1
|
Freko S, Nikić M, Mayer D, Weiß LJK, Simmel FC, Wolfrum B. Digital CRISPR-Powered Biosensor Concept without Target Amplification Using Single-Impact Electrochemistry. ACS Sens 2024; 9:6197-6206. [PMID: 39435883 PMCID: PMC11590096 DOI: 10.1021/acssensors.4c02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
The rapid and reliable detection and quantification of nucleic acids is crucial for various applications, including infectious disease and cancer diagnostics. While conventional methods, such as the quantitative polymerase chain reaction are widely used, they are limited to the laboratory environment due to their complexity and the requirement for sophisticated equipment. In this study, we present a novel amplification-free digital sensing strategy by combining the collateral cleavage activity of the Cas12a enzyme with single-impact electrochemistry. In doing so, we modified silver nanoparticles using a straightforward temperature-assisted cofunctionalization process to subsequently detect the collision events of particles released by the activated Cas12a as distinct current spikes on a microelectrode array. The functionalization resulted in stable DNA-AgNP conjugates, making them suitable for numerous biosensor applications. Thus, our study demonstrates the potential of clustered regularly interspaced short palindromic repeats-based diagnostics combined with impact-based digital sensing for a rapid and amplification-free quantification of nucleic acids.
Collapse
Affiliation(s)
- Sebastian Freko
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| | - Marta Nikić
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| | - Dirk Mayer
- Institute
of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Lennart J. K. Weiß
- Department
of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Friedrich C. Simmel
- Department
of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Bernhard Wolfrum
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
2
|
Anh Thu PN, Men NH, Thi Vo CD, Van Toi V, Truong PL. A simple and rapid colorimetric detection of Staphylococcus aureus relied on the distance-dependent optical properties of silver nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2913-2920. [PMID: 38660999 DOI: 10.1039/d3ay02189k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The quick and accurate diagnosis of pathogens has appeared as a pressing issue in clinical diagnostics, environmental monitoring, and food safety. The available assays are suffering from limited capacities in simple, fast, low-cost, and on-site detection to increase prevention and proper treatment. Herein, we address these challenges by developing a simple, speedy, affordable, and ultrasensitive nanoplasmonic biosensor for colorimetric detection of cDNA from staphylococcal RNA relying on the distance-dependent optical features of silver nanostructures for the measurement of color variations and spectral shifts owing to the plasmon coupling generated by the cross-linking accumulation of AgNPs. The method described utilizes silver nanoparticles (AgNPs) immobilized with two different single-stranded oligonucleotides (ssDNA1 and ssDNA2) that specifically recognize the target DNA. Sandwich hybridization of target DNA with ssDNA1 and ssDNA2 induced color variations and spectral shifts of AgNPs, whereas test samples without the target DNA remained yellow as the initial color of colloidal silver. The designed nanoplasmonic biosensor demonstrated high specificity with the detection limit (LOD) of ∼1.8 amol target DNA (∼106 molecules per test) in the broad linear dynamic range from 0.01 to 100 nM, and LOD down to a few cells was attained for amplified bacterial nucleic acids and a linear range from 102 CFU mL-1 to 107 CFU mL-1. The sensing approach showed great potential for the timely diagnosis of pathogens in low-density samples, and it has considerable merits over traditional culture approaches and qPCR techniques.
Collapse
Affiliation(s)
- Phan Ngoc Anh Thu
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Hoang Men
- Department of Physics and Biophysics, Faculty of Basic Science, Can Tho University of Medicine and Pharmacy, Can Tho city 900000, Vietnam
| | - Cam-Duyen Thi Vo
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- School of Biomedical Engineering, International University, Ho Chi Minh City 700000, Vietnam.
| | - Vo Van Toi
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- School of Biomedical Engineering, International University, Ho Chi Minh City 700000, Vietnam.
| | - Phuoc Long Truong
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- School of Biomedical Engineering, International University, Ho Chi Minh City 700000, Vietnam.
| |
Collapse
|
3
|
Singh KR, Natarajan A, Pandey SS. Bioinspired Multifunctional Silver Nanoparticles for Optical Sensing Applications: A Sustainable Approach. ACS APPLIED BIO MATERIALS 2023; 6:4549-4571. [PMID: 37852204 DOI: 10.1021/acsabm.3c00669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Silver nanoparticles developed via biosynthesis are the most fascinating nanosized particles and encompassed with excellent physicochemical properties. The bioinspired nanoparticles with different shapes and sizes have attracted huge attention due to their stability, low cost, environmental friendliness, and use of less hazardous chemicals. This is an ideal method for synthesizing a range of nanosized metal particles from plants and biomolecules. Optical biosensors are progressively being fabricated for the attainment of sustainability by using opportunities offered by nanotechnology. This review focuses mainly on tuning the optical properties of the metal nanoparticles for optical sensing to explore the importance and applications of bioinspired silver nanoparticles. Further, this review deliberates the role of bioinspired silver nanoparticles (Ag NPs) in biomedical, agricultural, environmental, and energy applications. Profound insight into the antimicrobial properties of these nanoparticles is also appreciated. Tailor-made bioinspired nanoparticles with effectuating characteristics can unsurprisingly target tumor cells and distribute enwrapped payloads intensively. Existing challenges and prospects of bioinspired Ag NPs are also summarized. This review is expected to deliver perceptions about the progress of the next generation of bioinspired Ag NPs and their outstanding performances in various fields by promoting sustainable practices for fabricating optical sensing devices.
Collapse
Affiliation(s)
- Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Arunadevi Natarajan
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu 641004, India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| |
Collapse
|
4
|
Gawai AA, Kharat AR, Chorge SS, Dhawale SA. Green synthesis of silver nanoparticles mediated Azadirachta indica extract and study of their characterization, molecular docking, and antibacterial activity. J Mol Recognit 2023; 36:e3051. [PMID: 37594180 DOI: 10.1002/jmr.3051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/19/2023]
Abstract
The green production of silver nanoparticles (AgNPs) produces AgNPs with minimum influence on the environment by using plant components such as alkaloids, carbohydrates, lipids, enzymes, flavonoids, terpenoids, and polyphenols as reducing agents. In the present investigation, Azadirachta indica leaf extract was used to form AgNPs from a 1 mM silver nitrate solution. The plan proved to be incredibly straightforward, cost-effective, and effective. The production of the nanoparticles was observed visually, where the colorless fluid turns into a brown-colored solution. Further research was carried out using x-ray diffraction, Fourier-transform infrared analysis, scanning electron microscopy, and transmission electron microscopy (TEM) in addition to UV-visible spectroscopy. The size range of AgNPs determined by TEM was 10-30 nm. When the diffusion technique was employed to demonstrate the antibacterial effect of AgNPs on various pathogens, the zones of inhibition for Staphylococcus aureus, Bacillus cereus, and Escherichia coli, when 50 g of AgNPs were used were 16, 12, and 17 mm, respectively. By examining the leakage of reducing sugars and proteins, the mechanism by which nanoparticle antibacterial properties were explored, showed that AgNPs were capable of lowering membrane permeability.
Collapse
Affiliation(s)
- Ashish A Gawai
- Anuradha College of Pharmacy, Chikhli, Maharashtra, India
| | - Amol R Kharat
- Government College of Pharmacy, Aurangabad, Maharashtra, India
| | | | - Sachin A Dhawale
- Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad, Maharashtra, India
| |
Collapse
|
5
|
Quarles JD, Livingston AT, Wood AE, Fernandez TG. Preparation of Nucleic Acid Aptamer Functionalized Silver/Gold Nanoparticle Conjugates Using Thiol-Substituted Oligonucleotides. Methods Mol Biol 2023; 2709:131-147. [PMID: 37572277 DOI: 10.1007/978-1-0716-3417-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Silver and gold nanoparticle-aptamer conjugates have been extensively utilized as biosensors and microscopic vehicles that deliver a therapeutic cargo to cells. Here, we describe facile procedures to attach nucleic acid aptamers with a free thiol group to silver or gold nanoparticles. Methods to purify the nanoparticle-aptamer conjugates, verify aptamer attachment, and quantify aptamer-nanoparticle ratios are also discussed and compared. Additionally, a simple protocol that describes the aqueous synthesis of gold nanoparticles (~10 nm) is included.
