1
|
Peirano SR, Prince DL, Giovannoni S, Aguilar EC, Rafti M, Ceolín M, Keunchkarian S, Echevarría RN, Reta M. Hybrid organic monolithic column containing MIL-68(Al) for the separation of small molecules by capillary HPLC. J Chromatogr A 2024; 1733:465258. [PMID: 39167883 DOI: 10.1016/j.chroma.2024.465258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
A hybrid organic monolithic column made of poly(lauryl methacrylate-co-1,6-hexanediol dimethacrylate) and the metal-organic framework MIL-68(Al) was prepared for the first time. The column was used in capillary liquid chromatography, both in isocratic and gradient elution modes. Separation performance towards small molecules of different chemical nature (polycyclic aromatic hydrocarbons, alkylbenzenes, phenols, etc.) was studied. Monte Carlo simulations were made to both select the proper precursors to obtain empty metal-organic framework micropores in the monolithic polymer and also, to analyze the potential free access of the studied analytes into the micropores (necessary to improve mass transfer and column efficiency). The hereby synthesized metal-organic framework microcrystals allowed obtaining homogeneous hybrid monolithic columns. Adding of MIL-68(Al) (1030 m2 g-1 BET specific surface area) increased the surface area from 3.9 m2 g-1 for the parent monolith to 18.2 m2 g-1 for the hybrid column containing 8 mg mL-1 of the microcrystals. Chromatographic performance of this new column was evaluated by studying retention factors, resolution, and plate counts at room temperature. Different compounds, not completely resolved in the parent monolith, were partially or completely separated after metal-organic framework addition. Using the monolithic column with only 2 mg mL-1 of MIL-68(Al), five alkylbenzenes were completely separated with very symmetrical peak shapes, resolution factors up to 3.60 and plate counts of 4300 plates m-1 for n-hexylbenzene. This value is higher than those obtained by other authors who used organic monolithic columns with embedded metal-organic frameworks to perform separations at room temperature. Additionally, nine polycyclic aromatic hydrocarbons were partially or completely resolved in gradient elution mode. The hybrid monolithic columns exhibited very good intra-day (%RSD=1.9), inter-day (%RSD=2.6), and column-to-column (%RSD=4.3) reproducibility values. Easy and fast column preparation, and versatility to efficiently separate several compounds of different chemical nature in isocratic and gradient mode, makes this new hybrid column a very good option for the analysis of small molecules in capillary (or nano) HPLC.
Collapse
Affiliation(s)
- Sofía R Peirano
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) (CIC-PBA, CONICET) and División Química Analítica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 (B1900AJL), La Plata, Argentina
| | - Daiana L Prince
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) (CIC-PBA, CONICET) and División Química Analítica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 (B1900AJL), La Plata, Argentina
| | - Sol Giovannoni
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) (CIC-PBA, CONICET) and División Química Analítica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 (B1900AJL), La Plata, Argentina
| | - Elisabeth Contreras Aguilar
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET. 64 y 113, (B1900AJL), La Plata, Argentina
| | - Matias Rafti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET. 64 y 113, (B1900AJL), La Plata, Argentina
| | - Marcelo Ceolín
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET. 64 y 113, (B1900AJL), La Plata, Argentina
| | - Sonia Keunchkarian
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) (CIC-PBA, CONICET) and División Química Analítica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 (B1900AJL), La Plata, Argentina
| | - Romina N Echevarría
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) (CIC-PBA, CONICET) and División Química Analítica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 (B1900AJL), La Plata, Argentina
| | - Mario Reta
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) (CIC-PBA, CONICET) and División Química Analítica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 (B1900AJL), La Plata, Argentina.
| |
Collapse
|
2
|
Tsopelas F, Vallianatou T, Tsantili-Kakoulidou A. Recent developments in the application of immobilized artificial membrane (IAM) chromatography to drug discovery. Expert Opin Drug Discov 2024; 19:1087-1098. [PMID: 38957047 DOI: 10.1080/17460441.2024.2374409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Immobilized artificial membrane (IAM) chromatography is widely used in many aspects of drug discovery. It employs stationary phases, which contain phospholipids combining simulation of biological membranes with rapid measurements. AREAS COVERED Advances in IAM stationary phases, chromatographic conditions and the underlying retention mechanism are discussed. The potential of IAM chromatography to model permeability and drug-membrane interactions as well as its use to estimate pharmacokinetic properties and toxicity endpoints including ecotoxicity, is outlined. Efforts to construct models for prediction IAM retention factors are presented. EXPERT OPINION IAM chromatography, as a border case between partitioning and binding, has broadened its application from permeability studies to encompass processes involving tissue binding. Most IAM-based permeability models are hybrid models incorporating additional molecular descriptors, while for the estimation of pharmacokinetic properties and binding to off targets, IAM retention is combined with other biomimetic properties. However, for its integration into routine drug discovery protocols, reliable IAM prediction models implemented in relevant software should be developed, to enable its use in virtual screening and the design of new molecules. Conversely, preparation of new IAM columns with different phospholipids or mixed monomers offers enhanced flexibility and the potential to tailor the conditions according to the target property.
Collapse
Affiliation(s)
- Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | | - Anna Tsantili-Kakoulidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Li R, Wang Y, Zuo H, Tang R, Bian Y, Ou J, Shen Y. Design and fabrication of fluorous monoliths with tunable surface property for capillary liquid chromatography. J Chromatogr A 2024; 1731:465204. [PMID: 39059302 DOI: 10.1016/j.chroma.2024.465204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Hierarchically porous monoliths with satisfactory properties have been employed in diverse fields, especially separation. In this study, pentafluorophenyl acrylate (PFPA), pentaerythritol tetraacrylate (PETA) and trimethylolpropane tris(3-mercaptopropionate) (TTMP) were selected as precursors to fabricate a novel monolithic column by thermally initiated polymerization in the presence of a binary porogenic system containing tetrahydrofuran and 1-propanol. The fabricated poly(PFPA-co-PETA-co-TTMP) monolithic column revealed excellent permeability and mechanical stability. Additionally, baseline separation of the mixture of small molecules can be achieved, involving alkylbenzene and fluorobenzene in chromatographic assessment, and the theoretical plate number is up to 60,500 plates/m for butylbenzene with a linear velocity of 0.14 mm/s. Tryptic digest of HeLa as an analyte was used to investigate the possibility of the poly(PFPA-co-PETA-co-TTMP) monolith in biological separation by cLC-MS/MS. Moreover, benefiting from the existence of pentafluorophenyl groups, the cucurbit[8]uril (CB[8]) could be modified on the prepared poly(PFPA-co-PETA-co-TTMP) monolith through host-guest interaction to obtain poly(PFPA-co-PETA-co-TTMP)-CB[8] monolith. It could be observed that significant changes in retention behavior of analytes appeared after immobilizing CB[8] on the monolith. It offered an innovative approach by utilizing host-guest interaction to fabricate monolithic columns with different chromatographic behaviors.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yan Wang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Haiyue Zuo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an 710069, China
| | - Ruizhi Tang
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yangyang Bian
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an 710069, China
| | - Junjie Ou
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| |
Collapse
|
4
|
Li W, Gao C, Wang Y, Zuo H, Bian Y, Li C, Ma S, Shen Y, Ou J. Construction of adamantane-based monolithic column with three-dimensionally porous structure for small molecules separation and biosample analysis. Anal Chim Acta 2024; 1317:342900. [PMID: 39030004 DOI: 10.1016/j.aca.2024.342900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND The fabrication technique of capillary column is the key to the development and application of capillary liquid chromatography (cLC) to improve separation efficiency for analytes. The capillary monolithic column possessed three-dimensionally connected porous or channel structures. Unique porous structure endows excellent permeability and high performance in diverse fields, especially in separation. Thereinto, organic monolithic columns have attracted widespread attention due to their advantages of simple preparation and excellent biocompatibility. However, their separation selectivity needs to be further developed and regulated to apply the separation of more diverse samples. RESULTS A novel polymeric monolithic column was prepared via thermally initiated in situ copolymerization of 2-methyladamantan-2-yl acrylate (MADA) with ditrimethylolpropane tetraacrylate (DTTA) in fused silica. The prepared poly(MADA-co-DTTA) monolith showed adjustable permeability, developed porous structure and high thermal stability. Consequently, it exhibited excellent separation capability of small molecules (alkylbenzenes and polycyclic aromatic hydrocarbons). Especially, when acetonitrile/water (60/40, v/v) was used as the mobile phase, the theoretical plate numbers reached 84,000 plates m-1 for butylbenzene at a linear velocity of 0.5 mm s-1. Most importantly, the hydrophobicity of the poly(MADA-co-DTTA) monolithic column was regulated via host-guest interaction between adamantyl group and cucurbit [7]uril (CB[7]). Additionally, the poly(MADA-co-DTTA) monolith was further adopted for the analysis of the tryptic digest of proteins from HeLa by cLC-MS/MS. The 33,783 unique peptides and 5,299 proteins were identified on the monolith, which exhibited great separation ability for complex samples. SIGNIFICANCE AND NOVELTY Due to abundant pore structure and good chemical properties, the poly(MADA-co-DTTA) monolithic column exhibited high performance for the separations of small molecules and biological sample. Meanwhile, owing to the existence of adamantyl-group, CB[7] was immobilized on the poly(MADA-co-DTTA) monolithic column to fabricate poly(MADA-co-DTTA)-CB[7] by host-guest interaction. It is possible to adjust the surface chemistry of the monolithic materials to accommodate more complex analytes.
Collapse
Affiliation(s)
- Wen Li
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Chunli Gao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, 710069, China
| | - Yan Wang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China.
| | - Haiyue Zuo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, 710069, China
| | - Yangyang Bian
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, 710069, China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Shujuan Ma
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China.
