1
|
Cano Ardila FE, Nagaraju S, Tranter RS, Garcia GA, Desclaux A, Roque Ccacya A, Chaumeix N, Comandini A. External standard calibration method for high-repetition-rate shock tube kinetic studies with synchrotron-based time-of-flight mass spectrometry. Analyst 2024; 149:1586-1596. [PMID: 38289286 PMCID: PMC10895696 DOI: 10.1039/d3an00819c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The signal levels observed from mass spectrometers coupled by molecular beam sampling to shock tubes are impacted by dynamic pressures in the spectrometer due to rapid pressure changes in the shock tube. Accounting for the impact of the pressure changes is essential if absolute concentrations of species are to be measured. Obtaining such a correction for spectrometers operated with vacuum ultra violet photoionization has been challenging. We present here a new external calibration method which uses VUV-photoionization of CO2 to develop time-dependent corrections to species concentration/time profiles from which kinetic data can be extracted. The experiments were performed with the ICARE-HRRST (high repetition rate shock tube) at the DESIRS beamline of synchrotron SOLEIL. The calibration experiments were performed at temperatures and pressures behind reflected shock waves of 1376 ± 12 K and 6.6 ± 0.1 bar, respectively. Pyrolytic experiments with two aromatic species, toluene (T5 = 1362 ± 22 K, P5 = 6.6 ± 0.2 bar) and ethylbenzene (T5 = 1327 ± 18 K, P5 = 6.7 ± 0.2 bar), are analyzed to test the method. Time dependent concentrations for molecular and radical species were corrected with the new method. The resulting signals were compared with chemical kinetic simulations using a recent mechanism for pyrolytic formation of polycyclic aromatic hydrocarbons. Excellent agreement was obtained between the experimental data and simulations, without adjustment of the model, demonstrating the validity of the external calibration method.
Collapse
Affiliation(s)
- Fabian E Cano Ardila
- CNRS-INSIS, I.C.A.R.E., 1C Avenue de la recherche scientifique, 45071 Orléans cedex 2, France.
| | - Sharath Nagaraju
- CNRS-INSIS, I.C.A.R.E., 1C Avenue de la recherche scientifique, 45071 Orléans cedex 2, France.
| | - Robert S Tranter
- Chemical Sciences and Engineering Department, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, USA
| | - Gustavo A Garcia
- Synchrotron SOLEIL, L'Orme des Merisiers, St. Aubin BP 48, 91192 Gif sur Yvette, France
| | - Anthony Desclaux
- CNRS-INSIS, I.C.A.R.E., 1C Avenue de la recherche scientifique, 45071 Orléans cedex 2, France.
| | - Anthony Roque Ccacya
- CNRS-INSIS, I.C.A.R.E., 1C Avenue de la recherche scientifique, 45071 Orléans cedex 2, France.
| | - Nabiha Chaumeix
- CNRS-INSIS, I.C.A.R.E., 1C Avenue de la recherche scientifique, 45071 Orléans cedex 2, France.
| | - Andrea Comandini
- CNRS-INSIS, I.C.A.R.E., 1C Avenue de la recherche scientifique, 45071 Orléans cedex 2, France.
| |
Collapse
|
2
|
Banyon C, Tranter RS. High-Temperature Dissociation of Neopentanol: Shock Tube/Photoionization Mass Spectrometry Studies. J Phys Chem A 2023; 127:1293-1301. [PMID: 36716350 DOI: 10.1021/acs.jpca.2c07358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The pyrolysis mechanism of 2,2-dimethylpropan-1-ol (neopentanol) has been investigated at high temperatures (1128-1401K) and high pressures (5 and 15 bar). The experiments were performed in a miniature shock tube coupled to a time-of-flight mass spectrometer. Cations were generated by tunable vacuum ultraviolet photoionization resulting in multidimensional data sets containing mass and photoionization spectra and the time histories of species. At the elevated temperatures and pressures of this work, neopentanol was determined to dissociate primarily by the scission of a C-C bond yielding tert-butyl and hydroxymethyl radicals. These promptly form isobutene and formaldehyde by H-atom elimination. In the structurally similar molecule neopentane, roaming radical reactions have previously been found to be important under conditions close to the present work (1260-1459 K, 1.1 bar). There are two possible roaming radical reactions for neopentanol. However, no experimental evidence for these reactions was found at the elevated pressures in this study, and the dissociation of neopentanol is dominated by bond scission yielding radical products.
Collapse
Affiliation(s)
- Colin Banyon
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois60439, United States
| | - Robert S Tranter
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois60439, United States
| |
Collapse
|
3
|
Dalmiya A, Mehta JM, Tranter RS, Lynch PT. High pressure, high flow rate batch mixing apparatus for high throughput experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:114104. [PMID: 34852533 DOI: 10.1063/5.0071472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
An automated, high pressure, high flow rate batch mixing apparatus has been designed and constructed for rapid, stable, and repeatable mixing of multiple gases and vapors. The apparatus operates as an intermittent batch mixer with cycles of topping off fresh mixture to maintain pressure in an accumulator tank until consumed in an experimental apparatus. At high duty cycles, the apparatus can also function at steady state. This style of mixing is suitable for experiments such as high repetition rate shock tubes and other devices with intermittent flow demands. It is compact and portable, facilitating use in locations such as synchrotron light sources. The entire apparatus is heated to permit the mixing of vapors from species with low volatilities. The apparatus is fully automated and runs for extended periods with the only intervention being to refresh reagent supplies. The accuracy and repeatability of the apparatus were verified by periodic gas sampling and analysis with gas chromatography. Multi-component mixtures spanning a wide range of complexity, dilution, and volatility of constituents have been prepared. The compositions of the majority of the mixture were found to be stable over several filling cycles, repeatable, and with the proper calibration of set-point conditions, accurate. Challenges were encountered preparing a mixture from multi-component liquids, and potential solutions are discussed.