Collapse
Affiliation(s)
- Joshua D Quarles
- Department of Chemistry, Physics, Geology and the Environment, Sims Building, Winthrop University, Rock Hill, SC, USA
| | - Allen T Livingston
- Department of Chemistry, Physics, Geology and the Environment, Sims Building, Winthrop University, Rock Hill, SC, USA
| | - Ashley E Wood
- Department of Chemistry, Physics, Geology and the Environment, Sims Building, Winthrop University, Rock Hill, SC, USA
| | - Timea Gerczei Fernandez
- Department of Chemistry, Physics, Geology and the Environment, Sims Building, Winthrop University, Rock Hill, SC, USA.
| |
Collapse
|
6
|
Creyer MN, Jin Z, Retout M, Yim W, Zhou J, Jokerst JV. Gold-Silver Core-Shell Nanoparticle Crosslinking Mediated by Protease Activity for Colorimetric Enzyme Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14200-14207. [PMID: 36351199 DOI: 10.1021/acs.langmuir.2c02219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plasmonic nanoparticles produce a localized surface plasmon resonance (LSPR) under optical excitation. The LSPR of nanoparticles can shift in response to changes in the local dielectric environment and produce a color change. This color change can be observed by the naked eye due to the exceptionally large extinction coefficients (108-1011 M-1 cm-1) of plasmonic nanoparticles. Herein, we investigate the optical shifts (i.e., color change) of three unique gold-silver core-shell nanoparticle structures in response to changes in their dielectric environment upon nanoparticle aggregation. Aggregation is induced by a cysteine-containing peptide that has a sulfhydryl near its N and C termini, which crosslinks nanoparticles. Furthermore, we demonstrate that adding proline spacers between the cysteines impacts the degree of aggregation and, ultimately, the color response. Using this information, we construct a colorimetric enzyme assay, where the signal produced from nanoparticle aggregation is modulated by proteolysis. The degree of aggregation and the resulting optical shift can be correlated with enzyme concentration with high linearity (R2 = 0.998). Overall, this study explores the optical properties of gold-silver core-shell nanoparticles in a dispersed vs aggregated state and leverages that information to develop an enzyme sensor with a spectral LOD of 0.47 ± 0.09 nM.
Collapse
|
7
|
Verma H, Aggarwal M, Kumar S. Opportunities and Significance of Nanoparticle–DNA Binding in Medical Biotechnology: A Review. Cureus 2022; 14:e31005. [DOI: 10.7759/cureus.31005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
|
8
|
Naqvi SS, Anwar H, Noori MY, Siddiqui A, Ali Z, Shah MR, Ali SA. Silver nanoparticles as a nanoprobe for trace level simultaneous detection of streptomycin sulfate and isoniazid and anti-TB activity of their nanoparticles complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Habib U, Ahmad Khan A, Rahman TU, Zeb MA, Liaqat W. Green synthesis, characterization, and antibacterial activity of silver nanoparticles using stem extract of Zanthoxylum armatum. Microsc Res Tech 2022; 85:3830-3837. [PMID: 36125078 DOI: 10.1002/jemt.24231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/31/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022]
Abstract
In this study, we report the green synthesis of silver nanoparticles (AgNPs) using Zanthoxylum armatum stem extract. The characteristic absorption at 385 nm suggested synthesis of AgNPs which was further confirmed by SEM, with a size in the range of 46.66 nm to 60.12 nm and a spherical shape, having an FCC structure, analyzed by XRD. FTIR analysis revealed the presence of phenol and secondary alcohol groups over the AgNPS. The elemental composition was further investigated by FESEM-EDX analysis which revealed the presence of silver in the synthesis nanoparticles. The synthesized silver nanoparticles exhibited antimicrobial activity against tested microorganisms with a zone of inhibition of 21 mm for Staphylococcus aureus, 17 mm for Pseudomonas aeruginosa, 18 mm for Salmonella enteric, and 18 mm for Escherichia coli. Overall, the results showed that the green silver nanoparticles could be safe, as they are capable of potential antimicrobial activity against S. aureus.
Collapse
Affiliation(s)
- Uroosa Habib
- Department of Chemistry, Women University of Azad Jammu & Kashmir, Bagh, Pakistan
| | - Ashfaq Ahmad Khan
- Department of Chemistry, Women University of Azad Jammu & Kashmir, Bagh, Pakistan
| | - Taj Ur Rahman
- Department of Chemistry, Mohi-Ud-Din Islamic University, Nerian Sharif, Pakistan
| | - Muhammad Aurang Zeb
- Department of Chemistry, Mohi-Ud-Din Islamic University, Nerian Sharif, Pakistan
| | - Wajiha Liaqat
- Department of Chemistry, Mohi-Ud-Din Islamic University, Nerian Sharif, Pakistan
| |
Collapse
|
10
|
Tian J, Shi Z, Wang G. Thermodynamic and Kinetic Binding Behaviors of Human Serum Albumin to Silver Nanoparticles. MATERIALS 2022; 15:ma15144957. [PMID: 35888425 PMCID: PMC9323290 DOI: 10.3390/ma15144957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 12/04/2022]
Abstract
A nanoparticle, under biological milieu, is inclined to be combined with various biomolecules, particularly protein, generating an interfacial corona which provides a new biological identity. Herein, the binding interaction between silver nanoparticles (AgNPs) and human serum albumin (HSA) was studied with transmission electron microscopy (TEM), circular dichroism (CD), and multiple spectroscopic techniques. Due to the ground state complex formed mainly through hydrophobic interactions, the fluorescence titration method proved that intrinsic fluorescence for HSA was probably statically quenched by AgNPs. The complete thermodynamic parameters were derived, indicating that the interaction between HSA and AgNPs is an entropy-driven process. Additionally, synchronous fluorescence and CD spectrum results suggested the conformational variation it has upon binding to AgNPs and the α-helix content has HSA visibly decreased. The kinetic experiments proved the double hysteresis effect has in HSA’s binding to the AgNPs surface. Moreover, the binding has between HSA and AgNPs follows the pseudo-second-order kinetic characteristic and fits the Freundlich model for multilayer adsorption. These results facilitate the comprehension about NPs’ underlying biological effects under a physiological environment and promote the secure applications of NPs biologically and medically.
Collapse
Affiliation(s)
- Jinjun Tian
- Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China;
| | - Zhenghai Shi
- Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China;
- Correspondence: (Z.S.); (G.W.)
| | - Gongke Wang
- School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Correspondence: (Z.S.); (G.W.)
| |
Collapse
|
11
|
Mahjub R, Shayesteh OH, Derakhshandeh K, Ranjbar A, Mehri F, Heshmati A. A novel label-free colorimetric polyA aptasensing approach based on cationic polymer and silver nanoparticles for detection of tobramycin in milk. Food Chem 2022; 382:132580. [PMID: 35247665 DOI: 10.1016/j.foodchem.2022.132580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 11/04/2022]
Abstract
In this study, a novel colorimetric bioassay method was developed for the sensitive determination of tobramycin (TOB). To detect TOB, silver nanoparticles (AgNPs) were decorated with TOB-specific aptamers (apt), and positively charged poly diallyl dimethyl ammonium chloride (PDDA) was used. As long as tobramycin is not present in the assay system, PDDA can coalesce with the aptamer, and AgNPs would remain stable (λmax = 400 nm) in the dispersed system against PDDA-induced aggregation. When TOB is added, aptamer can bind to the compound, which leads to release of PDDA and subsequent aggregation of AgNPs (λmax = 540 nm). This remarkable change, as a colorimetric analytics signal, can be used for quantitative analysis of TOB. TOB can be detected by this highly sensitive colorimetric aptasensor with a limit of detection (LOD) of 70 pM. Furthermore, TOB can be detected with the naked eye at concentrations above 1 nM.
