1
|
Chen H, Dong T, Duan X, Song C. On-Demand Coalescence of Ferromagnetic Droplets in Microchannels Using an Oscillating Magnetic Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21898-21905. [PMID: 39361332 DOI: 10.1021/acs.langmuir.4c03546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Droplet-based microfluidics exhibit remarkable potential in achieving high-throughput chemical reactions with minimal reagent consumption. However, a pivotal challenge lies in the selective coalescence of droplets for precise process control, particularly when dealing with droplets of varying amounts and volumes, which are difficult to trap and coalesce due to their tiny dimensions and incessant movement. Hence, we proposed a method for on-demand coalescence of ferromagnetic droplets using an oscillating magnetic field. Experimental results show that the ferromagnetic droplets can be trapped in different positions in the microchannels according to the applied magnetic field intensity. A high-intensity pulsed amplitude of the magnetic field enables the migration of trapped droplets toward the same position, facilitating their mutual contact and interaction. By programmable modulation of the oscillating magnetic field, a controllable reciprocation of droplets in microchannels was successfully realized, which enabled us to dynamically capture, coalesce, and release two or more (≥3) droplets on demand. The integrated ferromagnetic droplet-based microfluidic platform allows contact-free, easily monitored, and on-demand coalescence of ferromagnetic droplets in microchannels, which holds promise for a wide range of applications, such as microfluidic-based drug synthesis, biosensing, reaction kinetics, and paracrine signaling, particularly.
Collapse
Affiliation(s)
- Hao Chen
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Tianshu Dong
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Xiudong Duan
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Chaolong Song
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
2
|
Liu H, Peng C, Guo S, Liu X, Li X. Rod-Shaped Liquid Plasticine as Cuttable Minireactor for Photodynamic Therapy of Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309535. [PMID: 38193268 DOI: 10.1002/smll.202309535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Indexed: 01/10/2024]
Abstract
Photodynamic therapy (PDT) has emerged as a promising non-invasive approach for cancer treatment. Enhancing its efficacy and understanding its absorption-induced attenuation are significant while the solutions are limited, particularly for the latter. In this study, a rod-shaped liquid plasticine (LP), comprised of a tumor cell solution encased by a nanoparticle monolayer, is used to serve as a powerful minireactor for addressing these issues. The channel structure, openness, and cuttability of the LP reactor are exploited for providing benefits to PDT. The resulting PDT efficacy is several times higher than those from droplet reactors with common spherical shapes. The attenuation law, which is fundamental in PDT yet poorly understood due to the lack of experimental approaches, is preliminarily uncovered here from the perspective of in vitro experiments by using the LP's cuttability, affording quantitative understanding on this difficult subject. These findings provide insights into the widely-concerned topics in PDT, and highlight the great potential of an LP reactor in offering innovation power for the biochemical and biomedical arenas.
Collapse
Affiliation(s)
- Heng Liu
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Chenxi Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Shuaichen Guo
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xiaoguang Li
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
3
|
Gantz M, Neun S, Medcalf EJ, van Vliet LD, Hollfelder F. Ultrahigh-Throughput Enzyme Engineering and Discovery in In Vitro Compartments. Chem Rev 2023; 123:5571-5611. [PMID: 37126602 PMCID: PMC10176489 DOI: 10.1021/acs.chemrev.2c00910] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Indexed: 05/03/2023]
Abstract
Novel and improved biocatalysts are increasingly sourced from libraries via experimental screening. The success of such campaigns is crucially dependent on the number of candidates tested. Water-in-oil emulsion droplets can replace the classical test tube, to provide in vitro compartments as an alternative screening format, containing genotype and phenotype and enabling a readout of function. The scale-down to micrometer droplet diameters and picoliter volumes brings about a >107-fold volume reduction compared to 96-well-plate screening. Droplets made in automated microfluidic devices can be integrated into modular workflows to set up multistep screening protocols involving various detection modes to sort >107 variants a day with kHz frequencies. The repertoire of assays available for droplet screening covers all seven enzyme commission (EC) number classes, setting the stage for widespread use of droplet microfluidics in everyday biochemical experiments. We review the practicalities of adapting droplet screening for enzyme discovery and for detailed kinetic characterization. These new ways of working will not just accelerate discovery experiments currently limited by screening capacity but profoundly change the paradigms we can probe. By interfacing the results of ultrahigh-throughput droplet screening with next-generation sequencing and deep learning, strategies for directed evolution can be implemented, examined, and evaluated.
