (an EBFC reactor) was constructed to simultaneously generate electricity and chemical products from biomass.
Collapse
Affiliation(s)
- Tomoe Nakagawa
- Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Hayato Abe
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Tomoko Gessei
- Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Kouta Takeda
- Department of Biomaterials Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterials Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Nobuhumi Nakamura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
23
|
Zhang S, Zeng J, Wang C, Feng L, Song Z, Zhao W, Wang Q, Liu C. The Application of Wearable Glucose Sensors in Point-of-Care Testing. Front Bioeng Biotechnol 2021; 9:774210. [PMID: 34957071 PMCID: PMC8692794 DOI: 10.3389/fbioe.2021.774210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes and its complications have become a worldwide concern that influences human health negatively and even leads to death. The real-time and convenient glucose detection in biofluids is urgently needed. Traditional glucose testing is detecting glucose in blood and is invasive, which cannot be continuous and results in discomfort for the users. Consequently, wearable glucose sensors toward continuous point-of-care glucose testing in biofluids have attracted great attention, and the trend of glucose testing is from invasive to non-invasive. In this review, the wearable point-of-care glucose sensors for the detection of different biofluids including blood, sweat, saliva, tears, and interstitial fluid are discussed, and the future trend of development is prospected.
Collapse
Affiliation(s)
- Sheng Zhang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Junyan Zeng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Chunge Wang
- School of Mechanical and Energy Engineering, Ningbo Tech University, Ningbo, China
| | - Luying Feng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Zening Song
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Wenjie Zhao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Qianqian Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Chen Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Radwan AB, Paramparambath S, Cabibihan JJ, Al-Ali AK, Kasak P, Shakoor RA, Malik RA, Mansour SA, Sadasivuni KK. Superior Non-Invasive Glucose Sensor Using Bimetallic CuNi Nanospecies Coated Mesoporous Carbon. BIOSENSORS 2021; 11:bios11110463. [PMID: 34821679 PMCID: PMC8615784 DOI: 10.3390/bios11110463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 05/14/2023]
Abstract
The assessment of blood glucose levels is necessary for the diagnosis and management of diabetes. The accurate quantification of serum or plasma glucose relies on enzymatic and nonenzymatic methods utilizing electrochemical biosensors. Current research efforts are focused on enhancing the non-invasive detection of glucose in sweat with accuracy, high sensitivity, and stability. In this work, nanostructured mesoporous carbon coupled with glucose oxidase (GOx) increased the direct electron transfer to the electrode surface. A mixed alloy of CuNi nanoparticle-coated mesoporous carbon (CuNi-MC) was synthesized using a hydrothermal process followed by annealing at 700 °C under the flow of argon gas. The prepared catalyst's crystal structure and morphology were explored using X-ray diffraction and high-resolution transmission electron microscopy. The electrocatalytic activity of the as-prepared catalyst was investigated using cyclic voltammetry (CV) and amperometry. The findings show an excellent response time of 4 s and linear range detection from 0.005 to 0.45 mM with a high electrode sensitivity of 11.7 ± 0.061 mA mM cm-2 in a selective medium.
Collapse
Affiliation(s)
- Ahmed Bahgat Radwan
- Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (P.K.); (R.A.S.)
- Correspondence: (A.B.R.); (K.K.S.)
| | - Sreedevi Paramparambath
- Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (P.K.); (R.A.S.)
| | - John-John Cabibihan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Abdulaziz Khalid Al-Ali
- Department of Computer Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
- KINDI Center for Computing Research, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Peter Kasak
- Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (P.K.); (R.A.S.)
| | - Rana A. Shakoor
- Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (P.K.); (R.A.S.)
| | - Rayaz A. Malik
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, Doha P.O. Box 24144, Qatar;
| | - Said A. Mansour
- Qatar Energy and Environment Research Institute, Hamad bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
| | - Kishor Kumar Sadasivuni
- Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (P.K.); (R.A.S.)
- Correspondence: (A.B.R.); (K.K.S.)
| |
Collapse
|
25
|
Zhang J, Xu J, Lim J, Nolan JK, Lee H, Lee CH. Wearable Glucose Monitoring and Implantable Drug Delivery Systems for Diabetes Management. Adv Healthc Mater 2021; 10:e2100194. [PMID: 33930258 DOI: 10.1002/adhm.202100194] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Indexed: 12/11/2022]
Abstract
The global cost of diabetes care exceeds $1 trillion each year with more than $327 billion being spent in the United States alone. Despite some of the advances in diabetes care including continuous glucose monitoring systems and insulin pumps, the technology associated with managing diabetes has largely remained unchanged over the past several decades. With the rise of wearable electronics and novel functional materials, the field is well-poised for the next generation of closed-loop diabetes care. Wearable glucose sensors implanted within diverse platforms including skin or on-tooth tattoos, skin-mounted patches, eyeglasses, contact lenses, fabrics, mouthguards, and pacifiers have enabled noninvasive, unobtrusive, and real-time analysis of glucose excursions in ambulatory care settings. These wearable glucose sensors can be integrated with implantable drug delivery systems, including an insulin pump, glucose responsive insulin release implant, and islets transplantation, to form self-regulating closed-loop systems. This review article encompasses the emerging trends and latest innovations of wearable glucose monitoring and implantable insulin delivery technologies for diabetes management with a focus on their advanced materials and construction. Perspectives on the current unmet challenges of these strategies are also discussed to motivate future technological development toward improved patient care in diabetes management.