Collapse
Affiliation(s)
- Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Omid Heydari Shayesteh
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran; Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Katayoun Derakhshandeh
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Heshmati
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Carter E, Davis SA, Hill DJ. Rapid Detection of Neisseria gonorrhoeae Genomic DNA Using Gold Nanoprobes Which Target the Gonococcal DNA Uptake Sequence. Front Cell Infect Microbiol 2022; 12:920447. [PMID: 35873173 PMCID: PMC9304934 DOI: 10.3389/fcimb.2022.920447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid spread of antimicrobial resistant Neisseria gonorrhoeae continues to pose a serious threat to global health. To successfully treat and control gonococcal infections, rapid diagnosis is critical. Currently, nucleic acid amplification tests are the recommended diagnostic, however, these are both technically demanding and time consuming, making them unsuitable for resource-poor clinics. Consequently, there is a substantial need for an affordable, point-of-care diagnostic to use in these settings. In this study, DNA-functionalised gold nanoparticles (gold nanoprobes), with the ability to specifically detect the DNA Uptake Sequence (DUS) of Neisseria gonorrhoeae, were prepared. Using complementary annealing, the gold nanoprobes were shown to hybridise to genomic gonococcal DNA, causing a significant shift in their salt stability. By exploiting the shift in nanoprobe stability under the presence of target DNA, a solution-based colorimetric diagnostic for gonococcal DNA was prepared. Detection of purified genomic DNA was achieved in under 30 minutes, with a detection limit of 15.0 ng. Significantly, testing with DNA extracted from an off-target control organism suggested specificity for Neisseria. These results highlight the potential of DUS-specific gold nanoprobes in the rapid point-of-care diagnosis of gonococcal infections.
Collapse
Affiliation(s)
- Ella Carter
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, United Kingdom
| | - Sean A. Davis
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- *Correspondence: Darryl Hill, ; Sean Davis,
| | - Darryl J. Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- *Correspondence: Darryl Hill, ; Sean Davis,
| |
Collapse
|
13
|
Zheng W, Li Y, Zhao L, Li C, Wang L. Label-free fluorescent aptasensor for chloramphenicol based on hybridization chain reaction amplification and G-quadruplex/ N-methyl mesoporphyrin IX complexation. RSC Adv 2022; 12:18347-18353. [PMID: 35799942 PMCID: PMC9215126 DOI: 10.1039/d2ra00572g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
The use of the broad-spectrum antibiotic chloramphenicol (CAP) in food is strictly regulated or banned in many countries. Herein, for the sensitive, rapid, and specific detection of CAP in milk, a label-free fluorescence strategy was established based on guanine (G)-quadruplex/N-methyl mesoporphyrin IX (NMM) complex formation and hybridization chain reaction (HCR) amplification. In this system, CAP can specifically bind to an aptamer (Apt) to release an Apt-C sequence from double-stranded DNA (Apt·Apt-C). Apt-C, can further hybridize with a functional hairpin DNA probe to release a primer sequence. The released primer sequence causes HCR and the formation of a nicked double-helix polymer, which contains G-quadruplex DNA. The recognition of G-quadruplex DNA by the NMM fluorochrome results in fluorescence enhancement. Consequently, CAP can be quantitatively detected by measuring the fluorescence intensity at 612 nm. The reliability of the aptasensor method was confirmed by comparison with an enzyme-linked immunosorbent assay. The proposed aptasensor was found to have a limit of detection of 0.8 pg mL-1 for CAP. Moreover, when the aptasensor was applied to the detection of CAP in milk samples, the average recoveries were 99.8-108.3% with relative standard deviations of 4.5-5.2%. Thus, this CAP detection method, which is rapid with high sensitivity and selectivity, has considerable potential for a wide range of food analysis applications.
Collapse
Affiliation(s)
- Wentao Zheng
- Zhanjiang Central Hospital, Guangdong Medical University Zhanjiang 524045 China
| | - Yubin Li
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University Zhanjiang 524088 China
| | - Liting Zhao
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University Zhanjiang 524088 China
| | - Ciling Li
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University Zhanjiang 524088 China
| | - Lei Wang
- Zhanjiang Central Hospital, Guangdong Medical University Zhanjiang 524045 China
| |
Collapse
|
14
|
Dass M, Kuen L, Posnjak G, Burger S, Liedl T. Visible wavelength spectral tuning of absorption and circular dichroism of DNA-assembled Au/Ag core-shell nanorod assemblies. MATERIALS ADVANCES 2022; 3:3438-3445. [PMID: 35665317 PMCID: PMC9017759 DOI: 10.1039/d1ma01211h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/18/2022] [Indexed: 06/15/2023]
Abstract
Plasmonic nanoparticles have unique properties which can be harnessed to manipulate light at the nanoscale. With recent advances in synthesis protocols that increase their stability, gold-silver core-shell nanoparticles have become suitable building blocks for plasmonic nanostructures to expand the range of attainable optical properties. Here we tune the plasmonic response of gold-silver core-shell nanorods over the visible spectrum by varying the thickness of the silver shell. Through the chiral arrangement of the nanorods with the help of various DNA origami designs, the spectral tunability of the plasmon resonance frequencies is transferred into circular dichroism signals covering the spectrum from 400 nm to 700 nm. Our approach could aid in the construction of better sensors as well as metamaterials with a tunable optical response in the visible region.
Collapse
Affiliation(s)
- Mihir Dass
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University Geschwister-Scholl-Platz 1 80539 Munich Germany
| | - Lilli Kuen
- Computational Nano Optics, Zuse Institute Berlin 14195 Berlin Germany
| | - Gregor Posnjak
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University Geschwister-Scholl-Platz 1 80539 Munich Germany
| | - Sven Burger
- Computational Nano Optics, Zuse Institute Berlin 14195 Berlin Germany
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University Geschwister-Scholl-Platz 1 80539 Munich Germany
| |
Collapse
|
15
|
Synthesis of silver nanoparticles from Turbinaria ornata and its antibacterial activity against water contaminating bacteria. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02033-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Pyrophosphate-Enhanced Oxidase Activity of Cerium Oxide Nanoparticles for Colorimetric Detection of Nucleic Acids. SENSORS 2021; 21:s21227567. [PMID: 34833643 PMCID: PMC8623087 DOI: 10.3390/s21227567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
In recent years, cerium oxide (CeO2) nanoparticles (NPs) have drawn significant attention owing to their intrinsic enzyme mimetic properties, which make them powerful tools for biomolecular detection. In this work, we evaluated the effect of pyrophosphate (PPi) on the oxidase activity of CeO2 NPs. The presence of PPi was found to enhance the oxidase activity of CeO2 NPs, with enhanced colorimetric signals. This particular effect was then used for the colorimetric detection of target nucleic acids. Overall, the PPi-enhanced colorimetric signals of CeO2 NPs oxidase activity were suppressed by the presence of the target nucleic acids. Compared with previous studies using CeO2 NPs only, our proposed system significantly improved the signal change (ca. 200%), leading to more sensitive and reproducible colorimetric analysis of target nucleic acids. As a proof-of-concept study, the proposed system was successfully applied to the highly selective and sensitive detection of polymerase chain reaction products derived from Klebsiella pneumoniae. Our findings will benefit the rapid detection of nucleic acid biomarkers (e.g., pathogenic bacterial DNA or RNA) in point-of-care settings.
Collapse
|
17
|
Jia W, Xie D, Li F, Wu X, Wang R, Yang L, Liu L, Yin W, Chang S. Evaluation the effect of nanoparticles on the structure of aptamers by analyzing the recognition dynamics of aptamer functionalized nanoparticles. Anal Chim Acta 2021; 1183:338976. [PMID: 34627520 DOI: 10.1016/j.aca.2021.338976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 01/31/2023]
Abstract
Aptamer-functionalized nanoparticles have been widely studied as targeted probes in biomedical applications for targeted therapy and imaging. The rigidity of the nanoparticle could stabilized the spatial structure of the aptamer, ensuring the selectivity and affinity for target recognition in the complex environment. The main aim of this article study was to explore the effect of the spatial structure of aptamer in the interaction between aptamer nanoprobes and receptors. We designed and synthesized aptamer functionalized nanoparticle systems with different derivation lengths, and developed a unique kinetic analysis to quantify affinity interactions. The system used silver decahedral nanoparticles (Ag10NPs), which was then chemically functionalized with thrombin (or IgE) aptamers of different tail lengths to produced different nanoprobes, and employed thrombin (or IgE) as target on a surface plasmon resonance (SPR) biosensor to evaluate the binding of these nanoprobes. Kinetic analysis of the SPR binding curve was performed to evaluated the affinity between nanoprobes and targets. Under the premise of eliminating multivalent interactions, we found that the distance between aptamer and nanoparticle could affect the affinity between nanoprobe and target. Furthermore, we found that keeping a certain distance between aptamer and nanoparticle could effectively improved the recognition efficiency of the aptamer nanoprobe and target. It shows that the rigidity of nanomaterials could maintain the spatial structure of the aptamer.
