1
|
Pál D, Tóth G, Turiák L. Investigation of sample handling steps for accurate heparan sulphate disaccharide analysis using HPLC-MS. Electrophoresis 2024. [PMID: 39166784 DOI: 10.1002/elps.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
Heparan sulphates (HSs), a specific class of glycosaminoglycans (GAGs), are important participants of cellular signalling. Analytical characterization of GAGs requires a complex sample preparation workflow. Although a detailed stability and recovery study is available for the chondroitin sulphate GAG class, the literature concerning HS is incomplete in this regard. Therefore, our aim was to systematically investigate various parameters that could potentially influence the stability and recovery of HS samples when performing disaccharide analysis using high-performance liquid chromatography-mass spectrometry. First, effects concerning vacuum evaporation and freezing were investigated. Next, the storage stability of the HS disaccharides was analysed under several conditions such as temperature, pH, digestion buffers, injection solvents and storage vessels. We have identified several critical parameters influencing the stability and recovery of HS disaccharides. We concluded that major sample loss is expected when Tris-HCl is used as digestion buffer, followed by vacuum evaporation at elevated temperatures, or samples are stored under alkaline conditions. Following the practical considerations of this paper can contribute to increasing the reliability of future analytical measurements.
Collapse
Affiliation(s)
- Domonkos Pál
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School, Semmelweis University, Budapest, Hungary
| | - Gábor Tóth
- BMC Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Lilla Turiák
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
2
|
Sethi MK, Maccioni R, Hogan JD, Kawamura T, Repunte-Canonigo V, Chen J, Zaia J, Sanna PP. Comprehensive Glycomic and Proteomic Analysis of Mouse Striatum and Lateral Hypothalamus Following Repeated Exposures to Cocaine or Methamphetamine. Mol Cell Proteomics 2024; 23:100803. [PMID: 38880242 PMCID: PMC11324981 DOI: 10.1016/j.mcpro.2024.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024] Open
Abstract
Substance use disorder is a major concern, with few therapeutic options. Heparan sulfate (HS) and chondroitin sulfate (CS) interact with a plethora of growth factors and their receptors and have profound effects on cellular signaling. Thus, targeting these dynamic interactions might represent a potential novel therapeutic modality. In the present study, we performed mass spectrometry-based glycomic and proteomic analysis to understand the effects of cocaine and methamphetamine (METH) on HS, CS, and the proteome of two brain regions critically involved in drug addiction: the lateral hypothalamus and the striatum. We observed that cocaine and METH significantly alter HS and CS abundances as well as sulfate contents and composition. In particular, repeated METH or cocaine treatments reduced CS 4-O-sulfation and increased CS 6-O-sulfation. Since C4S and C6S exercise differential effects on axon growth, regeneration, and plasticity, these changes likely contribute to drug-induced neural plasticity in these brain regions. Notably, we observed that restoring these alterations by increasing CS 4-0 levels in the lateral hypothalamus by adeno-associated virus delivery of an shRNA to arylsulfatase B (N-acetylgalactosamine-4-sulfatase) ameliorated anxiety and prevented the expression of preference for cocaine in a novelty induced conditioned place preference test during cocaine withdrawal. Finally, proteomics analyses revealed a number of aberrant proteins in METH- and cocaine-treated versus saline-treated mice, including myelin proteolipid protein, calcium/calmodulin-dependent protein kinase type II subunit alpha, synapsin-2, tenascin-R, calnexin, annexin A7, hepatoma-derived growth factor, neurocan, and CSPG5, and oxidative phosphorylation among the top perturbed pathway. Taken together, these data support the role of HS, CS, and associated proteins in stimulants abuse and suggest that manipulation of HSPGs can represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Manveen K Sethi
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Riccardo Maccioni
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - John D Hogan
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Tomoya Kawamura
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Jihuan Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, Massachusetts, USA; Bioinformatics Program, Boston University, Boston, Massachusetts, USA.
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
3
|
Downs M, Zaia J, Sethi MK. Mass spectrometry methods for analysis of extracellular matrix components in neurological diseases. MASS SPECTROMETRY REVIEWS 2023; 42:1848-1875. [PMID: 35719114 PMCID: PMC9763553 DOI: 10.1002/mas.21792] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/12/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The brain extracellular matrix (ECM) is a highly glycosylated environment and plays important roles in many processes including cell communication, growth factor binding, and scaffolding. The formation of structures such as perineuronal nets (PNNs) is critical in neuroprotection and neural plasticity, and the formation of molecular networks is dependent in part on glycans. The ECM is also implicated in the neuropathophysiology of disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and Schizophrenia (SZ). As such, it is of interest to understand both the proteomic and glycomic makeup of healthy and diseased brain ECM. Further, there is a growing need for site-specific glycoproteomic information. Over the past decade, sample preparation, mass spectrometry, and bioinformatic methods have been developed and refined to provide comprehensive information about the glycoproteome. Core ECM molecules including versican, hyaluronan and proteoglycan link proteins, and tenascin are dysregulated in AD, PD, and SZ. Glycomic changes such as differential sialylation, sulfation, and branching are also associated with neurodegeneration. A more thorough understanding of the ECM and its proteomic, glycomic, and glycoproteomic changes in brain diseases may provide pathways to new therapeutic options.
Collapse
Affiliation(s)
- Margaret Downs
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Manveen K Sethi
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Circadian Clock Genes Act as Diagnostic and Prognostic Biomarkers of Glioma: Clinic Implications for Chronotherapy. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9774879. [PMID: 35832846 PMCID: PMC9273445 DOI: 10.1155/2022/9774879] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Gliomas are the most common primary intracranial tumors and closely related to circadian clock. Due to the high mortality and morbidity of gliomas, exploring novel diagnostic and early prognostic markers is necessary. Circadian clock genes (CCGs) play important roles in regulating the daily oscillation of biological processes and the development of tumor. Therefore, we explored the influences that the oscillations of circadian clock genes (CCGs) on diagnosis and prognosis of gliomas using bioinformatics. In this work, we systematically analyzed the rhythmic expression of CCGs in brain and found that some CCGs had strong rhythmic expression; the expression levels were significantly different between day and night. Four CCGs (ARNTL, NPAS2, CRY2, and DBP) with rhythmic expression were not only identified as differentially expressed genes but also had significant independent prognostic ability in the overall survival of glioma patients and were highly correlated with glioma prognosis in COX analysis. Besides, we found that CCG-based predictive model demonstrated higher predictive accuracy than that of the traditional grade-based model; this new prediction model can greatly improve the accuracy of glioma prognosis. Importantly, based on the four CCGs’ circadian oscillations, we revealed that patients sampled at night had higher predictive ability. This may help detect glioma as early as possible, leading to early cancer intervention. In addition, we explored the mechanism of CCGs affecting the prognosis of glioma. CCGs regulated the cell cycle, DNA damage, Wnt, mTOR, and MAPK signaling pathways. In addition, it also affects prognosis through gene coexpression and immune infiltration. Importantly, ARNTL can rhythmically modulated the cellular sensitivity to clinic drugs, temozolomide. The optimal point of temozolomide administration should be when ARNTL expression is highest, that is, the effect is better at night. In summary, our study provided a basis for optimizing clinical dosing regimens and chronotherapy for glioma. The four key CCGs can serve as potential diagnostic and prognostic biomarkers for glioma patients, and ARNTL also has obvious advantages in the direction of glioma chronotherapy.