Collapse
Affiliation(s)
| | | | | | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| |
Collapse
|
4
|
Zhang S, Li Y, Dong R, Li W, Qian Z, Yang Y. All-in-one device for mapping the interactive effects of photodynamic therapy dosimetry in tumor gaseous microenvironment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 239:112645. [PMID: 36608400 DOI: 10.1016/j.jphotobiol.2022.112645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Photodynamic therapy (PDT) elicits cell death, vascular damage, or/and anti-tumor host immune response upon activating the administered photosensitive drug by an appropriate light source. Because PDT is heavily dependent on tissue oxygen (O2) in essence, the concentration-dependent impact of O2 on tailoring cellular response to PDT remains an in-depth investigation. As a multifaceted modality, optimal combinations of photosensitizer (PS) concentration, light dose, and O2 delivery are critical to achieve ideal therapeutic outcomes. We herein present a fully integrated all-in-one device for the in vitro assessment of PDT efficacy synchronizing the quantitative control of three PDT disciplines simultaneously, aiming at 1) identifying the influence of varying gaseous microenvironments on PDT; and 2) determining the contribution of each PDT factor and estimating the strength of their synergic effect. The gas-gradient-generating unit for contactless headspace O2 delivery and spatial light control filtering layer in our device could either work as a stand-alone module or combine to screen a range of experimental PDT parameters. By sweeping a total of 128 conditions over four 5-aminolevulinic acid (5-ALA) concentrations, four light dosages, and eight O2 levels in one single experiment, we determined the main effects of the three key PDT agents and highlighted the interactive effect between 5-ALA and light after full-factorial statistical analysis. Our device is not only a versatile tool for predicting PDT efficacy during the translational study but also provides valuable multidimensional information for the interrelation between key PDT factors, which may expedite clinical PDT dosimetry and furnish new insights for the fundamental understanding of photobiological processes.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yuewu Li
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Rui Dong
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Weitao Li
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yamin Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
5
|
Tang W, He M, Chen B, Ruan G, Xia Y, Xu P, Song G, Bi Y, Hu B. Investigation of toxic effect of mercury on Microcystis aeruginosa: Correlation between intracellular mercury content at single cells level and algae physiological responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159894. [PMID: 36336050 DOI: 10.1016/j.scitotenv.2022.159894] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Single-cell studies can help to understand individual differences and obtain atypical cellular characteristics in view of cellular heterogeneity. Herein, the accumulation of mercury (Hg) in single algae cells was studied by droplet chip-time resolved inductively coupled plasma mass spectrometry analytical system, and the relation of Hg accumulation to the physiological responses of algae cell was explored. When low concentrations of Hg2+ (5-20 μg/L) were used in the exposure experiment, the content of Hg in single cells increased in first 2 h, then decreased with further increase of exposure time to 96 h, probably due to the growth dilution effect of the algae. When exposed to 30 μg/L Hg2+, the uptake of Hg by individual cells increased over time, which was associated with increased cell membrane permeability. The exposure to Hg2+ (5-30 μg/L) inhibited the growth of algae in a concentration-dependent manner and serious growth inhibition occurred under the exposure concentration of 30 μg/L. While the exposure concentration was lower than 20 μg/L, algal cells exhibited a recover tendency due to the self-protection mechanism of algal cells. Bivariate results showed that intracellular Hg accumulation was significantly negatively correlated with cells growth in terms of OD680, photosynthetic pigments, Fv/Fm and PIabs. On the contrast, reactive oxygen species content, superoxide dismutase activity, and cell membrane permeability were significantly positively correlated with the accumulation of intracellular Hg. These results are helpful to further understand the toxic effect of Hg on algae.
Collapse
Affiliation(s)
- Wenxiao Tang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Gang Ruan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yixue Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Pingping Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Gaofei Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yonghong Bi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
6
|
|
7
|
Aguilar Cosme JR, Gagui DC, Bryant HE, Claeyssens F. Morphological Response in Cancer Spheroids for Screening Photodynamic Therapy Parameters. Front Mol Biosci 2021; 8:784962. [PMID: 34869604 PMCID: PMC8637197 DOI: 10.3389/fmolb.2021.784962] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022] Open
Abstract
Photodynamic therapy (PDT) is a treatment which uses light-activated compounds to produce reactive oxygen species, leading to membrane damage and cell death. Multicellular cancer spheroids are a preferable alternative for PDT evaluation in comparison to monolayer cell cultures due to their ability to better mimic in vivo avascular tumour characteristics such as hypoxia and cell-cell interactions, low cost, and ease of production. However, inconsistent growth kinetics and drug responsiveness causes poor experimental reproducibility and limits their usefulness. Herein, we used image analysis to establish a link between human melanoma C8161 spheroid morphology and drug responsiveness. Spheroids were pre-selected based on sphericity, area, and diameter, reducing variation in experimental groups before treatment. Spheroid morphology after PDT was analyzed using AnaSP and ReViSP, MATLAB-based open-source software, obtaining nine different parameters. Spheroids displayed a linear response between biological assays and morphology, with area (R2 = 0.7219) and volume (R2 = 0.6138) showing the best fit. Sphericity, convexity, and solidity were confirmed as poor standalone indicators of spheroid viability. Our results indicate spheroid morphometric parameters can be used to accurately screen inefficient treatment combinations of novel compounds.
Collapse
Affiliation(s)
- Jose R Aguilar Cosme
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Dan C Gagui
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom.,Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Helen E Bryant
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
8
|
Huang C, Zhang H, Han SI, Han A. Cell Washing and Solution Exchange in Droplet Microfluidic Systems. Anal Chem 2021; 93:8622-8630. [PMID: 34110770 DOI: 10.1021/acs.analchem.1c01558] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water-in-oil emulsion droplet microfluidic systems have been extensively developed, and currently, almost all cell handling steps can be conducted in this format. An exception is the cell washing and solution exchange step, which is commonly utilized in many conventional cell assays. This paper presents an in-droplet cell washing and solution exchange technology that utilizes dielectrophoretic (DEP) force to move all cells to one side of a droplet, followed by asymmetrical splitting of the droplet to obtain a small daughter droplet that contains all or most of the cells, and then finally merges this cell-concentrated droplet with a new droplet that contains the desired solution. These sequential droplet manipulation steps were integrated into a single platform, where up to 88% of the original solution in the droplet could be exchanged with the new solution while keeping cell loss to less than 5%. Two application examples were demonstrated using the developed technology. In the first example, green microalga Chlamydomonas reinhardtii cells were manipulated using negative DEP force to exchange the regular culture medium with a nitrogen-limited medium to induce lipid production. In the second example, Salmonella enterica cells were manipulated using positive DEP force to replace fluorescent dye that models fluorescent cell stains that contribute to high background noise in fluorescence-based droplet content detection with fresh buffer solution, significantly improving the droplet content detection sensitivity. Since the cell washing step is one of the most frequently utilized steps in many cell biology assays, we expect that the developed technology can significantly broaden the type of assay that can be conducted in droplet microfluidic format.