Collapse
Affiliation(s)
- Wenchao Jia
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Danping Xie
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Fangfang Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Xiangzong Wu
- Ocean College, Minjiang University, Fuzhou, 350108, China
| | - Rui Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Leifeng Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Lijun Liu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Wenhua Yin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Sheng Chang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
18
|
Sharma L, Gouraj S, Raut P, Tagad C. Development of a surface-modified paper-based colorimetric sensor using synthesized Ag NPs-alginate composite. ENVIRONMENTAL TECHNOLOGY 2021; 42:3441-3450. [PMID: 32066333 DOI: 10.1080/09593330.2020.1732471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
There has been an increase in the discovery and usage of sensors for the detection of chemical compounds in the field of analytical chemistry since the last several years. This has led to progressive research in nanotechnology for developing efficient nanomaterials for bio-chemical sensing applications. Thereby, a deft synthesis of silver nanoparticles (Ag NPs) under microwave irradiation was achieved using sodium alginate as a reducing and capping agent in a fast and cost-effective approach. As per the X-ray diffraction analysis, the average particle size of Ag NPs was found to be 10 nm. X-ray photoelectron spectroscpopy analysis showed characteristic peaks at binding energies of 368.10 and 374.11 eV indicating the formation of Ag NPs. The synthesized Ag NPs-alginate composite was further used to develop a paper-based sensor for the detection of H2O2. Detection of H2O2 is based on the discolouration of the Ag NPs-alginate composite modified paper sensor as a function of H2O2 concentration. The analysis of the decoloured paper strips was done by a smartphone camera and an RGB Colour Reader application (app) to measure colour intensity. The sensing characteristics were found in the range of 0.1-10 mM. The colour analysis revealed piecewise linear relationship of intensity of RGB to H2O2 concentration in the range of 0.1-1.5 and 2-10 mM with R2 values of 0.97 and 0.9778, respectively. Owing to the high sensitivity, selectivity, and cost-effectiveness, the developed paper sensor can be a potential tool for real-time analysis of H2O2.
Collapse
Affiliation(s)
- Lokesh Sharma
- MIT School of Bioengineering Sciences and Research, MIT ADT University, Pune, India
| | - Shubhankar Gouraj
- MIT School of Bioengineering Sciences and Research, MIT ADT University, Pune, India
| | - Pranit Raut
- MIT School of Bioengineering Sciences and Research, MIT ADT University, Pune, India
| | - Chandrakant Tagad
- MIT School of Bioengineering Sciences and Research, MIT ADT University, Pune, India
| |
Collapse
|
19
|
Retout M, Jabin I, Bruylants G. Synthesis of Ultrastable and Bioconjugable Ag, Au, and Bimetallic Ag_Au Nanoparticles Coated with Calix[4]arenes. ACS OMEGA 2021; 6:19675-19684. [PMID: 34368555 PMCID: PMC8340414 DOI: 10.1021/acsomega.1c02327] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/02/2021] [Indexed: 05/02/2023]
Abstract
Compared to gold nanoparticles, silver nanoparticles are largely underexploited for the development of plasmonic nanosensors. This is mainly due to their easy chemical degradation through oxidation, poor colloidal stability, and usually broad size distribution after synthesis, which leads to broad localized surface plasmon resonance bands. Coatings based on polymers such as poly(ethylene glycol) (PEG) or poly(vinylpyrrolidone) (PVP) and plant extracts have been used for the stabilization of AgNPs; however, these thick coatings are not suitable for sensing applications as they isolate the metallic core. The examples of stable AgNPs coated with a thin organic layer remain scarce in comparison to their gold counterparts. In this work, we present a convenient one-step synthesis strategy that allows to obtain unique gold, silver, and bimetallic NPs that combine all of the properties required for biosensing applications. The NPs are stabilized by a tunable calix[4]arene-based monolayer obtained through the reduction of calix[4]arene-tetradiazonium salts. These multidentate ligands are of particular interest as (i) they provide excellent colloidal and chemical stabilities to the particles thanks to their anchoring to the surface via multiple chemical bonds, (ii) they allow the subsequent (bio)conjugation of (bio)molecules under mild conditions, and (iii) they allow a control over the composition of mixed coating layers. Ag and Ag_Au nanoparticles of a high stability are obtained, opening perspectives for development of numerous biosensing applications.
Collapse
Affiliation(s)
- Maurice Retout
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Ivan Jabin
- Laboratoire
de Chimie Organique, Université libre
de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Gilles Bruylants
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| |
Collapse
|
20
|
Filik H, Avan AA. Nanotechnology-based Colorimetric Approaches for Pathogenic Virus Sensing: A review. Curr Med Chem 2021; 29:2691-2718. [PMID: 34269661 DOI: 10.2174/0929867328666210714154051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 11/22/2022]
Abstract
Fast and inexpensive virus identification protocols are paramount to hinder the further extent of pandemic diseases, minimize economic and social damages, and expedite proper clinical rehabilitation. Until now, various biosensors have been fabricated for the identification of pathogenic particles. But, they offer many difficulties. Nanotechnology resolves these difficulties and offers direct identification of pathogenic species in real-time. Among them, nanomaterial based-colorimetric sensing approach of pathogenic viruses by the naked eye has attracted much awareness because of their simplicity, speed, and low cost. In this review, the latest tendencies and advancements are overviewed in detecting pathogenic viruses using colorimetric concepts. We focus on and reconsider the use of distinctive nanomaterials such as metal nanoparticles, carbon nanotubes, graphene oxide, and conducting polymer to form colorimetric pathogenic virus sensors.
Collapse
Affiliation(s)
- Hayati Filik
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, 34320 Avcılar, Istanbul, Turkey
| | - Asiye Aslıhan Avan
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, 34320 Avcılar, Istanbul, Turkey
| |
Collapse
|
21
|
Kakkanattu A, Eerqing N, Ghamari S, Vollmer F. Review of optical sensing and manipulation of chiral molecules and nanostructures with the focus on plasmonic enhancements [Invited]. OPTICS EXPRESS 2021; 29:12543-12579. [PMID: 33985011 DOI: 10.1364/oe.421839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Chiral molecules are ubiquitous in nature; many important synthetic chemicals and drugs are chiral. Detecting chiral molecules and separating the enantiomers is difficult because their physiochemical properties can be very similar. Here we review the optical approaches that are emerging for detecting and manipulating chiral molecules and chiral nanostructures. Our review focuses on the methods that have used plasmonics to enhance the chiroptical response. We also review the fabrication and assembly of (dynamic) chiral plasmonic nanosystems in this context.
Collapse
|
22
|
Shen Z, Fan Q, Yu Q, Wang R, Wang H, Kong X. Facile detection of carbendazim in food using TLC-SERS on diatomite thin layer chromatography. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119037. [PMID: 33086143 DOI: 10.1016/j.saa.2020.119037] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
This work aims to isolate and detect pesticide (carbendazim) residue in real food samples: orange juice and kale leaves. The combination of on-chip thin layer chromatography (TLC) and surface enhanced Raman scattering (SERS) spectroscopy was used for the separating and detecting of carbendazim (MBC) from the complex food sample. In order to achieve on-site detection of MBC from real food sample, the portable Raman spectrometer was coupled with TLC-SERS. The porous stationary phase composed of diatomite biosilica is beneficial for SERS enhancement and eluent migration. The experiments exhibited that the diatomite chip was suitable for TLC separation and has not shown SERS background and provided excellent separation efficiency, 10-8 M silver colloids were appropriate for the SERS measurement on TLC chip. The food sample was directly spotted onto the diatomite chip for TLC separation without any pretreatment. The separation and detection process were finished in less than 5 min, the mixture of pyrimethanil, pymetrozine and MBC could be distinguished simultaneously by TLC-SERS at one diatomite chip. The MBC in orange juice and kale were successfully detected, and a limit of detection (LOD) less than 2 ppm could be achieved.