Collapse
|
5
|
Sethi MK, Downs M, Shao C, Hackett WE, Phillips JJ, Zaia J. In-Depth Matrisome and Glycoproteomic Analysis of Human Brain Glioblastoma Versus Control Tissue. Mol Cell Proteomics 2022; 21:100216. [PMID: 35202840 PMCID: PMC8957055 DOI: 10.1016/j.mcpro.2022.100216] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor. The extracellular matrix, also known as the matrisome, helps determine glioma invasion, adhesion, and growth. Little attention, however, has been paid to glycosylation of the extracellular matrix components that constitute the majority of glycosylated protein mass and presumed biological properties. To acquire a comprehensive understanding of the biological functions of the matrisome and its components, including proteoglycans (PGs) and glycosaminoglycans (GAGs), in GBM tumorigenesis, and to identify potential biomarker candidates, we studied the alterations of GAGs, including heparan sulfate (HS) and chondroitin sulfate (CS), the core proteins of PGs, and other glycosylated matrisomal proteins in GBM subtypes versus control human brain tissue samples. We scrutinized the proteomics data to acquire in-depth site-specific glycoproteomic profiles of the GBM subtypes that will assist in identifying specific glycosylation changes in GBM. We observed an increase in CS 6-O sulfation and a decrease in HS 6-O sulfation, accompanied by an increase in unsulfated CS and HS disaccharides in GBM versus control samples. Several core matrisome proteins, including PGs (decorin, biglycan, agrin, prolargin, glypican-1, and chondroitin sulfate proteoglycan 4), tenascin, fibronectin, hyaluronan link protein 1 and 2, laminins, and collagens, were differentially regulated in GBM versus controls. Interestingly, a higher degree of collagen hydroxyprolination was also observed for GBM versus controls. Further, two PGs, chondroitin sulfate proteoglycan 4 and agrin, were significantly lower, about 6-fold for isocitrate dehydrogenase-mutant, compared to the WT GBM samples. Differential regulation of O-glycopeptides for PGs, including brevican, neurocan, and versican, was observed for GBM subtypes versus controls. Moreover, an increase in levels of glycosyltransferase and glycosidase enzymes was observed for GBM when compared to control samples. We also report distinct protein, peptide, and glycopeptide features for GBM subtypes comparisons. Taken together, our study informs understanding of the alterations to key matrisomal molecules that occur during GBM development. (Data are available via ProteomeXchange with identifier PXD028931, and the peaks project file is available at Zenodo with DOI 10.5281/zenodo.5911810).
Collapse
Affiliation(s)
- Manveen K Sethi
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
| | - Margaret Downs
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
| | - Chun Shao
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
| | - William E Hackett
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA; Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Center, Helen Diller Family Cancer Research Center, University of California San Francisco, San Francisco, California, USA; Division of Neuropathology, Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA; Bioinformatics Program, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Wang Z, Dhurandhare VM, Mahung CA, Arnold K, Li J, Su G, Xu D, Maile R, Liu J. Improving the Sensitivity for Quantifying Heparan Sulfate from Biological Samples. Anal Chem 2021; 93:11191-11199. [PMID: 34355888 PMCID: PMC8454094 DOI: 10.1021/acs.analchem.1c01761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heparan sulfates (HSs) are widely expressed glycans in the animal kingdom. HS plays a role in regulating cell differentiation/proliferation, embryonic development, blood coagulation, inflammatory response, and viral infection. The amount of HS and its structural information are critically important for investigating the functions of HS in vivo. A sensitive and reliable quantitative technique for the analysis of HS from biological samples is under development. Here, we report a new labeling reagent for HS disaccharides analysis, 6-amino-N-(2-diethylamino)ethyl quinoline-2-carboamide (AMQC). The AMQC-conjugated disaccharides are analyzed by LC-MS/MS in positive mode, significantly improving the sensitivity. The use of AMQC coupled with authentic 13C-labeled HS disaccharide internal standards empowered us to determine the amount and the disaccharide composition of the HS on a single histological slide. We used this method to profile the levels of HS in the plasma/serum and tissues/organs to assist the disease prognosis in two animal models, including the acetaminophen (APAP)-induced acute liver injury mouse model and the burn injury mouse model. The method may uncover the roles of HS contributing to the diseases as well as provide a potential new set of biomarkers for disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| | - Vijay M Dhurandhare
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States.,Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Cressida A Mahung
- Department of Surgery, North Carolina Jaycee Burn Center, University of North Carolina, Chapel Hill, North Carolina 27599-7050, United States
| | - Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| | - Jine Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| | - Guowei Su
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States.,Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Ding Xu
- Department of Oral Biology, School of Dental Medicine, The State University of New York at Buffalo, Buffalo, New York 14214, United States
| | - Rob Maile
- Department of Surgery, North Carolina Jaycee Burn Center, University of North Carolina, Chapel Hill, North Carolina 27599-7050, United States.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Curriculum of Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7325, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| |
Collapse
|
7
|
Logsdon AF, Rhea EM, Reed M, Banks WA, Erickson MA. The neurovascular extracellular matrix in health and disease. Exp Biol Med (Maywood) 2021; 246:835-844. [PMID: 33302738 PMCID: PMC8719034 DOI: 10.1177/1535370220977195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The blood-brain barrier (BBB) is a vital interface that supports normal brain functions. Endothelial cells (ECs) are the main component of the BBB and are highly specialized to govern the transfer of substances into brain. The EC lumen is enmeshed with an extracellular matrix (ECM), known as the endothelial glycocalyx layer (EGL). The lumen-facing EGL is primarily comprised of proteoglycans (PGs) and glycosaminoglycans (GAGs), which function as the first line of defense for blood-to-brain transfer of substances. Circulating factors must first penetrate the EGL before interacting with the EC. The abundance and composition of the PG and GAGs can dictate EGL function, and determine which circulating substances communicate with the ECs. The EGL can interact with circulating factors through physio-chemical interactions with the EC. Some disease states reveal a "thinning" of the EGL that may increase EC interactions with components of the systemic circulation and alter BBB function. EGL changes may also contribute to the cognitive complications of systemic diseases, such as sepsis and diabetes. For decades, researchers have measured how genetic and environmental factors influence the peripheral EGL constituents; however, much less is known about the neurovascular EGL. In this mini-review, we introduce components of the EGL and innovative ways to measure their abundance and composition that may contribute to BBB dysfunction.
