1
|
Brasiunas B, Popov A, Kraujelyte G, Ramanaviciene A. The effect of gold nanostructure morphology on label-free electrochemical immunosensor design. Bioelectrochemistry 2024; 156:108638. [PMID: 38176325 DOI: 10.1016/j.bioelechem.2023.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
In this research, various electrodeposition techniques were used to form gold nanostructures (AuNSs) on the surface of graphite rod electrode (GE). Three distinct AuNS morphologies on GE have been achieved based on the composition of electrodeposition solution. The use of H2SO4 as a supporting electrolyte resulted in the formation of smaller but more numerous AuNSI with a modified electrode's electroactive surface area (EASA) of 0.213 cm2. Exchanging the supporting electrolyte to KNO3 and increasing HAuCl4 concentration facilitated the formation of bigger AuNSII particles with electrode EASA of 0.116 cm2. Finally, a partial coverage of GE by branched gold nanostructures (AuNSIII) was achieved with an estimated EASA of 0.110 cm2, when the HAuCl4 and KNO3 concentrations were increased further. Estimated values of heterogeneous electron transfer rate constant did not depend on AuNS morphology. Electrode modified with AuNSI exhibited the highest bovine serum albumin (BSA) immobilization efficiency and the highest relative response for the detection of specific polyclonal antibodies against BSA (p-anti-BSA) compared to other modified electrodes. The limit of p-anti-BSA detection in PBS buffer was calculated as 0.63 nM, while in blood serum it was 0.71 nM. Linear ranges were from 1 to 7 nM and from 1 to 5 nM, respectively.
Collapse
Affiliation(s)
- Benediktas Brasiunas
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| | - Anton Popov
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| | - Gabija Kraujelyte
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania.
| |
Collapse
|
2
|
Li Q, Dou L, Zhang Y, Luo L, Yang H, Wen K, Yu X, Shen J, Wang Z. A comprehensive review on the detection of Staphylococcus aureus enterotoxins in food samples. Compr Rev Food Sci Food Saf 2024; 23:e13264. [PMID: 38284582 DOI: 10.1111/1541-4337.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 01/30/2024]
Abstract
Staphylococcal enterotoxins (SEs), the major virulence factors of Staphylococcus aureus, cause a wide range of food poisoning and seriously threaten human health by infiltrating the food supply chain at different phases of manufacture, processes, distribution, and market. The significant prevalence of Staphylococcus aureus calls for efficient, fast, and sensitive methods for the early detection of SEs. Here, we provide a comprehensive review of the hazards of SEs in contaminated food, the characteristic and worldwide regulations of SEs, and various detection methods for SEs with extensive comparison and discussion of benefits and drawbacks, mainly including biological detection, genetic detection, and mass spectrometry detection and biosensors. We highlight the biosensors for the screening purpose of SEs, which are classified according to different recognition elements such as antibodies, aptamers, molecularly imprinted polymers, T-cell receptors, and transducers such as optical, electrochemical, and piezoelectric biosensors. We analyzed challenges of biosensors for the monitoring of SEs and conclude the trends for the development of novel biosensors should pay attention to improve samples pretreatment efficiency, employ innovative nanomaterials, and develop portable instruments. This review provides new information and insightful commentary, important to the development and innovation of further detection methods for SEs in food samples.
Collapse
Affiliation(s)
- Qing Li
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Leina Dou
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Yingjie Zhang
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Liang Luo
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Huijuan Yang
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Xuezhi Yu
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, China
| |
Collapse
|
3
|
Wiśniewski P, Gajewska J, Zadernowska A, Chajęcka-Wierzchowska W. Identification of the Enterotoxigenic Potential of Staphylococcus spp. from Raw Milk and Raw Milk Cheeses. Toxins (Basel) 2023; 16:17. [PMID: 38251234 PMCID: PMC10819113 DOI: 10.3390/toxins16010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
This study aimed to genotypic and phenotypic analyses of the enterotoxigenic potential of Staphylococcus spp. isolated from raw milk and raw milk cheeses. The presence of genes encoding staphylococcal enterotoxins (SEs), including the classical enterotoxins (sea-see), non-classical enterotoxins (seg-seu), exfoliative toxins (eta-etd) and toxic shock syndrome toxin-1 (tst-1) were investigated. Isolates positive for classical enterotoxin genes were then tested by SET-RPLA methods for toxin expression. Out of 75 Staphylococcus spp. (19 Staphylococcus aureus and 56 CoNS) isolates from raw milk (49/65.3%) and raw milk cheese samples (26/34.7%), the presence of enterotoxin genes was confirmed in 73 (97.3%) of them. Only one isolate from cheese sample (1.3%) was able to produce enterotoxin (SED). The presence of up to eight different genes encoding enterotoxins was determined simultaneously in the staphylococcal genome. The most common toxin gene combination was sek, eta present in fourteen isolates (18.7%). The tst-1 gene was present in each of the analyzed isolates from cheese samples (26/34.7%). Non-classical enterotoxins were much more frequently identified in the genome of staphylococcal isolates than classical SEs. The current research also showed that genes tagged in S. aureus were also identified in CoNS, and the total number of different genes detected in CoNS was seven times higher than in S. aureus. The obtained results indicate that, in many cases, the presence of a gene in Staphylococcus spp. is not synonymous with the ability of enterotoxins production. The differences in the number of isolates with genes encoding SEs and enterotoxin production may be mainly due to the limit of detection of the toxin production method used. This indicates the need to use high specificity and sensitivity methods for detecting enterotoxin in future studies.
Collapse
Affiliation(s)
- Patryk Wiśniewski
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland; (J.G.); (A.Z.); (W.C.-W.)
| | | | | | | |
Collapse
|
4
|
Boisvert JS, Loranger S, Kashyap R. Fs laser written volume Raman-Nath grating for integrated spectrometer on smartphone. Sci Rep 2023; 13:13717. [PMID: 37608059 PMCID: PMC10444826 DOI: 10.1038/s41598-023-40909-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023] Open
Abstract
In this work we demonstrate the integration of a spectrometer directly into smartphone screen by femtosecond laser inscription of a weak Raman-Nath volume grating either into the Corning Gorilla glass screen layer or in the tempered aluminosilicate glass protector screen placed in front of the phone camera. Outside the thermal accumulation regime, a new writing regime yielding positive refractive index change was found for both glasses which is fluence dependent. The upper-bound threshold for this thermal-accumulation-less writing regime was found for both glasses and were, respectively at a repetition rate less than 150 kHz and 101 kHz for fluence of 8.7 × 106 J/m2 and 1.4 × 107 J/m2. A weak volume Raman-Nath grating of dimension 0.5 by 3 mm and 3 μm pitch was placed in front of a Samsung Galaxy S21 FE cellphone to record the spectrum using the 2nd diffraction order. This spectrometer covers the visible band from 401 to 700 nm with a 0.4 nm/pixel detector resolution and 3 nm optical resolution. It was used to determine the concentration detection limit of Rhodamine 6G in water which was found to be 0.5 mg/L. This proof of concept paves the way to in-the-field absorption spectroscopy for quick information gathering.
Collapse
Affiliation(s)
- Jean-Sébastien Boisvert
- Department of Engineering Physics, Ecole Polytechnique Montréal, 2900 Édouard-Montpetit, Montreal, QC, H3T 1J4, Canada.
| | - Sébastien Loranger
- Department of Electrical Engineering, Poly-Grames, Ecole Polytechnique Montréal, 2900 Édouard-Montpetit, Montreal, QC, H3T 1J4, Canada
| | - Raman Kashyap
- Department of Engineering Physics, Ecole Polytechnique Montréal, 2900 Édouard-Montpetit, Montreal, QC, H3T 1J4, Canada
- Department of Electrical Engineering, Poly-Grames, Ecole Polytechnique Montréal, 2900 Édouard-Montpetit, Montreal, QC, H3T 1J4, Canada
| |
Collapse
|
5
|
Jang JH, Kim S, Kim SG, Lee J, Lee DG, Jang J, Jeong YS, Song DH, Min JK, Park JG, Lee MS, Han BS, Son JS, Lee J, Lee NK. A Sensitive Immunodetection Assay Using Antibodies Specific to Staphylococcal Enterotoxin B Produced by Baculovirus Expression. BIOSENSORS 2022; 12:bios12100787. [PMID: 36290925 PMCID: PMC9599101 DOI: 10.3390/bios12100787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Staphylococcal enterotoxin B (SEB) is a potent bacterial toxin that causes inflammatory stimulation and toxic shock, thus it is necessary to detect SEB in food and environmental samples. Here, we developed a sensitive immunodetection system using monoclonal antibodies (mAbs). Our study is the first to employ a baculovirus expression vector system (BEVS) to produce recombinant wild-type SEB. BEVS facilitated high-quantity and pure SEB production from suspension-cultured insect cells, and the SEB produced was characterized by mass spectrometry analysis. The SEB was stable at 4 °C for at least 2 years, maintaining its purity, and was further utilized for mouse immunization to generate mAbs. An optimal pair of mAbs non-competitive to SEB was selected for sandwich enzyme-linked immunosorbent assay-based immunodetection. The limit of detection of the immunodetection method was 0.38 ng/mL. Moreover, it displayed higher sensitivity in detecting SEB than commercially available immunodetection kits and retained detectability in various matrices and S. aureus culture supernatants. Thus, the results indicate that BEVS is useful for producing pure recombinant SEB with its natural immunogenic property in high yield, and that the developed immunodetection assay is reliable and sensitive for routine identification of SEB in various samples, including foods.