Collapse
Affiliation(s)
- Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Han Zhang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Song-I Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
9
|
Zhang H, Guzman AR, Wippold JA, Li Y, Dai J, Huang C, Han A. An ultra high-efficiency droplet microfluidics platform using automatically synchronized droplet pairing and merging. LAB ON A CHIP 2020; 20:3948-3959. [PMID: 32935710 DOI: 10.1039/d0lc00757a] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Droplet microfluidics systems hold great promise in their ability to conduct high-throughput assays for a broad range of life science applications. Despite their promise in the field and capability to conduct complex liquid handling steps, currently, most droplet microfluidic systems used for real assays utilize only a few droplet manipulation steps connected in series, and are often not integrated together on a single chip or platform. This is due to the fact that linking multiple sequential droplet functions within a single chip to operate at high efficiency over long periods of time remains technically challenging. Considering sequential manipulation is often required to conduct high-throughput screening assays on large cellular and molecular libraries, advancements in sequential operation and integration are required to advance the field. This current limitation greatly reduces the type of assays that can be realized in a high-throughput droplet format and becomes more prevalent in large library screening applications. Here we present an integrated multi-layer droplet microfluidic platform that can handle large numbers of droplets with high efficiency and minimum error. The platform combines two-photon photolithography-fabricated curved microstructures that allow high-efficiency (99.9%) re-flow of droplets and a unique droplet cleaving that automatically synchronizes paired droplets enabling high-efficiency (99.9%) downstream merging. We demonstrate that this method is applicable to a broad range of droplet sizes, including relatively large droplet sizes (hundreds of micrometers in diameter) that are typically more difficult to manipulate with high efficiency, yet are required in many cell assay applications requiring large organisms or multiple incubation steps. The utility of this highly efficient integrated droplet microfluidic platform was demonstrated by conducting a mock antibiotic screening assay against a bacterial pathogen. The approach and system presented here provides new avenues for the realization of ultra-high-efficiency multi-step droplet microfluidic systems with minimal error.
Collapse
Affiliation(s)
- Han Zhang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Xu JG, Huang MS, Wang HF, Fang Q. Forming a Large-Scale Droplet Array in a Microcage Array Chip for High-Throughput Screening. Anal Chem 2019; 91:10757-10763. [DOI: 10.1021/acs.analchem.9b02288] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin-Gang Xu
- Institute of Analytical Chemistry, Department of Chemistry and Center for Chemistry of Novel & High-Performance Materials, Zhejiang University, Hangzhou, 310058, China
| | - Meng-Shi Huang
- Institute of Analytical Chemistry, Department of Chemistry and Center for Chemistry of Novel & High-Performance Materials, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Feng Wang
- Institute of Analytical Chemistry, Department of Chemistry and Center for Chemistry of Novel & High-Performance Materials, Zhejiang University, Hangzhou, 310058, China
| | - Qun Fang
- Institute of Analytical Chemistry, Department of Chemistry and Center for Chemistry of Novel & High-Performance Materials, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
11
|
Zhou W, Le J, Chen Y, Cai Y, Hong Z, Chai Y. Recent advances in microfluidic devices for bacteria and fungus research. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Tarn MD, Sikora SNF, Porter GCE, O’Sullivan D, Adams M, Whale TF, Harrison AD, Vergara-Temprado J, Wilson TW, Shim JU, Murray BJ. The study of atmospheric ice-nucleating particles via microfluidically generated droplets. MICROFLUIDICS AND NANOFLUIDICS 2018; 22:52. [PMID: 29720926 PMCID: PMC5915516 DOI: 10.1007/s10404-018-2069-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/05/2018] [Indexed: 05/10/2023]
Abstract
Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 103-106 ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK's annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | | | - Grace C. E. Porter
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | - Daniel O’Sullivan
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | - Mike Adams
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | - Thomas F. Whale
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | | | - Jesús Vergara-Temprado
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- Present Address: Institute for Atmospheric and Climate Science, ETH Zürich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Theodore W. Wilson
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- Present Address: Owlstone Medical Ltd., 127 Science Park, Cambridge, CB4 0GD UK
| | - Jung-uk Shim
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | | |
Collapse
|
13
|
Cochrane WG, Hackler AL, Cavett VJ, Price AK, Paegel BM. Integrated, Continuous Emulsion Creamer. Anal Chem 2017; 89:13227-13234. [PMID: 29124927 DOI: 10.1021/acs.analchem.7b03070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Automated and reproducible sample handling is a key requirement for high-throughput compound screening and currently demands heavy reliance on expensive robotics in screening centers. Integrated droplet microfluidic screening processors are poised to replace robotic automation by miniaturizing biochemical reactions to the droplet scale. These processors must generate, incubate, and sort droplets for continuous droplet screening, passively handling millions of droplets with complete uniformity, especially during the key step of sample incubation. Here, we disclose an integrated microfluidic emulsion creamer that packs ("creams") assay droplets by draining away excess oil through microfabricated drain channels. The drained oil coflows with creamed emulsion and then reintroduces the oil to disperse the droplets at the circuit terminus for analysis. Creamed emulsion assay incubation time dispersion was 1.7%, 3-fold less than other reported incubators. The integrated, continuous emulsion creamer (ICEcreamer) was used to miniaturize and optimize measurements of various enzymatic activities (phosphodiesterase, kinase, bacterial translation) under multiple- and single-turnover conditions. Combining the ICEcreamer with current integrated microfluidic DNA-encoded library bead processors eliminates potentially cumbersome instrumentation engineering challenges and is compatible with assays of diverse target class activities commonly investigated in drug discovery.