Collapse
Affiliation(s)
- Aric F Logsdon
- Geriatrics Research Education and Clinical Center,
Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108,
USA
- Division of Gerontology and Geriatric Medicine,
Department of Medicine, University of Washington School of Medicine,
Seattle, WA 98159, USA
| | - Elizabeth M Rhea
- Geriatrics Research Education and Clinical Center,
Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108,
USA
- Division of Gerontology and Geriatric Medicine,
Department of Medicine, University of Washington School of Medicine,
Seattle, WA 98159, USA
| | - May Reed
- Geriatrics Research Education and Clinical Center,
Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108,
USA
- Division of Gerontology and Geriatric Medicine,
Department of Medicine, University of Washington School of Medicine,
Seattle, WA 98159, USA
| | - William A Banks
- Geriatrics Research Education and Clinical Center,
Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108,
USA
- Division of Gerontology and Geriatric Medicine,
Department of Medicine, University of Washington School of Medicine,
Seattle, WA 98159, USA
| | - Michelle A Erickson
- Geriatrics Research Education and Clinical Center,
Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108,
USA
- Division of Gerontology and Geriatric Medicine,
Department of Medicine, University of Washington School of Medicine,
Seattle, WA 98159, USA
| |
Collapse
|
8
|
Pepi LE, Sanderson P, Stickney M, Amster IJ. Developments in Mass Spectrometry for Glycosaminoglycan Analysis: A Review. Mol Cell Proteomics 2021; 20:100025. [PMID: 32938749 PMCID: PMC8724624 DOI: 10.1074/mcp.r120.002267] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
This review covers recent developments in glycosaminoglycan (GAG) analysis via mass spectrometry (MS). GAGs participate in a variety of biological functions, including cellular communication, wound healing, and anticoagulation, and are important targets for structural characterization. GAGs exhibit a diverse range of structural features due to the variety of O- and N-sulfation modifications and uronic acid C-5 epimerization that can occur, making their analysis a challenging target. Mass spectrometry approaches to the structure assignment of GAGs have been widely investigated, and new methodologies remain the subject of development. Advances in sample preparation, tandem MS techniques (MS/MS), online separations, and automated analysis software have advanced the field of GAG analysis. These recent developments have led to remarkable improvements in the precision and time efficiency for the structural characterization of GAGs.
Collapse
Affiliation(s)
- Lauren E Pepi
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | | | - Morgan Stickney
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
9
|
Vallet SD, Clerc O, Ricard-Blum S. Glycosaminoglycan-Protein Interactions: The First Draft of the Glycosaminoglycan Interactome. J Histochem Cytochem 2020; 69:93-104. [PMID: 32757871 DOI: 10.1369/0022155420946403] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The six mammalian glycosaminoglycans (GAGs), chondroitin sulfate, dermatan sulfate, heparin, heparan sulfate, hyaluronan, and keratan sulfate, are linear polysaccharides. Except for hyaluronan, they are sulfated to various extent, and covalently attached to proteins to form proteoglycans. GAGs interact with growth factors, morphogens, chemokines, extracellular matrix proteins and their bioactive fragments, receptors, lipoproteins, and pathogens. These interactions mediate their functions, from embryonic development to extracellular matrix assembly and regulation of cell signaling in various physiological and pathological contexts such as angiogenesis, cancer, neurodegenerative diseases, and infections. We give an overview of GAG-protein interactions (i.e., specificity and chemical features of GAG- and protein-binding sequences), and review the available GAG-protein interaction networks. We also provide the first comprehensive draft of the GAG interactome composed of 832 biomolecules (827 proteins and five GAGs) and 932 protein-GAG interactions. This network is a scaffold, which in the future should integrate structures of GAG-protein complexes, quantitative data of the abundance of GAGs in tissues to build tissue-specific interactomes, and GAG interactions with metal ions such as calcium, which plays a major role in the assembly of the extracellular matrix and its interactions with cells. This contextualized interactome will be useful to identify druggable GAG-protein interactions for therapeutic purpose.
Collapse
Affiliation(s)
- Sylvain D Vallet
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, Villeurbanne Cedex, France
| | - Olivier Clerc
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, Villeurbanne Cedex, France
| | - Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, Villeurbanne Cedex, France
| |
Collapse
|
10
|
Raghunathan R, Hogan JD, Labadorf A, Myers RH, Zaia J. A glycomics and proteomics study of aging and Parkinson's disease in human brain. Sci Rep 2020; 10:12804. [PMID: 32733076 PMCID: PMC7393382 DOI: 10.1038/s41598-020-69480-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/04/2020] [Indexed: 01/08/2023] Open
Abstract
Previous studies on Parkinson’s disease mechanisms have shown dysregulated extracellular transport of α-synuclein and growth factors in the extracellular space. In the human brain these consist of perineuronal nets, interstitial matrices, and basement membranes, each composed of a set of collagens, non-collagenous glycoproteins, proteoglycans, and hyaluronan. The manner by which amyloidogenic proteins spread extracellularly, become seeded, oligomerize, and are taken up by cells, depends on intricate interactions with extracellular matrix molecules. We sought to assess the alterations to structure of glycosaminoglycans and proteins that occur in PD brain relative to controls of similar age. We found that PD differs markedly from normal brain in upregulation of extracellular matrix structural components including collagens, proteoglycans and glycosaminoglycan binding molecules. We also observed that levels of hemoglobin chains, possibly related to defects in iron metabolism, were enriched in PD brains. These findings shed important new light on disease processes that occur in association with PD.
Collapse
Affiliation(s)
- Rekha Raghunathan
- Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, 02118, USA
| | - John D Hogan
- Bioinformatics Program, Boston University Graduate School of Arts and Sciences, Boston, 02118, USA
| | - Adam Labadorf
- Bioinformatics Program, Boston University Graduate School of Arts and Sciences, Boston, 02118, USA.,Department of Neurology, Boston University School of Medicine, Boston, 02118, USA
| | - Richard H Myers
- Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, 02118, USA.,Bioinformatics Program, Boston University Graduate School of Arts and Sciences, Boston, 02118, USA.,Department of Neurology, Boston University School of Medicine, Boston, 02118, USA
| | - Joseph Zaia
- Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, 02118, USA. .,Department of Biochemistry, Boston University School of Medicine, 670 Albany St., Rm. 509, Boston, 02118, USA. .,Bioinformatics Program, Boston University Graduate School of Arts and Sciences, Boston, 02118, USA.