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Junjie Ou
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China; Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| |
Collapse
|
5
|
Girel S, Meister I, Glauser G, Rudaz S. Hyphenation of microflow chromatography with electrospray ionization mass spectrometry for bioanalytical applications focusing on low molecular weight compounds: A tutorial review. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38952056 DOI: 10.1002/mas.21898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Benefits of miniaturized chromatography with various detection modes, such as increased sensitivity, chromatographic efficiency, and speed, were recognized nearly 50 years ago. Over the past two decades, this approach has experienced rapid growth, driven by the emergence of mass spectrometry applications serving -omics sciences and the need for analyzing minute volumes of precious samples with ever higher sensitivity. While nanoscale liquid chromatography (flow rates <1 μL/min) has gained widespread recognition in proteomics, the adoption of microscale setups (flow rates ranging from 1 to 100 μL/min) for low molecular weight compound applications, including metabolomics, has been surprisingly slow, despite the inherent advantages of the approach. Highly heterogeneous matrices and chemical structures accompanied by a relative lack of options for both selective sample preparation and user-friendly equipment are usually reported as major hindrances. To facilitate the wider implementation of microscale analyses, we present here a comprehensive tutorial encompassing important theoretical and practical considerations. We provide fundamental principles in micro-chromatography and guide the reader through the main elements of a microflow workflow, from LC pumps to ionization devices. Finally, based on both our literature overview and experience, illustrated by some in-house data, we highlight the critical importance of the ionization source design and its careful optimization to achieve significant sensitivity improvement.
Collapse
Affiliation(s)
- Sergey Girel
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Isabel Meister
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Swiss Center of Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Swiss Center of Applied Human Toxicology (SCAHT), Basel, Switzerland
| |
Collapse
|
6
|
Aqel A, Ghfar AA, Badjah-Hadj-Ahmed AY, ALOthman ZA. Monolithic stationary phases prepared via cyclic anhydride ring-opening polymerization as tunable platforms for chromatographic applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3231-3239. [PMID: 38717475 DOI: 10.1039/d4ay00251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Polymer monolithic stationary phases were prepared based on a cyclic anhydride as a reactive and tunable platform via ring-opening post-polymerization using primary amines, octadecylamine and benzylamine. The characterization techniques indicated the insertion of the functional groups into the original monoliths and confirmed the amidation reactions. The post-polymerization modification also improved the monolith's thermal and mechanical stability and induced significant improvement in their surface area. The stationary phases were synthesized inside small dimension stainless-steel columns (2.1 mm i.d. × 50 mm length). The prepared columns before and after modifications have been tested for the separation of the alkylbenzene series and some polycyclic aromatic hydrocarbons (PAHs) as model compounds. In all cases, the chromatographic performance in terms of the height equivalent to a theoretical plate on the functionalized monoliths was remarkably improved when compared with that on the unmodified monolith, which was between 9.59-39.49 μm and 4.08-31.50 μm using monoliths modified with octadecylamine and benzylamine, respectively. Under the same chromatographic conditions, the functionalization of monoliths with octadecylamine provided more hydrophobic interactions and enhanced the retention of alkylbenzenes, while the modification of monoliths with benzyl groups improved the separation and the retention of the PAHs through the strong π-π interactions. However, post-modification polymerization with octadecylamine and benzylamine enhanced the separation efficiency of the prepared columns toward all studied compounds. The repeatability of the injections on the same column and the reproducibility of the prepared columns have been studied for some selected parameters and estimated in terms of percent relative standard deviation (%RSD) for some of the studied compounds. The repeatability of the prepared columns was ≤9.42% (n = 5) based on run-to-run injections and ≤9.48% based on day-to-day injections for five successive days. The reproducibility levels, on the other hand, were ≤20.95% for all studied parameters in all cases. To assess their performance for the analysis of real samples, the applicability of the prepared columns was examined for the separation of the active ingredients extracted from some commercial pharmaceutical formulations and for the separation of tea water extract constituents. The validation data show the suitability of the columns for practical use in the routine analysis of these samples.
Collapse
Affiliation(s)
- Ahmad Aqel
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | | | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
7
|
Kamo Y, Matsumoto A. Control of Pore Sizes in Epoxy Monoliths and Applications as Sheet-Type Adhesives in Combination with Conventional Epoxy and Acrylic Adhesives. Molecules 2024; 29:2059. [PMID: 38731550 PMCID: PMC11085113 DOI: 10.3390/molecules29092059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Materials with monolithic structures, such as epoxy monoliths, are used for a variety of applications, such as for column fillers in gas chromatography and HPLC, for separators in lithium-ion batteries, and for precursor polymers for monolith adhesion. In this study, we investigated the fabrication of epoxy monoliths using 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane (TETRAD-C) as the tetrafunctional epoxy and 4,4'-methylenebis(cyclohexylamine) (BACM) as the amine curing agent to control pore diameters using polyethylene glycols (PEGs) of differing molecular weights as the porogenic agents. We fabricated an epoxy monolith with micron-order pores and high strength levels, and which is suitable for the precursors of composite materials in cases where smaller PEGs are used. We discussed the effects of the porous structures of monoliths on their physical properties, such as tensile strength, elongation, elastic modulus, and glass transition temperatures. For example, epoxy monoliths prepared in the presence of PEGs exhibited an elastic modulus less than 1 GPa at room temperature and Tg values of 175-187 °C, while the epoxy bulk thermoset produced without any porogenic solvent showed a high elastic modulus as 1.8 GPa, which was maintained at high temperatures, and a high Tg of 223 °C. In addition, the unique adhesion characteristics of epoxy monolith sheets are revealed as a result of the combinations made with commercial epoxy and acrylic adhesives. Epoxy monoliths that are combined with conventional adhesives can function as sheet-type adhesives purposed with avoiding problems when only liquid-type adhesives are used.
Collapse
Affiliation(s)
- Yoshiyuki Kamo
- Advanced Technology R&D Center, Mitsubishi Electric Corporation, 8-1-1, Tsukaguchi-Honmachi, Amagasaki, Hyogo 661-8661, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Akikazu Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
8
|
Gavara R, Royuela S, Zamora F. A minireview on covalent organic frameworks as stationary phases in chromatography. Front Chem 2024; 12:1384025. [PMID: 38606080 PMCID: PMC11006975 DOI: 10.3389/fchem.2024.1384025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
Advances in the design of novel porous materials open new avenues for the development of chromatographic solid stationary phases. Covalent organic frameworks (COFs) are promising candidates in this context due to their remarkable structural versatility and exceptional chemical and textural properties. In this minireview, we summarize the main strategies followed in recent years to apply these materials as stationary phases for chromatographic separations. We also comment on the perspectives of this new research field and potential directions to expand the applicability and implementation of COF stationary phases in analytical systems.
Collapse
Affiliation(s)
- Raquel Gavara
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, Spain
| | - Sergio Royuela
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Félix Zamora
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Liu M, Jing S, Xie T, Liu H, Bai L. Fabrication of a bio-based polymer adsorbent and its application for extraction and determination of glycosides from Huangqi Liuyi decoction. J Pharm Biomed Anal 2024; 240:115947. [PMID: 38181557 DOI: 10.1016/j.jpba.2023.115947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Huangqi Liuyi Decoction, a famous classical Chinese prescription, shows significant curative effect on diabetes and its complications, in which calycosin-7-glucoside, liquiritin and glycyrrhizic acid are the main components that playing these mentioned pharmacological activity, under the synergistic action of various other ingredients in the decoction. However, there are significant differences in the content of active compounds in Chinese medicinal materials, which mainly due to origin, picking seasons, and processing methods. Hence, the accurate content of the glycosides is the prerequisite for ensuring the pharmacological efficacy. Aiming at establishing an efficient extraction and determination method for accurate quantitative analysis of calycosin-7-glucoside, liquiritin and glycyrrhizic acid in Huangqi Liuyi Decoction, an on line solid-phase extraction-high-performance liquid chromatography method was developed, using a homemade bio-based monolithic adsorbent. The bio-based adsorbent was prepared in a stainless steel tube, using bio-monomers of methyleugenol and S-allyl-L-cysteine, which effectively reduced the dependence of the polymer field on non-renewable fossil resources and reduced carbon emissions. Furthermore, the prepared adsorbent owned abundant chemical groups, which can produce interactions of hydrogen bond, dipole-dipole, π-π and hydrophobic force with the target glycosides, thus improving the specific recognition ability of the adsorbent. The experiments were carried out on an LC-3000 HPLC instrument with a six-way valve. Methodology validation indicates that the recovery is in the range of 97.0%-103.4% with the RSD in the range of 1.6%-4.0%, due to the specific selectivity of the bio-based monolithic adsorbent for these three glycosides, and good matrix-removal ability for Huangqi Liuyi decoction. The limit of detection is 0.17, 0.50 and 0.33 μg/mL for calycosin-7-glucoside, liquiritin and glycyrrhizic acid, respectively, and the limit of quantitation is 0.50, 1.50 and 1.00 μg/mL, respectively, with the linear range of 2-200 μg/mL for calycosin-7-glucoside, and 5-500 μg/mL for liquiritin and glycyrrhizic acid. The present work provided a simple and efficient method for the extraction and determination of glycosides in complex medicinal plants.
Collapse
Affiliation(s)
- Miaomiao Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Public Health Safety of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Siqi Jing
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Public Health Safety of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Tiantian Xie
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Public Health Safety of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Haiyan Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Public Health Safety of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Ligai Bai
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Public Health Safety of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China.
| |
Collapse
|
10
|
Zhang M, Wei X, Bai L, Liu H. Preparation of a novel MOF-POPM and its application in online purification and enrichment of oleanolic acid in medicinal plants. ANAL SCI 2024; 40:319-333. [PMID: 38085445 DOI: 10.1007/s44211-023-00465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/30/2023] [Indexed: 02/06/2024]
Abstract
In present work, a method for enrichment, purification, and content determination of oleanolic acid (OA) in medicinal plants was established based on on-line solid phase extraction (SPE). A metal organic frameworks-porous organic polymer monolith (MOF-POPM) was prepared with functionalized UiO-66-(OH)2 as monomer and was used as SPE column for online enrichment and purification of OA. The ratio of adsorbent, enriching and eluting solvent, mobile phase pH, and flow rate had been systematically investigated. Under the optimum conditions, the linear range of OA was 0.59-2500 μg/mL with r = 0.9996. The limit of detection (LOD) was 0.18 μg/mL and the limit of quantification (LOQ) was 0.59 μg/mL. The intra-day relative standard deviations (RSDs) and inter-day RSDs of retention time and peak area were less than 0.3% and 1.3%, respectively. The average recoveries of OA in medicinal plants samples ranged from 87.7 to 104.6%. The results demonstrated that the online system was reliable and accurate for enrichment, purification, and content determination of OA in medicinal plants.