Collapse
Affiliation(s)
- Jinyuan Zhang
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Jian Xu
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Jongcheon Lim
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - James K. Nolan
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
- School of Mechanical Engineering School of Materials Engineering Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
26
|
Sempionatto JR, Montiel VRV, Vargas E, Teymourian H, Wang J. Wearable and Mobile Sensors for Personalized Nutrition. ACS Sens 2021; 6:1745-1760. [PMID: 34008960 DOI: 10.1021/acssensors.1c00553] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
While wearable and mobile chemical sensors have experienced tremendous growth over the past decade, their potential for tracking and guiding nutrition has emerged only over the past three years. Currently, guidelines from doctors and dietitians represent the most common approach for maintaining optimal nutrition status. However, such recommendations rely on population averages and do not take into account individual variability in responding to nutrients. Precision nutrition has recently emerged to address the large heterogeneity in individuals' responses to diet, by tailoring nutrition based on the specific requirements of each person. It aims at preventing and managing diseases by formulating personalized dietary interventions to individuals on the basis of their metabolic profile, background, and environmental exposure. Recent advances in digital nutrition technology, including calories-counting mobile apps and wearable motion tracking devices, lack the ability of monitoring nutrition at the molecular level. The realization of effective precision nutrition requires synergy from different sensor modalities in order to make timely reliable predictions and efficient feedback. This work reviews key opportunities and challenges toward the successful realization of effective wearable and mobile nutrition monitoring platforms. Non-invasive wearable and mobile electrochemical sensors, capable of monitoring temporal chemical variations upon the intake of food and supplements, are excellent candidates to bridge the gap between digital and biochemical analyses for a successful personalized nutrition approach. By providing timely (previously unavailable) dietary information, such wearable and mobile sensors offer the guidance necessary for supporting dietary behavior change toward a managed nutritional balance. Coupling of the rapidly emerging wearable chemical sensing devices-generating enormous dynamic analytical data-with efficient data-fusion and data-mining methods that identify patterns and make predictions is expected to revolutionize dietary decision-making toward effective precision nutrition.
Collapse
Affiliation(s)
- Juliane R. Sempionatto
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | | | - Eva Vargas
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Hazhir Teymourian
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
27
|
Wolkowicz KL, Aiello EM, Vargas E, Teymourian H, Tehrani F, Wang J, Pinsker JE, Doyle FJ, Patti M, Laffel LM, Dassau E. A review of biomarkers in the context of type 1 diabetes: Biological sensing for enhanced glucose control. Bioeng Transl Med 2021; 6:e10201. [PMID: 34027090 PMCID: PMC8126822 DOI: 10.1002/btm2.10201] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
As wearable healthcare monitoring systems advance, there is immense potential for biological sensing to enhance the management of type 1 diabetes (T1D). The aim of this work is to describe the ongoing development of biomarker analytes in the context of T1D. Technological advances in transdermal biosensing offer remarkable opportunities to move from research laboratories to clinical point-of-care applications. In this review, a range of analytes, including glucose, insulin, glucagon, cortisol, lactate, epinephrine, and alcohol, as well as ketones such as beta-hydroxybutyrate, will be evaluated to determine the current status and research direction of those analytes specifically relevant to T1D management, using both in-vitro and on-body detection. Understanding state-of-the-art developments in biosensing technologies will aid in bridging the gap from bench-to-clinic T1D analyte measurement advancement.