Collapse
Affiliation(s)
- Anandvinod Dalmiya
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Jai M Mehta
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Robert S Tranter
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Patrick T Lynch
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
4
|
Sikes T, Banyon C, Schwind RA, Lynch PT, Comandini A, Sivaramakrishnan R, Tranter RS. Initiation reactions in the high temperature decomposition of styrene. Phys Chem Chem Phys 2021; 23:18432-18448. [PMID: 34612384 PMCID: PMC8409502 DOI: 10.1039/d1cp02437j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The thermal decomposition of styrene was investigated in a combined experimental, theory and modeling study with particular emphasis placed on the initial dissociation reactions. Two sets of shock tube/time-of-flight mass spectrometry (TOF-MS) experiments were performed to identify reaction products and their order of appearance. One set of experiments was conducted with a miniature high repetition rate shock tube at the Advanced Light Source at Lawrence Berkeley National Laboratory using synchrotron vacuum ultraviolet photoionization. The other set of experiments was performed in a diaphragmless shock tube (DFST) using electron impact ionization. The datasets span 1660–2260 K and 0.5–12 atm. The results show a marked transition from aromatic products at low temperatures to polyacetylenes, up to C8H2, at high temperatures. The TOF-MS experiments were complemented by DFST/LS (laser schlieren densitometry) experiments covering 1800–2250 K and 60–240 Torr. These were particularly sensitive to the initial dissociation reactions. These reactions were investigated theoretically and revealed the dissociation of styrene to be a complex multichannel process with strong pressure and temperature dependencies that were evaluated with multi-well master equation simulations. Simulations of the LS data with a mechanism developed in this work are in excellent agreement with the experimental data. From these simulations, rate coefficients for the dissociation of styrene were obtained that are in good agreement with the theoretical predictions. The simulation results also provide fair predictions of the temperature and pressure dependencies of the products observed in the TOF-MS studies. Prior experimental studies of styrene pyrolysis concluded that the main products were benzene and acetylene. In contrast, this study finds that the majority of styrene dissociates to create five styryl radical isomers. Of these, α-styryl accounts for about 50% with the other isomers consuming approximately 20%. It was also found that C–C bond scission to phenyl and vinyl radicals consumes up to 25% of styrene. Finally the dissociation of styrene to benzene and vinylidene accounts for roughly 5% of styrene consumption. Comments are made on the apparent differences between the results of this work and prior literature. A combined theoretical and experimental study showing styrene primarily decomposes to styryl radicals + H.![]()
Collapse
Affiliation(s)
- Travis Sikes
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Ave., Lemont, IL 60439, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Kang S, Liao W, Chu Z, Yang B. A rapid compression machine coupled with time-resolved molecular beam mass spectrometry for gas-phase kinetics studies. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:084103. [PMID: 34470393 DOI: 10.1063/5.0055585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Rapid compression machines (RCMs) are used to simulate a single stroke of an internal combustion engine. After a high-speed compression process, a high-pressure and low-to-intermediate temperature condition can be obtained, under which ignition processes are usually studied. With the help of different diagnostic methods, the detailed speciation information of the ignition process can be quantified. In this study, the molecular beam mass spectrometry (MBMS) diagnostic method was applied on an RCM to realize time-resolved concentration profile measurements. To realize the combination between RCM and MBMS, particle dampers were adopted to suppress the vibrations of the RCM, and a novel flexible interface was designed to maintain a high vacuum, which ensured the safe and effective operation of a high-repetition-rate time-of-flight mass spectrometer (HRR-TOF-MS). The detailed configuration of this diagnostic method is presented, and the data acquisition system and data analysis method are described. The arrangement was validated through the investigation of the well-studied decomposition of 1,3,5-trioxane at temperatures between 697 and 777 K at 10 bars. The measured concentration profiles of 1,3,5-trioxane and formaldehyde were in good agreement with previous experimental and theoretical calculation results. The experimental results showed that the newly developed RCM coupled with the HRR-TOF-MS has advantages in time-resolved speciation measurements at low-to-intermediate temperatures and high pressures, and it can be applied in low-temperature combustion chemical kinetics studies.