Collapse
Affiliation(s)
- Ju-Hong Jang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Sungsik Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Seul-Gi Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Jaemin Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Dong-Gwang Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Jieun Jang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Young-Su Jeong
- Agency for Defense Development, 488 Bugyuseoung-daero, Daejeon 34060, Korea
| | - Dong-Hyun Song
- Agency for Defense Development, 488 Bugyuseoung-daero, Daejeon 34060, Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Baek-Soo Han
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Jee-Soo Son
- iNtRON Biotechnology, 137 Sagimakgol-ro, Jungwon-gu, Seongnam-si 13202, Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology, School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (J.L.); (N.-K.L.); Tel.: +82-42-860-4123 (J.L.); +82-42-860-4117 (N.-K.L.)
| | - Nam-Kyung Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (J.L.); (N.-K.L.); Tel.: +82-42-860-4123 (J.L.); +82-42-860-4117 (N.-K.L.)
| |
Collapse
|
6
|
Das CM, Kong KV, Yong KT. Diagnostic plasmonic sensors: opportunities and challenges. Chem Commun (Camb) 2022; 58:9573-9585. [PMID: 35975603 DOI: 10.1039/d2cc03431j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The medical fraternity is currently burgeoned and stressed with a huge rush of patients who have inflammatory conditions, metabolite diseases, and cardiovascular diseases. In these circumstances, advanced sensing technologies could have a huge impact on the quality of life of patients. Given plasmonic resonance effects significantly improve the ability to rapidly and accurately detect biological markers, plasmonic technology is harnessed to develop a fast and accurate diagnosis that can provide timely intervention with the diseases and can also aid the recovery process by complementing the therapy stage. In this short review, we provide an overlook of how the field of plasmonic sensing has revolutionized the field of medical diagnostics. This article reviews the fundamentals and development of plasmonics. In addition, we highlight the sensitivity of various SPR and LSPR sensors. The chemistry for functionalizing plasmonic sensors is also discussed. This review also outlines some general suggestions for future directions that we feel might be useful to advance our understanding of the universe or speed up the development of plasmonic sensors in the future.
Collapse
Affiliation(s)
- Chandreyee Manas Das
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.,CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, 637553, Singapore
| | - Kien Voon Kong
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and MechanoBioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
7
|
Sun T, Li M, Zhao F, Liu L. Surface Plasmon Resonance Biosensors with Magnetic Sandwich Hybrids for Signal Amplification. BIOSENSORS 2022; 12:554. [PMID: 35892451 PMCID: PMC9332597 DOI: 10.3390/bios12080554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 06/01/2023]
Abstract
The conventional signal amplification strategies for surface plasmon resonance (SPR) biosensors involve the immobilization of receptors, the capture of target analytes and their recognition by signal reporters. Such strategies work at the expense of simplicity, rapidity and real-time measurement of SPR biosensors. Herein, we proposed a one-step, real-time method for the design of SPR biosensors by integrating magnetic preconcentration and separation. The target analytes were captured by the receptor-modified magnetic nanoparticles (MNPs), and then the biotinylated recognition elements were attached to the analyte-bound MNPs to form a sandwich structure. The sandwich hybrids were directly delivered to the neutravidin-modified SPR fluidic channel. The MNPs hybrids were captured by the chip through the neutravidin-biotin interaction, resulting in an enhanced SPR signal. Two SPR biosensors have been constructed for the detection of target DNA and beta-amyloid peptides with high sensitivity and selectivity. This work, integrating the advantages of one-step, real-time detection, multiple signal amplification and magnetic preconcentration, should be valuable for the detection of small molecules and ultra-low concentrations of analytes.
Collapse
Affiliation(s)
- Ting Sun
- Key Laboratory of Functional Organic Molecule, School of Chemistry and Materials Science, Guizhou Integrated Research Center of Polymer Electromagnetic Materials, Guizhou Education University, Guiyang 550018, China;
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Mengyao Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Feng Zhao
- Key Laboratory of Functional Organic Molecule, School of Chemistry and Materials Science, Guizhou Integrated Research Center of Polymer Electromagnetic Materials, Guizhou Education University, Guiyang 550018, China;
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| |
Collapse
|
8
|
Kausaite-Minkstimiene A, Popov A, Ramanaviciene A. Surface Plasmon Resonance Immunosensor with Antibody-Functionalized Magnetoplasmonic Nanoparticles for Ultrasensitive Quantification of the CD5 Biomarker. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20720-20728. [PMID: 35499973 PMCID: PMC9100489 DOI: 10.1021/acsami.2c02936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A surface plasmon resonance (SPR) immunosensor signal amplification strategy based on antibody-functionalized gold-coated magnetic nanoparticles (mAuNPs) was developed for ultrasensitive and quantitative detection of the CD5 biomarker using an indirect sandwich immunoassay format. The gold surface of the SPR sensor disk and mAuNPs was modified with a self-assembled monolayer of 11-mercaptoundecanoic acid (11-MUA), and the coupling method using N-(3-(dimethylamino)propyl)-N'-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide was used to immobilize capture antibodies against human CD5 (anti-CD52A) and detection antibodies against human CD5 (anti-CD52B), respectively. The mAuNPs and anti-CD52B conjugates (mAuNPs-anti-CD52B) were separated by an external magnetic field and used to amplify the SPR signal after the formation of the anti-CD52A/CD5 immune complex on the SPR sensor disk. Compared to the direct CD5 detection with a limit of detection (LOD) of 1.04 nM and a limit of quantification (LOQ) of 3.47 nM, the proposed sandwich immunoassay utilizing mAuNPs-anti-CD52B significantly improved the LOD up to 8.31 fM and the LOQ up to 27.70 fM. In addition, it showed satisfactory performance in human blood serum (recovery of 1.04 pM CD5 was 109.62%). These results suggest that the proposed signal amplification strategy has superior properties and offers the potential to significantly increase the sensitivity of the analysis.