Collapse
Affiliation(s)
- Wesley G Cochrane
- Doctoral Program in the Chemical and Biological Sciences and ‡Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Amber L Hackler
- Doctoral Program in the Chemical and Biological Sciences and ‡Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Valerie J Cavett
- Doctoral Program in the Chemical and Biological Sciences and ‡Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Alexander K Price
- Doctoral Program in the Chemical and Biological Sciences and ‡Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Brian M Paegel
- Doctoral Program in the Chemical and Biological Sciences and ‡Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
14
|
Maceiczyk RM, Hess D, Chiu FWY, Stavrakis S, deMello AJ. Differential detection photothermal spectroscopy: towards ultra-fast and sensitive label-free detection in picoliter & femtoliter droplets. LAB ON A CHIP 2017; 17:3654-3663. [PMID: 28967022 DOI: 10.1039/c7lc00946a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Despite the growing importance of droplet-based microfluidics in high-throughput experimentation, few current methods allow the sensitive measurement of absorbance within rapidly moving droplets. To address this significant limitation, we herein present the application of differential detection photothermal interferometry (DDPI) for single-point absorbance quantification in pL- and fL-volume droplets. To assess the efficacy of our approach, we initially measure absorbance in 100 pL droplets at frequencies in excess of 1 kHz and determine a detection limit of 1.4 μmol L-1 for Erythrosin B (A = 3.8 × 10-4). Subsequently, we apply the method to the analysis of fL-volume droplets and droplets generated at frequencies in excess of 10 kHz. Finally, we demonstrate the utility of DDPI as a detection scheme for colorimetric assays. Specifically, we extract the Michaelis-Menten constant for the reaction of β-galactosidase and chlorophenol-red-β-d-galactopyranoside and monitor the metabolomic activity of a population of HL-60 cells at the single cell level. Results establish single-point absorbance detection as a powerful, sensitive and rapid alternative to fluorescence for a wide range of assays within segmented flows.
Collapse
Affiliation(s)
- Richard M Maceiczyk
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
15
|
Chudy M, Tokarska K, Jastrzębska E, Bułka M, Drozdek S, Lamch Ł, Wilk KA, Brzózka Z. Lab-on-a-chip systems for photodynamic therapy investigations. Biosens Bioelectron 2017; 101:37-51. [PMID: 29035761 DOI: 10.1016/j.bios.2017.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 02/06/2023]
Abstract
In recent years photodynamic therapy (PDT) has received widespread attention in cancer treatment due to its smaller surgical trauma, better selectivity towards tumor cells, reduced side effects and possibility of repeatable treatment. Since cancer is the second cause of death worldwide, scientists constantly seek for new potential therapeutic agents including nanotechnology-based photosensitizers used in PDT. The new-designed nanostructures must be carefully studied and well characterized what require analytically useful and powerful tools that enable real progress in nanoscience development. This review describes the current status of PDT investigations using microfluidic Lab-on-a-Chip systems, including recent developments of nanoparticle-based PDT agents, their combinations with different drugs, designs and examples of in vitro applications. This review mainly lays emphasis on biological evaluation of FDA approved photosensitizing agents as well as newly designed nanophotosensitizers. It also highlights the analytical performances of various microfluidic Lab-on-a-chip systems for PDT efficacy analysis on 3D culture and discusses microsystems designs in detail.
Collapse
Affiliation(s)
- Michał Chudy
- Department of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Katarzyna Tokarska
- Department of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Jastrzębska
- Department of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Magdalena Bułka
- Department of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Sławomir Drozdek
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Kazimiera A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Zbigniew Brzózka
- Department of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
16
|
Oomen PE, Mulder JPSH, Verpoorte E, Oleschuk RD. Controlled, synchronized actuation of microdroplets by gravity in a superhydrophobic, 3D-printed device. Anal Chim Acta 2017; 988:50-57. [PMID: 28916103 DOI: 10.1016/j.aca.2017.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/21/2017] [Accepted: 08/04/2017] [Indexed: 11/18/2022]
Abstract
Droplet manipulation over open surfaces allows one to perform assays with a large degree of control and high throughput, making them appealing for applications in drug screening or (bio)analysis. However, the design, manufacturing and operation of these systems comes with high technical requirements. In this study we employ a commercial, low-friction, superhydrophobic coating, Ultra-Ever Dry®, on a 3D-printed microfluidic device. The device features individual droplet compartments, which allow the manipulation of discrete droplets (10-50 μL) actuated by gravity alone. Simply by angling the device to normal in a 3D-printed holder and rocking in a "to and fro"-fashion, a sequence of droplets can be individually transferred to an electrochemical microelectrode detector and then to waste, while preserving the (chronological) order of samples. Multiple biological fluids (i.e. human saliva, urine and rat blood and serum) were successfully tested for compatibility with the device and actuation mechanism, demonstrating low slip angles and high contact angles. Biological matrix (protein) carryover was probed and effectively mitigated by incorporating aqueous rinse droplets as part of the analysis sequence. As a proof-of-concept, the enzyme-coupled, amperometric detection of glucose was carried out on individual rat serum droplets, enabling total analysis in ≈30 min, including calibration. The device is readily customizable, and the integration of droplet generation techniques and other sensor systems for different analytes of interest or applications can be realized in a plug and play fashion.
Collapse
Affiliation(s)
- P E Oomen
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1-XB20, 9713 AV Groningen, The Netherlands.
| | - J P S H Mulder
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1-XB20, 9713 AV Groningen, The Netherlands.
| | - E Verpoorte
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1-XB20, 9713 AV Groningen, The Netherlands.
| | - R D Oleschuk
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
17
|
Yan M, Zhao J, Sun D, Sun W, Zhang B, Deng W, Zhang D, Wang L. Synthesis and effect on SMMC-7721 cells of new benzo[ c , d ]indole rhodanine complex merocyanines as PDT photosensitizers. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.04.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Scheler O, Pacocha N, Debski PR, Ruszczak A, Kaminski TS, Garstecki P. Optimized droplet digital CFU assay (ddCFU) provides precise quantification of bacteria over a dynamic range of 6 logs and beyond. LAB ON A CHIP 2017; 17:1980-1987. [PMID: 28480460 DOI: 10.1039/c7lc00206h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Standard digital assays need a large number of compartments for precise quantification of a sample over a broad dynamic range. We address this issue with an optimized droplet digital approach that uses a drastically reduced number of compartments for quantification. We generate serial logarithmic dilutions of an initial bacterial sample as an array of microliter-sized droplet plugs. In a subsequent step, these droplets are split into libraries of nanoliter droplets and pooled together for incubation and analysis. We show that our technology is at par with traditional dilution plate count for quantification of bacteria, but has the advantage of simplifying the experimental setup and reducing the manual workload. The method also has the potential to reduce the assay time significantly.