Collapse
Affiliation(s)
- Shiqing Kang
- Center for Combustion Energy and Key Laboratory for Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084, China
| | - Wanxiong Liao
- Center for Combustion Energy and Key Laboratory for Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084, China
| | - Zhaohan Chu
- Center for Combustion Energy and Key Laboratory for Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084, China
| | - Bin Yang
- Center for Combustion Energy and Key Laboratory for Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Demireva M, Au K, Sheps L. Direct time-resolved detection and quantification of key reactive intermediates in diethyl ether oxidation at T = 450-600 K. Phys Chem Chem Phys 2020; 22:24649-24661. [PMID: 33099590 DOI: 10.1039/d0cp03861j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-pressure multiplexed photoionization mass spectrometry (MPIMS) with tunable vacuum ultraviolet (VUV) ionization radiation from the Lawrence Berkeley Labs Advanced Light Source is used to investigate the oxidation of diethyl ether (DEE). Kinetics and photoionization (PI) spectra are simultaneously measured for the species formed. Several stable products from DEE oxidation are identified and quantified using reference PI cross-sections. In addition, we directly detect and quantify three key chemical intermediates: peroxy (ROO˙), hydroperoxyalkyl peroxy (˙OOQOOH), and ketohydroperoxide (HOOP[double bond, length as m-dash]O, KHP). These intermediates undergo dissociative ionization (DI) into smaller fragments, making their identification by mass spectrometry challenging. With the aid of quantum chemical calculations, we identify the DI channels of these key chemical species and quantify their time-resolved concentrations from the overall carbon atom balance at T = 450 K and P = 7500 torr. This allows the determination of the absolute PI cross-sections of ROO˙, ˙OOQOOH, and KHP into each DI channel directly from experiment. The PI cross-sections in turn enable the quantification of ROO˙, ˙OOQOOH, and KHP from DEE oxidation over a range of experimental conditions that reveal the effects of pressure, O2 concentration, and temperature on the competition among radical decomposition and second O2 addition pathways.
Collapse
Affiliation(s)
- Maria Demireva
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, USA.
| | | | | |
Collapse
|
7
|
Kohse-Höinghaus K. Combustion in the future: The importance of chemistry. PROCEEDINGS OF THE COMBUSTION INSTITUTE. INTERNATIONAL SYMPOSIUM ON COMBUSTION 2020; 38:S1540-7489(20)30501-0. [PMID: 33013234 PMCID: PMC7518234 DOI: 10.1016/j.proci.2020.06.375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 05/18/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Combustion involves chemical reactions that are often highly exothermic. Combustion systems utilize the energy of chemical compounds released during this reactive process for transportation, to generate electric power, or to provide heat for various applications. Chemistry and combustion are interlinked in several ways. The outcome of a combustion process in terms of its energy and material balance, regarding the delivery of useful work as well as the generation of harmful emissions, depends sensitively on the molecular nature of the respective fuel. The design of efficient, low-emission combustion processes in compliance with air quality and climate goals suggests a closer inspection of the molecular properties and reactions of conventional, bio-derived, and synthetic fuels. Information about flammability, reaction intensity, and potentially hazardous combustion by-products is important also for safety considerations. Moreover, some of the compounds that serve as fuels can assume important roles in chemical energy storage and conversion. Combustion processes can furthermore be used to synthesize materials with attractive properties. A systematic understanding of the combustion behavior thus demands chemical knowledge. Desirable information includes properties of the thermodynamic states before and after the combustion reactions and relevant details about the dynamic processes that occur during the reactive transformations from the fuel and oxidizer to the products under the given boundary conditions. Combustion systems can be described, tailored, and improved by taking chemical knowledge into account. Combining theory, experiment, model development, simulation, and a systematic analysis of uncertainties enables qualitative or even quantitative predictions for many combustion situations of practical relevance. This article can highlight only a few of the numerous investigations on chemical processes for combustion and combustion-related science and applications, with a main focus on gas-phase reaction systems. It attempts to provide a snapshot of recent progress and a guide to exciting opportunities that drive such research beyond fossil combustion.
Collapse
Key Words
- 2M2B, 2-methyl-2-butene
- AFM, atomic force microscopy
- ALS, Advanced Light Source
- APCI, atmospheric pressure chemical ionization
- ARAS, atomic resonance absorption spectroscopy
- ATcT, Active Thermochemical Tables
- BC, black carbon
- BEV, battery electric vehicle
- BTL, biomass-to-liquid
- Biofuels
- CA, crank angle
- CCS, carbon capture and storage
- CEAS, cavity-enhanced absorption spectroscopy
- CFD, computational fluid dynamics
- CI, compression ignition
- CRDS, cavity ring-down spectroscopy
- CTL, coal-to-liquid
- Combustion
- Combustion chemistry
- Combustion diagnostics
- Combustion kinetics
- Combustion modeling
- Combustion synthesis
- DBE, di-n-butyl ether
- DCN, derived cetane number
- DEE, diethyl ether
- DFT, density functional theory
- DFWM, degenerate four-wave mixing
- DMC, dimethyl carbonate
- DME, dimethyl ether
- DMM, dimethoxy methane
- DRIFTS, diffuse reflectance infrared Fourier transform spectroscopy