Collapse
Affiliation(s)
- Zhengdong Shen
- School of Petrochemical Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China
| | - Qinzhen Fan
- College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China.
| | - Rui Wang
- School of Petrochemical Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China
| | - Huan Wang
- School of Petrochemical Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China.
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China.
| |
Collapse
|
23
|
Sangsin S, Srivilai P, Tongraung P. Colorimetric detection of Cr 3+ in dietary supplements using a smartphone based on EDTA and tannic acid-modified silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119050. [PMID: 33075706 DOI: 10.1016/j.saa.2020.119050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
A simplistic, portable and low-cost method for the rapid detection of Cr3+ was developed based on a smartphone readout and a co-functionalized silver nanoparticles (AgNPs) system for use as an on-site device in resource-poor areas. The presence of Cr3+ induced aggregation of AgNPs through coordinated complex formation between Cr3+ and stabilizing agents on the NPs surface, resulted in a bright yellow of an AgNPs solution turned to wine red along with a SPR band was red-shifted from 429 nm to 625 nm. A smartphone with an available free application, called "PhotoMetrix" was used to measure the RGB (red, green, blue) values of the color intensities in the AgNPs system and convert into Cr3+ concentration by using univariate calibration curves in less than 60s. This smartphone-based detection system showed a high selectivity of AgNPs with Cr3+ and gave a positive coefficient correlation (R2 = 0.9878) between the intensity of channel R and the Cr3+ concentration, with a linear range of 2.0-5.0 mg L-1, and a detection limit of 1.52 mg L-1. Furthermore, the proposed method has been successfully applied for quantification of Cr3+ in dietary supplement samples. The results obtained were in close agreement with those obtained in FAAS (Flame Atomic Absorption Spectrometry). The developed colorimetric system based on a smartphone readout device exhibits feasibility and reliability for on-site Cr3+ detection in the real samples.
Collapse
Affiliation(s)
- Supanee Sangsin
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23 Rd., Wattana, Bangkok 10110, Thailand
| | - Piyarat Srivilai
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23 Rd., Wattana, Bangkok 10110, Thailand
| | - Pan Tongraung
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23 Rd., Wattana, Bangkok 10110, Thailand.
| |
Collapse
|
24
|
Tani H, Yamaguchi M, Enomoto Y, Matsumura Y, Habe H, Nakazato T, Kurata S. Naked-eye detection of specific DNA sequences amplified by the polymerase chain reaction with nanocomposite beads. Anal Biochem 2021; 617:114114. [PMID: 33485820 DOI: 10.1016/j.ab.2021.114114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
We developed a novel nanocomposite bead system for detection by the naked eye of specific DNA sequences amplified by the polymerase chain reaction (PCR). The DNA probes, which were complementary to the target DNA, are conjugated with the nanocomposite beads. If the amplified products contained sequences complementary to the probes, the beads aggregated through sandwich hybridization. The aggregation was detectable as precipitation of the nanocomposite beads. The results were determined visually and did not require instrumental detection. The assay was sensitive enough to detect PCR products with a detection limit of 10 copies/tube for DNA templates. This technique is that all needed components are included within the initial cap, so that the risk of carryover contamination is very low. The nanocomposite bead system has broad application prospects for the detection of specific DNA sequences in biological and biomedical research.
Collapse
Affiliation(s)
- Hidenori Tani
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1, Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| | - Masahiro Yamaguchi
- Research & Development Department, NIPPON STEEL Eco-Tech Corporation, 2-1-38, Shiohama, Kisarazu, Chiba, 292-0838, Japan
| | - Yasushi Enomoto
- Research & Development Division, NIPPON STEEL Chemical & Material Co., Ltd., 1-Tsukiji, Kisarazu, Chiba, 292-0835, Japan
| | - Yasufumi Matsumura
- Research & Development Division, NIPPON STEEL Chemical & Material Co., Ltd., 1-Tsukiji, Kisarazu, Chiba, 292-0835, Japan
| | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1, Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Tetsuya Nakazato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1, Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Shinya Kurata
- Research & Development Department, NIPPON STEEL Eco-Tech Corporation, 2-1-38, Shiohama, Kisarazu, Chiba, 292-0838, Japan
| |
Collapse
|
25
|
Shen Z, Wang H, Yu Q, Li Q, Lu X, Kong X. On-site separation and identification of polycyclic aromatic hydrocarbons from edible oil by TLC-SERS on diatomite photonic biosilica plate. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Hossain S. A Study on Understanding Potential Gold and Silver Nanoparticle : An Overview. INTERNATIONAL JOURNAL OF NANOSCIENCE 2020. [DOI: 10.1142/s0219581x21500095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper highlights on the coronavirus outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At the time of writing this paper, there has been over 6 million confirmed cases worldwide. It is a person–person transmittable infection but there have been cases of asymptomatic carriers. Hence, development of an effective biosensing diagnostic tool can curb its rapid transmission rate. The first part of the paper highlights on the SARS-CoV-2 structure and its resemblance to SARS-CoV. The second part of the paper analyzes on the potential application of gold and silver nanoparticles to generate a red shift that had enhanced the calorimetric property of the MERS-CoV analysis due to transition in its optical property. Other electrochemical techniques that utilized the application of gold nanoparticles are also reviewed. Gold and silver nanoparticles (AuNP and Ag NP) can accelerate the sensitivity upon electrodeposition on the diagnostic tool.
Collapse
Affiliation(s)
- Shadeeb Hossain
- Department of Electrical Engineering, University of Texas, San Antonio, TX, USA
| |
Collapse
|
27
|
A Review on Synthesis, Optimization, Mechanism, Characterization, and Antibacterial Application of Silver Nanoparticles Synthesized from Plants. J CHEM-NY 2020. [DOI: 10.1155/2020/3189043] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Developments in nanotechnology and natural product research toward the search for novel antibacterial agents have drawn the interest of many scientists to the synthesis of silver nanoparticles (AgNPs) from natural product (especially plants) due to its numerous benefits over other methods of synthesis such as been easy, economical, convenient, and environmental friendly. Aside from the aforementioned advantages, the synthesis of AgNPs from medicinal plant has been reported as the best approach of synthesizing AgNPs with great biological activities due to the numerous biomolecules found in plants. Recently, the number of researches toward the improvement of the yield, morphological properties, analytical techniques, and the development of optimal conditions and exact mechanism for synthesizing AgNPs from plants have been increasing tremendously. In this review, we present a comprehensive report on the recent development in the synthesis, optimization conditions, mechanism, and characterization techniques of AgNPs synthesized from plant extracts. Furthermore, a thorough discussion on the recent advances in the application of AgNPs synthesized from plant as therapeutic agent against bacterial infections was made.
Collapse
|
28
|
Tan P, Li H, Wang J, Gopinath SCB. Silver nanoparticle in biosensor and bioimaging: Clinical perspectives. Biotechnol Appl Biochem 2020; 68:1236-1242. [PMID: 33043496 DOI: 10.1002/bab.2045] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Recent developments in nanotechnology promoted the production of nanomaterials with various shapes and sizes by utilizing interdisciplinary researches of biology, chemistry, and material science toward the clinical perspectives. In particular, gold and silver (Ag) are noble metals that exhibit tunable and unique plasmonic properties for the downstream applications. Ag exhibits higher thermal and electrical conductivities, and more efficient in the electron transfer than gold with sharper extinction bands. In addition, modified Ag nanoparticle is more stable in water and air. With all these above features, Ag is an attractive tool in various fields, including diagnosis, drug delivery, environmental, electronics, and as antimicrobial agent. In particular, applications of Ag nanoparticle in the fields of biosensor and imaging are prominent in recent days. Enhancing the specific detection of clinical markers with Ag nanoparticle has been proved by several studies. This review discussed the constructive application of Ag nanoparticle in biosensor and bioimaging for the detection of small molecule to larger whole cell in the perspectives of diagnosing diseases.