Collapse
Affiliation(s)
- Miaomiao Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Public Health Safety of Hebei Province; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002, China
| | - Xuanwen Wei
- College of Pharmaceutical Sciences, Key Laboratory of Public Health Safety of Hebei Province; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002, China
| | - Ligai Bai
- College of Pharmaceutical Sciences, Key Laboratory of Public Health Safety of Hebei Province; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002, China
| | - Haiyan Liu
- College of Pharmaceutical Sciences, Key Laboratory of Public Health Safety of Hebei Province; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002, China.
| |
Collapse
|
11
|
Jiao D, Zhang R, Zhang H, Ma H, Zhang X, Fan X, Chang H. Rapid detection of glycosylated hemoglobin levels by a microchip liquid chromatography system in gradient elution mode. Anal Chim Acta 2024; 1288:342186. [PMID: 38220313 DOI: 10.1016/j.aca.2023.342186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND The determination of glycosylated hemoglobin (HbA1c) is crucial for diabetes diagnosis and can provide more substantial results than the simple measurement of glycemia. While there is a lack of simple methods for the determination of HbA1c using a point-of-care test (POCT) compared to glycemia measurement. In particular, high-performance liquid chromatography (HPLC) is considered the current gold standard for determining HbA1c levels. However, commercial HPLC systems usually have some sort of disadvantages such as bulky size, high-cost and need for qualified operators. Therefore, there is an urgent demand to develop a portable, and fast HbA1c detection system consuming fewer reagents. RESULTS We present a novel microchip that integrates a micromixer, passive injector, packed column and detection cell. The integrated microchip, in which all the microstructures were formed in the CNC machining center through micro-milling, is small in size (30 mm × 70 mm × 10 mm), and can withstand 1600 psi of liquid pressure. The integrated design is beneficial to reduce the band broadening caused by dead volume. Based on the microchip, a microchip liquid chromatography (LC) system was built and applied to the analysis of HbA1c. The separation conditions of HbA1c in blood calibrator samples were optimized using the microchip LC system. Samples containing four levels of HbA1c were completely separated within 2 min in optimal gradient conditions, with an inaccuracy (<3.2 %), a coefficient of variation (c.v. < 2.1 %) and a correlation coefficient (R2 = 0.993), indicating excellent separation efficiency and reproducibility. SIGNIFICANCE The POCT of HbA1c is critical for diabetes diagnosis. The microchip chromatography system was developed for HbA1c determination, which contains an integrated microchip and works under a gradient elution. It surpasses existing chip technology in terms of separation performance and detection speed, providing a competitive advantage for POCT of HbA1c. It is considered one important step for realizing efficient portable systems for timely and accurate diabetes diagnosis.
Collapse
Affiliation(s)
- Dezhao Jiao
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ruirong Zhang
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Hantian Zhang
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Haoquan Ma
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaorui Zhang
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoguang Fan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Honglong Chang
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
12
|
Bayındır S, Aydoğan C, Denizli A. Preparation of chiral monoliths with new modulation of the monolith surface chemistry for the enantioseparation of chiral drugs by nano-liquid chromatography. J Chromatogr A 2024; 1713:464573. [PMID: 38101302 DOI: 10.1016/j.chroma.2023.464573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Here, we report the preparation and application of two new chiral monoliths for the enantioseparation of chiral drugs in nano-LC. Using 3‑chloro-2-hydroxypropylmethacrylate (HPMA-Cl, 2) as a precursor monomer, two different chiral monomers namely, Nα-Boc-Lys-HPMA (3A) and Nα-Fmoc-Lys-HPMA (3B) were synthesized and used for the preparation of chiral polymer monoliths. The first monolithic column (referred to as monolith I) was prepared by an in-situ polymerization of Nα-Boc-Lys-HPMA as the chiral monomer and ethylene dimethacrylate while the second monolithic column (referred to as monolith II) was prepared by an in-situ polymerization of Nα-Fmoc-Lys-HPMA as the chiral monomer and ethylene dimethacrylate as the crosslinker. Methanol and 1-propanol were used as the porogenic solvents. The prepared chiral monoliths were investigated for the enantioseparation of chiral drugs, including β-blockers (e.g., atenolol, propranolol, metoprolol) and anti-inflammatory drugs (e.g., ketoprofen, ibuprofen, flurbiprofen, naproxen, etodolac). The enantioseparation could be achieved via the formation of π-π interactions on the aromate-rich and aromate-poor chiral molecules while enantioseparation mechanism of chiral drugs included mostly π-π interactions and hydrogen bonding. Monolith II showed better enantioselectivity than Monolith I and the resolution values up to 2.12 were successfully achieved.
Collapse
Affiliation(s)
- Sinan Bayındır
- Department of Chemistry, Bingöl University, Bingöl, Türkiye
| | - Cemil Aydoğan
- Department of Chemistry, Bingöl University, Bingöl, Türkiye; Food Analysis and Research Laboratory, Bingöl University, Bingöl, Türkiye; Department of Food Engineering, Bingöl University, Bingöl, Türkiye.
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
13
|
Kosmáková A, Zajickova Z, Urban J. Characterization of hybrid organo-silica monoliths for possible application in the gradient elution of peptides. J Sep Sci 2023; 46:e2300617. [PMID: 37880902 DOI: 10.1002/jssc.202300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023]
Abstract
We characterized thermally polymerized organo-silica hybrid monolithic capillaries to test their applicability in the gradient elution of peptides. We have used a single-pot approach utilizing 3-(methacryloyloxy)propyltrimethoxysilane (MPTMS), ethylene dimethacrylate (EDMA), and n-octadecyl methacrylate (ODM) as functional monomers. The organo-silica monolith containing MPTMS and EDMA was compared with the stationary phase prepared by adding ODM to the original polymerization mixture. Column prepared using a three-monomer system provided a lower accessible volume of flow-through pores, a higher proportion of mesopores, and higher efficiency. We utilized isocratic and gradient elution data to predict peak widths in gradient elution. Both protocols provided comparable results and can be used for peptide peak width prediction. However, applying gradient elution data for peak width prediction seems simpler. Finally, we tested the effect of gradient time on achievable peak capacity in the gradient elution of peptides with a column prepared with a three-monomer system providing a higher peak capacity. However, the performance of hybrid organo-silica monolithic stationary phases in gradient elution of peptides must be improved compared to other monolithic stationary phases. The limiting factor is column efficiency in highly aqueous mobile phases, which needs to be focused on.
Collapse
Affiliation(s)
- Anna Kosmáková
- Department of Chemistry Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zuzana Zajickova
- Department of Chemistry and Physics, Barry University, Miami Shores, Florida, USA
| | - Jiří Urban
- Department of Chemistry Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
14
|
Yusuf K, Shekhah O, Alharbi S, Alothman AA, Alghamdi AS, Aljohani RM, ALOthman ZA, Eddaoudi M. A promising sensing platform for explosive markers: Zeolite-like metal-organic framework based monolithic composite as a case study. J Chromatogr A 2023; 1707:464326. [PMID: 37639846 DOI: 10.1016/j.chroma.2023.464326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Preconcentration for on-site detection or subsequent determination is a promising technique for selective sensing explosive markers at low concentrations. Here, we report divinylbenzene monolithic polymer in its blank form (neat-DVB) and as a composite incorporated with sodalite topology zeolite-like metal-organic frameworks (3-ZMOF@DVB), as a sensitive, selective, and cost-effective porous preconcentrator for aliphatic nitroalkanes in the vapor phase as explosive markers at infinite dilution. The developed materials were fabricated as 18 cm gas chromatography (GC) monolithic capillary columns to study their separation performance of nitroalkane mixture and the subsequent physicochemical study of adsorption using the inverse gas chromatography (IGC) technique. A strong preconcentration effect was indicated by a specific retention volume adsorption/desorption ratio equal to 3 for nitromethane on the neat-DVB monolith host-guest interaction, and a 14% higher ratio was observed using the 3-ZMOF@DVB monolithic composite despite the low percentage of 0.7 wt.% of sod-ZMOF added. Furthermore, Incorporating ZMOF resulted in a higher percentage of micropores, increasing the degree of freedom more than bringing stronger adsorption and entropic-driven interaction more than enthalpic. The specific free energy of adsorption (ΔGS) values increased for polar probes and nitroalkanes, denoting that adding ZMOFs earned the DVB monolithic matrix a more specific character. Afterward, Lewis acid-base properties were calculated, estimating the electron acceptor (KA) and electron donor (KB) constants. The neat-DVB was found to have a Lewis basic character with KB/KA = 7.71, and the 3-ZMOF@DVB had a less Lewis basic character with KB/KA = 3.82. An increased electron-accepting nature can be directly related to incorporating sod-ZMOF into the DVB monolithic matrix. This work considers the initial step in presenting a portable explosives detector or preconcentrating explosive markers trace prior to more sophisticated analysis. Additionally, the IGC technique allows for understanding the factors that led to the superior adsorption of nitroalkanes for the developed materials.
Collapse
Affiliation(s)
- Kareem Yusuf
- Advanced Materials Research Chair (AMRC), Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia.
| | - Osama Shekhah
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Centre (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), PO Box 6900, Jeddah 23955, Saudi Arabia
| | - Seetah Alharbi
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Ali S Alghamdi
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Reem M Aljohani
- Advanced Materials Research Chair (AMRC), Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Zeid A ALOthman
- Advanced Materials Research Chair (AMRC), Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Centre (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), PO Box 6900, Jeddah 23955, Saudi Arabia
| |
Collapse
|
15
|
Zajickova Z. Review of recent advances in development and applications of organic-silica hybrid monoliths. J Sep Sci 2023; 46:e2300396. [PMID: 37582653 DOI: 10.1002/jssc.202300396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
Organic-silica hybrid monoliths attracted attention as an alternative to extensively researched organic polymer-based and silica-based counterparts. The development and applications of these materials as extraction and separation media in capillary liquid chromatography and capillary electrochromatography were previously reviewed in several manuscripts. In this review, we will concentrate on work published since mid-2016 focusing on advances in their development using sol-gel chemistry of tetra- and trialkoxysilanes and subsequent surface modification with organic monomers, and "one-pot" strategy incorporating sol-gel chemistry of alkoxysilanes and free-radical polymerization, ring-opening polymerization, or thiol-based click polymerization with organic monomers. Approaches adapted to the preparation of hybrid monoliths made with polyhedral oligomeric silsesquioxanes will be covered as well.