| |
Collapse
|
11
|
Ricard-Blum S, Miele AE. Omic approaches to decipher the molecular mechanisms of fibrosis, and design new anti-fibrotic strategies. Semin Cell Dev Biol 2020; 101:161-169. [DOI: 10.1016/j.semcdb.2019.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
|
12
|
Sethi MK, Downs M, Zaia J. Serial in-solution digestion protocol for mass spectrometry-based glycomics and proteomics analysis. Mol Omics 2020; 16:364-376. [PMID: 32309832 DOI: 10.1039/d0mo00019a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advancement in mass spectrometry has revolutionized the field of proteomics. However, there remains a gap in the analysis of protein post-translational modifications (PTMs), particularly for glycosylation. Glycosylation, the most common form of PTM, is involved in most biological processes; thus, analysis of glycans along with proteins is crucial to answering important biologically relevant questions. Of particular interest is the brain extracellular matrix (ECM), which has been called the "final Frontier" in neuroscience, which consists of highly glycosylated proteins. Among these, proteoglycans (PGs) contain large glycan structures called glycosaminoglycans (GAGs) that form crucial ECM components, including perineuronal nets (PNNs), shown to be altered in neuropsychiatric diseases. Thus, there is a growing need for high-throughput methods that combine GAG (glycomics) and PGs (proteomics) analysis to unravel the complete biological picture. The protocol presented here integrates glycomics and proteomics to analyze multiple classes of biomolecules. We use a filter-aided sample preparation (FASP) type serial in-solution digestion of GAG classes, including hyaluronan (HA), chondroitin sulfate (CS), and heparan sulfate (HS), followed by peptides. The GAGs and peptides are then cleaned and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). This protocol is an efficient and economical way of processing tissue or cell lysates to isolate various GAG classes and peptides from the same sample. The method is more efficient (single-pot) than available parallel (multi-pot) release methods, and removal of GAGs facilitates the identification of the proteins with higher peptide-coverage than using conventional-proteomics. Overall, we demonstrate a high-throughput & efficient protocol for mass spectrometry-based glycomic and proteomic analysis (data are available via ProteomeXchange with identifier PXD017513).
Collapse
Affiliation(s)
- Manveen K Sethi
- Boston University School of Medicine, Boston University, Department of Biochemistry, Boston, 02118, USA.
| | | | | |
Collapse
|
13
|
Alonge KM, Logsdon AF, Murphree TA, Banks WA, Keene CD, Edgar JS, Whittington D, Schwartz MW, Guttman M. Quantitative analysis of chondroitin sulfate disaccharides from human and rodent fixed brain tissue by electrospray ionization-tandem mass spectrometry. Glycobiology 2020; 29:847-860. [PMID: 31361007 DOI: 10.1093/glycob/cwz060] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Chondroitin sulfates (CS) are long, negatively charged, unbranched glycosaminoglycan (GAG) chains attached to CS-proteoglycan (CSPG) core proteins that comprise the glycan component in both loose interstitial extracellular matrices (ECMs) and in rigid, structured perineuronal net (PNN) scaffolds within the brain. As aberrant CS-PNN formations have been linked to a range of pathological states, including Alzheimer's disease (AD) and schizophrenia, the analysis of CS-GAGs in brain tissue at the disaccharide level has great potential to enhance disease diagnosis and prognosis. Two mass-spectrometry (MS)-based approaches were adapted to detect CS disaccharides from minute fixed tissue samples with low picomolar sensitivity and high reproducibility. The first approach employed a straightforward, quantitative direct infusion (DI)-tandem mass spectrometry (MS/MS) technique to determine the percentages of Δ4S- and Δ6S-CS disaccharides within the 4S/6S-CS ratio, while the second used a comprehensive liquid chromatography (LC)-MS/MS technique to determine the relative percentages of Δ0S-, Δ4S-, Δ6S-, Δ4S6S-CS and Δ2S6S-CS disaccharides, with internal validation by full chondroitin lyase activity. The quantitative accuracy of the five primary biologically relevant CS disaccharides was validated using a developmental time course series in fixed rodent brain tissue. We then analyzed the CS disaccharide composition in formalin-fixed human brain tissue, thus providing the first quantitative report of CS sulfation patterns in the human brain. The ability to comprehensively analyze the CS disaccharide composition from fixed brain tissue provides a means with which to identify alterations in the CS-GAG composition in relation to the onset and/or progression of neurological diseases.
Collapse
Affiliation(s)
- Kimberly M Alonge
- University of Washington Medicine Diabetes Institute, Department of Medicine, Seattle, WA, USA
| | - Aric F Logsdon
- Department of Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - William A Banks
- Department of Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - C Dirk Keene
- Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA, USA
| | - J Scott Edgar
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Michael W Schwartz
- University of Washington Medicine Diabetes Institute, Department of Medicine, Seattle, WA, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Tóth G, Vékey K, Sugár S, Kovalszky I, Drahos L, Turiák L. Salt gradient chromatographic separation of chondroitin sulfate disaccharides. J Chromatogr A 2020; 1619:460979. [PMID: 32093904 DOI: 10.1016/j.chroma.2020.460979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 01/06/2023]
Abstract
In the present study, we describe the development of a fast, 2-step salt gradient for analysis of chondroitin sulfate disaccharides. Using salt gradients, which is somewhat unusual in HILIC-based separations, provides relatively fast chromatography with excellent sensitivity (15 min cycle time, 10-20 fmol/µL detection, 30-50 fmol/µL quantitation limit), and good linearity. The efficiency of the new method is demonstrated by measuring human tissue slices of healthy, cirrhotic, and cancerous liver samples. Preliminary results show major differences among the quantity and sulfation pattern of the various sample types.
Collapse
Affiliation(s)
- Gábor Tóth
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4., H-1111 Budapest, Hungary
| | - Károly Vékey
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary
| | - Simon Sugár
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; Ph.D. School of Pharmaceutical Sciences, Semmelweis University, Üllői út 26, H-1085, Budapest, Hungary
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085, Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary.
| |
Collapse
|
15
|
Suhovskih AV, Kazanskaya GM, Volkov AM, Tsidulko AY, Aidagulova SV, Grigorieva EV. Chemoradiotherapy Increases Intratumor Heterogeneity of HPSE Expression in the Relapsed Glioblastoma Tumors. Int J Mol Sci 2020; 21:ijms21041301. [PMID: 32075104 PMCID: PMC7073003 DOI: 10.3390/ijms21041301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 01/22/2023] Open
Abstract
Adjuvant chemoradiotherapy is a standard treatment option for glioblastoma multiforme (GBM). Despite intensive care, recurrent tumors developed during the first year are fatal for the patients. Possibly contributing to this effect, among other causes, is that therapy induces changes of polysaccharide heparan sulfate (HS) chains in the cancer cells and/or tumor microenvironment. The aim of this study was to perform a comparative analysis of heparanase (HPSE) expression and HS content in different normal and GBM brain tissues. Immunohistochemical analysis revealed a significant decrease of HPSE protein content in the tumor (12-15-fold) and paratumorous (2.5-3-fold) GBM tissues compared with normal brain tissue, both in cellular and extracellular compartments. The relapsed GBM tumors demonstrated significantly higher intertumor and/or intratumor heterogeneity of HPSE and HS content and distribution compared with the matched primary ones (from the same patient) (n = 8), although overall expression levels did not show significant differences, suggesting local deterioration of HPSE expression with reference to the control system or by the treatment. Double immunofluorescence staining of various glioblastoma cell lines (U87, U343, LN18, LN71, T406) demonstrated a complex pattern of HPSE expression and HS content with a tendency towards a negative association of these parameters. Taken together, the results demonstrate the increase of intratumor heterogeneity of HPSE protein in relapsed GBM tumors and suggest misbalance of HPSE expression regulation by the adjuvant anti-GBM chemoradiotherapy.