Collapse
Affiliation(s)
- O Scheler
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. and Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - N Pacocha
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - P R Debski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - A Ruszczak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - T S Kaminski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - P Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
19
|
Ding Y, Choo J, deMello AJ. From single-molecule detection to next-generation sequencing: microfluidic droplets for high-throughput nucleic acid analysis. MICROFLUIDICS AND NANOFLUIDICS 2017; 21:58. [PMID: 32214953 PMCID: PMC7087872 DOI: 10.1007/s10404-017-1889-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/22/2017] [Indexed: 05/27/2023]
Abstract
Droplet-based microfluidic technologies have proved themselves to be of significant utility in the performance of high-throughput chemical and biological experiments. By encapsulating and isolating reagents within femtoliter-nanoliter droplet, millions of (bio) chemical reactions can be processed in a parallel fashion and on ultra-short timescales. Recent applications of such technologies to genetic analysis have suggested significant utility in low-cost, efficient and rapid workflows for DNA amplification, rare mutation detection, antibody screening and next-generation sequencing. To this end, we describe and highlight some of the most interesting recent developments and applications of droplet-based microfluidics in the broad area of nucleic acid analysis. In addition, we also present a cursory description of some of the most essential functional components, which allow the creation of integrated and complex workflows based on flowing streams of droplets.
Collapse
Affiliation(s)
- Yun Ding
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland
| | - Jaebum Choo
- Department of Bionano Technology, Hanyang University, Ansan, 15588 Republic of Korea
| | - Andrew J. deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
20
|
Wang X, Liu Z, Pang Y. Concentration gradient generation methods based on microfluidic systems. RSC Adv 2017. [DOI: 10.1039/c7ra04494a] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Various concentration gradient generation methods based on microfluidic systems are summarized in this paper.
Collapse
Affiliation(s)
- Xiang Wang
- College of Mechanical Engineering and Applied Electronics Technology
- Beijing University of Technology
- Beijing 100124
- China
| | - Zhaomiao Liu
- College of Mechanical Engineering and Applied Electronics Technology
- Beijing University of Technology
- Beijing 100124
- China
| | - Yan Pang
- College of Mechanical Engineering and Applied Electronics Technology
- Beijing University of Technology
- Beijing 100124
- China
| |
Collapse
|
21
|
Tang MYH, Shum HC. One-step immunoassay of C-reactive protein using droplet microfluidics. LAB ON A CHIP 2016; 16:4359-4365. [PMID: 27738692 DOI: 10.1039/c6lc01121g] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We present a wash-free high-sensitivity immunoassay of C-reactive proteins with droplet microfluidics. Microbeads are encapsulated within droplets for the immunoassay, and the droplets are scanned by a fluorescence detection platform to quantify the amount of proteins captured on the microbeads. The limit of detection determined by our platform is 0.01 μg mL-1, which is ten times more sensitive than conventional high-sensitivity C-reactive protein assays. With the decrease in diffusion distance within droplets, the immunoassay requires only half of the time required for similar conventional approaches. This approach for carrying out immunoassays can potentially be applied to other biomarkers beyond C-reactive proteins.
Collapse
Affiliation(s)
- Matthew Y H Tang
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Ho Cheung Shum
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China. and HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong 518000, China.
| |
Collapse
|
22
|
Time-resolved, single-cell analysis of induced and programmed cell death via non-invasive propidium iodide and counterstain perfusion. Sci Rep 2016; 6:32104. [PMID: 27580964 PMCID: PMC5007472 DOI: 10.1038/srep32104] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/03/2016] [Indexed: 01/02/2023] Open
Abstract
Conventional propidium iodide (PI) staining requires the execution of multiple steps prior to analysis, potentially affecting assay results as well as cell vitality. In this study, this multistep analysis method has been transformed into a single-step, non-toxic, real-time method via live-cell imaging during perfusion with 0.1 μM PI inside a microfluidic cultivation device. Dynamic PI staining was an effective live/dead analytical tool and demonstrated consistent results for single-cell death initiated by direct or indirect triggers. Application of this method for the first time revealed the apparent antibiotic tolerance of wild-type Corynebacterium glutamicum cells, as indicated by the conversion of violet fluorogenic calcein acetoxymethyl ester (CvAM). Additional implementation of this method provided insight into the induced cell lysis of Escherichia coli cells expressing a lytic toxin-antitoxin module, providing evidence for non-lytic cell death and cell resistance to toxin production. Finally, our dynamic PI staining method distinguished necrotic-like and apoptotic-like cell death phenotypes in Saccharomyces cerevisiae among predisposed descendants of nutrient-deprived ancestor cells using PO-PRO-1 or green fluorogenic calcein acetoxymethyl ester (CgAM) as counterstains. The combination of single-cell cultivation, fluorescent time-lapse imaging, and PI perfusion facilitates spatiotemporally resolved observations that deliver new insights into the dynamics of cellular behaviour.
Collapse
|
23
|
Abolhasani M, Jensen KF. Oscillatory multiphase flow strategy for chemistry and biology. LAB ON A CHIP 2016; 16:2775-2784. [PMID: 27397146 DOI: 10.1039/c6lc00728g] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Continuous multiphase flow strategies are commonly employed for high-throughput parameter screening of physical, chemical, and biological processes as well as continuous preparation of a wide range of fine chemicals and micro/nano particles with processing times up to 10 min. The inter-dependency of mixing and residence times, and their direct correlation with reactor length have limited the adaptation of multiphase flow strategies for studies of processes with relatively long processing times (0.5-24 h). In this frontier article, we describe an oscillatory multiphase flow strategy to decouple mixing and residence times and enable investigation of longer timescale experiments than typically feasible with conventional continuous multiphase flow approaches. We review current oscillatory multiphase flow technologies, provide an overview of the advancements of this relatively new strategy in chemistry and biology, and close with a perspective on future opportunities.