Collapse
Affiliation(s)
- Asta Kausaite-Minkstimiene
- Nanotechnas
− Center of Nanotechnology and Materials Science, Institute
of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko street 24, LT-03225 Vilnius, Lithuania
- Department
of Immunology, State Research Institute
Centre for Innovative Medicine, Santariskiu street 5, LT-08406 Vilnius, Lithuania
| | - Anton Popov
- Nanotechnas
− Center of Nanotechnology and Materials Science, Institute
of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko street 24, LT-03225 Vilnius, Lithuania
- Department
of Immunology, State Research Institute
Centre for Innovative Medicine, Santariskiu street 5, LT-08406 Vilnius, Lithuania
| | - Almira Ramanaviciene
- Nanotechnas
− Center of Nanotechnology and Materials Science, Institute
of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko street 24, LT-03225 Vilnius, Lithuania
- Department
of Immunology, State Research Institute
Centre for Innovative Medicine, Santariskiu street 5, LT-08406 Vilnius, Lithuania
| |
Collapse
|
9
|
|
10
|
Tian LL, Li CH, Ye QC, Li YF, Huang CZ, Zhan L, Wang DM, Zhen SJ. A centrifugal microfluidic chip for point-of-care testing of staphylococcal enterotoxin B in complex matrices. NANOSCALE 2022; 14:1380-1385. [PMID: 35018396 DOI: 10.1039/d1nr05599b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Staphylococcal enterotoxin B (SEB) is a typical biological toxin that causes food poisoning. Currently reported SEB detection methods have the drawbacks of sophisticated sample preparation and being time-consuming and labor-intensive. Herein, we propose a strategy based on an immune sandwich structure operating on a centrifugal microfluidic chip for point-of-care testing (POCT) of SEB. The fluorescent microparticle-labeled primary antibody (CM-EUs-Ab1), capture antibody (CAb), and goat anti-mouse IgG antibody (SAb) were modified on the bond area, T-area, and C-area, respectively. When SEB was added, it first reacted with the CM-EUs-Ab1 through the specific recognition between SEB and the Ab1. Then, under capillarity, the conjugates of SEB and the CM-EUs-Ab1 were captured by the CAb when they flowed to the T-area, and the remaining CM-EUs-Ab1 bound with the SAb in the C-area. Finally, this chip was put into a dry fluorescence detection analyzer for centrifugation and on-site detection of SEB. The fluorescence intensity ratio of the T-area to the C-area was positively correlated with the concentration of SEB. The resulting linear range was 0.1-250 ng mL-1, and the limit of detection (3σ/k) was 68 pg mL-1. This POCT platform only needs 20 μL of sample and can realize the full process of detection within 12 min. This chip also exhibits good stability for 35 days. Additionally, the proposed method has been successfully utilized for the detection of SEB in urine, milk, and juice without any pre-treatment of the samples. Thus, this platform is expected to be applied to food safety testing and clinical diagnosis.
Collapse
Affiliation(s)
- Li Li Tian
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Chun Hong Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Qi Chao Ye
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yuan Fang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Lei Zhan
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Dong Mei Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Shu Jun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
11
|
Bhandari D, Chen FC, Bridgman RC. Magnetic Nanoparticles Enhanced Surface Plasmon Resonance Biosensor for Rapid Detection of Salmonella Typhimurium in Romaine Lettuce. SENSORS (BASEL, SWITZERLAND) 2022; 22:475. [PMID: 35062436 PMCID: PMC8781532 DOI: 10.3390/s22020475] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 12/03/2022]
Abstract
Salmonella is one of the major foodborne pathogens responsible for many cases of illnesses, hospitalizations and deaths worldwide. Although different methods are available to timely detect Salmonella in foods, surface plasmon resonance (SPR) has the benefit of real-time detection with a high sensitivity and specificity. The purpose of this study was to develop an SPR method in conjunction with magnetic nanoparticles (MNPs) for the rapid detection of Salmonella Typhimurium. The assay utilizes a pair of well-characterized, flagellin-specific monoclonal antibodies; one is immobilized on the sensor surface and the other is coupled to the MNPs. Samples of romaine lettuce contaminated with Salmonella Typhimurium were washed with deionized water, and bacterial cells were captured on a filter membrane by vacuum filtration. SPR assays were compared in three different formats-direct assay, sequential two-step sandwich assay, and preincubation one-step sandwich assay. The interaction of flagellin and MNPs with the antibody-immobilized sensor surface were analyzed. SPR signals from a sequential two-step sandwich assay and preincubation one-step sandwich assay were 7.5 times and 14.0 times higher than the direct assay. The detection limits of the assay were 4.7 log cfu/mL in the buffer and 5.2 log cfu/g in romaine lettuce samples.
Collapse
Affiliation(s)
- Devendra Bhandari
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA;
| | - Fur-Chi Chen
- Department of Human Sciences, Tennessee State University, Nashville, TN 37209, USA
| | | |
Collapse
|
12
|
Zhong K, Yu W, de Coene Y, Yamada A, Krylychkina O, Jooken S, Deschaume O, Bartic C, Clays K. Dual photonic bandgap hollow sphere colloidal photonic crystals for real-time fluorescence enhancement in living cells. Biosens Bioelectron 2021; 194:113577. [PMID: 34481238 DOI: 10.1016/j.bios.2021.113577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/30/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
To overcome the problems of refractive index matching and increased disorder when working with traditional heterostructure colloidal photonic crystals (CPCs) with dual or multiple photonic bandgaps (PBGs) for fluorescence enhancement in water, we propose the use of a chemical heterostructure in hollow sphere CPCs (HSCPCs). A partial chemical modification of the HSCPC creates a large contrast in wettability to induce the heterostructure, while the hollow spheres increase the refractive index difference when used in aqueous environment. With the platform, fluorescence enhancement reaches around 160 times in solution, and 72 times (signal-to-background ratio ~7 times) in cells during proof-of-concept live cardiomyocyte contractility experiments. Such photonic platform can be further exploited for chemical sensing, bioassays, and environmental monitoring. Moreover, the introduction of chemical heterostructures provides new design principles for functionalized photonic devices.
Collapse
Affiliation(s)
- Kuo Zhong
- Laboratory for Molecular Electronics and Photonics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium.
| | - Wei Yu
- Laboratory of Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Yovan de Coene
- Laboratory for Molecular Electronics and Photonics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Atsushi Yamada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | | | - Stijn Jooken
- Laboratory of Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Olivier Deschaume
- Laboratory of Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Carmen Bartic
- Laboratory of Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Koen Clays
- Laboratory for Molecular Electronics and Photonics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium.
| |
Collapse
|
13
|
Enhanced Plasmonic Biosensor Utilizing Paired Antibody and Label-Free Fe 3O 4 Nanoparticles for Highly Sensitive and Selective Detection of Parkinson's α-Synuclein in Serum. BIOSENSORS-BASEL 2021; 11:bios11100402. [PMID: 34677358 PMCID: PMC8534275 DOI: 10.3390/bios11100402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Parkinson’s disease (PD) is an acute and progressive neurodegenerative disorder, and diagnosis of the disease at its earliest stage is of paramount importance to improve the life expectancy of patients. α-Synuclein (α-syn) is a potential biomarker for the early diagnosis of PD, and there is a great need to develop a biosensing platform that precisely detects α-syn in human body fluids. Herein, we developed a surface plasmon resonance (SPR) biosensor based on the label-free iron oxide nanoparticles (Fe3O4 NPs) and paired antibody for the highly sensitive and selective detection of α-syn in serum samples. The sensitivity of the SPR platform is enhanced significantly by directly depositing Fe3O4 NPs on the Au surface at a high density to increase the decay length of the evanescent field on the Au film. Moreover, the utilization of rabbit-type monoclonal antibody (α-syn-RmAb) immobilized on Au films allows the SPR platform to have a high affinity-selectivity binding performance compared to mouse-type monoclonal antibodies as a common bioreceptor for capturing α-syn molecules. As a result, the current platform has a detection limit of 5.6 fg/mL, which is 20,000-fold lower than that of commercial ELISA. The improved sensor chip can also be easily regenerated to repeat the α-syn measurement with the same sensitivity. Furthermore, the SPR sensor was applied to the direct analysis of α-syn in serum samples. By using a format of paired α-syn-RmAb, the SPR sensor provides a recovery rate in the range from 94.5% to 104.3% to detect the α-syn in diluted serum samples precisely. This work demonstrates a highly sensitive and selective quantification approach to detect α-syn in human biofluids and paves the way for the future development in the early diagnosis of PD.
Collapse
|
14
|
Chen Z, He S, Xu R, Han Q, Xia X, Song Y, Zhang J. Nanobead-Based Screening Method for Antibody Pairing of Dengue Virus Nonstructural Protein-1. J Biomed Nanotechnol 2021; 17:1788-1797. [PMID: 34688323 DOI: 10.1166/jbn.2021.3148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dengue fever is a classic mosquito viral disease. Dengue virus non-structural protein-1 as a membrane-associated homologous dimer anchored to the surface of infected cells and also secreted into the blood. The nonstructural protein-1 levels are related to disease severity, and the presence of nonstructural protein-1 secreted from cells to the serum of people infected with the dengue virus is an early marker of infection. Paired antibodies are key in the establishment of rapid detection technology. In this study, the prepared recombinant nonstructural protein-1 protein of dengue virus serotype 3 was purified by the prokaryotic expression, and prepared monoclonal antibodies by cell fusion. A method for paired antibody screening was established based on the N-hydroxy succinimide-nanobeads and the prepared monoclonal antibodies. A simple and rapid point-of-care system integrating the paired antibodies and lateral flow assay was established to verify the screened antibody pairs. The results confirmed that the antibody pair screening method based on N-hydroxy succinimide-nanobeads is feasible.