Collapse
Affiliation(s)
- Zuzana Zajickova
- Department of Chemistry and Physics, Barry University, Miami, Florida, USA
| |
Collapse
|
16
|
Zhou Z, Hilder EF, Eeltink S. A protocol for fabrication of polymer monolithic capillary columns and tuning the morphology targeting high-resolution bioanalysis in gradient-elution liquid chromatography. J Sep Sci 2023; 46:e2300439. [PMID: 37515368 DOI: 10.1002/jssc.202300439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Polymer monolithic stationary phases are designed as a continuous interconnected globular material perfused by macropores. Like packed column, where separation efficiency is related to particle diameter, the efficiency of monoliths can be enhanced by tuning the size of both the microglobules and macropores. This protocol described the synthesis of poly(styrene-co-divinylbenzene) monolithic stationary phases in capillary column formats. Moreover, guidelines are provided to tune the macropore structure targeting high-throughput and high-resolution monolith chromatography. The versatility of these columns is exemplified by their ability to separate tryptic digests, intact proteins, and oligonucleotides under a variety of chromatographic conditions. The repeatability of the presented column fabrication process is demonstrated by the successful creation of 12 columns in three different column batches, as evidenced by the consistency of retention times (coefficients of variance [c.v.] = 0.9%), peak widths (c.v. = 4.7%), and column pressures (c.v. = 3.1%) across the batches.
Collapse
Affiliation(s)
- Zhuoheng Zhou
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Emily F Hilder
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Sebastiaan Eeltink
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
17
|
Greguš M, Ivanov AR, Wilson SR. Ultralow flow liquid chromatography and related approaches: A focus on recent bioanalytical applications. J Sep Sci 2023; 46:e2300440. [PMID: 37528733 PMCID: PMC11087205 DOI: 10.1002/jssc.202300440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Ultralow flow LC employs ultra-narrow bore columns and mid-range pL/min to low nL/min flow rates (i.e., ≤20 nL/min). The separation columns that are used under these conditions are typically 2-30 μm in inner diameter. Ultralow flow LC systems allow for exceptionally high sensitivity and frequently high resolution. There has been an increasing interest in the analysis of scarce biological samples, for example, circulating tumor cells, extracellular vesicles, organelles, and single cells, and ultralow flow LC was efficiently applied to such samples. Hence, advances towards dedicated ultralow flow LC instrumentation, technical approaches, and higher throughput (e.g., tens-to-hundreds of single cells analyzed per day) were recently made. Here, we review the types of ultralow flow LC technology, followed by a discussion of selected representative ultralow flow LC applications, focusing on the progress made in bioanalysis of amount-limited samples during the last 10 years. We also discuss several recently reported high-sensitivity applications utilizing flow rates up to 100 nL/min, which are below commonly used nanoLC flow rates. Finally, we discuss the path forward for future developments of ultralow flow LC.
Collapse
Affiliation(s)
- Michal Greguš
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts, USA
| | - Alexander R. Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts, USA
| | - Steven Ray Wilson
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
A monolithic composite based on zeolite-like metal-organic framework@divinylbenzene polymer separates azeotropic fluorocarbon mixture efficiently. J Chromatogr A 2023; 1694:463922. [PMID: 36931139 DOI: 10.1016/j.chroma.2023.463922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Organic monolithic columns are mainly used to separate macromolecules; however, many attempts to extend their performance toward small molecules were examined by incorporating micro- and nanoparticles. The incorporation technique enabled utilizing organic monoliths in gas chromatography (GC) for small molecules, which are still scarce. Here, we prepared a composite matrix of capillary monolithic columns of a zeolite-like metal-organic framework with a sodalite topology (sod-ZMOF) and Divinylbenzene polymer (DVB) for GC separations under 0.5 MPa. Relatively short DVB monolithic columns (18 cm long × 0.25 mm i.d.) incorporated with a tiny amount of sod-ZMOF nanoparticles (0.7 and 1.17 wt%) with an average particle size of 225 nm were successfully fabricated and used to separate linear alkanes and polar probes mixtures with increasing resolution up to 3.7 and 5.1 times, respectively, compared to a blank DVB monolithic column. A high-performance separation of linear alkanes series mixture (methane to decane) was exhibited in less than 2 min. McReynolds constants revealed that sod-ZMOF provided the composite monolith with a nonpolar character yielding a negative average polarity value smaller than the standard squalene column. An Excellent retention time of pentane and octane day-to-day reproducibility was achieved during 16 days and over more than 500 runs with RSD% of 2.25% and 3.3% using a composite monolithic column with 5 mg mL-1 sod-ZMOF (5-ZMOF@DVB). In addition, a qualitative determination of the gas mixture content of three commercially available Lighter gas cartridges was performed via the 5-ZMOF@DVB column. Finally, successfully separating an azeotropic freon mixture of difluoromethane (R-32) and pentafluoroethane (R-125) was achieved with a selectivity of up to 4.84. A further thermodynamic study related the preferential adsorption of R-125 to entropic factors rather than enthalpic while trapping inside ZMOF pores. This work sheds light on utilizing the infinite diversity of MOFs and combining their properties with high permeability and easily fabricated organic monoliths for GC separations of light molecules and gasses. Furthermore, the study highlights the role of GC as an easy and fast approach for the preliminary evaluation of the separation efficiency of porous polymers.
Collapse
|
19
|
Aydoğan C, Beltekin B, Alharthi S, Ağca CA, Erdoğan İY. Nano-liquid chromatography with monolithic stationary phase based on naphthyl monomer for proteomics analysis. J Chromatogr A 2023; 1690:463804. [PMID: 36689803 DOI: 10.1016/j.chroma.2023.463804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Monolithic poly(2-vinylnaphthalene-co-divinylbenzene) columns were introduced, for the first time, and were evaluated as the separation media for nano-liquid chromatography (nano-LC). These columns were prepared by in-situ polymerization of 2-vinylnaphthalene (2-VNA) as the functional monomer and divinylbenzene (DVB) as the crosslinker in a fused silica capillary column of 50 µm i.d. Various porogenic solvents, including tetrahydrofuran (THF), dodecanol and toluene were used for morphology optimization. Final monolithic column (referred to as VNA column) was characterized by using scanning electron microscopy (SEM) and chromatographic analyses. Alkylbenzenes (ABs), and polyaromatic hydrocarbons (PAHs) were separated using the VNA column while the column offered excellent hydrophobic and π-π interactions under reversed-phase conditions. Theoretical plates number up to 41,200 plates/m in isocratic mode for ethylbenzene could be achieved. The potential of the final VNA column was demonstrated with a gradient elution in the separation of six intact proteins, including ribonuclease A (RNase A), cytochrome C (Cyt C), lysozyme (Lys), β-lactoglobulin (β-lac), myoglobin (My) and α-chymotrypsinogen (α-chym) in nano LC system. The column was then applied to the peptide analysis of trypsin digested cytochrome C, allowing a high peak capacity up to 1440 and the further proteomics analysis of COS-7 cell line was attempted applying the final monolithic column in nano-LC UV system.
Collapse
Affiliation(s)
- Cemil Aydoğan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Türkiye; Department of Food Engineering, Bingöl University, Bingöl, Türkiye; Department of Chemistry, Bingöl University, Bingöl, Türkiye.
| | - Büşra Beltekin
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Türkiye
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Can Ali Ağca
- Department of Molecular Biology, Bingöl University, Bingöl, Türkiye
| | - İbrahim Y Erdoğan
- Department of Chemistry, Bingöl University, Bingöl, Türkiye; Faculty of Health Sciences, Bingöl University, Bingöl, Türkiye
| |
Collapse
|
20
|
Montmorillonite-based polymethacrylate composite monoliths as stationary phase materials for food and pharmaceutical analysis in capillary liquid and gas chromatography. J Chromatogr A 2023; 1690:463695. [PMID: 36682103 DOI: 10.1016/j.chroma.2022.463695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
This work relates to the preparation of novel and promising stationary phases containing inorganic-organic composites for capillary liquid and gas chromatography. A naturally occurring montmorillonite was introduced to polymethacrylate monoliths, then used under different conditions of GC and HPLC at the same time. The performance of the columns was evaluated for the separation of alkane and alkylbenzene series in GC and capillary HPLC, respectively. While the bare monoliths failed to separate the model analytes, montmorillonite-based polymethacrylate allowed a full separation of the mixtures with Rs≥1.42. The columns were applied for the determination of myrcene and limonene isomers in the peel extracts of some fruits using GC, and for the analysis of active ingredients including aspirin, vitamin-C, caffeine, and ibuprofen extracted from common drugs using capillary HPLC. In GC, fast separation was achieved in 1.0 min with Rs of 6.53. The columns exhibited the best efficiency for myrcene with 20,900 plates/m. Using the capillary HPLC columns, the active ingredients were resolved in 10 min with Rs≥5.72. The efficiency values located between 12,800-21,700 plates/m in all cases. The developed methods were found to be linear in the range of 0.10-10.0 and 0.20-180 μg/mL for GC and HPLC, respectively. In comparison with commercial columns, the results in GC methods reveal that, despite their much shorter length, the prepared columns proved a faster separation with higher efficiency and comparable detection limits and chromatographic resolution. The prepared HPLC capillaries exposed lower run times and detection limits with comparable efficiency and resolution, and consume fewer samples and mobile phase solvents. The results demonstrate that the montmorillonite-based polymethacrylate composites are applicable as stationary phases for routine analysis and quality control of important fields such as food and pharmaceutical samples.
Collapse
|
21
|
Cheng Y, Xia C, Garalleh HA, Garaleh M, Lan Chi NT, Brindhadevi K. A review on optimistic development of polymeric nanocomposite membrane on environmental remediation. CHEMOSPHERE 2023; 315:137706. [PMID: 36592836 DOI: 10.1016/j.chemosphere.2022.137706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/13/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Current health and environmental concerns about the abundance and drawbacks of municipal wastewater as well as industrial effluent have prompted the development of novel and innovative treatment processes. A global shortage of clean water poses significant challenges to the survival of all life forms. For the removal of both biodegradable and non-biodegradable harmful wastes/pollutants from water, sophisticated wastewater treatment technologies are required. Polymer membrane technology is critical to overcoming this major challenge. Polymer matrix-based nanocomposite membranes are among the most popular in polymer membrane technology in terms of convenience. These membranes and their major components are environmentally friendly, energy efficient, cost effective, operationally versatile, and feasible. This review provides an overview of the drawbacks as well as promising developments in polymer membrane and nanocomposite membranes for environmental remediation, with a focus on wastewater treatment. Additionally, the advantages of nanocomposite membranes such as stability, antimicrobial properties, and adsorption processes have been discussed. The goal of this review was to summarize the remediation of harmful pollutants from water and wastewater/effluent using polymer matrix-based nanocomposite membrane technology, and to highlight its shortcomings and future prospects.
