1
|
Sharman K, Patterson NH, Weiss A, Neumann EK, Guiberson ER, Ryan DJ, Gutierrez DB, Spraggins JM, Van de Plas R, Skaar EP, Caprioli RM. Rapid Multivariate Analysis Approach to Explore Differential Spatial Protein Profiles in Tissue. J Proteome Res 2023; 22:1394-1405. [PMID: 35849531 PMCID: PMC9845430 DOI: 10.1021/acs.jproteome.2c00206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Spatially targeted proteomics analyzes the proteome of specific cell types and functional regions within tissue. While spatial context is often essential to understanding biological processes, interpreting sub-region-specific protein profiles can pose a challenge due to the high-dimensional nature of the data. Here, we develop a multivariate approach for rapid exploration of differential protein profiles acquired from distinct tissue regions and apply it to analyze a published spatially targeted proteomics data set collected from Staphylococcus aureus-infected murine kidney, 4 and 10 days postinfection. The data analysis process rapidly filters high-dimensional proteomic data to reveal relevant differentiating species among hundreds to thousands of measured molecules. We employ principal component analysis (PCA) for dimensionality reduction of protein profiles measured by microliquid extraction surface analysis mass spectrometry. Subsequently, k-means clustering of the PCA-processed data groups samples by chemical similarity. Cluster center interpretation revealed a subset of proteins that differentiate between spatial regions of infection over two time points. These proteins appear involved in tricarboxylic acid metabolomic pathways, calcium-dependent processes, and cytoskeletal organization. Gene ontology analysis further uncovered relationships to tissue damage/repair and calcium-related defense mechanisms. Applying our analysis in infectious disease highlighted differential proteomic changes across abscess regions over time, reflecting the dynamic nature of host-pathogen interactions.
Collapse
Affiliation(s)
- Kavya Sharman
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Program in Chemical & Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Andy Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
| | - Elizabeth K Neumann
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Emma R Guiberson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Daniel J Ryan
- Pfizer Inc., Chesterfield, Missouri 63017, United States
| | - Danielle B Gutierrez
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Raf Van de Plas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
2
|
Phetsanthad A, Vu NQ, Yu Q, Buchberger AR, Chen Z, Keller C, Li L. Recent advances in mass spectrometry analysis of neuropeptides. MASS SPECTROMETRY REVIEWS 2023; 42:706-750. [PMID: 34558119 PMCID: PMC9067165 DOI: 10.1002/mas.21734] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 05/08/2023]
Abstract
Due to their involvement in numerous biochemical pathways, neuropeptides have been the focus of many recent research studies. Unfortunately, classic analytical methods, such as western blots and enzyme-linked immunosorbent assays, are extremely limited in terms of global investigations, leading researchers to search for more advanced techniques capable of probing the entire neuropeptidome of an organism. With recent technological advances, mass spectrometry (MS) has provided methodology to gain global knowledge of a neuropeptidome on a spatial, temporal, and quantitative level. This review will cover key considerations for the analysis of neuropeptides by MS, including sample preparation strategies, instrumental advances for identification, structural characterization, and imaging; insightful functional studies; and newly developed absolute and relative quantitation strategies. While many discoveries have been made with MS, the methodology is still in its infancy. Many of the current challenges and areas that need development will also be highlighted in this review.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Amanda R. Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
3
|
Escobar EE, Seeley EH, Serrano-Negrón JE, Vocadlo DJ, Brodbelt JS. In Situ Imaging of O-Linked β-N-Acetylglucosamine Using On-Tissue Hydrolysis and MALDI Mass Spectrometry. Cancers (Basel) 2023; 15:1224. [PMID: 36831567 PMCID: PMC9954453 DOI: 10.3390/cancers15041224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Post-translational O-glycosylation of proteins via the addition of N-acetylglucosamine (O-GlcNAc) is a regulator of many aspects of cellular physiology. Processes driven by perturbed dynamics of O-GlcNAcylation modification have been implicated in cancer development. Variability in O-GlcNAcylation is emerging as a metabolic biomarker of many cancers. Here, we evaluate the use of MALDI-mass spectrometry imaging (MSI) to visualize the location of O-GlcNAcylated proteins in tissue sections by mapping GlcNAc that has been released by the enzymatic hydrolysis of glycoproteins using an O-GlcNAc hydrolase. We use this strategy to monitor O-GlcNAc within hepatic VX2 tumor tissue. We show that increased O-GlcNAc is found within both viable tumor and tumor margin regions, implicating GlcNAc in tumor progression.