Collapse
Affiliation(s)
- Kelilah L. Wolkowicz
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeMassachusettsUSA
- Sansum Diabetes Research InstituteSanta BarbaraCaliforniaUSA
| | - Eleonora M. Aiello
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeMassachusettsUSA
- Sansum Diabetes Research InstituteSanta BarbaraCaliforniaUSA
| | - Eva Vargas
- Department of NanoengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Hazhir Teymourian
- Department of NanoengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Farshad Tehrani
- Department of NanoengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Joseph Wang
- Department of NanoengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | - Francis J. Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeMassachusettsUSA
- Sansum Diabetes Research InstituteSanta BarbaraCaliforniaUSA
| | | | - Lori M. Laffel
- Joslin Diabetes Center, Harvard Medical SchoolBostonMassachusettsUSA
| | - Eyal Dassau
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeMassachusettsUSA
- Sansum Diabetes Research InstituteSanta BarbaraCaliforniaUSA
- Joslin Diabetes Center, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
28
|
Olvera D, Monaghan MG. Electroactive material-based biosensors for detection and drug delivery. Adv Drug Deliv Rev 2021; 170:396-424. [PMID: 32987096 DOI: 10.1016/j.addr.2020.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022]
Abstract
Electroactive materials are employed at the interface of biology and electronics due to their advantageous intrinsic properties as soft organic electronics. We examine the most recent literature of electroactive material-based biosensors and their emerging role as theranostic devices for the delivery of therapeutic agents. We consider electroactive materials through the lens of smart drug delivery systems as materials that enable the release of therapeutic cargo in response to specific physiological and external stimuli and discuss the way these mechanisms are integrated into medical devices with examples of the latest advances. Studies that harness features unique to conductive polymers are emphasized; lastly, we highlight new perspectives and future research direction for this emerging technology and the challenges that remain to overcome.
Collapse
|
29
|
Yu S, Myung NV. Recent Advances in the Direct Electron Transfer-Enabled Enzymatic Fuel Cells. Front Chem 2021; 8:620153. [PMID: 33644003 PMCID: PMC7902792 DOI: 10.3389/fchem.2020.620153] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Direct electron transfer (DET), which requires no mediator to shuttle electrons from enzyme active site to the electrode surface, minimizes complexity caused by the mediator and can further enable miniaturization for biocompatible and implantable devices. However, because the redox cofactors are typically deeply embedded in the protein matrix of the enzymes, electrons generated from oxidation reaction cannot easily transfer to the electrode surface. In this review, methods to improve the DET rate for enhancement of enzymatic fuel cell performances are summarized, with a focus on the more recent works (past 10 years). Finally, progress on the application of DET-enabled EFC to some biomedical and implantable devices are reported.
Collapse
Affiliation(s)
| | - Nosang V. Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
30
|
Jin X, Bandodkar AJ, Fratus M, Asadpour R, Rogers JA, Alam MA. Modeling, design guidelines, and detection limits of self-powered enzymatic biofuel cell-based sensors. Biosens Bioelectron 2020; 168:112493. [DOI: 10.1016/j.bios.2020.112493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022]
|
31
|
Buaki-Sogó M, García-Carmona L, Gil-Agustí M, Zubizarreta L, García-Pellicer M, Quijano-López A. Enzymatic Glucose-Based Bio-batteries: Bioenergy to Fuel Next-Generation Devices. Top Curr Chem (Cham) 2020; 378:49. [PMID: 33125588 DOI: 10.1007/s41061-020-00312-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/05/2020] [Indexed: 11/26/2022]
Abstract
This article consists of a review of the main concepts and paradigms established in the field of biological fuel cells or biofuel cells. The aim is to provide an overview of the current panorama, basic concepts, and methodologies used in the field of enzymatic biofuel cells, as well as the applications of these bio-systems in flexible electronics and implantable or portable devices. Finally, the challenges needing to be addressed in the development of biofuel cells capable of supplying power to small size devices with applications in areas related to health and well-being or next-generation portable devices are analyzed. The aim of this study is to contribute to biofuel cell technology development; this is a multidisciplinary topic about which review articles related to different scientific areas, from Materials Science to technology applications, can be found. With this article, the authors intend to reach a wide readership in order to spread biofuel cell technology for different scientific profiles and boost new contributions and developments to overcome future challenges.
Collapse
Affiliation(s)
- Mireia Buaki-Sogó
- Instituto Tecnológico de la Energía (ITE), Avenida Juan de la Cierva, 24, 46980, Paterna, Valencia, Spain.