Collapse
Affiliation(s)
- Yueqin Cheng
- Nanjing Station of Quality Protection in Cultivated Land, Nanjing, 210036, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Mazen Garaleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia; Department of Applied Chemistry, Faculty of Science, Tafila Technical University, Tafila, 66141, Jordan
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Kathirvel Brindhadevi
- Computational Engineering and Design Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
22
|
Neequaye T, El Rassi Z. Poly(carboxyethyl acrylate-co-ethylene glycol dimethacrylate) precursor monolith with bonded (S)-(-)-1-(2-naphthyl) ethylamine ligands for use in chiral and achiral separations by capillary electrochromatography. J Chromatogr A 2023; 1688:463713. [PMID: 36535112 DOI: 10.1016/j.chroma.2022.463713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/26/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
In this research report, the previously developed poly(carboxyethyl acrylate-co-ethylene glycol dimethacrylate) precursor monolith (referred to as carboxy monolith) is further exploited in the preparation of a chiral stationary phase for enantiomeric separations. The carboxy monolith precursor was subjected to post polymerization functionalization (PPF) with the chiral selector (S)-(-)-1-(2-naphthyl) ethylamine (NAS) at room temperature in the presence of N, N´-dicyclohexylcarbodiimide (DCC) in chloroform. The DCC, which is an organic soluble carbodiimide, permits the linkage for the amine functionality of the chiral ligand NAS to the carboxy group of the monolithic surface forming a stable amide linkage. The NAS column thus obtained allowed not only enantiomeric separations in the RP mode via its chiral site but also the separation of nonpolar species via its achiral functionality offering both hydrophobic and π-π interactions for aromatic compounds such toluene derivatives and polyaromatic hydrocarbons. The dual interaction sites (e.g., chiral, and achiral) of the NAS present a convenient column for the separations of slightly polar and nonpolar chiral and achiral solutes in the RP mode.
Collapse
Affiliation(s)
- Theophilus Neequaye
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, United States
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, United States.
| |
Collapse
|
23
|
Lenčo J, Jadeja S, Naplekov DK, Krokhin OV, Khalikova MA, Chocholouš P, Urban J, Broeckhoven K, Nováková L, Švec F. Reversed-Phase Liquid Chromatography of Peptides for Bottom-Up Proteomics: A Tutorial. J Proteome Res 2022; 21:2846-2892. [PMID: 36355445 DOI: 10.1021/acs.jproteome.2c00407] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The performance of the current bottom-up liquid chromatography hyphenated with mass spectrometry (LC-MS) analyses has undoubtedly been fueled by spectacular progress in mass spectrometry. It is thus not surprising that the MS instrument attracts the most attention during LC-MS method development, whereas optimizing conditions for peptide separation using reversed-phase liquid chromatography (RPLC) remains somewhat in its shadow. Consequently, the wisdom of the fundaments of chromatography is slowly vanishing from some laboratories. However, the full potential of advanced MS instruments cannot be achieved without highly efficient RPLC. This is impossible to attain without understanding fundamental processes in the chromatographic system and the properties of peptides important for their chromatographic behavior. We wrote this tutorial intending to give practitioners an overview of critical aspects of peptide separation using RPLC to facilitate setting the LC parameters so that they can leverage the full capabilities of their MS instruments. After briefly introducing the gradient separation of peptides, we discuss their properties that affect the quality of LC-MS chromatograms the most. Next, we address the in-column and extra-column broadening. The last section is devoted to key parameters of LC-MS methods. We also extracted trends in practice from recent bottom-up proteomics studies and correlated them with the current knowledge on peptide RPLC separation.
Collapse
Affiliation(s)
- Juraj Lenčo
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Siddharth Jadeja
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Denis K Naplekov
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Oleg V Krokhin
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, 799 JBRC, 715 McDermot Avenue, WinnipegR3E 3P4, Manitoba, Canada
| | - Maria A Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Petr Chocholouš
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Jiří Urban
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00Brno, Czech Republic
| | - Ken Broeckhoven
- Department of Chemical Engineering (CHIS), Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050Brussel, Belgium
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - František Švec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| |
Collapse
|
24
|
Naturally Occurring Montmorillonite-Based Polymer Monolith Composites as Stationary Phases for Capillary Liquid and Gas Chromatography. SEPARATIONS 2022. [DOI: 10.3390/separations9120389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This work is associated with the preparation of capillary chromatographic columns containing inorganic-organic composites comprised of naturally occurring montmorillonite (MMT) clay mineral and polymethacrylate monolithic material. The prepared composites combine the best qualities of both constituents, offering desirable properties for use under the disparate conditions of both GC and HPLC at the same time. The stationary phases were investigated by scanning electron microscopy (SEM), the specific surface area, and thermogravimetric analysis (TGA) and examined in terms of various conditions utilized for GC and HPLC methods. The prepared columns demonstrated an excellent permeability and stability against common chromatographic conditions, such as the eluent type, flow rate, pressure, and temperature. The results confirmed that the addition of small amounts of MMT into the monolith induced significant improvement in the specific surface area, which contributed to the formation of more active sites and enhanced the retention of analytes. The registered column backpressures did not exceed 980 kPa and 16,500 kPa for the prepared GC and HPLC columns, respectively. The prepared columns were subjected to the separation of various interesting compounds possessing different chemistries and polarities, including alkanes, alkylbenzenes, polycyclic aromatic hydrocarbons (PAHs), alcohols, ketones, phenols, some common organic solvents, and isomeric mixtures. Under the optimal conditions, the efficiency of the columns fell between 4900–38,500 plates m−1 for GC and 3400–58,800 plates m−1 for capillary HPLC applications. In all cases, the measured chromatographic resolution was more than 1.38, with excellent an peak symmetry and low tailing factors. In comparison with the most commonly used commercial columns, the polysiloxane open tubular column for GC and silica-based C18 packed column for HPLC, the prepared GC columns demonstrated a faster separation with a higher efficiency, comparable resolution and tailing factors, and lower consumption of carrier gas. Regarding the capillary columns prepared for HPLC, the chromatographic experiments exposed a much lower run time with a comparable efficiency and resolution and drastically lower consumption of mobile phase solvents and samples. The results demonstrate that the MMT-based polymethacrylate monolith composites are applicable as novel and promising separation media for analyzing various mixtures of interest in different fields, such as petrochemical and environmental samples.
Collapse
|
25
|
Incorporation of metal-organic framework MOFs-5 into the polymer monolith via the surface covalent immobilization method for enhanced capillary liquid chromatographic separation of benzene homologues. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Li J, Liu J, Weng Q. A Hydrophilic Strong Anion-Exchange Hybrid Monolith for Capillary Liquid Chromatography. LCGC EUROPE 2022. [DOI: 10.56530/lcgc.eu.od3570x2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A hydrophilic strong anion-exchange monolithic hybrid column was prepared by in-capillary coating 5-µm bare silica particles with the copolymers of methacryloxyethyltrimethyl ammonium chloride and pentaerythritol triacrylate in the presence of a porogen consisting of water, methanol, and cyclohexanol. The composition of the porogen and the concentration of the monomers were investigated and selected. The resulting column was characterized. The column had an uniform pore structure and could withstand a back pressure up to 3500 psi. Its permeability was comparable to that of packed columns and the swelling-shrinking behaviour negligible. Its hydrophobicity could be suppressed at acetonitrile concentrations above 40% (v/v) and the minimum theoretical plate height was about 10 µm for BrÑ. The column-to-column relative standard deviations (RSDs) were 2.2% and 3.5% (n = 9) and the batch-to-batch RSDs were 2.4% and 5.5% (n = 3) for k and H values, respectively. The column exhibited a remarkable performanceforthe separation of inorganic anions, organic weak acids, phenols, and nucleotides.
Collapse
Affiliation(s)
| | - Jun Liu
- Liaoning Normal University, China
| | | |
Collapse
|
27
|
Lin G, Qiu H. Diverse Supports for Immobilization of Catalysts in Continuous Flow Reactors. Chemistry 2022; 28:e202200069. [DOI: 10.1002/chem.202200069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Geyu Lin
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
28
|
Qiu J, Craven CB, Wawryk NJP, Ouyang G, Li XF. Unique On-Site Spinning Sampling of Highly Water-Soluble Organics Using Functionalized Monolithic Sorbents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8094-8102. [PMID: 35622959 PMCID: PMC9228052 DOI: 10.1021/acs.est.2c01202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Water utilities encounter unpredictable odor issues that cannot be explained by routine water parameters during spring runoff, even in the summer and fall. Highly water-soluble organics (e.g., amino acids and saccharides) have been reported to form odorous disinfection byproducts during disinfection, but the lack of simple and practical on-site sampling techniques hampers their routine monitoring at trace levels in source water. Therefore, we have created two functionalized nested-in-sponge silica monoliths (NiS-SMs) using a one-pot synthesis method and demonstrated their application for extracting highly soluble organics in water. The NiS-SMs functionalized with the sulfonic group and phenylboronic moiety selectively extracted amino acids and monosaccharides, respectively. We further developed a spinning sampling technique using the composites and evaluated its robust performance under varying water conditions. The spinning sampling coupled to high-performance liquid chromatography tandem mass spectrometry analysis provided limits of detection for amino acids at 0.038-0.092 ng L-1 and monosaccharides at 0.036-0.14 ng L-1. Using the pre-equilibrium sampling-rate calibration, we demonstrated the applicability of the spinning sampling technique for on-site sampling and monitoring of amino acids and monosaccharides in river water. The new composite materials and rapid on-site sampling technique are unique and efficient tools for monitoring highly soluble organics in water sources.