Collapse
Affiliation(s)
- Anastasia V. Suhovskih
- Institute of Molecular Biology and Biophysics FRC FTM, 2/12, Timakova str., 630117 Novosibirsk, Russia; (A.Y.T.); (E.V.G.)
- Novosibirsk State University, 1, Pirogova str., 630090 Novosibirsk, Russia
- Meshalkin National Medical Research Centre, 15, Rechkunovskaya str., 630055 Novosibirsk, Russia; (G.M.K.); (A.M.V.)
- Correspondence: ; Tel.: +7-383-333-5011
| | - Galina M. Kazanskaya
- Meshalkin National Medical Research Centre, 15, Rechkunovskaya str., 630055 Novosibirsk, Russia; (G.M.K.); (A.M.V.)
| | - Alexander M. Volkov
- Meshalkin National Medical Research Centre, 15, Rechkunovskaya str., 630055 Novosibirsk, Russia; (G.M.K.); (A.M.V.)
| | - Alexandra Y. Tsidulko
- Institute of Molecular Biology and Biophysics FRC FTM, 2/12, Timakova str., 630117 Novosibirsk, Russia; (A.Y.T.); (E.V.G.)
| | | | - Elvira V. Grigorieva
- Institute of Molecular Biology and Biophysics FRC FTM, 2/12, Timakova str., 630117 Novosibirsk, Russia; (A.Y.T.); (E.V.G.)
- Novosibirsk State University, 1, Pirogova str., 630090 Novosibirsk, Russia
| |
Collapse
|
16
|
Alonge KM, Harkewicz R, Guttman M. Rapid Differentiation of Chondroitin Sulfate Isomers by Gas-phase Hydrogen-deuterium Exchange. Curr Mol Med 2020; 20:821-827. [PMID: 32933460 PMCID: PMC8051752 DOI: 10.2174/1566524020666200915110707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Chondroitin sulfate (CS)-glycosaminoglycans (GAGs) are linear, negatively charged polysaccharides attached to CS proteoglycans that make up a major component of biological matrices throughout both central and peripheral tissues. The position of their attached sulfate groups to the CS disaccharide is predicted to influence protein-glycan interactions and biological function. Although traditional immunohistochemical analysis of CS-GAGs in biological tissues has provided information regarding changes in GAG abundance during developmental and disease states, quantitative analysis of their specific sulfation patterns is limited due to the inherent complexity of separating CS isomers. While methods have been developed to analyze and quantify sulfation isomers using liquid phase separation, new techniques are still needed to elucidate the full biology of CS-GAGs. Here, we examine ion mobility spectrometry and gas-phase hydrogen-deuterium exchange to resolve positional sulfation isomers in the most common sulfated 4S- and 6S-CS disaccharides. The mobilities for these two isomers are highly similar and could not be resolved effectively with any drift gas tested. In contrast, gas-phase hydrogen-deuterium exchange showed very different rates of deuterium uptake with several deuterium exchange reagents, thereby presenting a promising novel and rapid approach for resolving CS isomers.
Collapse
Affiliation(s)
- Kimberly M. Alonge
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Rick Harkewicz
- Department of Medicinal Chemistry; University of Washington, Seattle, WA, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry; University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
|
18
|
Glycosaminoglycans in biological samples – Towards identification of novel biomarkers. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Raghunathan R, Sethi MK, Klein JA, Zaia J. Proteomics, Glycomics, and Glycoproteomics of Matrisome Molecules. Mol Cell Proteomics 2019; 18:2138-2148. [PMID: 31471497 PMCID: PMC6823855 DOI: 10.1074/mcp.r119.001543] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/26/2019] [Indexed: 12/21/2022] Open
Abstract
The most straightforward applications of proteomics database searching involve intracellular proteins. Although intracellular gene products number in the thousands, their well-defined post-translational modifications (PTMs) makes database searching practical. By contrast, cell surface and extracellular matrisome proteins pass through the secretory pathway where many become glycosylated, modulating their physicochemical properties, adhesive interactions, and diversifying their functions. Although matrisome proteins number only a few hundred, their high degree of complex glycosylation multiplies the number of theoretical proteoforms by orders of magnitude. Given that extracellular networks that mediate cell-cell and cell-pathogen interactions in physiology depend on glycosylation, it is important to characterize the proteomes, glycomes, and glycoproteomes of matrisome molecules that exist in a given biological context. In this review, we summarize proteomics approaches for characterizing matrisome molecules, with an emphasis on applications to brain diseases. We demonstrate the availability of methods that should greatly increase the availability of information on matrisome molecular structure associated with health and disease.
Collapse
Affiliation(s)
- Rekha Raghunathan
- Molecular and Translational Medicine Program, Boston University, Boston, MA 02218; Department of Biochemistry, Boston University, Boston, MA 02218
| | - Manveen K Sethi
- Department of Biochemistry, Boston University, Boston, MA 02218
| | - Joshua A Klein
- Bioinformatics Program, Boston University, Boston, MA 02218
| | - Joseph Zaia
- Molecular and Translational Medicine Program, Boston University, Boston, MA 02218; Department of Biochemistry, Boston University, Boston, MA 02218; Bioinformatics Program, Boston University, Boston, MA 02218.
| |
Collapse
|
20
|
Raghunathan R, Sethi MK, Zaia J. On-slide tissue digestion for mass spectrometry based glycomic and proteomic profiling. MethodsX 2019; 6:2329-2347. [PMID: 31660297 PMCID: PMC6807300 DOI: 10.1016/j.mex.2019.09.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
We describe a protocol for glycomic and proteomic profiling that uses serial enzyme digestions from the surface of fresh frozen or fixed tissue slides. The abundances of the extracted glycans and peptides are determined using liquid chromatography-mass spectrometry. In a typical experiment, our method quantifies 14 heparan sulfate disaccharides, 11 chondroitin sulfate disaccharides, 50 N-glycan compositions and approximately 1200 proteins from a 1.8 mm circle, on the surface of a fresh frozen tissue slide from rat brain. Each enzymatic digestion is incubated overnight with direct application of enzyme on the tissue surface. Overall, the sample preparation process for multiple tissue slides takes a day per biomolecule class. This protocol saves time by simultaneous digestion of large N-glycans and small HS disaccharides and subsequent separation using size exclusion chromatography. Compared to wet tissue analysis, this method requires less time by a factor of two. By comparison, MALDI-imaging provides higher spatial resolution of glycans and proteins but lower depth of coverage. MALDI dissociates fragile glycan substituents including sulfates and is not recommended for analysis of glycosaminoglycans (GAGs).