| | - Laura García-Carmona
- Instituto Tecnológico de la Energía (ITE), Avenida Juan de la Cierva, 24, 46980, Paterna, Valencia, Spain
| | - Mayte Gil-Agustí
- Instituto Tecnológico de la Energía (ITE), Avenida Juan de la Cierva, 24, 46980, Paterna, Valencia, Spain
| | - Leire Zubizarreta
- Instituto Tecnológico de la Energía (ITE), Avenida Juan de la Cierva, 24, 46980, Paterna, Valencia, Spain
| | - Marta García-Pellicer
- Instituto Tecnológico de la Energía (ITE), Avenida Juan de la Cierva, 24, 46980, Paterna, Valencia, Spain
| | - Alfredo Quijano-López
- ITE Universitat Politécnica de València, Camino de Vera s/n edificio 6C, 46022, Valencia, Spain
| |
Collapse
|
32
|
Teymourian H, Barfidokht A, Wang J. Electrochemical glucose sensors in diabetes management: an updated review (2010-2020). Chem Soc Rev 2020; 49:7671-7709. [PMID: 33020790 DOI: 10.1039/d0cs00304b] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While over half a century has passed since the introduction of enzyme glucose biosensors by Clark and Lyons, this important field has continued to be the focus of immense research activity. Extensive efforts during the past decade have led to major scientific and technological innovations towards tight monitoring of diabetes. Such continued progress toward advanced continuous glucose monitoring platforms, either minimal- or non-invasive, holds considerable promise for addressing the limitations of finger-prick blood testing toward tracking glucose trends over time, optimal therapeutic interventions, and improving the life of diabetes patients. However, despite these major developments, the field of glucose biosensors is still facing major challenges. The scope of this review is to present the key scientific and technological advances in electrochemical glucose biosensing over the past decade (2010-present), along with current obstacles and prospects towards the ultimate goal of highly stable and reliable real-time minimally-invasive or non-invasive glucose monitoring. After an introduction to electrochemical glucose biosensors, we highlight recent progress based on using advanced nanomaterials at the electrode-enzyme interface of three generations of glucose sensors. Subsequently, we cover recent activity and challenges towards next-generation wearable non-invasive glucose monitoring devices based on innovative sensing principles, alternative body fluids, advanced flexible materials, and novel platforms. This is followed by highlighting the latest progress in the field of minimally-invasive continuous glucose monitoring (CGM) which offers real-time information about interstitial glucose levels, by focusing on the challenges toward developing biocompatible membrane coatings to protect electrochemical glucose sensors against surface biofouling. Subsequent sections cover new analytical concepts of self-powered glucose sensors, paper-based glucose sensing and multiplexed detection of diabetes-related biomarkers. Finally, we will cover the latest advances in commercially available devices along with the upcoming future technologies.
Collapse
Affiliation(s)
- Hazhir Teymourian
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
33
|
Teymourian H, Parrilla M, Sempionatto JR, Montiel NF, Barfidokht A, Van Echelpoel R, De Wael K, Wang J. Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs. ACS Sens 2020; 5:2679-2700. [PMID: 32822166 DOI: 10.1021/acssensors.0c01318] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wearable electrochemical sensors capable of noninvasive monitoring of chemical markers represent a rapidly emerging digital-health technology. Recent advances toward wearable continuous glucose monitoring (CGM) systems have ignited tremendous interest in expanding such sensor technology to other important fields. This article reviews for the first time wearable electrochemical sensors for monitoring therapeutic drugs and drugs of abuse. This rapidly emerging class of drug-sensing wearable devices addresses the growing demand for personalized medicine, toward improved therapeutic outcomes while minimizing the side effects of drugs and the related medical expenses. Continuous, noninvasive monitoring of therapeutic drugs within bodily fluids empowers clinicians and patients to correlate the pharmacokinetic properties with optimal outcomes by realizing patient-specific dose regulation and tracking dynamic changes in pharmacokinetics behavior while assuring the medication adherence of patients. Furthermore, wearable electrochemical drug monitoring devices can also serve as powerful screening tools in the hands of law enforcement agents to combat drug trafficking and support on-site forensic investigations. The review covers various wearable form factors developed for noninvasive monitoring of therapeutic drugs in different body fluids and toward on-site screening of drugs of abuse. The future prospects of such wearable drug monitoring devices are presented with the ultimate goals of introducing accurate real-time drug monitoring protocols and autonomous closed-loop platforms toward precise dose regulation and optimal therapeutic outcomes. Finally, current unmet challenges and existing gaps are discussed for motivating future technological innovations regarding personalized therapy. The current pace of developments and the tremendous market opportunities for such wearable drug monitoring platforms are expected to drive intense future research and commercialization efforts.
Collapse
Affiliation(s)
- Hazhir Teymourian
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Marc Parrilla
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Juliane R. Sempionatto
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Noelia Felipe Montiel
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Abbas Barfidokht
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Robin Van Echelpoel
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Karolien De Wael
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
34
|
Mondal S, Zehra N, Choudhury A, Iyer PK. Wearable Sensing Devices for Point of Care Diagnostics. ACS APPLIED BIO MATERIALS 2020; 4:47-70. [DOI: 10.1021/acsabm.0c00798] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Subrata Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Nehal Zehra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Anwesha Choudhury
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
35
|
Flexible and optimized carbon paste electrodes for direct electron transfer-based glucose biofuel cell fed by various physiological fluids. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01543-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Yu Y, Nyein HYY, Gao W, Javey A. Flexible Electrochemical Bioelectronics: The Rise of In Situ Bioanalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902083. [PMID: 31432573 DOI: 10.1002/adma.201902083] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/30/2019] [Indexed: 05/21/2023]
Abstract
The amalgamation of flexible electronics in biological systems has shaped the way health and medicine are administered. The growing field of flexible electrochemical bioelectronics enables the in situ quantification of a variety of chemical constituents present in the human body and holds great promise for personalized health monitoring owing to its unique advantages such as inherent wearability, high sensitivity, high selectivity, and low cost. It represents a promising alternative to probe biomarkers in the human body in a simpler method compared to conventional instrumental analytical techniques. Various bioanalytical technologies are employed in flexible electrochemical bioelectronics, including ion-selective potentiometry, enzymatic amperometry, potential sweep voltammetry, field-effect transistors, affinity-based biosensing, as well as biofuel cells. Recent key innovations in flexible electrochemical bioelectronics from electrochemical sensing modalities, materials, systems, fabrication, to applications are summarized and highlighted. The challenges and opportunities in this field moving forward toward future preventive and personalized medicine devices are also discussed.