- EGR, exhaust gas recirculation
- EI, electron ionization
- Emissions
- Energy
- Energy conversion
- FC, fuel cell
- FCEV, fuel cell electric vehicle
- FRET, fluorescence resonance energy transfer
- FT, Fischer-Tropsch
- FTIR, Fourier-transform infrared
- Fuels
- GC, gas chromatography
- GHG, greenhouse gas
- GTL, gas-to-liquid
- GW, global warming
- HAB, height above the burner
- HACA, hydrogen abstraction acetylene addition
- HCCI, homogeneous charge compression ignition
- HFO, heavy fuel oil
- HRTEM, high-resolution transmission electron microscopy
- IC, internal combustion
- ICEV, internal combustion engine vehicle
- IE, ionization energy
- IPCC, Intergovernmental Panel on Climate Change
- IR, infrared
- JSR, jet-stirred reactor
- KDE, kernel density estimation
- KHP, ketohydroperoxide
- LCA, lifecycle analysis
- LH2, liquid hydrogen
- LIF, laser-induced fluorescence
- LIGS, laser-induced grating spectroscopy
- LII, laser-induced incandescence
- LNG, liquefied natural gas
- LOHC, liquid organic hydrogen carrier
- LT, low-temperature
- LTC, low-temperature combustion
- MBMS, molecular-beam MS
- MDO, marine diesel oil
- MS, mass spectrometry
- MTO, methanol-to-olefins
- MVK, methyl vinyl ketone
- NOx, nitrogen oxides
- NTC, negative temperature coefficient
- OME, oxymethylene ether
- OTMS, Orbitrap MS
- PACT, predictive automated computational thermochemistry
- PAH, polycyclic aromatic hydrocarbon
- PDF, probability density function
- PEM, polymer electrolyte membrane
- PEPICO, photoelectron photoion coincidence
- PES, photoelectron spectrum/spectra
- PFR, plug-flow reactor
- PI, photoionization
- PIE, photoionization efficiency
- PIV, particle imaging velocimetry
- PLIF, planar laser-induced fluorescence
- PM, particulate matter
- PM10 PM2,5, sampled fractions with sizes up to ∼10 and ∼2,5 µm
- PRF, primary reference fuel
- QCL, quantum cascade laser
- RCCI, reactivity-controlled compression ignition
- RCM, rapid compression machine
- REMPI, resonance-enhanced multi-photon ionization
- RMG, reaction mechanism generator
- RON, research octane number
- Reaction mechanisms
- SI, spark ignition
- SIMS, secondary ion mass spectrometry
- SNG, synthetic natural gas
- SNR, signal-to-noise ratio
- SOA, secondary organic aerosol
- SOEC, solid-oxide electrolysis cell
- SOFC, solid-oxide fuel cell
- SOx, sulfur oxides
- STM, scanning tunneling microscopy
- SVO, straight vegetable oil
- Synthetic fuels
- TDLAS, tunable diode laser absorption spectroscopy
- TOF-MS, time-of-flight MS
- TPES, threshold photoelectron spectrum/spectra
- TPRF, toluene primary reference fuel
- TSI, threshold sooting index
- TiRe-LII, time-resolved LII
- UFP, ultrafine particle
- VOC, volatile organic compound
- VUV, vacuum ultraviolet
- WLTP, Worldwide Harmonized Light Vehicle Test Procedure
- XAS, X-ray absorption spectroscopy
- YSI, yield sooting index
Collapse
|
8
|
Randazzo JB, Sivaramakrishnan R, Jasper AW, Sikes T, Lynch PT, Tranter RS. An experimental and theoretical study of the high temperature reactions of the four butyl radical isomers. Phys Chem Chem Phys 2020; 22:18304-18319. [PMID: 32785311 DOI: 10.1039/d0cp02404j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high temperature gas phase chemistry of the four butyl radical isomers (n-butyl, sec-butyl, iso-butyl, and tert-butyl) was investigated in a combined experimental and theoretical study. Organic nitrites were used as convenient and clean sources of each of the butyl radical isomers. Rate coefficients for dissociation of each nitrite were obtained experimentally and are at, or close to, the high pressure limit. Low pressure experiments were performed in a diaphragmless shock tube with laser schlieren densitometry at post-shock pressures of 65, 130, and 260 Torr and post-shock temperatures of 700-1000 K. Additional experiments were conducted with iso-butyl radicals at 805 K and 8.7 bar to elucidate changes in mechanism at higher pressures. These experiments were performed in a miniature shock tube with synchrotron-based photoionization mass spectrometry. The mass spectra confirmed that scission of the O-NO bond is the primary channel by which the precursors dissociate, but they also provided evidence of a minor channel (<7.7%) through HNO loss and formation of an aldehyde. These high pressure experiments were also used to determine the disproportionation/recombination ratio for iso-butyl radicals as 0.3. Reanalysis of the lower-temperature literature and the present data yielded rate constants for the disproportionation reaction, iso-butyl + iso-butyl = iso-butene + iso-butane. A chemical kinetics model was developed for the reactions of the butyl isomers that included new paths for highly energized adducts. These adducts are formed by the addition of H, CH3 or C2H5 to the butyl radicals. Accompanying theoretical investigations show that chemically activated pathways are competitive with stabilization of the adduct by collision under the conditions of the laser schlieren experiments. These calculations also show that at 10 bar and T < 1000 K stabilization is the only important reaction, but at higher temperatures, even at 10 bar, chemically activated product channels should also be considered. Branching fractions and rate coefficients are presented for these reactions. This study also highlights the importance of the radical structure for determining branching ratios for disproportionation and recombination of alkyl radicals, and these were facilitated by theoretical calculations of recombination rate coefficients for the four butyl radical isomers. The results reveal previously unknown features of butyl radical chemistry under conditions that are relevant to a wide range of applications and reaction mechanisms are presented that incorporate pressure dependent rate coefficients for the key steps.