Collapse
Affiliation(s)
- Junlang Qiu
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
- School
of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Caley B. Craven
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Nicholas J. P. Wawryk
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Gangfeng Ouyang
- School
of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xing-Fang Li
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
29
|
Wang Q, Sun L, Wu H, Deng N, Zhao X, Zhou J, Zhang T, Han H, Jiang Z. Rapid fabrication of zwitterionic sulfobetaine vinylimidazole-based monoliths via photoinitiated copolymerization for hydrophilic interaction chromatography. J Pharm Anal 2022; 12:783-790. [DOI: 10.1016/j.jpha.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 11/26/2022] Open
|
30
|
Wang C, Liang Y, Zhao B, Liang Z, Zhang L, Zhang Y. Ethane-Bridged Hybrid Monolithic Column with Large Mesopores for Boosting Top-Down Proteomic Analysis. Anal Chem 2022; 94:6172-6179. [PMID: 35412811 DOI: 10.1021/acs.analchem.1c05234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Top-down proteomics is challenged by the high complexity of biological samples. The coelution of intact proteins results in overlapped mass spectra, and hence, an increased peak capacity for protein separation is needed. Herein, ethane-bridged hybrid monoliths with well-defined large mesopores were successfully prepared based on the sol-gel condensation of 1,2-bis(trimethoxysilyl)ethane and tetramethoxysilane, followed by two-step base etching of the Si-O-Si domain while maintaining the Si-C-C-Si domain in the structure. Relatively homogeneous macropores of 1.1 μm and large mesopores of 24 nm were obtained, permitting fast mass transfer of large molecules and efficient diffusion without obstruction. The use of less hydrophobic C1 ligand further sharpened the peak shape and improved peak capacity. A 120 cm-long capillary column was used for top-down proteomic analysis of E. coli lysates under low backpressure with 16 MPa. High peak capacity of 646 was achieved within 240 min gradient. With MS/MS analysis, 959 proteoforms corresponding to 263 proteins could be unambiguously identified from E. coli lysates in a single run. Furthermore, to illustrate the separation performance for large proteoforms, such monoliths were applied to top-down analysis of the SEC fraction of E. coli lysates with Mw ranging from 30 to 70 kDa. With highly effective separation, 347 large proteoforms with Mw higher than 30 kDa were detected in the single 75 min run. These results showed great potential for top-down proteomic analysis in complex samples.
Collapse
Affiliation(s)
- Chao Wang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Baofeng Zhao
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhen Liang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lihua Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yukui Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
31
|
Aydoğan C, Erdoğan İY, El-Rassi Z. Hydrophobic AEROSIL®R972 Fumed Silica Nanoparticles Incorporated Monolithic Nano-Columns for Small Molecule and Protein Separation by Nano-Liquid Chromatography. Molecules 2022; 27:molecules27072306. [PMID: 35408705 PMCID: PMC9000833 DOI: 10.3390/molecules27072306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
A new feature of hydrophobic fumed silica nanoparticles (HFSNPs) when they apply to the preparation of monolithic nano-columns using narrow monolithic fused silica capillary columns (e.g., 50-µm inner diameter) was presented. The monolithic nano-columns were synthesized by an in-situ polymerization using butyl methacrylate (BMA) and ethylene dimethacrylate (EDMA) at various concentrations of AEROSIL®R972, called HFSNPs. Dimethyl formamide (DMF) and water were used as the porogenic solvents. These columns (referred to as HFSNP monoliths) were successfully characterized by using scanning electron microscopy (SEM) and reversed-phase nano-LC using alkylbenzenes and polyaromatic hydrocarbons as solute probes. The reproducibility values based on run-to-run, column-to-column and batch-to-batch were found as 2.3%, 2.48% and 2.99% (n = 3), respectively. The optimized column also indicated promising hydrophobic interactions under reversed-phase conditions, while the feasibility of the column allowed high efficiency and high throughput nano-LC separations. The potential of the final HFSNP monolith in relation to intact protein separation was successfully demonstrated using six intact proteins, including ribonuclease A, cytochrome C, carbonic anhydrase isozyme II, lysozyme, myoglobin, and α-chymotrypsinogen A in nano-LC. The results showed that HFSNP-based monolithic nanocolumns are promising materials and are powerful tools for sensitive separations.
Collapse
Affiliation(s)
- Cemil Aydoğan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl 12000, Turkey
- Department of Chemistry, Bingöl University, Bingöl 12000, Turkey;
- Department of Food Engineering, Bingöl University, Bingöl 12000, Turkey
- Correspondence: ; Tel.: +90-426-216-19-58; Fax: +90-426-216-00-33
| | - İbrahim Y. Erdoğan
- Department of Chemistry, Bingöl University, Bingöl 12000, Turkey;
- Faculty of Health Sciences, Bingöl University, Bingöl 12000, Turkey
| | - Ziad El-Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
32
|
Nechvátalová M, Urban J. Current trends in the development of polymer-based monolithic stationary phases. ANALYTICAL SCIENCE ADVANCES 2022; 3:154-164. [PMID: 38715639 PMCID: PMC10989626 DOI: 10.1002/ansa.202100065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2024]
Abstract
This review focuses on the development and applications of organic polymer monoliths, with special attention to the literature published in 2021. The latest protocols in the preparation of polymer monoliths are discussed. In particular, tailored surface modification using nanomaterials, the development of chiral stationary phases and development of stationary phases for capillary electrochromatography are reviewed. Furthermore, the optimization of pore forming solvents composition is also discussed. Finally, the use of monolithic stationary phases in sample treatment using solid-phase extraction and enrichment methods, molecularly imprinted polymers and enzymatic reactors is mentioned.
Collapse
Affiliation(s)
| | - Jiří Urban
- Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
33
|
Demir N, Aydoğan C. ProFlow nano-liquid chromatography with a graphene oxide-functionalized monolithic nano-column for the simultaneous determination of chloramphenicol and chloramphenicol glucuronide in foods. J Food Sci 2022; 87:1721-1730. [PMID: 35315070 DOI: 10.1111/1750-3841.16121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
Chloramphenicol (CAP) is an effective antibiotic with broad spectrum against gram-positive and gram-negative bacteria, while it is used to treat various infections in animals. Although CAP is banned for usage in the livestock products including, milk, honey, seafood, and royal jelly, CAP is still often detected in foods of animal origin, posing a threat to consumer health. The use of CAP is restricted in many countries due to its side effect in human metabolic process according to the Expert Committee on Food Additives (ECFA) recommendation. Chloramphenicol glucuronide (CAPG) is also a metabolic product of CAP, which may be a hazardous chemical for human health. Therefore, the development of sensitive separation and quantification method is an important issue, especially for food safety. Herein, we reported the preparation and application of a monolithic nano-column for CAP and CAPG analyses in foods by ProFlow Nano liquid chromatography (ProFlow Nano LC). The monolithic nano-column was prepared by an in situ polymerization using 3-chloro-2-hydroxypropylmethacrylate (HPMA-Cl) and ethylene dimethacrylate (EDMA) and followed graphene oxide (GO) modification. After characterization, the monolithic nano-column was used for the analysis of CAP and CAPG in honey and milk samples by ProFlow Nano LC. The whole method was validated in terms of linearity, sensitivity, precision, recovery, and repeatability, while it led to obtain high sensitivity with limit of quantification was found as 0.02 µg/kg for CAP. Limit of quantification for CAPG was found as 0.08 µg/kg. The developed method with monolithic nano-column was optimized to achieve very sensitive analyses of CAP and CAPG in the food samples. The applicability of the nano-column was successfully demonstrated by the analysis of CAP and CAPG in milk and honey samples. PRACTICAL APPLICATION: This article describes the preparation and application of a monolithic nano-column for the separation and determination of chloramphenicol and chloramphenicol glucuronide in food samples by ProFlow Nano LC. The use of new and advanced techniques is a crucial issue in the food science and technology. In this sense, this study demonstrated a new food analysis method using advanced instrumental technique with a homemade monolithic nano-column.
Collapse
Affiliation(s)
- Nurullah Demir
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey.,Department of Food Processing, Vocational School of Food, Agriculture and Livestock, Bingöl University, Bingöl, Turkey
| | - Cemil Aydoğan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey.,Department of Food Engineering, Bingöl University, Bingöl, Turkey.,Department of Chemistry, Bingöl University, Bingöl, Turkey
| |
Collapse
|
34
|
Almughamsi HM, Howell KM, Parry SR, Esene JE, Nielsen JB, Nordin GP, Woolley AT. Immunoaffinity monoliths for multiplexed extraction of preterm birth biomarkers from human blood serum in 3D printed microfluidic devices. Analyst 2022; 147:734-743. [PMID: 35103723 PMCID: PMC8849610 DOI: 10.1039/d1an01365c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In an effort to develop biomarker-based diagnostics for preterm birth (PTB) risk, we created 3D printed microfluidic devices with multiplexed immunoaffinity monoliths to selectively extract multiple PTB biomarkers. The equilibrium dissociation constant for each monoclonal antibody toward its target PTB biomarker was determined. We confirmed the covalent attachment of three different individual antibodies to affinity monoliths using fluorescence imaging. Three different PTB biomarkers were successfully extracted from human blood serum using their respective single-antibody columns. Selective binding of each antibody toward its target biomarker was observed. Finally, we extracted and eluted three PTB biomarkers from depleted human blood serum in multiplexed immunoaffinity columns in 3D printed microfluidic devices. This is the first demonstration of multiplexed immunoaffinity extraction of PTB biomarkers in 3D printed microfluidic devices.
Collapse
Affiliation(s)
- Haifa M. Almughamsi
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Karyna M. Howell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Samuel R. Parry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Joule E. Esene
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Jacob B. Nielsen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Gregory P. Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Adam T. Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA,corresponding author: ; 1-801-422-1701
| |
Collapse
|
35
|
Polyhedral Oligomeric Silsesquioxane–Based Hybrid Monolithic Column On-line In-Tube Solid-Phase Microextraction Coupled with High-Performance Liquid Chromatography for the Determination of Five Phthalate Esters in Bottled Water. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
36
|
A non-destructive detection method for evaluating beef taste quality based on electrochemical PVC membrane sensor. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Otter M, Partl G, Noisternig M, Bakry R. Fluoroponytailed ionic liquids as co-porogens for poly(butyl methacrylate- co-ethylene dimethacrylate) monolithic supports for thin layer chromatography. Analyst 2022; 147:534-541. [DOI: 10.1039/d1an02005f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous layered monolithic substrates of poly(butyl methacrylate-co-ethylene dimethacrylate) were synthesized via UV initiated free radical polymerization in the presence of fluoroponytailed ionic liquids as co-porogenic constituents.