Collapse
Affiliation(s)
- You Yu
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Hnin Yin Yin Nyein
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Wei Gao
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ali Javey
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
37
|
Yao S, Ren P, Song R, Liu Y, Huang Q, Dong J, O'Connor BT, Zhu Y. Nanomaterial-Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902343. [PMID: 31464046 DOI: 10.1002/adma.201902343] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/27/2019] [Indexed: 05/02/2023]
Abstract
Nanomaterial-enabled flexible and stretchable electronics have seen tremendous progress in recent years, evolving from single sensors to integrated sensing systems. Compared with nanomaterial-enabled sensors with a single function, integration of multiple sensors is conducive to comprehensive monitoring of personal health and environment, intelligent human-machine interfaces, and realistic imitation of human skin in robotics and prosthetics. Integration of sensors with other functional components promotes real-world applications of the sensing systems. Here, an overview of the design and integration strategies and manufacturing techniques for such sensing systems is given. Then, representative nanomaterial-enabled flexible and stretchable sensing systems are presented. Following that, representative applications in personal health, fitness tracking, electronic skins, artificial nervous systems, and human-machine interactions are provided. To conclude, perspectives on the challenges and opportunities in this burgeoning field are considered.
Collapse
Affiliation(s)
- Shanshan Yao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ping Ren
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Runqiao Song
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Qijin Huang
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Jingyan Dong
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Brendan T O'Connor
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
38
|
Inamuddin, Shakeel N, Imran Ahamed M, Kanchi S, Abbas Kashmery H. Green synthesis of ZnO nanoparticles decorated on polyindole functionalized-MCNTs and used as anode material for enzymatic biofuel cell applications. Sci Rep 2020; 10:5052. [PMID: 32193477 PMCID: PMC7081323 DOI: 10.1038/s41598-020-61831-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/03/2020] [Indexed: 11/08/2022] Open
Abstract
Presently, one of the most important aspects for the development of enzymatic biofuel cells (EBFCs) is to synthesize the novel electrode materials that possess high current density, low open-circuit voltage (OCV) and long-term stability. To achieve the above attributes, lots of new strategies are being used by the researchers for the development of advanced materials. Nowadays, nanomaterials and nanocomposites are the promising material that has been utilized as effective electrode material in solar cells, supercapacitors and biofuel cells application. Herein, we account for a novel electrocatalyst as electrode material that comprised ZnO nanoparticles decorated on the surface of polyindole (PIn)-multi-walled carbon nanotube (MWCNT), for the immobilization of glucose oxidase (GOx) enzyme and mediator (Ferritin). The PIn-MWCNT scaffold is prepared via in situ chemical oxidative polymerization of indole on the surface of MWCNT and assessed by myriad techniques. The micrograph of scanning electron microscopy (SEM) designated the interconnected morphology of MWCNTs in the polymer matrix. X-ray diffraction spectroscopy (XRD) and Fourier transform infrared spectroscopy (FTIR), confirm the crystallinity and different functional groups available in the synthesized material, respectively. The electrochemical assessment demonstrates that the ZnO/PIn-MWCNT/Frt/GOx nanobiocatalyst exhibits much higher electrocatalytic activity towards the oxidation of glucose with a maximum current density of 4.9 mA cm-2 by consuming 50 mM glucose concentration in phosphate buffer saline (PBS) (pH 7.4) as the testing solution by applying 100 mVs-1 scan rates. The outcomes reflect that the as-prepared ZnO/PIn-MWCNTs/Frt/GOx biocomposite is a promising bioanode for the development of EBFCs.
Collapse
Affiliation(s)
- Inamuddin
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Nimra Shakeel
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Mohd Imran Ahamed
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Suvardhan Kanchi
- Department of Chemistry, Faculty of Applied Science, Durban University of Technology, Durban, 4000, South Africa
| | - Heba Abbas Kashmery
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
39
|
Shrivastava S, Trung TQ, Lee NE. Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chem Soc Rev 2020; 49:1812-1866. [PMID: 32100760 DOI: 10.1039/c9cs00319c] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rapid growth of research in the areas of chemical and biochemical sensors, lab-on-a-chip, mobile technology, and wearable electronics offers an unprecedented opportunity in the development of mobile and wearable point-of-care testing (POCT) systems for self-testing. Successful implementation of such POCT technologies leads to minimal user intervention during operation to reduce user errors; user-friendly, easy-to-use and simple detection platforms; high diagnostic sensitivity and specificity; immediate clinical assessment; and low manufacturing and consumables costs. In this review, we discuss recent developments in the field of highly integrated mobile and wearable POCT systems. In particular, aspects of sample handling platforms, recognition elements and sensing methods, and new materials for signal transducers and powering devices for integration into mobile or wearable POCT systems will be highlighted. We also summarize current challenges and future prospects for providing personal healthcare with sample-in result-out mobile and wearable POCT.