Collapse
Affiliation(s)
- Edwin E. Escobar
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Erin H. Seeley
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - David J. Vocadlo
- Department of Molecular Biology and Biochemistry, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Zang Q, Wang M, Zhu Y, Wang L, Luo Z, Li X, He J, Zhang R, Abliz Z. Enhanced On-Tissue Chemical Derivatization with Hydrogel Assistance for Mass Spectrometry Imaging. Anal Chem 2021; 93:15373-15380. [PMID: 34748327 DOI: 10.1021/acs.analchem.1c03118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The improvement of on-tissue chemical derivatization for mass spectrometry imaging (MSI) of low-abundance and/or poorly ionizable functional molecules in biological tissue without delocalization is challenging. Here, we developed a novel hydrogel-assisted chemical derivatization (HCD) approach coupled with airflow-assisted desorption electrospray ionization (AFADESI)-MSI, allowing for enhanced visualization of inaccessible molecules in biological tissues. The derivatization reagent Girard's P (GP) reagent was creatively packaged into a hydrogel to form HCD blocks that have reactivity to carbonyl compounds as well as the feasibility of "cover/uncover" contact mode with tissue sections. The HCD blocks provided a favorable liquid microenvironment for the derivatization reaction and reduced matrix effects from derivatization reagents and tissue without obvious molecular migration, thus improving the derivatization efficiency. With this methodology, unusual carbonyl metabolites, including 166 fatty aldehydes (FALs) and 100 oxo fatty acids (FAs), were detected and visualized in rat brain, kidney, and liver tissue. This study provides a new approach to enhance chemical labeling for in situ tissue submetabolome profiling and improves our knowledge of the molecular histology and complex metabolism of biological tissues.
Collapse
Affiliation(s)
- Qingce Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Manjiangcuo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lingzhi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhigang Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
5
|
Taverna D, Mignogna C, Santise G, Gaspari M, Cuda G. On‐Tissue Hydrogel‐Mediated Nondestructive Proteomic Characterization: Application to fr/fr and FFPE Tissues and Insights for Quantitative Proteomics Using a Case of Cardiac Myxoma. Proteomics Clin Appl 2018; 13:e1700167. [DOI: 10.1002/prca.201700167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/10/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Domenico Taverna
- Research Center for Advanced Biochemistry and Molecular BiologyDepartment of Experimental and Clinical MedicineMagna Graecia University of CatanzaroCampus “S. Venuta,”Viale EuropaLoc. Germaneto 88100 Catanzaro Italy
| | - Chiara Mignogna
- Department of Health ScienceInterdepartmental Service CentreMagna Graecia University of CatanzaroViale Europa 88100 Catanzaro Italy
| | - Gianluca Santise
- Cardiothoracic Surgery UnitSant'Anna Hospital 88100 Catanzaro Italy
| | - Marco Gaspari
- Research Center for Advanced Biochemistry and Molecular BiologyDepartment of Experimental and Clinical MedicineMagna Graecia University of CatanzaroCampus “S. Venuta,”Viale EuropaLoc. Germaneto 88100 Catanzaro Italy
| | - Giovanni Cuda
- Research Center for Advanced Biochemistry and Molecular BiologyDepartment of Experimental and Clinical MedicineMagna Graecia University of CatanzaroCampus “S. Venuta,”Viale EuropaLoc. Germaneto 88100 Catanzaro Italy
| |
Collapse
|
6
|
Ryan DJ, Nei D, Prentice BM, Rose KL, Caprioli RM, Spraggins JM. Protein identification in imaging mass spectrometry through spatially targeted liquid micro-extractions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:442-450. [PMID: 29226434 PMCID: PMC5812809 DOI: 10.1002/rcm.8042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/16/2017] [Accepted: 11/22/2017] [Indexed: 05/02/2023]
Abstract