Collapse
Affiliation(s)
- Zhixin Chen
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuzhen He
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ruixian Xu
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qinqin Han
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xueshan Xia
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuzhu Song
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinyang Zhang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
15
|
Veissi M, Maktabi S, Ramezani Z, Khosravi M. Highly Sensitive Fluorescence Assay of Enterotoxin A in Milk Using Carbon Quantum Dots as a Fluorophore. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02009-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Carneiro DC, Fernandez LG, Monteiro-Cunha JP, Benevides RG, Cunha Lima ST. A patent review of the antimicrobial applications of lectins: Perspectives on therapy of infectious diseases. J Appl Microbiol 2021; 132:841-854. [PMID: 34416098 DOI: 10.1111/jam.15263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Patents of lectins with antiviral, antibacterial and antifungal applications were searched and reviewed. Lectins are proteins that reversibly bind to specific carbohydrates and have the potential for therapy of infectious diseases as biopharmaceuticals, biomedical tools or in drug design. Given the rising concerns over drug resistance and epidemics, our patent review aims to add information, open horizons and indicate our view of the future perspectives about the antimicrobial applications of lectins. Patents with publications until December 2020 were retrieved from Espacenet using defined search terms and Boolean operators. The documents were used to identify the geographical and temporal distribution of the patents, characterize their lectins, and classify and summarize their antiviral, antibiotic and antifungal applications. Lectins are promising antiviral agents against viruses with epidemics and drug resistance concerns. Mannose-binding lectins were the most suggested antiviral agents since glycans with mannose residues are commonly involved in viral entry mechanisms. They were also immobilized onto surfaces to trap viral particles and inhibit their spread and replication. Many patents described the extraction, isolation, amino acid and nucleotide sequences, and expression vectors of lectins with antibiotic and/or antifungal activities in terms of MIC and IC50 for in vitro assays. The inventions also included lectins as biological tools in nanosensors for antibiotics susceptibility tests, drug-delivery systems for the treatment of resistant bacteria, diagnostics of viral diseases and as a vaccine adjuvant. Although research and development of new medicines is highly expensive, antimicrobial lectins may be worth investments given the emergence of epidemics and drug resistance. For this purpose, less invasive routes should be developed as alternatives to the parenteral administration of biologics. While anti-glycan neutralizing antibodies are difficult to develop due to the low immunogenicity of carbohydrates, lectins can be produced more easily and have a broad-spectrum activity. Protein engineering technologies may make the antimicrobial applications of lectins more successful.
Collapse
Affiliation(s)
- Diego C Carneiro
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Luzimar G Fernandez
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Joana P Monteiro-Cunha
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Raquel G Benevides
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Brazil
| | | |
Collapse
|
17
|
Takemura K. Surface Plasmon Resonance (SPR)- and Localized SPR (LSPR)-Based Virus Sensing Systems: Optical Vibration of Nano- and Micro-Metallic Materials for the Development of Next-Generation Virus Detection Technology. BIOSENSORS 2021; 11:250. [PMID: 34436053 PMCID: PMC8391291 DOI: 10.3390/bios11080250] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 01/04/2023]
Abstract
The global damage that a widespread viral infection can cause is evident from the ongoing COVID-19 pandemic. The importance of virus detection to prevent the spread of viruses has been reaffirmed by the pandemic and the associated social and economic damage. Surface plasmon resonance (SPR) in microscale and localized SPR (LSPR) in nanoscale virus sensing systems are thought to be useful as next-generation detection methods. Many studies have been conducted on ultra-sensitive technologies, especially those based on signal amplification. In some cases, it has been reported that even a low viral load can be measured, indicating that the virus can be detected in patients even in the early stages of the viral infection. These findings corroborate that SPR and LSPR are effective in minimizing false-positives and false-negatives that are prevalent in the existing virus detection techniques. In this review, the methods and signal responses of SPR and LSPR-based virus detection technologies are summarized. Furthermore, this review surveys some of the recent developments reported and discusses the limitations of SPR and LSPR-based virus detection as the next-generation detection technologies.
Collapse
Affiliation(s)
- Kenshin Takemura
- Sensing System Research Center, The National Institute of Advanced Industrial Science and Technology, 07-1 Shuku-Machi, Tosu 841-0052, Japan
| |
Collapse
|
18
|
Metal Nanoparticle and Quantum Dot Tags for Signal Amplification in Electrochemical Immunosensors for Biomarker Detection. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9040085] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With the increasing importance of healthcare and clinical diagnosis, as well as the growing demand for highly sensitive analytical instruments, immunosensors have received considerable attention. In this review, electrochemical immunosensor signal amplification strategies using metal nanoparticles (MNPs) and quantum dots (Qdots) as tags are overviewed, focusing on recent developments in the ultrasensitive detection of biomarkers. MNPs and Qdots can be used separately or in combination with other nanostructures, while performing the function of nanocarriers, electroactive labels, or catalysts. Thus, different functions of MNPs and Qdots as well as recent advances in electrochemical signal amplification are discussed. Additionally, the methods most often used for antibody immobilization on nanoparticles, immunoassay formats, and electrochemical methods for indirect biomarker detection are overviewed.
Collapse
|
19
|
Pushkarev AV, Orlov AV, Znoyko SL, Bragina VA, Nikitin PI. Rapid and Easy-to-Use Method for Accurate Characterization of Target Binding and Kinetics of Magnetic Particle Bioconjugates for Biosensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:2802. [PMID: 33921145 PMCID: PMC8071512 DOI: 10.3390/s21082802] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
The ever-increasing use of magnetic particle bioconjugates (MPB) in biosensors calls for methods of comprehensive characterization of their interaction with targets. Label-free optical sensors commonly used for studying inter-molecular interactions have limited potential for MPB because of their large size and multi-component non-transparent structure. We present an easy-to-use method that requires only three 20-min express measurements to determine the key parameters for selection of optimal MPB for a biosensor: kinetic and equilibrium characteristics, and a fraction of biomolecules on the MPB surface that are capable of active targeting. The method also provides a prognostic dependence of MPB targeting efficiency upon interaction duration and sample volume. These features are possible due to joining a magnetic lateral flow assay, a highly sensitive sensor for MPB detection by the magnetic particle quantification technique, and a novel mathematical model that explicitly describes the MPB-target interactions and does not comprise parameters to be fitted additionally. The method was demonstrated by experiments on MPB targeting of cardiac troponin I and staphylococcal enterotoxin B. The validation by an independent label-free technique of spectral-correlation interferometry showed good correlation between the results obtained by both methods. The presented method can be applied to other targets for faster development and selection of MPB for affinity sensors, analytical technologies, and realization of novel concepts of MPB-based biosensing in vivo.
Collapse
Affiliation(s)
- Averyan V. Pushkarev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia; (A.V.P.); (A.V.O.); (S.L.Z.); (V.A.B.)
- Moscow Institute of Physics and Technology, 9 Institutskii per., Dolgoprudny, 141700 Moscow Region, Russia
| | - Alexey V. Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia; (A.V.P.); (A.V.O.); (S.L.Z.); (V.A.B.)
| | - Sergey L. Znoyko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia; (A.V.P.); (A.V.O.); (S.L.Z.); (V.A.B.)
| | - Vera A. Bragina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia; (A.V.P.); (A.V.O.); (S.L.Z.); (V.A.B.)