Collapse
Affiliation(s)
- Sajal Shrivastava
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | | | | |
Collapse
|
40
|
Trogadas P, Coppens MO. Nature-inspired electrocatalysts and devices for energy conversion. Chem Soc Rev 2020; 49:3107-3141. [DOI: 10.1039/c8cs00797g] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A NICE approach for the design of nature-inspired electrocatalysts and electrochemical devices for energy conversion.
Collapse
Affiliation(s)
- Panagiotis Trogadas
- EPSRC “Frontier Engineering” Centre for Nature Inspired Engineering & Department of Chemical Engineering
- University College London
- London
- UK
| | - Marc-Olivier Coppens
- EPSRC “Frontier Engineering” Centre for Nature Inspired Engineering & Department of Chemical Engineering
- University College London
- London
- UK
| |
Collapse
|
41
|
Verho O, Bäckvall JE. Nanocatalysis Meets Biology. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Broza YY, Zhou X, Yuan M, Qu D, Zheng Y, Vishinkin R, Khatib M, Wu W, Haick H. Disease Detection with Molecular Biomarkers: From Chemistry of Body Fluids to Nature-Inspired Chemical Sensors. Chem Rev 2019; 119:11761-11817. [DOI: 10.1021/acs.chemrev.9b00437] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yoav Y. Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Xi Zhou
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an 710072, P.R. China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, P.R. China
| | - Danyao Qu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Shaanxi 710126, P.R. China
| | - Youbing Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Rotem Vishinkin
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Muhammad Khatib
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Shaanxi 710126, P.R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 3200003, Israel
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Shaanxi 710126, P.R. China
| |
Collapse
|
43
|
Bollella P, Lee I, Blaauw D, Katz E. A Microelectronic Sensor Device Powered by a Small Implantable Biofuel Cell. Chemphyschem 2019; 21:120-128. [DOI: 10.1002/cphc.201900700] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/12/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular ScienceClarkson University Potsdam NY 13699–5810 USA
| | - Inhee Lee
- Department of Electrical Engineering and Computer ScienceUniversity of Michigan Ann Arbor MI 48109 USA
| | - David Blaauw
- Department of Electrical Engineering and Computer ScienceUniversity of Michigan Ann Arbor MI 48109 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular ScienceClarkson University Potsdam NY 13699–5810 USA
| |
Collapse
|
44
|
Moreddu R, Vigolo D, Yetisen AK. Contact Lens Technology: From Fundamentals to Applications. Adv Healthc Mater 2019; 8:e1900368. [PMID: 31183972 DOI: 10.1002/adhm.201900368] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Indexed: 12/29/2022]
Abstract
Contact lenses are ocular prosthetic devices used by over 150 million people worldwide. Primary applications of contact lenses include vision correction, therapeutics, and cosmetics. Contact lens materials have significantly evolved over time to minimize adverse effects associated with contact lens wearing, to maintain a regular corneal metabolism, and to preserve tear film stability. This article encompasses contact lens technology, including materials, chemical and physical properties, manufacturing processes, microbial contamination, and ocular complications. The function and the composition of the tear fluid are discussed to assess its potential as a diagnostic media. The regulatory standards of contact lens devices with regard to biocompatibility and contact lens market are presented. Future prospects in contact lens technology are evaluated, with particular interest given to theranostic applications for in situ continuous monitoring the ocular physiology.