Collapse
Affiliation(s)
- John B Randazzo
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA.
| | | | | | | | | | | |
Collapse
|
9
|
You R, Yu S, Yang J, Pan Y, Huang W. A high-pressure reactor coupled to synchrotron radiation photoionization mass spectrometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:093102. [PMID: 33003807 DOI: 10.1063/5.0014144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
A high-pressure reactor was designed and coupled to synchrotron radiation photoionization mass spectrometry (SR-PIMS), which realizes the molecular-beam sampling and detection of gaseous products of high-pressure reactions. The reaction pressure can be controlled by varying the size of the pinhole of the pressure-bearing pipe. As tested by the Fischer-Tropsch synthesis (FTS) catalyzed by Co/SiO2 at 230 °C, the reaction pressure of our setup can reach 1.3 MPa with a pinhole size of 50 µm and 0.16 MPa with a pinhole size of 150 µm. The FTS products were successfully online detected by SR-PIMS, and the photoionization efficiency spectra of selected products were acquired for unambiguous identification of the detected signals. Meanwhile, time-resolved SR-PIMS spectra were acquired with a temporal resolution of 10 s. The characterization results demonstrate that the product distribution (C2-C4, C5-C11, and C12+) of FTS depends on the reaction pressure, where a high pressure facilitates the formation of long-chain hydrocarbons. With the advantages of detecting unstable intermediates and distinguishing isomers, this setup will be useful for fundamental studies of high-pressure heterogeneous catalytic reactions.
Collapse
Affiliation(s)
- Rui You
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shengsheng Yu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Jiuzhong Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Matsugi A. A high-repetition-rate shock tube for transient absorption and laser-induced fluorescence studies of high-temperature chemical kinetics. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:054101. [PMID: 32486712 DOI: 10.1063/5.0007394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
A newly constructed high-repetition-rate shock tube designed for kinetic studies of high-temperature reactions using spectroscopic methods is described. The instrument operates at a 0.2-Hz cycle rate with a high reproducibility of reaction conditions that permits extensive signal averaging to improve the quality of kinetic trace data. The density and temperature of the gas behind the reflected shock wave are examined by probing the product formation from reference reactions. Two types of experimental techniques are implemented: transient absorption spectroscopy and time-resolved laser-induced fluorescence. Both methods are shown to be suitable for kinetic measurements of elementary reactions, as illustrated by their application in thermal decomposition reactions of the benzyl radicals and trifluoromethane.
Collapse
Affiliation(s)
- Akira Matsugi
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
11
|
Tranter RS, Sikes T. Solenoid actuated driver valve for high repetition rate shock tubes. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:056101. [PMID: 32486699 DOI: 10.1063/5.0006010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
A high speed, high pressure solenoid actuated valve has been developed for use as a driver section for automated shock tubes. The valve is based on a prior design, and significant improvements in the design of the valve are described. The new design retains the performance of prior versions of the valve and creates very reproducible reaction conditions in the shock tube, which are illustrated by several thousand experiments. In addition, the longevity of the valve is improved, failures are reduced, and the maintenance and manufacture of the valve are simplified.
Collapse
Affiliation(s)
- Robert S Tranter
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439, USA
| | - Travis Sikes
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439, USA
| |
Collapse
|
12
|
Ahmed M, Kostko O. From atoms to aerosols: probing clusters and nanoparticles with synchrotron based mass spectrometry and X-ray spectroscopy. Phys Chem Chem Phys 2020; 22:2713-2737. [DOI: 10.1039/c9cp05802h] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synchrotron radiation provides insight into spectroscopy and dynamics in clusters and nanoparticles.
Collapse
Affiliation(s)
- Musahid Ahmed
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Oleg Kostko
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| |
Collapse
|
13
|
Photoionization Mass Spectrometry for Online Detection of Reactive and Unstable Gas‐Phase Intermediates in Heterogeneous Catalytic Reactions. ChemCatChem 2019. [DOI: 10.1002/cctc.201901639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Sheps L, Antonov I, Au K. Sensitive Mass Spectrometer for Time-Resolved Gas-Phase Chemistry Studies at High Pressures. J Phys Chem A 2019; 123:10804-10814. [DOI: 10.1021/acs.jpca.9b08393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leonid Sheps
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Ivan Antonov
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Kendrew Au
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|
15
|
Komorek R, Xu B, Yao J, Ablikim U, Troy TP, Kostko O, Ahmed M, Yu XY. Enabling liquid vapor analysis using synchrotron VUV single photon ionization mass spectrometry with a microfluidic interface. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:115105. [PMID: 30501361 DOI: 10.1063/1.5048315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
Vacuum ultraviolet (VUV) single photon ionization mass spectrometry (SPI-MS) is a vacuum-based technique typically used for the analysis of gas phase and solid samples, but not for liquids due to the challenge in introducing volatile liquids in a vacuum. Here we present the first demonstration of in situ liquid analysis by integrating the System for Analysis at the Liquid Vacuum Interface (SALVI) microfluidic reactor into VUV SPI-MS. Four representative volatile organic compound (VOC) solutions were used to illustrate the feasibility of liquid analysis. Our results show the accurate mass identification of the VOC molecules and the reliable determination of appearance energy that is consistent with ionization energy for gaseous species in the literature as reported. This work validates that the vacuum-compatible SALVI microfluidic interface can be utilized at the synchrotron beamline and enable the in situ study of gas-phase molecules evaporating off the surface of a liquid, which holds importance in the study of condensed matter chemistry.