Collapse
Affiliation(s)
- Manuel Otter
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens-University Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
| | - Gabriel Partl
- Institute of General, Inorganic and Theoretical Chemistry, Leopold-Franzens-University Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Michael Noisternig
- Institute of Pharmacy, Pharmaceutical Technology, Leopold-Franzens-University Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Rania Bakry
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens-University Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
| |
Collapse
|
38
|
Matheuse F, Vanmol K, Van Erps J, De Malsche W, Ottevaere H, Desmet G. On the potential use of two-photon polymerization to 3D print chromatographic packed bed supports. J Chromatogr A 2021; 1663:462763. [PMID: 34968955 DOI: 10.1016/j.chroma.2021.462763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
Abstract
The continuous quest for chromatographic supports offering kinetic performance properties superior to that of the packed bed of spheres has pushed the field to consider alternative formats such as for example monolithic and pillar array columns. This quest seems bound to culminate in the use of 3D printing technology, as this intrinsically offers the possibility to produce supports with a perfect uniformity and with a size and shape that is fully optimized for the chromatographic separation process. However, to be competitive with the current state-of-the-art, structures with sub-micron feature sizes are required. The present contribution therefore investigates the use of the 3D printing technology with the highest possible resolution available today, i.e., two-photon polymerization (2PP). It is shown that 2PP printing is capable of achieving the required ≤ 1 µm printing resolution. Depending on the laser scan speed, the lower limit through-pore size for a tetrahedral skeleton monolith with a theoretical 80% external porosity was found to be at 800 nm, when printing at a scan speed of 50 mm/s with a laser power of 10%. For a scan speed of 10 mm/s, the minimal through-pore size dropped to 500 nm. However, this very high resolution comes at the cost of excessively long printing times. The total printing time for a column volume equivalent to that of a typical nano-LC column (75 µm i.d. cylindrical tube with length L = 15 cm) has been determined to correspond to 330 and 470 h for the 50 mm/s and the 10 mm/s scan speed respectively. Other issues remaining to be solved are the need to clad the printed skeleton with a suitable mesoporous layer for chromatographic retention and the need to add a top-wall to the printed channels after the removal of the non-polymerized resin. It is therefore concluded that 2PP printing is not ready yet to replace the existing column fabrication methods.
Collapse
Affiliation(s)
- Fréderick Matheuse
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Koen Vanmol
- Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | - Jürgen Van Erps
- Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | - Wim De Malsche
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Heidi Ottevaere
- Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
39
|
Song Q, Wang B, Lv Y. Molecularly imprinted monoliths: Recent advances in the selective recognition of biomacromolecules related biomarkers. J Sep Sci 2021; 45:1469-1481. [PMID: 34897964 DOI: 10.1002/jssc.202100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Accepted: 12/05/2021] [Indexed: 11/11/2022]
Abstract
Biomarkers are significant indicators to assist the early diagnosis of diseases and assess the therapeutic response. However, due to the low-abundance of biomarkers in complex biological fluids, it is highly desirable to explore efficient techniques to attain their selective recognition and capture before the detection. Molecularly imprinted monoliths integrate the high selectivity of imprinted polymers and the rapid convective mass transport of monoliths, and as a result are promising candidates to achieve the specific enrichment of biomarkers from complex samples. This review summarizes the various imprinting approaches for the preparation of molecularly imprinted monoliths. The state-of-art advances as an effective platform for applications in the selective capture of biomacromolecules related biomarkers were also outlined. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qingmei Song
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bingwu Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yongqin Lv
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
40
|
Kanateva AY, Korolev AA, Kurganov AA. Preparation and properties of GC capillary column with hypercrosslinked stationary phase. J Sep Sci 2021; 44:4395-4401. [PMID: 34662502 DOI: 10.1002/jssc.202100646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 11/06/2022]
Abstract
For the first time, highly porous hypercrosslinked polystyrene layer was synthesized within a gas chromatography capillary column and successfully deposited onto the capillary walls generating porous layer open-tubular capillary column. Elaborated three steps synthetic procedure provides tightly bonded porous polymeric layer and ensues complete elimination of particle shedding and the needs for particle traps. Due to highly developed surface area, porous layer open-tubular column provides strong solute retention that is useful for the separation of various volatile solvents and light gas compounds including ethane, ethylene, ethyne. Aqueous injections will not harm the column.
Collapse
Affiliation(s)
- Anastasia Y Kanateva
- Chromatographic Lab., A.V. Topchiev Institute of Petrochemical Synthesis RAS, Moscow, Russia
| | - Alexander A Korolev
- Chromatographic Lab., A.V. Topchiev Institute of Petrochemical Synthesis RAS, Moscow, Russia
| | - Alexander A Kurganov
- Chromatographic Lab., A.V. Topchiev Institute of Petrochemical Synthesis RAS, Moscow, Russia
| |
Collapse
|
41
|
Mansour FR, Desire CT, Hilder EF, Arrua RD. Effect of ethoxylated sorbitan ester surfactants on the chromatographic efficiency of poly(ethylene glycol)-based monoliths. J Chromatogr A 2021; 1654:462464. [PMID: 34438302 DOI: 10.1016/j.chroma.2021.462464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/04/2023]
Abstract
The effect of adding ethoxylated sorbitan ester surfactants (Tweens®) to poly(ethylene glycol) diacrylate-based monolithic recipes was investigated. Five different Tweens® have been evaluated to investigate the exact role of non-ionic surfactants in poly(ethylene glycol) diacrylate-based monolith preparations. These monoliths were characterized by scanning electron microscopy, infrared spectroscopy, and nitrogen physisorption analysis. Different morphological features, and surface areas were observed when different types of Tween® were included in the recipe; Tween® 20 and 85 showed small globules, while Tween® 40, 60 and 80 exhibited larger globular structures with different sizes and degrees of coalescence. The different Tween®-based monoliths were investigated for the chromatographic separation of mixtures consisting of hydroxybenzoic acids and alkylbenzenes. These columns were mechanically stable, except for Tween® 80. The highest methylene selectivity and the best overall performance were achieved by Tween® 60. The efficiency was increased by increasing the concentration of the Tween® 60 and the amount of poly(ethylene glycol) diacrylate Mn 700 in the recipes up to 30 wt%, each. Further increases in either Tween® 60 or poly(ethylene glycol) diacrylate Mn 700 led to formation of non-permeable columns. The optimized column was successfully used for separation of mixtures of nonsteroidal anti-inflammatory and sulfa drugs, with a maximum efficiency of 60,000 plates/m.
Collapse
Affiliation(s)
- Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Tanta University, Tanta, Egypt; Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Tasmania, Australia
| | - Christopher T Desire
- Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Tasmania, Australia; Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide SA 5095, Australia
| | - Emily F Hilder
- Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Tasmania, Australia; Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide SA 5095, Australia
| | - R Dario Arrua
- Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Tasmania, Australia; Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide SA 5095, Australia.
| |
Collapse
|
42
|
Røberg-Larsen H, Lundanes E, Nyman TA, Berven FS, Wilson SR. Liquid chromatography, a key tool for the advancement of single-cell omics analysis. Anal Chim Acta 2021; 1178:338551. [PMID: 34482862 DOI: 10.1016/j.aca.2021.338551] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 11/28/2022]
Abstract
Single-cell analysis can allow for an in-depth understanding of diseases, diagnostics, and aid the development of therapeutics. However, single-cell analysis is challenging, as samples are both extremely limited in size and complex. But the concept is gaining promise, much due to novel sample preparation approaches and the ever-improving field of mass spectrometry. The mass spectrometer's output is often linked to the preceding compound separation step, typically being liquid chromatography (LC). In this review, we focus on LC's role in single-cell omics. Particle-packed nano LC columns (typically 50-100 μm inner diameter) have traditionally been the tool of choice for limited samples, and are also used for single cells. Several commercial products and systems are emerging with single cells in mind, featuring particle-packed columns or miniaturized pillar array systems. In addition, columns with inner diameters as narrow as 2 μm are being explored to maximize sensitivity. Hence, LC column down-scaling is a key focus in single-cell analysis. But narrow columns are associated with considerable technical challenges, while single cell analysis may be expected to become a "routine" service, requiring higher degrees of robustness and throughput. These challenges and expectations will increase the need and attention for the development (and even the reinvention) of alternative nano LC column formats. Therefore, monolith columns and even open tubular columns may finally find their "killer-application" in single cell analysis.
Collapse
Affiliation(s)
| | - Elsa Lundanes
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Norway
| | - Frode S Berven
- Department of Biomedicine, Proteomics Unit, University of Bergen, Bergen, Norway
| | - Steven Ray Wilson
- Department of Chemistry, University of Oslo, Oslo, Norway; Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
43
|
Günyel Z, Aslan H, Demir N, Aydoğan C. Nano-liquid chromatography with a new nano-structured monolithic nanocolumn for proteomics analysis. J Sep Sci 2021; 44:3996-4004. [PMID: 34499809 DOI: 10.1002/jssc.202100454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
Herein, we report the preparation and application of a new nano-structured monolithic nanocolumn based on modified graphene oxide using narrow fused silica capillary column (e.g., 50 μm internal diameter). The nanocolumn was prepared by an in situ polymerization using butyl methacrylate, ethylene dimethacrylate, and methacryloyl graphene oxide nanoparticles. Dimethyl formamide and water were used as the porogenic solvent. After polymerization, the obtained nanocolumn was coated with dimethyloctadecylchlorosilane in order to enhance the hydrophobicity. Both isocratic and gradient nano-liquid chromatographic separations for small molecules (e.g., alkylbenzenes) and macromolecules (e.g., intact proteins) were performed. Theoretical plates number up to 3600 plates/m in isocratic mode for propylbenzene were achieved. It was demonstrated that the feasibility of graphene oxide modified monolithic nanocolumn for high-efficiency and high-throughput nanoscale proteomics analysis. The high resolving power of monolithic nanocolumn yielded sensitive protein separation with narrower peak width while a high-resolution analysis of peptides from trypsin-digested cytochrome C could be obtained. Graphene oxide based monolithic nanocolumns are promising and can allow to powerful tools for trace proteom sample analysis.