RATIONALE Liquid extraction surface analysis (LESA) can be used to generate spatially directed protein identifications in an imaging mass spectrometry (IMS) workflow. This approach involves the use of robotic micro-extractions coupled to online liquid chromatography (LC). We have characterized the extraction efficiency of this method as well as its ability to identify proteins from a matrix assisted laser/desorption ionization (MALDI) IMS experiment. METHODS Proteins and peptides were extracted from transverse sections of a rat brain and sagittal sections of a mouse pup using liquid surface extractions. Extracts were either analyzed by online LC coupled to a high mass resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometer or collected offline and analyzed by traditional LC/MS methods. Identifications were made using both top-down and bottom-up methodologies. MALDI images were acquired on a 15T FTICR mass spectrometer at 125 μm spatial resolution. RESULTS Robotic liquid surface extractions are reproducible across various tissue types, providing significantly improved spatial resolution, with respect to extractions, while still allowing for a robust number of protein identifications. A single 2-μL extract can provide identification of over 14,000 peptides with little sample preparation, increasing throughput for spatially targeted workflows. Surface extractions from tissue were coupled directly to LC to gather spatially relevant proteomics data. CONCLUSIONS Robotic liquid surface extractions can be used to interrogate discrete regions of tissue to provide protein identifications with high throughput, accuracy, and robustness. The direct coupling of tissue surface extractions and LC offers a new and effective approach to provide spatial proteomics data in an imaging experiment.
Collapse
Affiliation(s)
- Daniel J Ryan
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN, 37235, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, TN, 37235, USA
| | - David Nei
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, TN, 37235, USA
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN, 37205, USA
| | - Boone M Prentice
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, TN, 37235, USA
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN, 37205, USA
| | - Kristie L Rose
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, TN, 37235, USA
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN, 37205, USA
| | - Richard M Caprioli
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN, 37235, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, TN, 37235, USA
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN, 37205, USA
- Department of Pharmacology, Vanderbilt University, 442 Robinson Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA
- Department of Medicine, Vanderbilt University, 465 21st Ave S #9160, Nashville, TN, 37235, USA
| | - Jeffrey M Spraggins
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN, 37235, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, TN, 37235, USA
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN, 37205, USA
| |
Collapse
|
7
|
Rae Buchberger A, DeLaney K, Johnson J, Li L. Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights. Anal Chem 2018; 90:240-265. [PMID: 29155564 PMCID: PMC5959842 DOI: 10.1021/acs.analchem.7b04733] [Citation(s) in RCA: 598] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Amanda Rae Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jillian Johnson
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
8
|
DeLaney K, Buchberger A, Li L. Identification, Quantitation, and Imaging of the Crustacean Peptidome. Methods Mol Biol 2018; 1719:247-269. [PMID: 29476517 DOI: 10.1007/978-1-4939-7537-2_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Crustaceans serve as a useful, simplified model for studying peptides and neuromodulation, as they contain numerous neuropeptide homologs to mammals and enable electrophysiological studies at the single-cell and neural circuit levels. In particular, crustaceans contain well-defined neural networks, including the stomatogastric ganglion, esophageal ganglion, commissural ganglia, and several neuropeptide-rich organs, such as the brain, pericardial organs, and sinus glands. Due to the lack of a genomic database for crustacean peptides, an important step of crustacean peptidomics involves the discovery and identification of novel peptides and the construction of a database, more recently with the aid of mass spectrometry (MS). Herein, we present a general workflow and detailed methods for MS-based peptidomic analysis of crustacean tissue samples and circulating fluids. In conjunction with profiling, quantitation can also be performed with isotopic or isobaric labeling. Information regarding the localization patterns and changes of peptides can be studied via mass spectrometry imaging. Combining these sample preparation strategies and MS analytical techniques allows for a multifaceted approach to obtaining deep knowledge of crustacean peptidergic signaling pathways.