Collapse
Affiliation(s)
- Rosalia Moreddu
- Department of Chemical EngineeringImperial College London SW7 2AZ London UK
- School of Chemical EngineeringUniversity of Birmingham B15 2TT Birmingham UK
| | - Daniele Vigolo
- School of Chemical EngineeringUniversity of Birmingham B15 2TT Birmingham UK
| | - Ali K. Yetisen
- Department of Chemical EngineeringImperial College London SW7 2AZ London UK
| |
Collapse
|
45
|
Supercapacitor/biofuel cell hybrid device employing biomolecules for energy conversion and charge storage. Bioelectrochemistry 2019; 128:94-99. [DOI: 10.1016/j.bioelechem.2019.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 01/12/2023]
|
46
|
Sempionatto JR, Brazaca LC, García-Carmona L, Bolat G, Campbell AS, Martin A, Tang G, Shah R, Mishra RK, Kim J, Zucolotto V, Escarpa A, Wang J. Eyeglasses-based tear biosensing system: Non-invasive detection of alcohol, vitamins and glucose. Biosens Bioelectron 2019; 137:161-170. [PMID: 31096082 PMCID: PMC8372769 DOI: 10.1016/j.bios.2019.04.058] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 01/15/2023]
Abstract
We report on a wearable tear bioelectronic platform, integrating a microfluidic electrochemical detector into an eyeglasses nose-bridge pad, for non-invasive monitoring of key tear biomarkers. The alcohol-oxidase (AOx) biosensing fluidic system allowed real-time tear collection and direct alcohol measurements in stimulated tears, leading to the first wearable platform for tear alcohol monitoring. Placed outside the eye region this fully wearable tear-sensing platform addresses drawbacks of sensor systems involving direct contact with the eye as the contact lenses platform. Integrating the wireless electronic circuitry into the eyeglasses frame thus yielded a fully portable, convenient-to-use fashionable sensing device. The tear alcohol sensing concept was demonstrated for monitoring of alcohol intake in human subjects over multiple drinking courses, displaying good correlation to parallel BAC measurements. We also demonstrate for the first time the ability to monitor tear glucose outside the eye and the utility of wearable devices for monitoring vitamin nutrients in connection to enzymatic flow detector and rapid voltammetric scanning, respectively. These developments pave the way to build an effective eyeglasses system capable of chemical tear analysis.
Collapse
Affiliation(s)
- Juliane R Sempionatto
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Laís Canniatti Brazaca
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States; Sao Carlos Physics Institute, University of Sao Paulo, Sao Carlos, 13566-590, Sao Paulo, Brazil
| | - Laura García-Carmona
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States; Department of Analytical Chemistry, University of Alcalá, 28871, Alcalá de Henares, Spain
| | - Gulcin Bolat
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Alan S Campbell
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Aida Martin
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Guangda Tang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Rushabh Shah
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Rupesh K Mishra
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Jayoung Kim
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Valtencir Zucolotto
- Sao Carlos Physics Institute, University of Sao Paulo, Sao Carlos, 13566-590, Sao Paulo, Brazil
| | - Alberto Escarpa
- Department of Analytical Chemistry, University of Alcalá, 28871, Alcalá de Henares, Spain
| | - Joseph Wang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, United States.
| |
Collapse
|
47
|
Shen F, Pankratov D, Halder A, Xiao X, Toscano MD, Zhang J, Ulstrup J, Gorton L, Chi Q. Two-dimensional graphene paper supported flexible enzymatic fuel cells. NANOSCALE ADVANCES 2019; 1:2562-2570. [PMID: 36132730 PMCID: PMC9416935 DOI: 10.1039/c9na00178f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/09/2019] [Indexed: 05/05/2023]
Abstract
Application of enzymatic biofuel cells (EBFCs) in wearable or implantable biomedical devices requires flexible and biocompatible electrode materials. To this end, freestanding and low-cost graphene paper is emerging among the most promising support materials. In this work, we have exploited the potential of using graphene paper with a two-dimensional active surface (2D-GP) as a carrier for enzyme immobilization to fabricate EBFCs, representing the first case of flexible graphene papers directly used in EBFCs. The 2D-GP electrodes were prepared via the assembly of graphene oxide (GO) nanosheets into a paper-like architecture, followed by reduction to form layered and cross-linked networks with good mechanical strength, high conductivity and little dependence on the degree of mechanical bending. 2D-GP electrodes served as both a current collector and an enzyme loading substrate that can be used directly as a bioanode and biocathode. Pyrroloquinoline quinone dependent glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOx) adsorbed on the 2D-GP electrodes both retain their biocatalytic activities. Electron transfer (ET) at the bioanode required Meldola blue (MB) as an ET mediator to shuttle electrons between PQQ-GDH and the electrode, but direct electron transfer (DET) at the biocathode was achieved. The resulting glucose/oxygen EBFC displayed a notable mechanical flexibility, with a wide open circuit voltage range up to 0.665 V and a maximum power density of approximately 4 μW cm-2 both fully competitive with reported values for related EBFCs, and with mechanical flexibility and facile enzyme immobilization as novel merits.