Collapse
Affiliation(s)
- R Komorek
- Atmospheric Sciences and Global Change Division, PNNL, Richland, Washington 99354, USA
| | - B Xu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - J Yao
- Atmospheric Sciences and Global Change Division, PNNL, Richland, Washington 99354, USA
| | - U Ablikim
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - T P Troy
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - O Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - M Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - X Y Yu
- Atmospheric Sciences and Global Change Division, PNNL, Richland, Washington 99354, USA
| |
Collapse
|
16
|
Köhler M, Oßwald P, Krueger D, Whitside R. Combustion Chemistry of Fuels: Quantitative Speciation Data Obtained from an Atmospheric High-temperature Flow Reactor with Coupled Molecular-beam Mass Spectrometer. J Vis Exp 2018. [PMID: 29553561 DOI: 10.3791/56965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This manuscript describes a high-temperature flow reactor experiment coupled to the powerful molecular beam mass spectrometry (MBMS) technique. This flexible tool offers a detailed observation of chemical gas-phase kinetics in reacting flows under well-controlled conditions. The vast range of operating conditions available in a laminar flow reactor enables access to extraordinary combustion applications that are typically not achievable by flame experiments. These include rich conditions at high temperatures relevant for gasification processes, the peroxy chemistry governing the low temperature oxidation regime or investigations of complex technical fuels. The presented setup allows measurements of quantitative speciation data for reaction model validation of combustion, gasification and pyrolysis processes, while enabling a systematic general understanding of the reaction chemistry. Validation of kinetic reaction models is generally performed by investigating combustion processes of pure compounds. The flow reactor has been enhanced to be suitable for technical fuels (e.g. multi-component mixtures like Jet A-1) to allow for phenomenological analysis of occurring combustion intermediates like soot precursors or pollutants. The controlled and comparable boundary conditions provided by the experimental design allow for predictions of pollutant formation tendencies. Cold reactants are fed premixed into the reactor that are highly diluted (in around 99 vol% in Ar) in order to suppress self-sustaining combustion reactions. The laminar flowing reactant mixture passes through a known temperature field, while the gas composition is determined at the reactors exhaust as a function of the oven temperature. The flow reactor is operated at atmospheric pressures with temperatures up to 1,800 K. The measurements themselves are performed by decreasing the temperature monotonically at a rate of -200 K/h. With the sensitive MBMS technique, detailed speciation data is acquired and quantified for almost all chemical species in the reactive process, including radical species.
Collapse
Affiliation(s)
- Markus Köhler
- Institute of Combustion Technology, German Aerospace Center (DLR);
| | - Patrick Oßwald
- Institute of Combustion Technology, German Aerospace Center (DLR)
| | - Dominik Krueger
- Institute of Combustion Technology, German Aerospace Center (DLR)
| | - Ryan Whitside
- Institute of Combustion Technology, German Aerospace Center (DLR)
| |
Collapse
|
17
|
Isomer Identification in Flames with Double-Imaging Photoelectron/Photoion Coincidence Spectroscopy (i2PEPICO) using Measured and Calculated Reference Photoelectron Spectra. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/zpch-2017-1009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Double-imaging photoelectron/photoion coincidence (i2PEPICO) spectroscopy using a multiplexing, time-efficient, fixed-photon-energy approach offers important opportunities of gas-phase analysis. Building on successful applications in combustion systems that have demonstrated the discriminative power of this technique, we attempt here to push the limits of its application further to more chemically complex combustion examples. The present investigation is devoted to identifying and potentially quantifying compounds featuring five heavy atoms in laminar, premixed low-pressure flames of hydrocarbon and oxygenated fuels and their mixtures. In these combustion examples from flames of cyclopentene, iso-pentane, iso-pentane blended with dimethyl ether (DME), and diethyl ether (DEE), we focus on the unambiguous assignment and quantitative detection of species with the sum formulae C5H6, C5H7, C5H8, C5H10, and C4H8O in the respective isomer mixtures, attempting to provide answers to specific chemical questions for each of these examples. To analyze the obtained i2PEPICO results from these combustion situations, photoelectron spectra (PES) from pure reference compounds, including several examples previously unavailable in the literature, were recorded with the same experimental setup as used in the flame measurements. In addition, PES of two species where reference spectra have not been obtained, namely 2-methyl-1-butene (C5H10) and the 2-cyclopentenyl radical (C5H7), were calculated on the basis of high-level ab initio calculations and Franck-Condon (FC) simulations. These reference measurements and quantum chemical calculations support the early fuel decomposition scheme in the cyclopentene flame towards 2-cyclopentenyl as the dominant fuel radical as well as the prevalence of branched intermediates in the early fuel destruction reactions in the iso-pentane flame, with only minor influences from DME addition. Furthermore, the presence of ethyl vinyl ether (EVE) in DEE flames that was predicted by a recent DEE combustion mechanism could be confirmed unambiguously. While combustion measurements using i2PEPICO can be readily obtained in isomer-rich situations, we wish to highlight the crucial need for high-quality reference information to assign and evaluate the obtained spectra.