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow, Russia; (A.V.P.); (A.V.O.); (S.L.Z.); (V.A.B.)
| |
Collapse
|
20
|
Nangare SN, Patil PO. Affinity-Based Nanoarchitectured Biotransducer for Sensitivity Enhancement of Surface Plasmon Resonance Sensors for In Vitro Diagnosis: A Review. ACS Biomater Sci Eng 2020; 7:2-30. [DOI: 10.1021/acsbiomaterials.0c01203] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sopan N. Nangare
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur−425405, Maharashtra India
| | - Pravin O. Patil
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur−425405, Maharashtra India
| |
Collapse
|
21
|
Das CM, Guo Y, Yang G, Kang L, Xu G, Ho H, Yong K. Gold Nanorod Assisted Enhanced Plasmonic Detection Scheme of COVID-19 SARS-CoV-2 Spike Protein. ADVANCED THEORY AND SIMULATIONS 2020; 3:2000185. [PMID: 33173847 PMCID: PMC7646005 DOI: 10.1002/adts.202000185] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/09/2020] [Indexed: 12/24/2022]
Abstract
The beautiful interplay between light and matter can give rise to many striking physical phenomena, surface plasmon resonance (SPR) being one of them. Plasmonic immunosensors monitor refractive index changes that occur as a result of specific ligand-analyte or antibody-antigen interactions taking place on the sensor surface. The coronavirus disease (COVID-19) pandemic has jeopardized the entire world and has resulted in economic slowdown of most countries. In this work, a model of a sandwich plasmonic biosensor that utilizes gold nanorods (Au NRs) for the detection of COVID-19 SARS-CoV-2 spike protein is presented. Simulation results for different prismatic configurations for the basic Kretschmann layout are presented. It is found that a BK7 glass prism-based SPR sensor has an incremental sensitivity of 111.11 deg RIU-1. Additionally, using Comsol Multiphysics the electric field enhancement observed for various aspect ratios and layouts of Au NRs are discussed in depth.
Collapse
Affiliation(s)
- Chandreyee Manas Das
- CINTRA CNRS/NTU/THALESUMI 3288Research Techno Plaza50 Nanyang DriveBorder X BlockSingapore637553Singapore
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Yan Guo
- School of AutomationHangzhou Dianzi UniversityHangzhouZhejiang310018China
| | - Guang Yang
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Lixing Kang
- CINTRA CNRS/NTU/THALESUMI 3288Research Techno Plaza50 Nanyang DriveBorder X BlockSingapore637553Singapore
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhen518060China
| | - Ho‐Pui Ho
- Department of Biomedical EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| | - Ken‐Tye Yong
- CINTRA CNRS/NTU/THALESUMI 3288Research Techno Plaza50 Nanyang DriveBorder X BlockSingapore637553Singapore
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
22
|
Zhu Z, Li H, Xiang Y, Koh K, Hu X, Chen H. Pyridinium porphyrins and AuNPs mediated bionetworks as SPR signal amplification tags for the ultrasensitive assay of brain natriuretic peptide. Mikrochim Acta 2020; 187:327. [PMID: 32405667 DOI: 10.1007/s00604-020-04289-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/19/2020] [Indexed: 12/23/2022]
Abstract
Extension of the self-assembled bionanonetworks into surface plasmon resonance (SPR) assay investigation provides an effective signal amplification approach. We fabricated a bionetwork by nucleic acids, organic compounds, and supramolecular gold nanoparticles for ultrasensitive SPR detection of B-type natriuretic peptide (BNP). The SPR method was developed by a sandwich-type format of aptamer-target-antibody, and the aptamer-modified bionanonetworks induced localized SPR and large refractive index for different concentrations of the target BNP. The linear concentration range and limit of detection were 1-10,000 pg/mL (R2 = 0.9852) and 0.3 pg/mL respectively. The detection recovery was in the range 92.13 to 108.69%. The approach embraces the following main advantages: (1) Cooperative double recognition was realized by calix[4]arenes for amino aptamers and pyridinium porphyrins. (2) The approach provided the specificity for supramolecular-based nanomaterials and a simple synthesis process via the ordered self-assembly under mild conditions. (3) The bionanonetworks endowed the SPR assay with signal amplification and stable determination for trace proteins. Therefore, it is expected that this study may offer a new SPR signal-amplified platform of organic-inorganic bionanonetworks to achieve sensitive, stable, and real-time determination. Graphical abstract Schematic of bionanonetwork based on porphyrin-mediated functionalized gold nanoparticles for SPR signal amplification to quantitatively detect BNP.
Collapse
Affiliation(s)
- Zhikang Zhu
- Center for Molecular Recognition Selectivity and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.,Shanghai Key Laboratory of Bio-Energy Crop, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hongjie Li
- Center for Molecular Recognition Selectivity and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.,Shanghai Key Laboratory of Bio-Energy Crop, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yangquan Xiang
- Center for Molecular Recognition Selectivity and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Kwangnak Koh
- Institute of General Education, Pusan National University, Busan, 609-735, Republic of Korea
| | - Xiaojun Hu
- Center for Molecular Recognition Selectivity and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Hongxia Chen
- Center for Molecular Recognition Selectivity and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
23
|
Liu J, Jalali M, Mahshid S, Wachsmann-Hogiu S. Are plasmonic optical biosensors ready for use in point-of-need applications? Analyst 2019; 145:364-384. [PMID: 31832630 DOI: 10.1039/c9an02149c] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plasmonics has drawn significant attention in the area of biosensors for decades due to the unique optical properties of plasmonic resonant nanostructures. While the sensitivity and specificity of molecular detection relies significantly on the resonance conditions, significant attention has been dedicated to the design, fabrication, and optimization of plasmonic substrates. The adequate choice of materials, structures, and functionality goes hand in hand with a fundamental understanding of plasmonics to enable the development of practical biosensors that can be deployed in real life situations. Here we provide a brief review of plasmonic biosensors detailing most recent developments and applications. Besides metals, novel plasmonic materials such as graphene are highlighted. Sensors based on Surface Plasmon Resonance (SPR), Localized Surface Plasmon Resonance (LSPR), and Surface Enhanced Raman Spectroscopy (SERS) are presented and classified based on their materials and structure. In addition, most recent applications to environment monitoring, health diagnosis, and food safety are presented. Potential problems related to the implementation in such applications are discussed and an outlook is presented.
Collapse
Affiliation(s)
- Juanjuan Liu
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | - Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
24
|
Gloag L, Mehdipour M, Chen D, Tilley RD, Gooding JJ. Advances in the Application of Magnetic Nanoparticles for Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904385. [PMID: 31538371 DOI: 10.1002/adma.201904385] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/14/2019] [Indexed: 05/18/2023]
Abstract
Magnetic nanoparticles (MNPs) are of high significance in sensing as they provide viable solutions to the enduring challenges related to lower detection limits and nonspecific effects. The rapid expansion in the applications of MNPs creates a need to overview the current state of the field of MNPs for sensing applications. In this review, the trends and concepts in the literature are critically appraised in terms of the opportunities and limitations of MNPs used for the most advanced sensing applications. The latest progress in MNP sensor technologies is overviewed with a focus on MNP structures and properties, as well as the strategies of incorporating these MNPs into devices. By looking at recent synthetic advancements, and the key challenges that face nanoparticle-based sensors, this review aims to outline how to design, synthesize, and use MNPs to make the most effective and sensitive sensors.
Collapse
Affiliation(s)
- Lucy Gloag
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Milad Mehdipour
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dongfei Chen
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Richard D Tilley
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
25
|
Bhandari D, Chen FC, Bridgman RC. Detection of Salmonella Typhimurium in Romaine Lettuce Using a Surface Plasmon Resonance Biosensor. BIOSENSORS 2019; 9:E94. [PMID: 31357708 PMCID: PMC6784360 DOI: 10.3390/bios9030094] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/05/2022]
Abstract
Leafy vegetables have been associated with high-profile outbreaks causing severe illnesses. Timely and accurate identification of potential contamination is essential to ensure food safety. A surface plasmon resonance (SPR) assay has been developed for the detection of Salmonella Typhimurium in leafy vegetables. The assay utilizes a pair of well characterized monoclonal antibodies specific to the flagellin of S. Typhimurium. Samples of romaine lettuce contaminated with S. Typhimurium at different levels (between 0.9 and 5.9 log cfu/g) were pre-enriched in buffered peptone water. Three SPR assay formats, direct assay, sequential two-step sandwich assay, and pre-incubation one-step sandwich assay were evaluated. All three assay formats detect well even at a low level of contamination (0.9 log cfu/g). The SPR assay showed a high specificity for the detection of S. Typhimurium in the presence of other commensal bacteria in the romaine lettuce samples. The results also suggested that further purification of flagellin from the sample preparation using immunomagnetic separation did not improve the detection sensitivity of the SPR assay. The functional protocol developed in this study can be readily used for the detection of S. Typhimurium in leafy vegetables with high sensitivity and specificity.