Collapse
Affiliation(s)
- Rekha Raghunathan
- Boston University, Molecular and Translational Medicine, Boston, 02118, USA
| | - Manveen K Sethi
- Boston University, Dept. of Biochemistry, Boston, 02118, USA
| | - Joseph Zaia
- Boston University, Molecular and Translational Medicine, Boston, 02118, USA.,Boston University, Dept. of Biochemistry, Boston, 02118, USA
| |
Collapse
|
21
|
Tóth G, Vékey K, Drahos L, Horváth V, Turiák L. Salt and solvent effects in the microscale chromatographic separation of heparan sulfate disaccharides. J Chromatogr A 2019; 1610:460548. [PMID: 31547957 DOI: 10.1016/j.chroma.2019.460548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/28/2019] [Accepted: 09/14/2019] [Indexed: 12/25/2022]
Abstract
The analysis of heparan sulfate disaccharides poses a real challenge both from chromatographic and mass spectrometric point of view. This necessitates the constant improvement of their analytical methodology. In the present study, the chromatographic effects of solvent composition, salt concentration, and salt type were systematically investigated in isocratic HILIC-WAX separations of heparan sulfate disaccharides. The combined use of 75% acetonitrile with ammonium formate had overall benefits regarding intensity, detection limits, and peak shape for all salt concentrations investigated. Results obtained with the isocratic measurements suggested the potential use of a salt gradient method in order to maximize separation efficiency. A 3-step gradient from 14 mM to 65 mM ammonium formate concentration proved to be ideal for separation and quantitation. The LOD of the resulting method was 0.8-1.5 fmol for the individual disaccharides and the LOQ was between 2.5-5 fmol. Outstanding linearity could be observed up to 2 pmol. This novel combination provided sufficient sensitivity for disaccharide analysis, which was demonstrated by the analysis of heparan sulfate samples from porcine and bovine origin.
Collapse
Affiliation(s)
- Gábor Tóth
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4., H-1111 Budapest, Hungary
| | - Károly Vékey
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary
| | - Viola Horváth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4., H-1111 Budapest, Hungary; MTA-BME Computation Driven Chemistry Research Group, Szent Gellért tér 4., H-1111 Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary.
| |
Collapse
|
22
|
Sensitive method for glycosaminoglycan analysis of tissue sections. J Chromatogr A 2018; 1544:41-48. [PMID: 29506752 DOI: 10.1016/j.chroma.2018.02.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/28/2022]
Abstract
A simple, isocratic HPLC method based on HILIC-WAX separation, has been developed for analyzing sulfated disaccharides of glycosaminoglycans (GAGs). To our best knowledge, this is the first successful attempt using this special phase in nano-HPLC-MS analysis. Mass spectrometry was based on negative ionization, improving both sensitivity and specificity. Detection limit for most sulfated disaccharides were approximately 1 fmol; quantitation limits 10 fmol. The method was applied for glycosaminoglycan profiling of tissue samples, using surface digestion protocols. This novel combination provides sufficient sensitivity for GAG disaccharide analysis, which was first performed using prostate cancer tissue microarrays. Preliminary results show that GAG analysis may be useful for identifying cancer related changes in small amounts of tissue samples (ca. 10 μg).
Collapse
|
23
|
de Oliveira RM, Ornelas Ricart CA, Araujo Martins AM. Use of Mass Spectrometry to Screen Glycan Early Markers in Hepatocellular Carcinoma. Front Oncol 2018; 7:328. [PMID: 29379771 PMCID: PMC5775512 DOI: 10.3389/fonc.2017.00328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Association between altered glycosylation patterns and poor prognosis in cancer points glycans as potential specific tumor markers. Most proteins are glycosylated and functionally arranged on cell surface and extracellular matrix, mediating interactions and cellular signaling. Thereby, aberrant glycans may be considered a pathological phenotype at least as important as changes in protein expression for cancer and other complex diseases. As most serum glycoproteins have hepatic origin, liver disease phenotypes, such as hepatocellular carcinoma (HCC), may present altered glycan profile and display important modifications. One of the prominent obstacles in HCC is the diagnostic in advanced stages when patients have several liver dysfunctions, limiting treatment options and life expectancy. The characterization of glycomic profiles in pathological conditions by means of mass spectrometry (MS) may lead to the discovery of early diagnostic markers using non-invasive approaches. MS is a powerful analytical technique capable of elucidating many glycobiological issues and overcome limitations of the serological markers currently applied in clinical practice. Therefore, MS-based glycomics of tumor biomarkers is a promising tool to increase early detection and monitoring of disease.
Collapse
Affiliation(s)
- Raphaela Menezes de Oliveira
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Carlos Andre Ornelas Ricart
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Aline Maria Araujo Martins
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil.,University Hospital Walter Cantídeo, Surgery Department, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
24
|
Kazanskaya GM, Tsidulko AY, Volkov AM, Kiselev RS, Suhovskih AV, Kobozev VV, Gaytan AS, Aidagulova SV, Krivoshapkin AL, Grigorieva EV. Heparan sulfate accumulation and perlecan/HSPG2 up-regulation in tumour tissue predict low relapse-free survival for patients with glioblastoma. Histochem Cell Biol 2018; 149:235-244. [DOI: 10.1007/s00418-018-1631-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2018] [Indexed: 12/14/2022]
|
25
|
Miller RL, Guimond SE, Prescott M, Turnbull JE, Karlsson N. Versatile Separation and Analysis of Heparan Sulfate Oligosaccharides Using Graphitized Carbon Liquid Chromatography and Electrospray Mass Spectrometry. Anal Chem 2017; 89:8942-8950. [DOI: 10.1021/acs.analchem.7b01417] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rebecca L. Miller
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, U.K
- Oncology
Department, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, U.K
| | - Scott E. Guimond
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, U.K
| | - Mark Prescott
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, U.K
| | - Jeremy E. Turnbull
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, U.K
| | - Niclas Karlsson
- Department
of Medical Biochemistry and Cell Biology, Institute of Biomedicine,
Sahlgrenska Academy, University of Gothenburg, Box 440, 40530 Gothenburg, Sweden
| |
Collapse
|
26
|
Dierker T, Kjellén L. Separation and Purification of Glycosaminoglycans (GAGs) from Caenorhabditis elegans. Bio Protoc 2017; 7:e2437. [PMID: 34541157 DOI: 10.21769/bioprotoc.2437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/02/2022] Open
Abstract
The nematode Caenorhabditis elegans is a popular model organism for studies of developmental biology, neurology, ageing and other fields of basic research. Because many developmental processes are regulated by glycosaminoglyans (GAGs) on cell surfaces and in the extracellular matrix, methods to isolate and analyze C. elegans GAGs are needed. Such methods have previously been optimized for other species such as mice and zebrafish. After modifying existing purification protocols, we could recently show that the nematodes also produce chondroitin sulfate, in addition to heparan sulfate, thus challenging the view that only non-sulfated chondroitin was synthesized by C. elegans. We here present our protocol adapted for C. elegans. Since the purification strategy involves separation of non-sulfated and sulfated GAGs, it may also be useful for other applications where this approach could be advantageous.