Collapse
|
18
|
Couch DE, Buckingham GT, Baraban JH, Porterfield JP, Wooldridge LA, Ellison GB, Kapteyn HC, Murnane MM, Peters WK. Tabletop Femtosecond VUV Photoionization and PEPICO Detection of Microreactor Pyrolysis Products. J Phys Chem A 2017; 121:5280-5289. [DOI: 10.1021/acs.jpca.7b02821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David E. Couch
- JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Grant T. Buckingham
- Department
of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Joshua H. Baraban
- Department
of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | | | - Laura A. Wooldridge
- JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - G. Barney Ellison
- Department
of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Henry C. Kapteyn
- JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Margaret M. Murnane
- JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - William K. Peters
- JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
19
|
Osborn DL. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry. Annu Rev Phys Chem 2017; 68:233-260. [DOI: 10.1146/annurev-physchem-040215-112151] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David L. Osborn
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550
| |
Collapse
|
20
|
Schwach P, Pan X, Bao X. Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chem Rev 2017; 117:8497-8520. [DOI: 10.1021/acs.chemrev.6b00715] [Citation(s) in RCA: 656] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pierre Schwach
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Xiulian Pan
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Xinhe Bao
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- Chemistry
Department, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
21
|
Giri A, Coutriade M, Racaud A, Okuda K, Dane J, Cody RB, Focant JF. Molecular Characterization of Volatiles and Petrochemical Base Oils by Photo-Ionization GC×GC-TOF-MS. Anal Chem 2017; 89:5395-5403. [PMID: 28410443 DOI: 10.1021/acs.analchem.7b00124] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The characterization of organic mixtures by comprehensive two-dimensional gas chromatography (GC×GC) coupled to electron impact (EI) ionization time-of-flight mass spectrometry (TOF-MS) allows the detection of thousands of compounds. However, owing to the exhaustive fragmentation following EI ionization, despite the use of mass spectral libraries, a majority of the compounds remains unidentified because of the lack of parent ion preservation. Thus, soft-ionization energies leading to organic compounds being ionized with limited or no fragmentation, retaining the molecular ion, has been of interest for many years. In this study, photoionization (PI) was evaluated as the ion source for GC×GC-TOF-MS measurements. First, capabilities and limitations of PI were tested using an authentic mixture of compounds of several chemical classes. Ionization energy exhibited by PI, equivalent to 10.8 eV, resulted in significant retention of molecular ion information; [M]+• for alkanes, ketones, FAMEs, aromatics, [M-H]+• for chloroalkanes, and [M-H2O]+• for alcohols. Second, considering the potential of PI for hydrocarbons, base oils, complex mixtures of saturated and unsaturated hydrocarbons blended for finished lubricant formulations, were extensively evaluated. Several chemical classes of hydrocarbons were positively identified including a large number of isomeric compounds, both aliphatics and cyclics. Interestingly, branched-alkanes were ionized with lower excess internal energy, not only retaining the molecular ions but also exhibiting unique fragmentation patterns. The results presented herein offer a unique perspective into the detailed molecular characterization of base oils. Such unprecedented identification power of PI coupled with GC×GC-TOF-MS is the first report covering volatiles to low-volatile organic mixtures.
Collapse
Affiliation(s)
- Anupam Giri
- University of Liège , Department of Chemistry, Organic & Biological Analytical Chemistry Group, Allée du 6 aout, B6c, B-4000 Liège (Sart Tilman), Belgium
| | - Marion Coutriade
- Total Marketing Services, Centre de Recherche de Solaize , Chemin du Canal-BP 22, 69360 Solaize, France
| | - Amandine Racaud
- Total Marketing Services, Centre de Recherche de Solaize , Chemin du Canal-BP 22, 69360 Solaize, France
| | - Koji Okuda
- Jeol U.S.A. , 11 Dearborn Road, Peabody, Massachusetts 01960, United States
| | - John Dane
- Jeol U.S.A. , 11 Dearborn Road, Peabody, Massachusetts 01960, United States
| | - Robert B Cody
- Jeol U.S.A. , 11 Dearborn Road, Peabody, Massachusetts 01960, United States
| | - Jean-François Focant
- University of Liège , Department of Chemistry, Organic & Biological Analytical Chemistry Group, Allée du 6 aout, B6c, B-4000 Liège (Sart Tilman), Belgium
| |
Collapse
|
22
|
Leitner W, Klankermayer J, Pischinger S, Pitsch H, Kohse-Höinghaus K. Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production. Angew Chem Int Ed Engl 2017; 56:5412-5452. [DOI: 10.1002/anie.201607257] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/18/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Walter Leitner
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 1 52074 Aachen Germany
| | - Jürgen Klankermayer
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 1 52074 Aachen Germany
| | - Stefan Pischinger
- Lehrstuhl für Verbrennungskraftmaschinen und Institut für Thermodynamik; RWTH Aachen University; Forckenbeckstrasse 4 52074 Aachen Germany
| | - Heinz Pitsch
- Institut für Technische Verbrennung; RWTH Aachen University; Templergraben 64 52056 Aachen Germany
| | | |
Collapse
|
23
|
Leitner W, Klankermayer J, Pischinger S, Pitsch H, Kohse-Höinghaus K. Synthese, motorische Verbrennung, Emissionen: Chemische Aspekte des Kraftstoffdesigns. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201607257] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Walter Leitner