Collapse
Affiliation(s)
- Devendra Bhandari
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Fur-Chi Chen
- Department of Human Sciences, Tennessee State University, Nashville, TN 37209, USA.
| | | |
Collapse
|
26
|
Xu Y, Huo B, Li C, Peng Y, Tian S, Fan L, Bai J, Ning B, Gao Z. Ultrasensitive detection of staphylococcal enterotoxin B in foodstuff through dual signal amplification by bio-barcode and real-time PCR. Food Chem 2019; 283:338-344. [DOI: 10.1016/j.foodchem.2018.12.128] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/20/2018] [Accepted: 12/29/2018] [Indexed: 02/04/2023]
|
27
|
Wang D, Loo JFC, Chen J, Yam Y, Chen SC, He H, Kong SK, Ho HP. Recent Advances in Surface Plasmon Resonance Imaging Sensors. SENSORS 2019; 19:s19061266. [PMID: 30871157 PMCID: PMC6471112 DOI: 10.3390/s19061266] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/12/2022]
Abstract
The surface plasmon resonance (SPR) sensor is an important tool widely used for studying binding kinetics between biomolecular species. The SPR approach offers unique advantages in light of its real-time and label-free sensing capabilities. Until now, nearly all established SPR instrumentation schemes are based on single- or several-channel configurations. With the emergence of drug screening and investigation of biomolecular interactions on a massive scale these days for finding more effective treatments of diseases, there is a growing demand for the development of high-throughput 2-D SPR sensor arrays based on imaging. The so-called SPR imaging (SPRi) approach has been explored intensively in recent years. This review aims to provide an up-to-date and concise summary of recent advances in SPRi. The specific focuses are on practical instrumentation designs and their respective biosensing applications in relation to molecular sensing, healthcare testing, and environmental screening.
Collapse
Affiliation(s)
- Dongping Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jacky Fong Chuen Loo
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jiajie Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Yeung Yam
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Shih-Chi Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Siu Kai Kong
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ho Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
28
|
Synthesis of Fe₃C@C from Pyrolysis of Fe₃O₄-Lignin Clusters and Its Application for Quick and Sensitive Detection of PrP Sc through a Sandwich SPR Detection Assay. Int J Mol Sci 2019; 20:ijms20030741. [PMID: 30744182 PMCID: PMC6387304 DOI: 10.3390/ijms20030741] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
The prion protein (PrPSc) has drawn widespread attention due to its pathological potential to cause prion diseases. Herein, we successfully synthesized Fe₃C@C by carbonizing Fe₃O₄-lignin clusters, which were prepared through a facile hydrogen bonding interaction between ≡Fe-OH and hydroxyl groups of lignin. Our in-depth investigation confirmed that the composites were Fe₃C@C core/shell particles. We constructed a novel sandwich surface plasmon resonance (SPR) detection assay for sensitive PrPSc detection, utilizing bare gold surface and aptamer-modified Fe₃C@C (Fe₃C@C-aptamer). Due to the highly specific affinity of Fe₃C@C-aptamer towards PrPSc, the sandwich type SPR sensor exhibited excellent analytical performance towards the discrimination and quantitation of PrPSc. A good linear relationship was obtained between the SPR responses and the logarithm of PrPSc concentrations over a range of 0.1⁻200 ng/mL. The detection sensitivity for PrPSc was improved by ~10 fold compared with the SPR direct detection format. The required detection time was only 20 min. The specificity of the present biosensor was also confirmed by PrPC and other reagents as controls. This proposed approach could also be used to isolate and detect other highly pathogenic biomolecules with similar structural characteristics by altering the corresponding aptamer in the Fe₃C@C conjugates.
Collapse
|
29
|
Colloidal Metal Oxide Nanoparticles Prepared by Laser Ablation Technique and Their Antibacterial Test. COLLOIDS AND INTERFACES 2019. [DOI: 10.3390/colloids3010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this article we report the production of metal oxide (TiFe2O4, ZnFe2O4) nanoparticles by pulsed laser ablation technique in a liquid environment. We used nanosecond Nd: YAG laser systems working at 532 nm and 1064 nm of wavelength and the energy of the laser beam was kept constant at 80 mJ. Absorbance spectra, surface plasmon resonance, optical band-gap, and nanoparticle morphology were investigated using ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Changing the wavelength of the laser for growth, nanoparticles showed shift between the absorbance and surface plasmon resonance peaks in their UV-Vis spectra, which implies that the optical properties of the colloid nanoparticles depend on laser parameters. This was confirmed with the variation of the band gap energy. Furthermore, redshift for the absorbance peak was observed for samples as-grown at 532 nm around 150 nm as a function of time preparation. Conversely, for the samples as-grown at 1064 nm there was no shift in the absorbance spectra, which could be due to agglomeration and formation of larger particles. The characterization results showed appropriate plasmonic photo-catalysts properties of the particles, hence the photoactivation of the nanoparticles was examined on antibacterial effect using colonies of Staphylococcus aureus and Escherichia coli.
Collapse
|
30
|
Becheva Z, Ivanov Y, Gabrovska K, Godjevargova T. Rapid immunofluorescence assay for staphylococcal enterotoxin A using magnetic nanoparticles. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zlatina Becheva
- Department of Biotechnology University of “Prof. Dr Assen Zlatarov” 8010 Burgas Bulgaria
| | - Yavor Ivanov
- Department of Biotechnology University of “Prof. Dr Assen Zlatarov” 8010 Burgas Bulgaria
| | - Katya Gabrovska
- Department of Biotechnology University of “Prof. Dr Assen Zlatarov” 8010 Burgas Bulgaria
| | - Tzonka Godjevargova
- Department of Biotechnology University of “Prof. Dr Assen Zlatarov” 8010 Burgas Bulgaria
| |
Collapse
|
31
|
Lambert A, Yang Z, Cheng W, Lu Z, Liu Y, Cheng Q. Ultrasensitive Detection of Bacterial Protein Toxins on Patterned Microarray via Surface Plasmon Resonance Imaging with Signal Amplification by Conjugate Nanoparticle Clusters. ACS Sens 2018; 3:1639-1646. [PMID: 30084634 DOI: 10.1021/acssensors.8b00260] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensitive detection and monitoring of biological interactions in a high throughput, multiplexed array format has numerous advantages. We report here a method to enhance detection sensitivity in surface plasmon resonance (SPR) spectroscopy and SPR imaging via the effect of accumulation of conjugated nanoparticles of varying sizes. Bacterial cholera toxin (CT) was chosen for the demonstration of enhanced immunoassay by SPR. After immobilization of CT on a gold surface, specific recognition is achieved by biotinylated anti-CT. The signal is amplified by the attachment of biotinylated 20 nm AuNP via streptavidin bridge, followed by attachment of 5 nm streptavidin-functionalized Fe3O4NP to the AuNP-biotin surface. The continuous surface binding of two differently sized conjugated nanoparticles effectively increases their packing density on surface and significantly improves SPR detection sensitivity, allowing quantitative measurement of CT at very low concentration. The dense packing of conjugated nanoparticles on the surface was confirmed by atomic force microscopy characterization. SPR imaging of the immunoassay for high-throughput analysis utilized an Au-well microarray that attenuated the background resonance interference on the resulting images. A calibration curve of conjugated nanoparticle binding signal amplification for CT detection based on surface coverage has been obtained that shows a correlation in a range from 6.31 × 10-16 to 2.51 × 10-13 mol/cm2 with the limit of detection of 5.01 × 10-16 mol/cm2. The absolute quantity of detection limit using SPR imaging was 0.25 fmol. The versatile nanoparticles and biotin-streptavidin interaction used here should allow adaptation of this enhancement method to many other systems that include DNA, RNA, peptides, and carbohydrates, opening new avenues for ultrasensitive analysis of biomolecules.