Collapse
Affiliation(s)
- Tabea Dierker
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Tran VM, Wade A, McKinney A, Chen K, Lindberg OR, Engler JR, Persson AI, Phillips JJ. Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Mol Cancer Res 2017; 15:1623-1633. [PMID: 28778876 DOI: 10.1158/1541-7786.mcr-17-0352] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 01/18/2023]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor of adults and confers a poor prognosis due, in part, to diffuse invasion of tumor cells. Heparan sulfate (HS) glycosaminoglycans, present on the cell surface and in the extracellular matrix, regulate cell signaling pathways and cell-microenvironment interactions. In GBM, the expression of HS glycosaminoglycans and the enzymes that regulate their function are altered, but the actual HS content and structure are unknown. However, inhibition of HS glycosaminoglycan function is emerging as a promising therapeutic strategy for some cancers. In this study, we use liquid chromatography-mass spectrometry analysis to demonstrate differences in HS disaccharide content and structure across four patient-derived tumorsphere lines (GBM1, 5, 6, 43) and between two murine tumorsphere lines derived from murine GBM with enrichment of mesenchymal and proneural gene expression (mMES and mPN, respectively) markers. In GBM, the heterogeneous HS content and structure across patient-derived tumorsphere lines suggested diverse functions in the GBM tumor microenvironment. In GBM5 and mPN, elevated expression of sulfatase 2 (SULF2), an extracellular enzyme that alters ligand binding to HS, was associated with low trisulfated HS disaccharides, a substrate of SULF2. In contrast, other primary tumorsphere lines had elevated expression of the HS-modifying enzyme heparanase (HPSE). Using gene editing strategies to inhibit HPSE, a role for HPSE in promoting tumor cell adhesion and invasion was identified. These studies characterize the heterogeneity in HS glycosaminoglycan content and structure across GBM and reveal their role in tumor cell invasion.Implications: HS-interacting factors promote GBM invasion and are potential therapeutic targets. Mol Cancer Res; 15(11); 1623-33. ©2017 AACR.
Collapse
Affiliation(s)
- Vy M Tran
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Anna Wade
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Andrew McKinney
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Katharine Chen
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Olle R Lindberg
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Jane R Engler
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California
| | - Anders I Persson
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Sandler Neurosciences Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California. .,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Division of Neuropathology, Department of Pathology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
28
|
Affiliation(s)
- Stefan Gaunitz
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Gabe Nagy
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nicola L. B. Pohl
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- Regional Center for Applied Molecular Oncology, Masaryk Memorial Oncological Institute, 656 53 Brno, Czech Republic
| |
Collapse
|
29
|
Drake RR, Powers TW, Jones EE, Bruner E, Mehta AS, Angel PM. MALDI Mass Spectrometry Imaging of N-Linked Glycans in Cancer Tissues. Adv Cancer Res 2016; 134:85-116. [PMID: 28110657 DOI: 10.1016/bs.acr.2016.11.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycosylated proteins account for a majority of the posttranslation modifications of cell surface, secreted, and circulating proteins. Within the tumor microenvironment, the presence of immune cells, extracellular matrix proteins, cell surface receptors, and interactions between stroma and tumor cells are all processes mediated by glycan binding and recognition reactions. Changes in glycosylation during tumorigenesis are well documented to occur and affect all of these associated adhesion and regulatory functions. A MALDI imaging mass spectrometry (MALDI-IMS) workflow for profiling N-linked glycan distributions in fresh/frozen tissues and formalin-fixed paraffin-embedded tissues has recently been developed. The key to the approach is the application of a molecular coating of peptide-N-glycosidase to tissues, an enzyme that cleaves asparagine-linked glycans from their protein carrier. The released N-linked glycans can then be analyzed by MALDI-IMS directly on tissue. Generally 40 or more individual glycan structures are routinely detected, and when combined with histopathology localizations, tumor-specific glycans are readily grouped relative to nontumor regions and other structural features. This technique is a recent development and new approach in glycobiology and mass spectrometry imaging research methodology; thus, potential uses such as tumor-specific glycan biomarker panels and other applications are discussed.
Collapse
Affiliation(s)
- R R Drake
- Medical University of South Carolina, Charleston, SC, United States.
| | - T W Powers
- Medical University of South Carolina, Charleston, SC, United States
| | - E E Jones
- Medical University of South Carolina, Charleston, SC, United States
| | - E Bruner
- Medical University of South Carolina, Charleston, SC, United States
| | - A S Mehta
- Medical University of South Carolina, Charleston, SC, United States
| | - P M Angel
- Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
30
|
Ricard-Blum S, Lisacek F. Glycosaminoglycanomics: where we are. Glycoconj J 2016; 34:339-349. [PMID: 27900575 DOI: 10.1007/s10719-016-9747-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 01/21/2023]
Abstract
Glycosaminoglycans regulate numerous physiopathological processes such as development, angiogenesis, innate immunity, cancer and neurodegenerative diseases. Cell surface GAGs are involved in cell-cell and cell-matrix interactions, cell adhesion and signaling, and host-pathogen interactions. GAGs contribute to the assembly of the extracellular matrix and heparan sulfate chains are able to sequester growth factors in the ECM. Their biological activities are regulated by their interactions with proteins. The structural heterogeneity of GAGs, mostly due to chemical modifications occurring during and after their synthesis, makes the development of analytical techniques for their profiling in cells, tissues, and biological fluids, and of computational tools for mining GAG-protein interaction data very challenging. We give here an overview of the experimental approaches used in glycosaminoglycomics, of the major GAG-protein interactomes characterized so far, and of the computational tools and databases available to analyze and store GAG structures and interactions.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 CNRS - Université Lyon 1, INSA Lyon, CPE Lyon, 69622, Villeurbanne Cedex, France.