Collapse
Affiliation(s)
- Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Amanda Buchberger
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA. .,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
9
|
Song X, Luo Z, Li X, Li T, Wang Z, Sun C, Huang L, Xie P, Liu X, He J, Abliz Z. In Situ Hydrogel Conditioning of Tissue Samples To Enhance the Drug’s Sensitivity in Ambient Mass Spectrometry Imaging. Anal Chem 2017; 89:6318-6323. [DOI: 10.1021/acs.analchem.7b00091] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaowei Song
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhigang Luo
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xin Li
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tiegang Li
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonghua Wang
- College
of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Chenglong Sun
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Luojiao Huang
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ping Xie
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Liu
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiuming He
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zeper Abliz
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Center
for Imaging and Systems Biology, Minzu University of China, Beijing 100081, China
| |
Collapse
|
10
|
Sarkis GA, Mangaonkar MD, Moghieb A, Lelling B, Guertin M, Yadikar H, Yang Z, Kobeissy F, Wang KKW. The Application of Proteomics to Traumatic Brain and Spinal Cord Injuries. Curr Neurol Neurosci Rep 2017; 17:23. [DOI: 10.1007/s11910-017-0736-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Rizzo DG, Prentice BM, Moore JL, Norris JL, Caprioli RM. Enhanced Spatially Resolved Proteomics Using On-Tissue Hydrogel-Mediated Protein Digestion. Anal Chem 2017; 89:2948-2955. [DOI: 10.1021/acs.analchem.6b04395] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David G. Rizzo
- Department
of Chemistry, ‡Department of Biochemistry, §Mass Spectrometry Research Center, and ∥Departments
of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Boone M. Prentice
- Department
of Chemistry, ‡Department of Biochemistry, §Mass Spectrometry Research Center, and ∥Departments
of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jessica L. Moore
- Department
of Chemistry, ‡Department of Biochemistry, §Mass Spectrometry Research Center, and ∥Departments
of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jeremy L. Norris
- Department
of Chemistry, ‡Department of Biochemistry, §Mass Spectrometry Research Center, and ∥Departments
of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Richard M. Caprioli
- Department
of Chemistry, ‡Department of Biochemistry, §Mass Spectrometry Research Center, and ∥Departments
of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
12
|
Taverna D, Mignogna C, Gabriele C, Santise G, Donato G, Cuda G, Gaspari M. An optimized procedure for on-tissue localized protein digestion and quantification using hydrogel discs and isobaric mass tags: analysis of cardiac myxoma. Anal Bioanal Chem 2017; 409:2919-2930. [PMID: 28190108 DOI: 10.1007/s00216-017-0237-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 01/22/2023]
Abstract
An optimized workflow for multiplexed and spatially localized on-tissue quantitative protein analysis is here presented. The method is based on the use of an enzyme delivery platform, a polymeric hydrogel disc, allowing for a localized digestion directly onto the tissue surface coupled with an isobaric mass tag strategy for peptide labeling and relative quantification. The digestion occurs within such hydrogels, followed by peptide solvent extraction and identification by liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/MS). Since this is a histology-directed on-tissue analysis, multiple hydrogels were placed onto morphologically and spatially different regions of interest (ROIs) within the tissue surface, e.g., cardiac myxoma tumor vascularized region and the adjacent hypocellular area. After a microwave digestion step (2 min), enzymatically cleaved peptides were labeled using TMT reagents with isobaric mass tags, enabling analysis of multiple samples per experiment. Thus, N = 8 hydrogel-digested samples from cardiac myxoma serial tissue sections (N = 4 from the vascularized ROIs and N = 4 from the adjacent hypocellular areas) were processed and then combined before a single LC-MS/MS analysis. Regulated proteins from both cardiac myxoma regions were assayed in a single experiment. Graphical abstract The workflow for histology-guided on-tissue localized protein digestion followed by isobaric mass tagging and LC-MS/MS analysis for proteins quantification is here summarized.