Collapse
Affiliation(s)
- Alexander Lambert
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhanjun Yang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Wei Cheng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhenda Lu
- College of Engineering and Applied Science, Nanjing University, Nanjing 210023, China
| | - Ying Liu
- Department of Chemistry, Nanjing University, Nanjing 210023, China
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
32
|
Implementing Morpholino-Based Nucleic Acid Sensing on a Portable Surface Plasmon Resonance Instrument for Future Application in Environmental Monitoring. SENSORS 2018; 18:s18103259. [PMID: 30274157 PMCID: PMC6210944 DOI: 10.3390/s18103259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/22/2018] [Accepted: 09/26/2018] [Indexed: 12/24/2022]
Abstract
A portable surface plasmon resonance (SPR) instrument was tested for the first time for the detection of oligonucleotide sequences derived from the 16S rRNA gene of Oleispira antarctica RB-8, a bioindicator species of marine oil contamination, using morpholino-functionalized sensor surfaces. We evaluated the stability and specificity of morpholino coated sensor surfaces and tested two signal amplification regimes: (1) sequential injection of sample followed by magnetic bead amplifier and (2) a single injection of magnetic bead captured oligo. We found that the sensor surfaces could be regenerated for at least 85 consecutive sample injections without significant loss of signal intensity. Regarding specificity, the assay clearly differentiated analytes with only one or two mismatches. Signal intensities of mismatch oligos were lower than the exact match target at identical concentrations down to 200 nM, in standard phosphate buffered saline with 0.1 % Tween-20 added. Signal amplification was achieved with both strategies; however, significantly higher response was observed with the sequential approach (up to 16-fold), where first the binding of biotin-probe-labeled target oligo took place on the sensor surface, followed by the binding of the streptavidin magnetic beads onto the immobilized targets. Our experiments so far indicate that a simple coating procedure in combination with a relatively cost-efficient magnetic-bead-based signal amplification will provide robust SPR based nucleic acid sensing down to 0.5 nM of a 45-nucleotide long oligo target (7.2 ng/mL).
Collapse
|
33
|
Abstract
Plasmonic biosensing has been used for fast, real-time, and label-free probing of biologically relevant analytes, where the main challenges are to detect small molecules at ultralow concentrations and produce compact devices for point-of-care (PoC) analysis. This review discusses the most recent, or even emerging, trends in plasmonic biosensing, with novel platforms which exploit unique physicochemical properties and versatility of new materials. In addition to the well-established use of localized surface plasmon resonance (LSPR), three major areas have been identified in these new trends: chiral plasmonics, magnetoplasmonics, and quantum plasmonics. In describing the recent advances, emphasis is placed on the design and manufacture of portable devices working with low loss in different frequency ranges, from the infrared to the visible.
Collapse
Affiliation(s)
- J R Mejía-Salazar
- National Institute of Telecommunications (Inatel) , 37540-000 , Santa Rita do Sapucaí , MG , Brazil.,São Carlos Institute of Physics , University of São Paulo , CP 369, 13560-970 , São Carlos , SP , Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics , University of São Paulo , CP 369, 13560-970 , São Carlos , SP , Brazil
| |
Collapse
|
34
|
Fathi F, Rashidi MR, Omidi Y. Ultra-sensitive detection by metal nanoparticles-mediated enhanced SPR biosensors. Talanta 2018; 192:118-127. [PMID: 30348366 DOI: 10.1016/j.talanta.2018.09.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 10/28/2022]
Abstract
Surface plasmon resonance (SPR), as an optical technique, has widely been used for the detection of biomarkers. Various investigations have been conducted to address the impacts of SPR on the kinetics of biological interactions between the ligand and its cognate bio-element. Up until now, different biofunctionalized metal nanoparticles (NPs) have been used for the ultrasensitive detection of biomarkers in the enhanced SPR. The enhancement of plasmonic properties and refractive index by means of metal NPs in SPR-based biosensors have significantly improved the diagnosis and monitoring of molecular markers in different disesaes including malignancies. In all the enhanced SPR systems utilized for the direct/sandwich assay, each NP is covalently modified with the analyte molecules like antibody (Ab) or a nucleic acid such as DNA/RNA aptamer (Ap) capable of interaction with the related biomarker(s). The increasing of density near the gold surface and plasmonic coupling of gold film and NPs can provide a large shift in the refractive index enhancing the plasmonic resonance because the SPR response unit is sensitive to alteration of the refractive index and the mass shifting onto the chip surface. In this study, we review the potential applications of two major NPs for enhancing the SPR signals for the detection of molecular biomarkers, including gold and magnetic NPs.
Collapse
Affiliation(s)
- Farzaneh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
35
|
Mejía-Salazar JR, Camacho SA, Constantino CJL, Oliveira ON. New trends in plasmonic (bio)sensing. AN ACAD BRAS CIENC 2018; 90:779-801. [PMID: 29742207 DOI: 10.1590/0001-3765201820170571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/04/2017] [Indexed: 11/22/2022] Open
Abstract
The strong enhancement and localization of electromagnetic field in plasmonic systems have found applications in many areas, which include sensing and biosensing. In this paper, an overview will be provided of the use of plasmonic phenomena in sensors and biosensors with emphasis on two main topics. The first is related to possible ways to enhance the performance of sensors and biosensors based on surface plasmon resonance (SPR), where examples are given of functionalized magnetic nanoparticles, magnetoplasmonic effects and use of metamaterials for SPR sensing. The other topic is focused on surface-enhanced Raman scattering (SERS) for sensing, for which uniform, flexible, and reproducible SERS substrates have been produced. With such recent developments, there is the prospect of improving sensitivity and lowering the limit of detection in order to overcome the limitations inherent in ultrasensitive detection of chemical and biological analytes, especially at single molecule levels.
Collapse
|
36
|
Duracova M, Klimentova J, Fucikova A, Dresler J. Proteomic Methods of Detection and Quantification of Protein Toxins. Toxins (Basel) 2018; 10:toxins10030099. [PMID: 29495560 PMCID: PMC5869387 DOI: 10.3390/toxins10030099] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/11/2022] Open
Abstract
Biological toxins are a heterogeneous group of compounds that share commonalities with biological and chemical agents. Among them, protein toxins represent a considerable, diverse set. They cover a broad range of molecular weights from less than 1000 Da to more than 150 kDa. This review aims to compare conventional detection methods of protein toxins such as in vitro bioassays with proteomic methods, including immunoassays and mass spectrometry-based techniques and their combination. Special emphasis is given to toxins falling into a group of selected agents, according to the Centers for Disease Control and Prevention, such as Staphylococcal enterotoxins, Bacillus anthracis toxins, Clostridium botulinum toxins, Clostridium perfringens epsilon toxin, ricin from Ricinus communis, Abrin from Abrus precatorius or control of trade in dual-use items in the European Union, including lesser known protein toxins such as Viscumin from Viscum album. The analysis of protein toxins and monitoring for biological threats, i.e., the deliberate spread of infectious microorganisms or toxins through water, food, or the air, requires rapid and reliable methods for the early identification of these agents.
Collapse
Affiliation(s)
- Miloslava Duracova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Jana Klimentova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Alena Fucikova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Jiri Dresler
- Military Health Institute, Military Medical Agency, Tychonova 1, CZ-160 00 Prague 6, Czech Republic.
| |
Collapse
|
37
|
Ha Y, Ko S, Kim I, Huang Y, Mohanty K, Huh C, Maynard JA. Recent Advances Incorporating Superparamagnetic Nanoparticles into Immunoassays. ACS APPLIED NANO MATERIALS 2018; 1:512-521. [PMID: 29911680 PMCID: PMC5999228 DOI: 10.1021/acsanm.7b00025] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/31/2018] [Indexed: 05/09/2023]
Abstract
Superparamagnetic nanoparticles (SPMNPs) have attracted interest for various biomedical applications due to their unique magnetic behavior, excellent biocompatibility, easy surface modification, and low cost. Their unique magnetic properties, superparamagnetism, and magnetophoretic mobility have led to their inclusion in immunoassays to enhance biosensor sensitivity and allow for rapid detection of various analytes. In this review, we describe SPMNP characteristics valuable for incorporation into biosensors, including the use of SPMNPs to increase detection capabilities of surface plasmon resonance and giant magneto-resistive biosensors. The current status of SPMNP-based immunoassays to improve the sensitivity of rapid diagnostic tests is reviewed, and suggested strategies for the successful adoption of SPMNPs for immunoassays are presented.