Collapse
Affiliation(s)
- Milad Abolhasani
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 66-342, Cambridge, MA 02139, USA.
| | - Klavs F Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 66-342, Cambridge, MA 02139, USA.
| |
Collapse
|
24
|
Kaminski TS, Scheler O, Garstecki P. Droplet microfluidics for microbiology: techniques, applications and challenges. LAB ON A CHIP 2016; 16:2168-87. [PMID: 27212581 DOI: 10.1039/c6lc00367b] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Droplet microfluidics has rapidly emerged as one of the key technologies opening up new experimental possibilities in microbiology. The ability to generate, manipulate and monitor droplets carrying single cells or small populations of bacteria in a highly parallel and high throughput manner creates new approaches for solving problems in diagnostics and for research on bacterial evolution. This review presents applications of droplet microfluidics in various fields of microbiology: i) detection and identification of pathogens, ii) antibiotic susceptibility testing, iii) studies of microbial physiology and iv) biotechnological selection and improvement of strains. We also list the challenges in the dynamically developing field and new potential uses of droplets in microbiology.
Collapse
Affiliation(s)
- Tomasz S Kaminski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | |
Collapse
|
25
|
Chang L, Hu J, Chen F, Chen Z, Shi J, Yang Z, Li Y, Lee LJ. Nanoscale bio-platforms for living cell interrogation: current status and future perspectives. NANOSCALE 2016; 8:3181-3206. [PMID: 26745513 DOI: 10.1039/c5nr06694h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The living cell is a complex entity that dynamically responds to both intracellular and extracellular environments. Extensive efforts have been devoted to the understanding intracellular functions orchestrated with mRNAs and proteins in investigation of the fate of a single-cell, including proliferation, apoptosis, motility, differentiation and mutations. The rapid development of modern cellular analysis techniques (e.g. PCR, western blotting, immunochemistry, etc.) offers new opportunities in quantitative analysis of RNA/protein expression up to a single cell level. The recent entries of nanoscale platforms that include kinds of methodologies with high spatial and temporal resolution have been widely employed to probe the living cells. In this tutorial review paper, we give insight into background introduction and technical innovation of currently reported nanoscale platforms for living cell interrogation. These highlighted technologies are documented in details within four categories, including nano-biosensors for label-free detection of living cells, nanodevices for living cell probing by intracellular marker delivery, high-throughput platforms towards clinical current, and the progress of microscopic imaging platforms for cell/tissue tracking in vitro and in vivo. Perspectives for system improvement were also discussed to solve the limitations remains in current techniques, for the purpose of clinical use in future.
Collapse
Affiliation(s)
- Lingqian Chang
- NSF Nanoscale Science and Engineering Center (NSEC), The Ohio State University, Columbus, OH 43212, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Alexander K. Price
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Brian M. Paegel
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States
| |
Collapse
|
27
|
Dai J, Kim HS, Guzman AR, Shim WB, Han A. A large-scale on-chip droplet incubation chamber enables equal microbial culture time. RSC Adv 2016. [DOI: 10.1039/c5ra26505c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A compact on-chip first-in first-out droplet incubation chamber enables an equal droplet incubation time for a large number of droplets.
Collapse
Affiliation(s)
- Jing Dai
- Department of Electrical and Computer Engineering
- Texas A&M University
- College Station
- USA
| | - Hyun Soo Kim
- Department of Electrical and Computer Engineering
- Texas A&M University
- College Station
- USA
| | - Adrian Ryan Guzman
- Department of Electrical and Computer Engineering
- Texas A&M University
- College Station
- USA
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology
- Texas A&M University
- College Station
- USA
| | - Arum Han
- Department of Electrical and Computer Engineering
- Texas A&M University
- College Station
- USA
- Department of Biomedical Engineering
| |
Collapse
|
28
|
Kang DK, Gong X, Cho S, Kim JY, Edel JB, Chang SI, Choo J, deMello AJ. 3D Droplet Microfluidic Systems for High-Throughput Biological Experimentation. Anal Chem 2015; 87:10770-8. [DOI: 10.1021/acs.analchem.5b02402] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dong-Ku Kang
- Department of Chemistry, Imperial College London, South
Kensington, London SW7 2AZ, United Kingdom
| | - Xiuqing Gong
- Department of Chemistry, Imperial College London, South
Kensington, London SW7 2AZ, United Kingdom
| | - Soongwon Cho
- Department of Chemistry, Imperial College London, South
Kensington, London SW7 2AZ, United Kingdom
| | - Jin-young Kim
- Department of Chemistry, Imperial College London, South
Kensington, London SW7 2AZ, United Kingdom
| | - Joshua B. Edel
- Department of Chemistry, Imperial College London, South
Kensington, London SW7 2AZ, United Kingdom
| | - Soo-Ik Chang
- Department of Biochemistry, Chungbuk National University, Cheongjoo 361-763, South Korea
| | - Jaebum Choo
- Department of Bionano Technology, Hanyang University, Sa-3-dong 1271, Ansan 426-791, South Korea
| | - Andrew J. deMello
- Department of Chemistry, Imperial College London, South
Kensington, London SW7 2AZ, United Kingdom
| |
Collapse
|
29
|
Shih SCC, Goyal G, Kim PW, Koutsoubelis N, Keasling JD, Adams PD, Hillson NJ, Singh AK. A Versatile Microfluidic Device for Automating Synthetic Biology. ACS Synth Biol 2015; 4:1151-64. [PMID: 26075958 DOI: 10.1021/acssynbio.5b00062] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
New microbes are being engineered that contain the genetic circuitry, metabolic pathways, and other cellular functions required for a wide range of applications such as producing biofuels, biobased chemicals, and pharmaceuticals. Although currently available tools are useful in improving the synthetic biology process, further improvements in physical automation would help to lower the barrier of entry into this field. We present an innovative microfluidic platform for assembling DNA fragments with 10× lower volumes (compared to that of current microfluidic platforms) and with integrated region-specific temperature control and on-chip transformation. Integration of these steps minimizes the loss of reagents and products compared to that with conventional methods, which require multiple pipetting steps. For assembling DNA fragments, we implemented three commonly used DNA assembly protocols on our microfluidic device: Golden Gate assembly, Gibson assembly, and yeast assembly (i.e., TAR cloning, DNA Assembler). We demonstrate the utility of these methods by assembling two combinatorial libraries of 16 plasmids each. Each DNA plasmid is transformed into Escherichia coli or Saccharomyces cerevisiae using on-chip electroporation and further sequenced to verify the assembly. We anticipate that this platform will enable new research that can integrate this automated microfluidic platform to generate large combinatorial libraries of plasmids and will help to expedite the overall synthetic biology process.