Collapse
Affiliation(s)
- Domenico Taverna
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy.
| | - Chiara Mignogna
- Department of Health Science, Magna Graecia University of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Caterina Gabriele
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Gianluca Santise
- Cardiothoracic Surgery Unit, Sant'Anna Hospital, Via Pio X, 111, 88100, Catanzaro, Italy
| | - Giuseppe Donato
- Department of Health Science, Magna Graecia University of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Giovanni Cuda
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Marco Gaspari
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| |
Collapse
|
13
|
Zubair F, Laibinis PE, Swisher WG, Yang J, Spraggins JM, Norris JL, Caprioli RM. Trypsin and MALDI matrix pre-coated targets simplify sample preparation for mapping proteomic distributions within biological tissues by imaging mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:1168-1179. [PMID: 27676701 PMCID: PMC5687832 DOI: 10.1002/jms.3888] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/20/2016] [Indexed: 05/05/2023]
Abstract
Prefabricated surfaces containing α-cyano-4-hydroxycinnamic acid and trypsin have been developed to facilitate enzymatic digestion of endogenous tissue proteins prior to matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). Tissue sections are placed onto slides that were previously coated with α-cyano-4-hydroxycinnamic acid and trypsin. After incubation to promote enzymatic digestion, the tissue is analyzed by MALDI IMS to determine the spatial distribution of the tryptic fragments. The peptides detected in the MALDI IMS dataset were identified by Liquid chromatography-tandem mass spectrometry/mass spectrometry. Protein identification was further confirmed by correlating the localization of unique tryptic fragments originating from common parent proteins. Using this procedure, proteins with molecular weights as large as 300 kDa were identified and their distributions were imaged in sections of rat brain. In particular, large proteins such as myristoylated alanine-rich C-kinase substrate (29.8 kDa) and spectrin alpha chain, non-erythrocytic 1 (284 kDa) were detected that are not observed without trypsin. The pre-coated targets simplify workflow and increase sample throughput by decreasing the sample preparation time. Further, the approach allows imaging at higher spatial resolution compared with robotic spotters that apply one drop at a time. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Faizan Zubair
- Mass Spectrometry Research Center (MSRC), Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Paul E. Laibinis
- Mass Spectrometry Research Center (MSRC), Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - William G. Swisher
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Junhai Yang
- Mass Spectrometry Research Center (MSRC), Vanderbilt University, Nashville, Tennessee, USA
| | - Jeffrey M. Spraggins
- Mass Spectrometry Research Center (MSRC), Vanderbilt University, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeremy L. Norris
- Mass Spectrometry Research Center (MSRC), Vanderbilt University, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard M. Caprioli
- Mass Spectrometry Research Center (MSRC), Vanderbilt University, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Correspondence to: Richard M. Caprioli, Mass Spectrometry Research Center (MSRC), Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
14
|
Fagerquist CK. Unlocking the proteomic information encoded in MALDI-TOF-MS data used for microbial identification and characterization. Expert Rev Proteomics 2016; 14:97-107. [DOI: 10.1080/14789450.2017.1260451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Clifton K. Fagerquist
- United States Department of Agriculture (USDA), Agricultural Research Service, Albany, CA, USA
| |
Collapse
|
15
|
Stokol T. Veterinary Pathology - A Path Forward with New Directions and Opportunities. Front Vet Sci 2016; 3:76. [PMID: 27630996 PMCID: PMC5005974 DOI: 10.3389/fvets.2016.00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/23/2016] [Indexed: 12/24/2022] Open
Affiliation(s)
- Tracy Stokol
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University , Ithaca, NY , USA
| |
Collapse
|
16
|
Taverna D, Pollins AC, Sindona G, Caprioli RM, Nanney LB. Imaging mass spectrometry for accessing molecular changes during burn wound healing. Wound Repair Regen 2016; 24:775-785. [PMID: 27256813 DOI: 10.1111/wrr.12450] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/27/2016] [Indexed: 11/28/2022]
Abstract
The spatiotemporal analysis of the proteomic profile during human wound healing is a critical investigative step that can establish the complex interplay of molecular events that comprise the local response to burn injury. Partial-thickness wound samples with adjacent "normal" skin were collected from twenty-one patients with burn wounds and examined across a time spectrum ranging from the acute injury period at 3, 6, 11 days to the later hypertrophic scar period at 7 and 15 months. The techniques used for histology-directed tissue analyses highlighted inflammatory protein markers at the early time points after injury with diminished expression as burn wounds progressed into the proliferative phase. The datasets show the usefulness of MALDI MS and imaging mass spectrometry as discovery approaches to identify and map the cutaneous molecular sequence that is activated in response to the unique systemic inflammatory response following burn trauma. This information has the potential to define the unique factors that predispose human burn victims to disfiguring hypertrophic scar formation.