Collapse
Affiliation(s)
- Peng Tan
- Ultrasound Diagnosis Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang City, Jiangxi Province, People's Republic of China
| | - HeSheng Li
- General Surgery, Leping people's Hospital, Phoenix Avenue, Leping, Jiangxi Province, People's Republic of China
| | - Jian Wang
- Clinical Laboratory, Affiliated Hospital of Jiangxi University of traditional Chinese Medicine, Nanchang City, Jiangxi Province, People's Republic of China
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis, 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, Perlis, 01000, Malaysia
| |
Collapse
|
29
|
Li Y, Xie L, Yuan J, Liu H. A sensitive fluorometric sensor for Ag + based on the hybridization chain reaction coupled with a glucose oxidase dual-signal amplification strategy. RSC Adv 2020; 10:26239-26245. [PMID: 35519757 PMCID: PMC9055297 DOI: 10.1039/d0ra04202a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/24/2020] [Indexed: 12/28/2022] Open
Abstract
In this work, an efficient and sensitive fluorometric sensor was developed to detect silver ions (Ag+). It is based on the cytosine–Ag+–cytosine (C–Ag+–C) structure via a dual-signal amplification strategy using glucose oxidase (GOx) and the hybridization chain reaction (HCR). A silver-coated glass slide (SCGS) acts as an ideal material for separation. Cytosine rich (C-rich) capture DNA (C-DNA) assembled themselves on the SCGS via Ag–S bonds and hybridized with signal DNA (S-DNA) to trigger the HCR. With specific base-pairing, the S-DNA and HCR products bind on the SCGS. Then, the GOx–biotin–streptavidin (SA) complexes bind to the HCR products through SA–biotin interactions. Owing to the formation of a particular C–Ag+–C structure between two neighboring C-rich C-DNA on the SCGS, the C-DNA/S-DNA/HP1-GOx/HP2-GOx complex gradually moved away from the SCGS as the concentration of Ag+ increased and the combined GOx fell into the buffer. H2O2 could be generated during the oxidation of glucose, catalyzed by GOx in the buffer. Afterward, H2O2 could oxidize the substrate (3-(p-hydroxyphenyl)-propanoic acid) when Horseradish peroxidase was present, giving rise to blue fluorescence. The proposed strategy reached a limit of detection (LOD) of 1.8 pmol L−1 with a linear detection range of 5 to 1000 pmol L−1 for Ag+. Moreover, this assay has been commendably used for the detection of Ag+ in actual samples with fairly good results. An assay for Ag+ based on a C–Ag+–C structure by utilizing a HCR/GOx dual-signal amplification strategy and SCGS as an ideal separation material.![]()
Collapse
Affiliation(s)
- Yubin Li
- College of Chemistry and Environment, Guangdong Ocean University Zhanjiang 524088 China
| | - Ling Xie
- College of Chemistry and Environment, Guangdong Ocean University Zhanjiang 524088 China
| | - Jiaming Yuan
- College of Chemistry and Environment, Guangdong Ocean University Zhanjiang 524088 China
| | - Huazhong Liu
- College of Chemistry and Environment, Guangdong Ocean University Zhanjiang 524088 China
| |
Collapse
|
30
|
Nguyen L, Dass M, Ober M, Besteiro LV, Wang ZM, Nickel B, Govorov AO, Liedl T, Heuer-Jungemann A. Chiral Assembly of Gold-Silver Core-Shell Plasmonic Nanorods on DNA Origami with Strong Optical Activity. ACS NANO 2020; 14:7454-7461. [PMID: 32459462 PMCID: PMC7611928 DOI: 10.1021/acsnano.0c03127] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The spatial organization of metal nanoparticles has become an important tool for manipulating light in nanophotonic applications. Silver nanoparticles, particularly silver nanorods, have excellent plasmonic properties but are prone to oxidation and are therefore inherently unstable in aqueous solutions and salt-containing buffers. Consequently, gold nanoparticles have often been favored, despite their inferior optical performance. Bimetallic, i.e., gold-silver core-shell nanoparticles, can resolve this issue. We present a method for synthesizing highly stable gold-silver core-shell NRs that are instantaneously functionalized with DNA, enabling chiral self-assembly on DNA origami. The silver shell gives rise to an enhancement of plasmonic properties, reflected here in strongly increased circular dichroism, as compared to pristine gold nanorods. Gold-silver nanorods are ideal candidates for plasmonic sensing with increased sensitivity as needed in pathogen RNA or antibody testing for nonlinear optics and light-funneling applications in surface enhanced Raman spectroscopy. Furthermore, the control of interparticle orientation enables the study of plasmonic phenomena, in particular, synergistic effects arising from plasmonic coupling of such bimetallic systems.
Collapse
Affiliation(s)
- Linh Nguyen
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Mihir Dass
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Martina Ober
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Lucas V. Besteiro
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, QC J3X 1S2, Canada
| | - Zhiming M. Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Bert Nickel
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Alexander O. Govorov
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Amelie Heuer-Jungemann
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| |
Collapse
|
31
|
Aali E, Shokuhi Rad A, Esfahanian M. Computational investigation of the strategy of DNA/RNA stabilization through the study of the conjugation of an oligonucleotide with silver and gold nanoparticles. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Elahe Aali
- Department of Chemical Engineering, Qaemshahr Branch Islamic Azad University Qaemshahr Iran
| | - Ali Shokuhi Rad
- Department of Chemical Engineering, Qaemshahr Branch Islamic Azad University Qaemshahr Iran
| | - Mehri Esfahanian
- Department of Chemical Engineering, Qaemshahr Branch Islamic Azad University Qaemshahr Iran
| |
Collapse
|
32
|
A Sensitive Isoniazid Capped Silver Nanoparticles - Selective Colorimetric Fluorescent Sensor for Hg 2+ Ions in Aqueous Medium. J Fluoresc 2020; 30:91-101. [PMID: 31897912 DOI: 10.1007/s10895-019-02473-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
Novel isonicotinic acid hydrazide functionalized silver nanoparticles (INH-AgNPs) were synthesized by wet chemical method and used for the detection of Hg2+ ions in aqueous medium. The INH-AgNPs exhibit good absorbance and emission peaks by sensing Hg2+ ions with visible color changes. The detection of Hg2+ ions was confirmed by FT-IR, EDAX spectra and by the changing morphology of INH-AgNPs, and after addition of Hg2+ was confirmed by SEM and TEM imaging studies. Based on the emission intensity the probe INH-AgNPs exhibit a lowest detection limit (LOD) of Hg2+ to 0.18 nM. The association constant (Ka) of INH-AgNPs + Hg2+ ions is calculated using the Bensei-Hildebrand equation. Also, the probe is successfully utilized for the detection of Hg2+ ions in real water samples obtained from different fields, which showed good results.
Collapse
|
33
|
Liu Y, Li T, Ling C, Wang Z, Jin L, Zhao Y, Chen Z, Li S, Deng Y, He N. A simple visual method for DNA detection based on the formation of gold nanoparticles. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.10.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Wang Y, Wei Z, Zhang Y, Chen Y. Direct detection of DNA using 3D surface enhanced Raman scattering hotspot matrix. Electrophoresis 2019; 40:2104-2111. [PMID: 30861157 DOI: 10.1002/elps.201900009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 11/09/2022]
Abstract
Silver nanoparticles (AgNPs) are evaporatively self-assembled into the 3D surface enhanced Raman scattering (SERS) hotspot matrix with the assistant of glycerol to improve the spectral reproducibility in direct DNA detection. AgNPs and DNA in the glycerol-stabilized 3D SERS hotspot matrix are found to form flexible sandwich structures through electrostatic interaction where neighboring AgNPs create uniform and homogeneous localized surface plasmon resonance coupling environments for central DNA. Nearly two orders of magnitude extra SERS enhancement, more stable peak frequency and narrower peak full width at half maximum can therefore be obtained in DNA SERS spectra, which ensures highly stable and reproducible SERS signals in direct detection of both single strand DNA and double strand DNA utilizing the 3D SERS hotspot matrix. By normalizing the SERS spectra using phosphate backbone as internal standard, identification of single base variation in oligonucleotides, determination of DNA hybridization events and recognition of chemical modification on bases (hexanethiol-capped at 5' end) have been demonstrated experimentally. This proposed 3D SERS hotspot matrix opens a novel perspective in manipulating plasmonic nanoparticles to construct SERS platforms and would make the surface enhanced Raman spectroscopy a more practical and reliable tool in direct DNA detection.