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 1 52074 Aachen Deutschland
| | - Jürgen Klankermayer
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 1 52074 Aachen Deutschland
| | - Stefan Pischinger
- Lehrstuhl für Verbrennungskraftmaschinen und Institut für Thermodynamik; RWTH Aachen University; Forckenbeckstraße 4, 5 2074 Aachen Deutschland
| | - Heinz Pitsch
- Institut für Technische Verbrennung; RWTH Aachen University; Templergraben 64 52056 Aachen Deutschland
| | | |
Collapse
|
24
|
Janardhanraj S, Jagadeesh G. Development of a novel miniature detonation-driven shock tube assembly that uses in situ generated oxyhydrogen mixture. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:085114. [PMID: 27587167 DOI: 10.1063/1.4960961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary strength of the shockwave, there is no need for storage of high pressure gases, and there is minimal waste disposal. The required amount of oxyhydrogen mixture is generated using alkaline electrolysis that produces hydrogen and oxygen gases in stoichiometric quantity. The rate of oxyhydrogen mixture production for the newly designed oxyhydrogen generator is found to be around 8 ml/s experimentally. The oxyhydrogen generator is connected to the driver section of a specially designed 10 mm square miniature shock tube assembly. A numerical code that uses CANTERA software package is used to predict the properties of the driver gas in the miniature shock tube. This prediction along with the 1-D shock tube theory is used to calculate the properties of the generated shockwave and matches reasonably well with the experimentally obtained values for oxyhydrogen mixture fill pressures less than 2.5 bars. The miniature shock tube employs a modified tri-clover clamp assembly to facilitate quick changing of diaphragm and replaces the more cumbersome nut and bolt system of fastening components. The versatile nature of oxyhydrogen detonation-driven miniature shock tube opens up new horizons for shockwave-assisted interdisciplinary applications.
Collapse
Affiliation(s)
- S Janardhanraj
- Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India
| | - G Jagadeesh
- Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
25
|
Kostko O, Bandyopadhyay B, Ahmed M. Vacuum Ultraviolet Photoionization of Complex Chemical Systems. Annu Rev Phys Chem 2016; 67:19-40. [DOI: 10.1146/annurev-physchem-040215-112553] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720;
| | - Biswajit Bandyopadhyay
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720;
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720;
| |
Collapse
|
26
|
Lynch PT. Note: An improved solenoid driver valve for miniature shock tubes. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:056110. [PMID: 27250485 DOI: 10.1063/1.4953115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A solenoid driver valve has been built to improve the operating performance of diaphragmless shock tubes, which are used for high pressure, high temperature chemical kinetics, and fluid mechanics studies. For shock tube driver application, the most important characteristics are those of sealing, strength, and quality of the generated shock waves and repeatability of opening characteristics and therefore subsequent post-shock conditions. The main features of the new driver valve are a face o-ring sealing design of the valve, the large internal volume, and through inserts near the solenoid core: adjustable opening characteristics of the valve.
Collapse
Affiliation(s)
- P T Lynch
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, Michigan 48128, USA
| |
Collapse
|
27
|
Burke MP. Harnessing the Combined Power of Theoretical and Experimental Data through Multiscale Informatics. INT J CHEM KINET 2016. [DOI: 10.1002/kin.20984] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Michael P. Burke
- Department of Mechanical Engineering; Department of Chemical Engineering, and Data Science Institute; Columbia University; New York NY 10027
- Chemical Sciences and Engineering Division; Argonne National Laboratory; Argonne IL 60439
| |
Collapse
|
28
|
Oßwald P, Köhler M. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:105109. [PMID: 26520986 DOI: 10.1063/1.4932608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.
Collapse
Affiliation(s)
- Patrick Oßwald
- Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany
| | - Markus Köhler
- Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany
| |
Collapse
|
29
|
Rodriguez A, Frottier O, Herbinet O, Fournet R, Bounaceur R, Fittschen C, Battin-Leclerc F. Experimental and Modeling Investigation of the Low-Temperature Oxidation of Dimethyl Ether. J Phys Chem A 2015; 119:7905-23. [DOI: 10.1021/acs.jpca.5b01939] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anne Rodriguez
- Laboratoire
Réactions et Génie des Procédés, CNRS, Université de Lorraine, BP 20451, 1 rue Grandville, 54000 Nancy, France
| | - Ophélie Frottier
- Laboratoire
Réactions et Génie des Procédés, CNRS, Université de Lorraine, BP 20451, 1 rue Grandville, 54000 Nancy, France
| | - Olivier Herbinet
- Laboratoire
Réactions et Génie des Procédés, CNRS, Université de Lorraine, BP 20451, 1 rue Grandville, 54000 Nancy, France
| | - René Fournet
- Laboratoire
Réactions et Génie des Procédés, CNRS, Université de Lorraine, BP 20451, 1 rue Grandville, 54000 Nancy, France
| | - Roda Bounaceur
- Laboratoire
Réactions et Génie des Procédés, CNRS, Université de Lorraine, BP 20451, 1 rue Grandville, 54000 Nancy, France
| | - Christa Fittschen
- PhysicoChimie
des Processus de Combustion et de l’Atmosphère (PC2A) UMR 8522 CNRS/Lille 1, Université de Lille, Cité
scientifique, 59655 Villeneuve d’Ascq
Cedex, France
| | - Frédérique Battin-Leclerc
- Laboratoire
Réactions et Génie des Procédés, CNRS, Université de Lorraine, BP 20451, 1 rue Grandville, 54000 Nancy, France
| |
Collapse
|