Collapse
Affiliation(s)
- Domenico Taverna
- Department of Biochemistry, University of Della Calabria, Arcavacata Di Rende, Italy. .,Mass Spectrometry Research Center, Vanderbilt School of Medicine, Nashville, Tennessee.
| | - Alonda C Pollins
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Giovanni Sindona
- Department of Biochemistry, University of Della Calabria, Arcavacata Di Rende, Italy
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt School of Medicine, Nashville, Tennessee.,Department of Biochemistry, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Lillian B Nanney
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, Tennessee.,Department of Cell & Developmental Biology, Vanderbilt School of Medicine, Nashville, Tennessee
| |
Collapse
|
17
|
Taverna D, Di Donna L, Bartella L, Napoli A, Sindona G, Mazzotti F. Fast analysis of caffeine in beverages and drugs by paper spray tandem mass spectrometry. Anal Bioanal Chem 2016; 408:3783-7. [DOI: 10.1007/s00216-016-9468-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/09/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
|
18
|
Zhao Q, Fang F, Wu C, Wu Q, Liang Y, Liang Z, Zhang L, Zhang Y. imFASP: An integrated approach combining in-situ filter-aided sample pretreatment with microwave-assisted protein digestion for fast and efficient proteome sample preparation. Anal Chim Acta 2016; 912:58-64. [DOI: 10.1016/j.aca.2016.01.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 01/02/2023]
|
19
|
Taverna D, Pollins AC, Nanney LB, Sindona G, Caprioli RM. Histology-guided protein digestion/extraction from formalin-fixed and paraffin-embedded pressure ulcer biopsies. Exp Dermatol 2015; 25:143-6. [PMID: 26440596 DOI: 10.1111/exd.12870] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 12/24/2022]
Abstract
Herein we present a simple, reproducible and versatile approach for in situ protein digestion and identification on formalin-fixed and paraffin-embedded (FFPE) tissues. This adaptation is based on the use of an enzyme delivery platform (hydrogel discs) that can be positioned on the surface of a tissue section. By simultaneous deposition of multiple hydrogels over select regions of interest within the same tissue section, multiple peptide extracts can be obtained from discrete histological areas. After enzymatic digestion, the hydrogel extracts are submitted for LC-MS/MS analysis followed by database inquiry for protein identification. Further, imaging mass spectrometry (IMS) is used to reveal the spatial distribution of the identified peptides within a serial tissue section. Optimization was achieved using cutaneous tissue from surgically excised pressure ulcers that were subdivided into two prime regions of interest: the wound bed and the adjacent dermal area. The robust display of tryptic peptides within these spectral analyses of histologically defined tissue regions suggests that LC-MS/MS in combination with IMS can serve as useful exploratory tools.
Collapse
Affiliation(s)
- Domenico Taverna
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, Italy.,Mass Spectrometry Research Center, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Alonda C Pollins
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Lillian B Nanney
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, TN, USA.,Department of Cell & Developmental Biology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Giovanni Sindona
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, Italy
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt School of Medicine, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt School of Medicine, Nashville, TN, USA
| |
Collapse
|
20
|
Jia Y, Yu H, Wu L, Hou X, Yang L, Zheng C. Three Birds with One Fe3O4 Nanoparticle: Integration of Microwave Digestion, Solid Phase Extraction, and Magnetic Separation for Sensitive Determination of Arsenic and Antimony in Fish. Anal Chem 2015; 87:5866-71. [DOI: 10.1021/acs.analchem.5b00712] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yun Jia
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Huimin Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Li Wu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiandeng Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lu Yang
- Chemical
Metrology, Measurement Science and Standards, National Research Council Canada, Ottawa, Canada, K1A 0R6
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|