Collapse
Affiliation(s)
- Zeynep Günyel
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - Hakiye Aslan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - Nurullah Demir
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - Cemil Aydoğan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey.,Department of Chemistry, Bingöl University, Bingöl, Turkey.,Department of Food Engineering, Bingöl University, Bingöl, Turkey
| |
Collapse
|
44
|
Yao T, Xu X, Huang R. Recent Advances about the Applications of Click Reaction in Chemical Proteomics. Molecules 2021; 26:5368. [PMID: 34500797 PMCID: PMC8434046 DOI: 10.3390/molecules26175368] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Despite significant advances in biological and analytical approaches, a comprehensive portrait of the proteome and its dynamic interactions and modifications remains a challenging goal. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to elucidate protein composition, distribution, and relevant physiological and pharmacological functions. Click chemistry focuses on the development of new combinatorial chemical methods for carbon heteroatom bond (C-X-C) synthesis, which have been utilized extensively in the field of chemical proteomics. Click reactions have various advantages including high yield, harmless by-products, and simple reaction conditions, upon which the molecular diversity can be easily and effectively obtained. This paper reviews the application of click chemistry in proteomics from four aspects: (1) activity-based protein profiling, (2) enzyme-inhibitors screening, (3) protein labeling and modifications, and (4) hybrid monolithic column in proteomic analysis.
Collapse
Affiliation(s)
- Tingting Yao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China;
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaowei Xu
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Rong Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China;
| |
Collapse
|
45
|
|
46
|
[Analysis of chemical components of Chinese medicine Ligustici Radix by achiral-chiral liquid chromatography-predictive multiple reaction monitoring]. Se Pu 2021; 39:642-651. [PMID: 34227325 PMCID: PMC9404100 DOI: 10.3724/sp.j.1123.2020.08024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ligustici Radix (Chinese name: maoqianhu) consists of the dried roots of Ligusticum brachylobum Franch., which is mainly distributed in the Yunnan and Sichuan provinces. This herbal medicine has been primarily used for the treatment of cough in traditional Chinese medicine. Ligustici Radix is rich in coumarin derivatives. Interestingly, enantiomers and diastereomers are widely used for these coumarins, thus posing a great challenge for in-depth chemical profile characterization. In the present study, a new analytical platform, achiral-chiral liquid chromatography-tandem mass spectrometry (achiral-chiral LC-MS/MS) was configured to profile the chemical composition of Ligustici Radix. Because achiral and chiral columns were serially coupled, especially enantiomers, both chemically and enantiomerically selective separations could be accomplished simultaneously. The newly configured achiral-chiral LC-MS/MS platform did not require any electronic valve; hence, it could overcome the drawbacks of heart-cutting achiral-chiral two-dimensional LC, i. e., sophisticated instrumentation and limited reproducibility due to the use of electronic valve(s) and the undesired retention time shift across different analytical runs. Some available candidates for chemically selective or enantiomerically selective separation were assayed; then, Capcell core RP-C18 column that was packed with core-shell type particles, and AD-RH column embedding amylose coated particles were employed the achiral and the chiral columns, respectively. The narrow-bore core-shell RP-C18 column served as the front tool to achieve efficient chemoselective separation of coumarin analogs, and enantioselective enantiomers were obtained by using a wide-bore AD-RH chiral column. The predictive multiple reaction monitoring (predictive MRM) mode allowed for the sensitive detection of potential components, and an enhanced product ion (EPI) scan, which was a unique function of Qtrap-MS, was programmed to record the MS2 spectra for all captured signals and thus aid structural annotation. Online energy-resolved mass spectrometry (online ER-MS) was introduced to pursue the suitable collision energy for each compound; in particular, inferior collision energy instead of the optimal one was utilized to suppress the response of the primary components such as praeruptorin A, B and pteryxin. The criteria to judge enantiomers or not included identical quantitative and qualitative precursor-to-product ion transitions, identical quantitative versus qualitative responses, and longer retention times from achiral-chiral LC over single-column achiral LC. As a result, a total of sixty components were observed and structurally identified. In particular, enantiomerically selective separations were achieved for eight enantiomers, cis-khellactone (CKL), qianhucoumarin G (QC-G), pteryxin (Pte), praeruptorin A (PA), cis-3'-isovaleryl-4'-acetylkhellactone (IAK), praeruptorin B (PB), praeruptorin E (PE), and cis-3',4'-diisovalerylkhellactone (DIK). Notably, none of the enantiomers were present as racemates; instead, the proportion of one enantiomer in each pair was greater than the other. Achiral-chiral LC-predictive MRM is a feasible choice for the quantitative and qualitative analyses of Ligustici Radix as well as other herbal medicines characterized by enantiomers and diastereomers.
Collapse
|
47
|
Xu M, Zhang H, Tang T, Zhou J, Zhou W, Tan S, He B. Potential and applications of capillary electrophoresis for analyzing traditional Chinese medicine: a critical review. Analyst 2021; 146:4724-4736. [PMID: 34269779 DOI: 10.1039/d1an00767j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Capillary electrophoresis (CE) presents a promising possibility for analyzing traditional Chinese medicine (TCM) due to its low reagent consumption, high analysis speed, and enhanced efficiency. Herein we review the employment of CE for analyzing the effective components in TCM and identifying TCM via a fingerprint. Furthermore, we discuss the application of state-of-the-art capillary electrophoresis modes for screening enzyme inhibitors and investigating the interactions between TCM and plasma proteins. The review concludes with recommendations for future studies and improvements in this field of research. The general development trend identified in this review indicates that the application of CE has significantly improved TCM assay performance.
Collapse
Affiliation(s)
- Mengchang Xu
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Hanyong Zhang
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Tong Tang
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Ji Zhou
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Wenhu Zhou
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Songwen Tan
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| |
Collapse
|
48
|
Khodabandeh A, Arrua RD, Thickett SC, Hilder EF. Utilizing RAFT Polymerization for the Preparation of Well-Defined Bicontinuous Porous Polymeric Supports: Application to Liquid Chromatography Separation of Biomolecules. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32075-32083. [PMID: 34190530 DOI: 10.1021/acsami.1c03542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymer-based monolithic high-performance liquid chromatography (HPLC) columns are normally obtained by conventional free-radical polymerization. Despite being straightforward, this approach has serious limitations with respect to controlling the structural homogeneity of the monolith. Herein, we explore a reversible addition-fragmentation chain transfer (RAFT) polymerization method for the fabrication of porous polymers with well-defined porous morphology and surface chemistry in a confined 200 μm internal diameter (ID) capillary format. This is achieved via the controlled polymerization-induced phase separation (controlled PIPS) synthesis of poly(styrene-co-divinylbenzene) in the presence of a RAFT agent dissolved in an organic solvent. The effects of the radical initiator/RAFT molar ratio as well as the nature and amount of the organic solvent were studied to target cross-linked porous polymers that were chemically bonded to the inner wall of a modified silica-fused capillary. The morphological and surface properties of the obtained polymers were thoroughly characterized by in situ nuclear magnetic resonance (NMR) experiments, nitrogen adsorption-desorption experiments, elemental analyses, field-emission scanning electron microscopy (FESEM), scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS) as well as time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealing the physicochemical properties of these styrene-based materials. When compared with conventional synthetic methods, the controlled-PIPS approach affects the kinetics of polymerization by delaying the onset of phase separation, enabling the construction of materials with a smaller pore size. The results demonstrated the potential of the controlled-PIPS approach for the design of porous monolithic columns suitable for liquid separation of biomolecules such as peptides and proteins.
Collapse
Affiliation(s)
- Aminreza Khodabandeh
- UniSA STEM, Future Industries Institute, University of South Australia, Adelaide, SA 5000, Australia
| | - R Dario Arrua
- UniSA STEM, Future Industries Institute, University of South Australia, Adelaide, SA 5000, Australia
| | - Stuart C Thickett
- School of Natural Sciences (Chemistry), University of Tasmania, Hobart, TAS 7005, Australia
| | - Emily F Hilder
- UniSA STEM, Future Industries Institute, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
49
|
Burmistrova NA, Pidenko PS, Presnyakov KY, Drozd DD, Skibina YS, Pidenko SA, Goryacheva IY. Multicapillary Systems in Analytical Chemistry. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821050087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Aydoğan C, Aslan H, Günyel Z, Demir N, Erdoğan İY, Alharthi S, El Rassi Z. Graphene oxide-octadecylsilane incorporated monolithic nano-columns with 50 μm id and 100 μm id for small molecule and protein separation by nano-liquid chromatography. Electrophoresis 2021; 42:2637-2646. [PMID: 34213776 DOI: 10.1002/elps.202100050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 11/09/2022]
Abstract
In this study, graphene oxide-octadecylsilane incorporated monolithic nano-columns were developed for protein analysis by nano liquid chromatography (nano LC). The monolithic column with 100 μm id was first prepared by an in situ polymerization using ethylene dimethacrylate (EDMA), 3-chloro-2-hydroxypropylmethacrylate (HPMA-Cl), and methacryloyl graphene oxide nanoparticles (MGONPs). MGONPs were synthesized by the treatment of 3-(trimethoxysilyl)propylmethacrylate (TMSPM) and GO. Tetrahydrofuran (THF) and dodecanol were used as the porogenic solvent. The resulting column was functionalized by dimethyloctadecylch lorosilane (DODCS) for the enhancement of hydrophobicity. The functionalization greatly improved the baseline separation of hydrophobic compounds such as polyaromatic hydrocarbons (PAHs). The optimized monolith with respect to total polymerization mixture was characterized by using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) X-ray diffraction (XRD) and chromatographic analyses. The blank monoliths without functionalization exhibited poor separation while a good separation performance of MGONPs functionalized monoliths was achieved. The monolith with 100 μm id was evaluated in protein separation in nano LC using RNase A, Cytochrome C, Lysozyme, Trypsin, and Ca isozyme II as the test proteins. It was shown that protein separation mechanism was based on large π-system of GO and hydrophobicity of the monolithic structure. Theoretical plates number up to 57 600 plates were achieved. The nano-column with 50 μm id was also prepared using the same polymerization mixture under the same chemical conditions. These nano-columns were employed for protein separation by nano LC, and the dependence of both nano-column performance on the internal diameter was also discussed.
Collapse
Affiliation(s)
- Cemil Aydoğan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey.,Department of Chemistry, Bingöl University, Bingöl, Turkey.,Department of Food Engineering, Bingöl University, Bingöl, Turkey
| | - Hakiye Aslan
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - Zeynep Günyel
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - Nurullah Demir
- Food Analysis and Research Laboratory, Bingöl University, Bingöl, Turkey
| | - İbrahim Y Erdoğan
- Department of Chemistry, Bingöl University, Bingöl, Turkey.,Faculty of Health Sciences, Bingöl University, Bingöl, Turkey
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ziad El Rassi
- Department of Chemistry Oklahoma State University, Stillwater, Oklahloma, USA
| |
Collapse
|