| | - Frédérique Lisacek
- SIB Swiss Institute of Bioinformatics, 1 Rue Michel-Servet, 1211, Geneva, Switzerland.,Computer Science Department, University of Geneva, Geneva, Switzerland
| |
Collapse
|
31
|
Screening enoxaparin tetrasaccharide SEC fractions for 3-O-sulfo-N-sulfoglucosamine residues using [1H,15N] HSQC NMR. Anal Bioanal Chem 2016; 408:1545-55. [DOI: 10.1007/s00216-015-9231-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 11/10/2015] [Accepted: 11/30/2015] [Indexed: 01/15/2023]
|
32
|
Sun X, Li L, Overdier KH, Ammons LA, Douglas IS, Burlew CC, Zhang F, Schmidt EP, Chi L, Linhardt RJ. Analysis of Total Human Urinary Glycosaminoglycan Disaccharides by Liquid Chromatography-Tandem Mass Spectrometry. Anal Chem 2015; 87:6220-7. [PMID: 26005898 PMCID: PMC4822829 DOI: 10.1021/acs.analchem.5b00913] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The determination of complex analytes, present at low concentrations, in biological fluids poses a difficult challenge. This study relies on an optimized method of recovery, enzymatic treatment, and disaccharide analysis by liquid chromatography-tandem mass spectrometry to rapidly determine low concentrations of glycosaminoglycans in human urine. The approach utilizes multiple reaction monitoring (MRM) of glycosaminoglycan disaccharides obtained from treating urine samples with recombinant heparin lyases and chondroitin lyase. This rapid and sensitive method allows the analysis of glycosaminoglycan content and disaccharide composition in urine samples having concentrations 10- to 100-fold lower than those typically analyzed from patients with metabolic diseases, such as mucopolysaccharidosis. The current method facilitates the analysis low (ng/mL) levels of urinary glycosaminoglycans present in healthy individuals and in patients with pathological conditions, such as inflammation and cancers, that can subtly alter glycosaminoglycan content and composition.
Collapse
Affiliation(s)
- Xiaojun Sun
- National Glycoengineering Research Center, Shandong University, Jinan 250100, China
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Lingyun Li
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Wadsworth Center, New York State Department of Health, Albany, New York 12201, United States
| | - Katherine H. Overdier
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Denver, Colorado 80204, United States
| | - Lee Anne Ammons
- Department of Surgery, Denver Health Medical Center, Denver, Colorado 80204, United States
| | - Ivor S. Douglas
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Denver, Colorado 80204, United States
| | - Clay Cothren Burlew
- Department of Surgery, Denver Health Medical Center, Denver, Colorado 80204, United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Eric P. Schmidt
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Denver, Colorado 80204, United States
- Program in Translational Lung Research, Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Jinan 250100, China
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
33
|
Lemjabbar-Alaoui H, McKinney A, Yang YW, Tran VM, Phillips JJ. Glycosylation alterations in lung and brain cancer. Adv Cancer Res 2015; 126:305-44. [PMID: 25727152 DOI: 10.1016/bs.acr.2014.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alterations in glycosylation are common in cancer and are thought to contribute to disease. Lung cancer and primary malignant brain cancer, most commonly glioblastoma, are genetically heterogeneous diseases with extremely poor prognoses. In this review, we summarize the data demonstrating that glycosylation is altered in lung and brain cancer. We then use specific examples to highlight the diverse roles of glycosylation in these two deadly diseases and illustrate shared mechanisms of oncogenesis. In addition to alterations in glycoconjugate biosynthesis, we also discuss mechanisms of postsynthetic glycan modification in cancer. We suggest that alterations in glycosylation in lung and brain cancer provide novel tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hassan Lemjabbar-Alaoui
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, California, USA
| | - Andrew McKinney
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California, USA
| | - Yi-Wei Yang
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, California, USA
| | - Vy M Tran
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California, USA; Department of Pathology, University of California, San Francisco, California, USA.
| |
Collapse
|
34
|
Turiák L, Shao C, Meng L, Khatri K, Leymarie N, Wang Q, Pantazopoulos H, Leon DR, Zaia J. Workflow for combined proteomics and glycomics profiling from histological tissues. Anal Chem 2014; 86:9670-8. [PMID: 25203838 DOI: 10.1021/ac5022216] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular matrixes comprise glycoproteins, glycosaminoglycans and proteoglycans that order the environment through which cells receive signals and communicate. Proteomic and glycomic molecular signatures from tissue surfaces can add diagnostic power to the immunohistochemistry workflows. Acquired in a spatially resolved manner, such proteomic and glycomic information can help characterize disease processes and be easily applied in a clinical setting. Our aim toward obtaining integrated omics datasets was to develop the first workflow applicable for simultaneous analysis of glycosaminoglycans, N-glycans and proteins/peptides from tissue surface areas as small as 1.5 mm in diameter. Targeting small areas is especially important in the case of glycans, as their distribution can be very heterogeneous between different tissue regions. We first established reliable and reproducible digestion protocols for the individual compound classes by applying standards on the tissue using microwave irradiation to achieve reduced digestion times. Next, we developed a multienzyme workflow suitable for analysis of the different compound classes. Applicability of the workflow was demonstrated on serial mouse brain and liver sections, both fresh frozen and formalin-fixed. The glycomics data from the 1.5 mm diameter tissue surface area was consistent with data published on bulk mouse liver and brain tissues, which demonstrates the power of the workflow in obtaining combined molecular signatures from very small tissue regions.
Collapse
Affiliation(s)
- Lilla Turiák
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Brézillon S, Untereiner V, Lovergne L, Tadeo I, Noguera R, Maquart FX, Wegrowski Y, Sockalingum GD. Glycosaminoglycan profiling in different cell types using infrared spectroscopy and imaging. Anal Bioanal Chem 2014; 406:5795-803. [PMID: 25023968 DOI: 10.1007/s00216-014-7994-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/30/2014] [Accepted: 06/24/2014] [Indexed: 11/29/2022]
Abstract
We recently identified vibrational spectroscopic markers characteristic of standard glycosaminoglycan (GAG) molecules. The aims of the present work were to further this investigation to more complex biological systems and to characterize, via their spectral profiles, cell types with different capacities for GAG synthesis. After recording spectral information from individual GAG standards (hyaluronic acid, chondroitin sulfate, dermatan sulfate, heparan sulfate) and GAG-GAG mixtures, GAG-defective mutant Chinese hamster ovary (CHO)-745 cells, wild-type CHO cells, and chondrocytes were analyzed as suspensions by high-throughput infrared spectroscopy and as single isolated cells by infrared imaging. Spectral data were processed and interpreted by exploratory unsupervised chemometric methods based on hierarchical cluster analysis and principal component analysis. Our results showed that the spectral information obtained was discriminant enough to clearly delineate between the different cell types both at the cell suspension and single-cell levels. The abilities of the technique are to perform spectral profiling and to identify single cells with different potentials to synthesize GAGs. Infrared microspectroscopy/imaging could therefore be developed for cell screening purposes and further for identifying GAG molecules in normal tissues during physiological conditions (aging, healing process) and numerous pathological states (arthritis, cancer).
Collapse
Affiliation(s)
- Stéphane Brézillon
- Laboratoire de Biochimie médicale et de Biologie Moléculaire, UFR de Médecine, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51095, Reims Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|