Collapse
Affiliation(s)
- Yongkang Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, P. R. China
| | - Zhiyong Wei
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, P. R. China
| | - Yan Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, P. R. China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, P. R. China
| |
Collapse
|
35
|
Li Y, Shao J, Guo W, Wang M. Sensitive fluorometric determination of platelet-derived growth factor BB and avian influenza A virus DNA via dual signal amplification using the hybridization chain reaction and glucose oxidase assisted recycling. Mikrochim Acta 2019; 186:155. [PMID: 30712102 DOI: 10.1007/s00604-019-3285-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
A method is described for fluorometric determination of platelet-derived growth factor BB (PDGF-BB) and avian influenza A (H1N1) virus DNA. It is based on the use of the hybridization chain reaction (HCR) and of glucose oxidase (GOx) assisted dual-recycling amplification. A silver coated glass slide (SCGS) serves as an ideal material for separation. A signal DNA/initiator triggers the HCR and generates a cascade of hybridization to form a nicked double-helix polymer. Upon addition of the analytes (PDGF-BB or H1N1 DNA) and capture DNA immobilized on the SCGS, the nicked double-helix polymer binds on the surface of the SCGS through formation of a [capture DNA/analyte/signal DNA] sandwich structure. The GOx-biotin-streptavidin (SA) complexes were then attached to the nicked double-helix polymer through SA-biotin interaction. After cleavage by DNase I, the bound GOx is transferred into the buffer. Glucose is added and enzymatically oxidized to produce H2O2. The H2O2 formed oxidizes the substrate 3-(p-hydroxyphenyl)-propanoic acid to give a blue fluorescent product (with excitation/emission maxima at 320/416 nm) under the catalysis of horseradish peroxidase. Under optimal conditions, fluorescence increases linearly in the 0.5 to 70 pmol·L-1 PDGF-BB concentration range, and the detection limit is 191 fmol·L-1. For the H1N1 virus DNA, the respective data are 2.5 to 300 pmol·L-1 and 826 fmol·L-1. Graphical abstract Schematic presentation for detection of analytes (PDGF-BB or H1N1 virus DNA) based on the dual-signal amplification of Hybridization Chain Reaction (HCR) and glucose oxidase (GOx) using silver coated glass slide (SCGS) as separation material.
Collapse
Affiliation(s)
- Yubin Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
| | - Jing Shao
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Wanting Guo
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Minting Wang
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| |
Collapse
|
36
|
Rautela A, Rani J, Debnath (Das) M. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J Anal Sci Technol 2019. [DOI: 10.1186/s40543-018-0163-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
37
|
Zhang XQ, Ling J, Liu CJ, Tan YH, Chen LQ, Cao QE. An irreversible temperature indicator fabricated by citrate induced face-to-face assembly of silver triangular nanoplates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:657-662. [PMID: 30184792 DOI: 10.1016/j.msec.2018.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 06/09/2018] [Accepted: 07/09/2018] [Indexed: 01/13/2023]
Abstract
Assembly of anisotropic nanoparticles which need well controlling of assembly direction and spatial arrangement is more interesting than one-dimensional nanoparticles assemblies. As confirmed by observing of transmission electron microscopy images and analysis of plasmon resonance spectrum transformations, we found that silver triangular nanoplates (TNPs) without further modification could be face-to-face assembled by citrate. The face-to-face assembly of silver TNPs could be disassembled quickly by heating at a wide temperature range from 30 to 80 °C. In this process, an obvious localized surface plasmon resonance (LSPR) peak shift and a color change of solution from pink to purple could be observed. Moreover, the disassembled silver TNPs suspension is very stable that no significant peak shift of silver TNPs spectrum was observed in 8 h after removing of silver TNPs from a hearing area. Therefore, we fabricated an irreversible temperature indicator by measuring the relationship between the shift of LSPR peak and heating temperature, and by watching the color change of the solution in a certain environment. The irreversible temperature indicator has potential to develop a temperature label for revealing temperature history of a thermosensitive product which cannot expose to excessive temperature.
Collapse
Affiliation(s)
- Xiu-Qing Zhang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China; Kunming City Center for Disease Control and Prevention, Kunming, 650034, China
| | - Jian Ling
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Chao-Juan Liu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yuan-Hang Tan
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Li-Qiang Chen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, China
| | - Qiu-E Cao
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
38
|
Silica nanocomposites based on silver nanoparticles-functionalization and pH effect. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0837-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Bala R, Mittal S, Sharma RK, Wangoo N. A supersensitive silver nanoprobe based aptasensor for low cost detection of malathion residues in water and food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 196:268-273. [PMID: 29455078 DOI: 10.1016/j.saa.2018.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/25/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
In the present study, we report a highly sensitive, rapid and low cost colorimetric monitoring of malathion (an organophosphate insecticide) employing a basic hexapeptide, malathion specific aptamer (oligonucleotide) and silver nanoparticles (AgNPs) as a nanoprobe. AgNPs are made to interact with the aptamer and peptide to give different optical responses depending upon the presence or absence of malathion. The nanoparticles remain yellow in color in the absence of malathion owing to the binding of aptamer with peptide which otherwise tends to aggregate the particles because of charge based interactions. In the presence of malathion, the agglomeration of the particles occurs which turns the solution orange. Furthermore, the developed aptasensor was successfully applied to detect malathion in various water samples and apple. The detection offered high recoveries in the range of 89-120% with the relative standard deviation within 2.98-4.78%. The proposed methodology exhibited excellent selectivity and a very low limit of detection i.e. 0.5pM was achieved. The developed facile, rapid and low cost silver nanoprobe based on aptamer and peptide proved to be potentially applicable for highly selective and sensitive colorimetric sensing of trace levels of malathion in complex environmental samples.
Collapse
Affiliation(s)
- Rajni Bala
- Department of Chemistry, Centre for Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Sherry Mittal
- Department of Chemistry, Centre for Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Rohit K Sharma
- Department of Chemistry, Centre for Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering & Technology (U.I.E.T.), Panjab University, Sector-25, Chandigarh 160014, India.
| |
Collapse
|
40
|
Liao R, Yang P, Wu W, Luo D, Yang D. A DNA Tracer System for Hydrological Environment Investigations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1695-1703. [PMID: 29361228 DOI: 10.1021/acs.est.7b02928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To monitor and manage hydrological pollution effectively, tracing sources of pollutants is of great importance and also is in urgent need. A variety of tracers have been developed such as isotopes, silica, bromide, and dyes; however, practical limitations of these traditional tracers still exist such as lack of multiplexed, multipoint tracing and interference of background noise. To overcome these limitations, a new tracing system based on DNA nanomaterials, namely DNA tracer, has already been developed. DNA tracers possess remarkable advantages including sufficient species, specificity, environmental friendly, stable migration, and high sensitivity as well as allowing for multipoints tracing. In this review article, we introduce the molecular design, synthesis, protection and signal readout strategies of DNA tracers, compare the advantages and disadvantages of DNA tracer with traditional tracers, and summarize the-state-of-art applications in hydrological environment investigations. In the end, we provide our perspective on the future development of DNA tracers.