Collapse
Affiliation(s)
- Steve C. C. Shih
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Garima Goyal
- Physical
Bioscience Division, Lawrence Berkeley National Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| | - Peter W. Kim
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Nicolas Koutsoubelis
- Physical
Bioscience Division, Lawrence Berkeley National Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| | - Jay D. Keasling
- Physical
Bioscience Division, Lawrence Berkeley National Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
- Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Paul D. Adams
- Physical
Bioscience Division, Lawrence Berkeley National Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| | - Nathan J. Hillson
- Physical
Bioscience Division, Lawrence Berkeley National Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| | - Anup K. Singh
- Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| |
Collapse
|
30
|
Enhancing Throughput of Combinatorial Droplet Devices via Droplet Bifurcation, Parallelized Droplet Fusion, and Parallelized Detection. MICROMACHINES 2015. [DOI: 10.3390/mi6101434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Collins DJ, Neild A, deMello A, Liu AQ, Ai Y. The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. LAB ON A CHIP 2015; 15:3439-59. [PMID: 26226550 DOI: 10.1039/c5lc00614g] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
There is a recognized and growing need for rapid and efficient cell assays, where the size of microfluidic devices lend themselves to the manipulation of cellular populations down to the single cell level. An exceptional way to analyze cells independently is to encapsulate them within aqueous droplets surrounded by an immiscible fluid, so that reagents and reaction products are contained within a controlled microenvironment. Most cell encapsulation work has focused on the development and use of passive methods, where droplets are produced continuously at high rates by pumping fluids from external pressure-driven reservoirs through defined microfluidic geometries. With limited exceptions, the number of cells encapsulated per droplet in these systems is dictated by Poisson statistics, reducing the proportion of droplets that contain the desired number of cells and thus the effective rate at which single cells can be encapsulated. Nevertheless, a number of recently developed actively-controlled droplet production methods present an alternative route to the production of droplets at similar rates and with the potential to improve the efficiency of single-cell encapsulation. In this critical review, we examine both passive and active methods for droplet production and explore how these can be used to deterministically and non-deterministically encapsulate cells.
Collapse
Affiliation(s)
- David J Collins
- Engineering Product Design pillar, Singapore University of Technology and Design, Singapore.
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Li R, Niu R, Qi J, Yuan H, Fan Y, An H, Yan W, Li H, Zhan Y, Xing C. Conjugated Polythiophene for Rapid, Simple, and High-Throughput Screening of Antimicrobial Photosensitizers. ACS APPLIED MATERIALS & INTERFACES 2015; 7:14569-14572. [PMID: 26134743 DOI: 10.1021/acsami.5b04552] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The cationic conjugated poly[3-(3'-N,N,N-triethylamino-1'-propyloxy)-4-methyl-2,5-thiophene hydrochloride] (PMNT) has been developed for high-throughput screening of photodynamic antimicrobial chemotherapy photosensitizers (PSs). The bacterial number can be detected quantitatively by PMNT via various fluorescence quenching efficiencies. The photosensitized inactivation of bacteria is not efficient with ineffective PSs, and thus the bacteria grow exponentially and can be coated tightly by PMNT through electrostatic and hydrophobic interactions, resulting in aggregates and fluorescence quenching of PMNT, whereas, conversely, effective PSs lead to original and strong fluorescence of PMNT. This new platform of high-throughput screening is promising for discovering new PSs.
Collapse
Affiliation(s)
- Ruihua Li
- †School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ruimin Niu
- §Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Junjie Qi
- §Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Hongbo Yuan
- §Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yibing Fan
- §Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Hailong An
- §Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Wenmin Yan
- †School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Huanrong Li
- †School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yong Zhan
- §Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Chengfen Xing
- †School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
- §Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
34
|
Chen J, Zhou G, Liu Y, Ye T, Xiang X, Ji X, He Z. Assembly-line manipulation of droplets in microfluidic platform for fluorescence encoding and simultaneous multiplexed DNA detection. Talanta 2015; 134:271-277. [DOI: 10.1016/j.talanta.2014.11.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/23/2022]
|
35
|
Nguyen P, Mohaddes D, Riordon J, Fadaei H, Lele P, Sinton D. Fast Fluorescence-Based Microfluidic Method for Measuring Minimum Miscibility Pressure of CO2 in Crude Oils. Anal Chem 2015; 87:3160-4. [DOI: 10.1021/ac5047856] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Phong Nguyen
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - Danyal Mohaddes
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - Jason Riordon
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - Hossein Fadaei
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - Pushan Lele
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - David Sinton
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
36
|
Jin SH, Jeong HH, Lee B, Lee SS, Lee CS. A programmable microfluidic static droplet array for droplet generation, transportation, fusion, storage, and retrieval. LAB ON A CHIP 2015; 15:3677-86. [PMID: 26247820 DOI: 10.1039/c5lc00651a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We present a programmable microfluidic static droplet array (SDA) device that can perform user-defined multistep combinatorial protocols. It combines the passive storage of aqueous droplets without any external control with integrated microvalves for discrete sample dispensing and dispersion-free unit operation. The addressable picoliter-volume reaction is systematically achieved by consecutively merging programmable sequences of reagent droplets. The SDA device is remarkably reusable and able to perform identical enzyme kinetic experiments at least 30 times via automated cross-contamination-free removal of droplets from individual hydrodynamic traps. Taking all these features together, this programmable and reusable universal SDA device will be a general microfluidic platform that can be reprogrammed for multiple applications.