Collapse
Affiliation(s)
- Fei Shen
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| | - Dmitry Pankratov
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| | - Arnab Halder
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| | - Xinxin Xiao
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| | | | - Jingdong Zhang
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| | - Jens Ulstrup
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| | - Lo Gorton
- Department of Biochemistry and Structural Biology, Lund University P.O. Box 124 SE-22100 Lund Sweden
| | - Qijin Chi
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252302
| |
Collapse
|
48
|
Xiao X, Xia HQ, Wu R, Bai L, Yan L, Magner E, Cosnier S, Lojou E, Zhu Z, Liu A. Tackling the Challenges of Enzymatic (Bio)Fuel Cells. Chem Rev 2019; 119:9509-9558. [PMID: 31243999 DOI: 10.1021/acs.chemrev.9b00115] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ever-increasing demands for clean and sustainable energy sources combined with rapid advances in biointegrated portable or implantable electronic devices have stimulated intensive research activities in enzymatic (bio)fuel cells (EFCs). The use of renewable biocatalysts, the utilization of abundant green, safe, and high energy density fuels, together with the capability of working at modest and biocompatible conditions make EFCs promising as next generation alternative power sources. However, the main challenges (low energy density, relatively low power density, poor operational stability, and limited voltage output) hinder future applications of EFCs. This review aims at exploring the underlying mechanism of EFCs and providing possible practical strategies, methodologies and insights to tackle these issues. First, this review summarizes approaches in achieving high energy densities in EFCs, particularly, employing enzyme cascades for the deep/complete oxidation of fuels. Second, strategies for increasing power densities in EFCs, including increasing enzyme activities, facilitating electron transfers, employing nanomaterials, and designing more efficient enzyme-electrode interfaces, are described. The potential of EFCs/(super)capacitor combination is discussed. Third, the review evaluates a range of strategies for improving the stability of EFCs, including the use of different enzyme immobilization approaches, tuning enzyme properties, designing protective matrixes, and using microbial surface displaying enzymes. Fourth, approaches for the improvement of the cell voltage of EFCs are highlighted. Finally, future developments and a prospective on EFCs are envisioned.
Collapse
Affiliation(s)
- Xinxin Xiao
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Hong-Qi Xia
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Lu Bai
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Lu Yan
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Serge Cosnier
- Université Grenoble-Alpes , DCM UMR 5250, F-38000 Grenoble , France.,Département de Chimie Moléculaire , UMR CNRS, DCM UMR 5250, F-38000 Grenoble , France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines UMR7281 , Institut de Microbiologie de la Méditerranée, IMM , FR 3479, 31, chemin Joseph Aiguier 13402 Marseille , Cedex 20 , France
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Aihua Liu
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,College of Chemistry & Chemical Engineering , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,School of Pharmacy, Medical College , Qingdao University , Qingdao 266021 , China
| |
Collapse
|
49
|
Wearable biosensors for healthcare monitoring. Nat Biotechnol 2019; 37:389-406. [PMID: 30804534 DOI: 10.1038/s41587-019-0045-y] [Citation(s) in RCA: 1222] [Impact Index Per Article: 244.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022]
Abstract
Wearable biosensors are garnering substantial interest due to their potential to provide continuous, real-time physiological information via dynamic, noninvasive measurements of biochemical markers in biofluids, such as sweat, tears, saliva and interstitial fluid. Recent developments have focused on electrochemical and optical biosensors, together with advances in the noninvasive monitoring of biomarkers including metabolites, bacteria and hormones. A combination of multiplexed biosensing, microfluidic sampling and transport systems have been integrated, miniaturized and combined with flexible materials for improved wearability and ease of operation. Although wearable biosensors hold promise, a better understanding of the correlations between analyte concentrations in the blood and noninvasive biofluids is needed to improve reliability. An expanded set of on-body bioaffinity assays and more sensing strategies are needed to make more biomarkers accessible to monitoring. Large-cohort validation studies of wearable biosensor performance will be needed to underpin clinical acceptance. Accurate and reliable real-time sensing of physiological information using wearable biosensor technologies would have a broad impact on our daily lives.
Collapse
|
50
|
Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes. Biosens Bioelectron 2018; 124-125:40-52. [PMID: 30343155 DOI: 10.1016/j.bios.2018.09.086] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 01/06/2023]
Abstract
Wearable enzymatic biofuel cells would be the most prospective fuel cells for wearable devices because of their low cost, compactness and flexibility. As the high specificity and catalytic properties of enzymes, enzymatic biofuel cells (EBFCs) catalyze the fuel associated with the redox reaction and get electrical energy. Available biofuels such as glucose, lactate and pyruvate can be harvested from biofluids of sweat, tears and blood, which afford cells a favorable use in implantable and wearable devices. However, the development of wearable enzymatic biofuel cells requires significant improvements on the power density and enzymes lifetime. In this paper, some new advances in improving the performance of wearable enzymatic biofuel cells are reviewed based on the bioanode and biocathode by classifying single-enzyme and multi-enzyme catalysis system. Thereinto, the bioanode usually contains oxidases and dehydrogenases as catalyst, and the biocathode utilizes the catalysis of multi-copper oxidases (MCOs) in the single system. For further enhancing the power density, efforts to develop multi-enzyme catalysis strategies are discussed in bioanode and biocathode respectively. Moreover, some potential technologies in recent years, such as carbon nanodots, CNT sponges and mixed operational/storage electrode are summarized owing to notable efficiency and the capability of enhancing electron transfer on the electrode. Finally, major challenges and future prospects are discussed for the high power output, stable and practical wearable enzymatic biofuel cells.
Collapse
|