Collapse
Affiliation(s)
- Renkuan Liao
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research , Beijing 100048, P. R. China
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| | - Peiling Yang
- College of Water Conservancy and Civil Engineering, China Agricultural University , Beijing 100083, P. R. China
| | - Wenyong Wu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research , Beijing 100048, P. R. China
| | - Dan Luo
- Department of Biological & Environmental Engineering, Cornell University , Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University , Ithaca, New York 14853, United States
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, P.R. China
| | - Dayong Yang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| |
Collapse
|
41
|
Convertible DNA ends-based silver nanoprobes for colorimetric detection human telomerase activity. Talanta 2018; 178:458-463. [DOI: 10.1016/j.talanta.2017.09.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 11/19/2022]
|
42
|
Buchmann B, Hecht FM, Pernpeintner C, Lohmueller T, Bausch AR. Controlling Non-Equilibrium Structure Formation on the Nanoscale. Chemphyschem 2017; 18:3437-3442. [DOI: 10.1002/cphc.201700844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/05/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Benedikt Buchmann
- Lehrstuhl für Zellbiophysik E27; Technische Universität München; James-Franck-Straße 1 85748 Garching Germany
| | - Fabian Manfred Hecht
- Lehrstuhl für Zellbiophysik E27; Technische Universität München; James-Franck-Straße 1 85748 Garching Germany
| | - Carla Pernpeintner
- Chair for Photonics and Optoelectronics; Ludwig-Maximilians-Universität München; Amalienstr. 54 80799 München Germany
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics; Ludwig-Maximilians-Universität München; Amalienstr. 54 80799 München Germany
| | - Andreas R. Bausch
- Lehrstuhl für Zellbiophysik E27; Technische Universität München; James-Franck-Straße 1 85748 Garching Germany
| |
Collapse
|
43
|
Riquelme MV, Leng W, Carzolio M, Pruden A, Vikesland P. Stable oligonucleotide-functionalized gold nanosensors for environmental biocontaminant monitoring. J Environ Sci (China) 2017; 62:49-59. [PMID: 29289292 DOI: 10.1016/j.jes.2017.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
The global propagation of environmental biocontaminants such as antibiotic resistant pathogens and their antibiotic resistance genes (ARGs) is a public health concern that highlights the need for improved monitoring strategies. Here, we demonstrate the environmental stability and applicability of an oligonucleotide-functionalized gold nanosensor. The mecA ARG was targeted as model biocontaminant due to its presence in clinically-relevant pathogens and to its emergence as an environmental contaminant. mecA-specific nanosensors were tested for antibiotic resistance gene (ARG) detection in ARG-spiked effluent from four wastewater treatment plants (WWTPs). The mecA-specific nanosensors showed stability in environmental conditions and in high ionic strength ([MgCl2]<50mM), and high selectivity against mismatched targets. Spectrophotometric detection was reproducible with an LOD of 70pM (≈4×107genes/μL), even in the presence of interferences associated with non-target genomic DNA and complex WWTP effluent. This contribution supports the environmental applicability of a new line of cost-effective, field-deployable tools needed for wide-scale biocontaminant monitoring.
Collapse
Affiliation(s)
- Maria V Riquelme
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Weinan Leng
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Marcos Carzolio
- Department of Statistics, Virginia Tech, Blacksburg, VA 24061, United States
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Peter Vikesland
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
44
|
Li Y, Liu S, Deng Q, Ling L. A sensitive colorimetric DNA biosensor for specific detection of the HBV gene based on silver-coated glass slide and G-quadruplex-hemin DNAzyme. J Med Virol 2017; 90:699-705. [PMID: 29144554 DOI: 10.1002/jmv.24993] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/09/2017] [Indexed: 01/03/2023]
Abstract
A sensitive colorimetric DNA biosensor for specific detection of single stranded oligonucleotide (ssDNA) is proposed in this paper. The biosensor is based on silver-coated glass (SCGS) and G-quadruplex-hemin DNAzyme. Capture DNA is immobilized on the surface of SCGS by Ag-S bond. Signal DNA can be used to hybridize with the target DNA which is selected from the Hepatitis B virus(HBV) gene as target HBV DNA, and the HRP-mimicking G-quadruplex-hemin DNAzyme can be formed through the function of a guanine-rich fragment from signal DNA to catalyze the oxidation of 2,2-azinobis(3-ethylbenzothiozoline)-6-sulfonicacid (ABTS2- ) by H2 O2 . The reaction will be monitored along the side of absorbance changes at 418 nm and it can be viewed by naked eye with the change of color as well. Upon addition of target Hepatitis B virus(HBV) DNA, signal DNA could bind on the surface of SCGS, and the concentration of G-quadruplex-hemin DNAzyme immobilizing on the surface of SCGS is depended on that of target HBV DNA. Under the optimum conditions, the absorption was proportional to the concentration of target HBV DNA over the range from 0.5 to 100 nM, with a detection limit of 0.2 nM. In addition, the biosensor is target specific and practicability. This assay might open a new avenue for applying in the diagnosis of HBV disease in the future.
Collapse
Affiliation(s)
- Yubin Li
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Sheng Liu
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Qiujuan Deng
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Liansheng Ling
- School of Chemistry, Sun Yat-Sen University, Guangzhou, P. R. China
| |
Collapse
|
45
|
Wang P, Xu HG, Cao GJ, Zhang WJ, Xu XL, Zheng WJ. Nonconventional Hydrogen Bonds between Silver Anion and Nucleobases: Size-Selected Anion Photoelectron Spectroscopy and Density Functional Calculations. J Phys Chem A 2017; 121:8973-8981. [PMID: 29088541 DOI: 10.1021/acs.jpca.7b09428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We conducted combined gas-phase anion photoelectron spectroscopy and density functional theory studies on nucleobase-silver complexes. The most probable structures of the nucleobase-Ag- complexes were determined by comparing the theoretical calculations with the experimental measurements. The vertical detachment energies (VDEs) of uracil-Ag-, thymine-Ag-, cytosine-Ag-, and guanine-Ag- were estimated to be 2.18 ± 0.08, 2.11 ± 0.08, 2.04 ± 0.08, and 2.20 ± 0.08 eV, respectively, based on their photoelectron spectra. Adenine-Ag- has two isomers coexisting in the experiment; the experimental VDEs of the two isomers are 2.18 and 2.53 eV, respectively. In the most probable isomers of nucleobases-Ag-, uracil, thymine, and cytosine interact with Ag- anion via N-H···Ag and C-H···Ag hydrogen bonds, while adenine and guanine interact with Ag- anion through two N-H···Ag hydrogen bonds. The N-H···Ag hydrogen bonds can be characterized as medium or strong hydrogen bonds. It is found that binding sites of the Ag anion to the nucleobases are affected by the deprotonation energies and the steric effects of two adjacent X-H groups.
Collapse
Affiliation(s)
- Peng Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Guo-Jin Cao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,Institute of Molecular Science, Shanxi University , Taiyuan 030006, China
| | - Wen-Jing Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xi-Ling Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Wei-Jun Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
46
|
Terenteva EA, Apyari VV, Kochuk EV, Dmitrienko SG, Zolotov YA. Use of silver nanoparticles in spectrophotometry. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817110107] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
47
|
Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017; 117:12942-13038. [DOI: 10.1021/acs.chemrev.7b00088] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuaidi Zhang
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Ren Geryak
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Jeffrey Geldmeier
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Sunghan Kim
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Vladimir V. Tsukruk
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
48
|
Dong Y, Ding L, Jin X, Zhu N. Silver nanoparticles capped with chalcon carboxylic acid as a probe for colorimetric determination of cadmium(II). Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2358-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Wang G, Hou H, Wang S, Yan C, Liu Y. Exploring the interaction of silver nanoparticles with lysozyme: Binding behaviors and kinetics. Colloids Surf B Biointerfaces 2017; 157:138-145. [PMID: 28582692 DOI: 10.1016/j.colsurfb.2017.05.071] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 05/21/2017] [Accepted: 05/29/2017] [Indexed: 12/23/2022]
Abstract
The role of nanoparticle interaction with biomolecules to form a biocorona is the key to nanoparticle behavior and its consequences in the physiological environment. Since the adsorbed biocorona decides the fate of a nanomaterials in vivo, and thus a comprehensive understanding of the dynamic interactions of the proteins with the nanoparticle is imperative. Herein we investigate the interaction of a model protein, lysozyme with silver nanoparticles (AgNPs) using fluorescence, synchronous fluorescence, UV-vis absorption spectrum and circular dichroism (CD) techniques under the physiological conditions. The results indicated that the binding of AgNPs to lysozyme may be a static quenching mechanism. With the analysis of the fluorescence spectral data, the binding constants and the thermodynamic parameters were determined, which suggests that the binding of AgNPs to lysozyme is a spontaneous process. Moreover, it was demonstrated that the main acting forces between AgNPs and lysozyme may be hydrophobic interactions. At the same time, the conformational change of lysozyme induced by AgNPs was investigated with synchronous fluorescence spectroscopy and CD techniques. The results of kinetic studies reveal that the adsorption of lysozyme on AgNPs surface tends to follow pseudo-second-order kinetic characteristic with obvious hysteresis effect.
Collapse
Affiliation(s)
- Gongke Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Huimin Hou
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Shuangli Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Changling Yan
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yufang Liu
- School of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
50
|
Fozooni T, Ravan H, Sasan H. Signal Amplification Technologies for the Detection of Nucleic Acids: from Cell-Free Analysis to Live-Cell Imaging. Appl Biochem Biotechnol 2017; 183:1224-1253. [DOI: 10.1007/s12010-017-2494-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/24/2017] [Indexed: 12/15/2022]
|