Collapse
Affiliation(s)
- Si Hyung Jin
- Department of Chemical Engineering, Chungnam National University, Daejeon, Republic of Korea.
| | | | | | | | | |
Collapse
|
37
|
He M, Crow J, Roth M, Zeng Y, Godwin AK. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. LAB ON A CHIP 2014; 14:3773-80. [PMID: 25099143 PMCID: PMC4161194 DOI: 10.1039/c4lc00662c] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/18/2014] [Indexed: 05/02/2023]
Abstract
Developing blood-based tests is appealing for non-invasive disease diagnosis, especially when biopsy is difficult, costly, and sometimes not even an option. Tumor-derived exosomes have attracted increasing interest in non-invasive cancer diagnosis and monitoring of treatment response. However, the biology and clinical value of exosomes remains largely unknown due in part to current technical challenges in rapid isolation, molecular classification and comprehensive analysis of exosomes. Here we developed a new microfluidic approach to streamline and expedite the exosome analysis pipeline by integrating specific immunoisolation and targeted protein analysis of circulating exosomes. Compared to the conventional methods, our approach enables selective subpopulation isolation and quantitative detection of surface and intravesicular biomarkers directly from a minimally invasive amount of plasma samples (30 μL) within ~100 min with markedly improved detection sensitivity. Using this device, we demonstrated phenotyping of exosome subpopulations by targeting a panel of common exosomal and tumor-specific markers and multiparameter analyses of intravesicular biomarkers in the selected subpopulation. We were able to assess the total expression and phosphorylation levels of IGF-1R in non-small-cell lung cancer patients by probing plasma exosomes as a non-invasive alternative to conventional tissue biopsy. We foresee that the microfluidic exosome analysis platform will form the basis for critically needed infrastructures for advancing the biology and clinical utilization of exosomes.
Collapse
Affiliation(s)
- Mei He
- Department of Pathology and Laboratory Medicine , University of Kansas Medical Center , Kansas City , KS 66160 , USA . ; Fax: +1 (913) 945 6373 ; Tel: +1 (913) 945 6327
| | - Jennifer Crow
- Department of Pathology and Laboratory Medicine , University of Kansas Medical Center , Kansas City , KS 66160 , USA . ; Fax: +1 (913) 945 6373 ; Tel: +1 (913) 945 6327
| | - Marc Roth
- Department of Pathology and Laboratory Medicine , University of Kansas Medical Center , Kansas City , KS 66160 , USA . ; Fax: +1 (913) 945 6373 ; Tel: +1 (913) 945 6327
| | - Yong Zeng
- Department of Chemistry , Ralph N Adams Institute for Bioanalytical Chemistry , and Bioengineering Graduate Program , University of Kansas , Lawrence , KS 66045 , USA . ; Fax: +1 (785) 864 5396 ; Tel: +1 (785) 864 8105
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine , University of Kansas Medical Center , Kansas City , KS 66160 , USA . ; Fax: +1 (913) 945 6373 ; Tel: +1 (913) 945 6327
- University of Kansas Cancer Center , Kansas City , KS 66160 , USA
| |
Collapse
|
38
|
A universal microarray platform: Towards high-throughput electrochemical detection. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Gasilova N, Yu Q, Qiao L, Girault HH. On-Chip Spyhole Mass Spectrometry for Droplet-Based Microfluidics. Angew Chem Int Ed Engl 2014; 53:4408-12. [DOI: 10.1002/anie.201310795] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Indexed: 12/23/2022]
|
40
|
Gasilova N, Yu Q, Qiao L, Girault HH. On-Chip Spyhole Mass Spectrometry for Droplet-Based Microfluidics. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310795] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Lou X, Kim G, Yoon HK, Lee YEK, Kopelman R, Yoon E. A high-throughput photodynamic therapy screening platform with on-chip control of multiple microenvironmental factors. LAB ON A CHIP 2014; 14:892-901. [PMID: 24394779 PMCID: PMC3951301 DOI: 10.1039/c3lc51077h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present a novel high-throughput microfluidic platform that enables the evaluation of the anticancer efficacy of photodynamic therapy (PDT) drugs over multiple microenvironmental factors. PDT is uniquely complex, originating from its dependence on three separate but essential elements: drug (also called photosensitizer), oxygen, and light. Thus, obtaining a reliable evaluation of PDT efficacy is highly challenging, requiring considerable effort and time to evaluate all three interdependent parameters. In this paper, we report a high-throughput efficacy screening platform that we implemented by developing microfluidic components that individually control basic PDT elements (photosensitizer concentrations, oxygen levels, and light fluence) and then integrating them into a single triple-layer device. The integrated microfluidic chip consists of an array of small compartments, each corresponding to a specific combination of these three variables. This allows for more than 1000 different conditions being tested in parallel. Cancer cells are cultured within the device, exposed to different PDT conditions, and then monitored for their viability using live/dead fluorescence staining. The entire screening assay takes only 1 hour, and the collected PDT outcomes (cell viability) for combinatorial screening are analysed and reported as traditional dose-response curves or 3D bubble charts using custom software. As a proof of concept, methylene blue is adopted as a photosensitizer and its drug efficacy on C6 glioma cells has been successfully evaluated for a total of 324 PDT conditions using the fabricated chip. This platform can facilitate not only the development of new photosensitizers but also the optimization of current PDT protocols.
Collapse
Affiliation(s)
- Xia Lou
- Center for Wireless Integrated Microsystems, Department of EECS, University of Michigan, 1301 Beal Ave, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|