Collapse
Affiliation(s)
- Yeonjeong Ha
- Department
of Chemical Engineering and Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- E-mail: . (J.A.M.)
| | - Saebom Ko
- Department
of Chemical Engineering and Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ijung Kim
- Department
of Civil and Environmental Engineering, Western New England University, Springfield, Massachusetts 01119, United States
| | - Yimin Huang
- Department
of Chemical Engineering and Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kishore Mohanty
- Department
of Chemical Engineering and Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chun Huh
- Department
of Chemical Engineering and Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer A. Maynard
- Department
of Chemical Engineering and Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- E-mail: . (Y.-J.H.)
| |
Collapse
|
38
|
Rüppel N, Tröger V, Sandetskaya N, Kuhlmeier D, Schmieder S, Sonntag F. Detection and identification of Staphylococcus aureus using magnetic particle enhanced surface plasmon spectroscopy. Eng Life Sci 2018; 18:263-268. [PMID: 32624905 DOI: 10.1002/elsc.201700098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/19/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
In this work, an approach for SPR spectroscopy using the liSPR system is examined that combines signal amplification by PCR and magnetic nanoparticles in one injection step. Therefore, the synthesis of PCR products was performed on the beads similar to a solid-phase PCR, termed PCR-on-a-bead. The functionality of this PCR was proven using an enzymatic assay. For validation the detection of oligonucleotides by SPR, an asymmetric PCR product was investigated. A signal increase upon binding of the PCR product to the specific probes was observed. In addition, surface regeneration of the chip was examined and reuse for at least two times ascertained. Amplification of the SPR signal by magnetic beads was verified but no signal was detected for PCR products immobilized on particles prior to injection.
Collapse
Affiliation(s)
- Nadine Rüppel
- Fraunhofer Institute for Cell Therapy and Immunology IZI Leipzig Germany
| | - Vicky Tröger
- Fraunhofer Institute for Cell Therapy and Immunology IZI Leipzig Germany.,Institute of Analytical Chemistry University of Leipzig Leipzig Germany
| | | | - Dirk Kuhlmeier
- Fraunhofer Institute for Cell Therapy and Immunology IZI Leipzig Germany
| | - Stefan Schmieder
- Fraunhofer Institute for Material and Beam Technology IWS Dresden Germany
| | - Frank Sonntag
- Fraunhofer Institute for Material and Beam Technology IWS Dresden Germany
| |
Collapse
|
39
|
Romao VC, Martins SAM, Germano J, Cardoso FA, Cardoso S, Freitas PP. Lab-on-Chip Devices: Gaining Ground Losing Size. ACS NANO 2017; 11:10659-10664. [PMID: 29077390 DOI: 10.1021/acsnano.7b06703] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Portable analytical devices are notably gaining relevance in the panorama of urgent testing. Such devices have the potential to play an important role as easy-to-handle tools in critical situations. Epidemic infectious disease agents (e.g., Ebola virus, Coronavirus, Zika virus) could be controlled more easily by testing travelers on-site at the country borders to prevent outbreaks from spreading. The increasing incidence of hospital-acquired infections caused by antibiotic resistant pathogens could be minimized by point-of-care microbial analysis as well as rapid screening tests of bacteria resistance. The threat of bioterrorism using novel unknown bioweapons has never been so high, thus, in-the-field early identification of the biological agent is crucial for triggering a coordinated response. Food allergies are a growing public health concern-allergic reactions can result in anaphylactic shock, which can prove fatal in minutes-thus, the ability to test foods for common allergens, rapidly and locally, before ingestion, would improve food safety for those with allergies. Lab-on-chip devices are becoming widely available for diverse applications and are becoming increasingly affordable. However, to shrink in price and size simultaneously, some trade-offs must be made. In this Perspective, we present considerations about product specifications, design concepts, and application scenarios.
Collapse
Affiliation(s)
- Veronica C Romao
- Magnomics S.A., Parque Tecnológico de Cantanhede , Núcleo 04, Lote 23060-197 Cantanhede, Portugal
| | - Sofia A M Martins
- Magnomics S.A., Parque Tecnológico de Cantanhede , Núcleo 04, Lote 23060-197 Cantanhede, Portugal
| | - Jose Germano
- Magnomics S.A., Parque Tecnológico de Cantanhede , Núcleo 04, Lote 23060-197 Cantanhede, Portugal
- INESC - Investigação e Desenvolvimento , Rua Alves Redol 9, 1000-049 Lisbon, Portugal
| | - Filipe A Cardoso
- Magnomics S.A., Parque Tecnológico de Cantanhede , Núcleo 04, Lote 23060-197 Cantanhede, Portugal
| | - Susana Cardoso
- INESC - Microsistemas e Nanotecnologias, Lisboa , Rua Alves Redol 9, 1000-049 Lisbon, Portugal
- Instituto Superior Tecnico (IST), Universidade de Lisboa , Av. Rovisco Pais, 1649-004 Lisboa, Portugal
| | - Paulo P Freitas
- INESC - Microsistemas e Nanotecnologias, Lisboa , Rua Alves Redol 9, 1000-049 Lisbon, Portugal
- International Iberian Nanotechnology Laboratory (INL) , Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
40
|
Ahari H, Hedayati M, Akbari-adergani B, Kakoolaki S, Hosseini H, Anvar A. Staphylococcus aureus exotoxin detection using potentiometric nanobiosensor for microbial electrode approach with the effects of pH and temperature. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1347944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hamed Ahari
- Assistant Professor, Department of Food Science and Technology, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences
| | - Behrouz Akbari-adergani
- Food and Drug Laboratory Research Center, Food and Drug Organization, Ministry of Health and Medical Education, Tehran, Iran
| | - Shapour Kakoolaki
- Agricultural Research, Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Sciences and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirali Anvar
- Assistant Professor, Department of Food Science and Technology, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
41
|
Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, Tkac J. Nanomaterial-based biosensors for detection of prostate specific antigen. Mikrochim Acta 2017; 184:3049-3067. [PMID: 29109592 PMCID: PMC5669453 DOI: 10.1007/s00604-017-2410-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Screening serum for the presence of prostate specific antigen (PSA) belongs to the most common approach for the detection of prostate cancer. This review (with 156 refs.) addresses recent developments in PSA detection based on the use of various kinds of nanomaterials. It starts with an introduction into the field, the significance of testing for PSA, and on current limitations. A first main section treats electrochemical biosensors for PSA, with subsections on methods based on the use of gold electrodes, graphene or graphene-oxide, carbon nanotubes, hybrid nanoparticles, and other types of nanoparticles. It also covers electrochemical methods based on the enzyme-like activity of PSA, on DNA-, aptamer- and biofuel cell-based methods, and on the detection of PSA via its glycan part. The next main section covers optical biosensors, with subsections on methods making use of surface plasmon resonance (SPR), localized SPR and plasmonic ELISA-like schemes. This is followed by subsections on methods based on the use of fiber optics, fluorescence, chemiluminescence, Raman scattering and SERS, electrochemiluminescence and cantilever-based methods. The most sensitive biosensors are the electrochemical ones, with lowest limits of detection (down to attomolar concentrations), followed by mass cantilever sensing and electrochemilumenescent strategies. Optical biosensors show lower performance, but are still more sensitive compared to standard ELISA. The most commonly applied nanomaterials are metal and carbon-based ones and their hybrid composites used for different amplification strategies. The most attractive sensing schemes are summarized in a Table. The review ends with a section on conclusions and perspectives.
Collapse
Affiliation(s)
- Dominika Damborska
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Erika Dosekova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Alena Holazova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Lenka Lorencova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| |
Collapse
|
42
|
Rajoria S, Kumar RB, Gupta P, Alam SI. Postexposure Recovery and Analysis of Biological Agent in a Simulated Biothreat Scenario Using Tandem Mass Spectrometry. Anal Chem 2017; 89:4062-4070. [DOI: 10.1021/acs.analchem.6b04862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sakshi Rajoria
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India
| | - Pallavi Gupta
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh 474002, India
| |
Collapse
|
43
|
Ortega GA, Pérez-Rodríguez S, Reguera E. Magnetic paper – based ELISA for IgM-dengue detection. RSC Adv 2017. [DOI: 10.1039/c6ra25992h] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
“Magnetic Paper – Based ELISA” for IgM-dengue antibodies detection provide a system with improved analytical response.
Collapse
Affiliation(s)
- G. A. Ortega
- Center for Applied Science and Advanced Technology of IPN
- Legaria Unit
- Mexico City
- Mexico
- University of Havana
| | - S. Pérez-Rodríguez
- National Autonomous University of Mexico
- Biomedical Research Institute
- Mexico City
- Mexico
| | - E. Reguera
- Center for Applied Science and Advanced Technology of IPN
- Legaria Unit
- Mexico City
- Mexico
| |
Collapse
|
44
|
Alam SI, Uppal A, Gupta P, Kamboj DV. Multiple-reaction monitoring for multiplex detection of three bacterial toxins using liquid chromatography-tandem mass spectrometry. Lett Appl Microbiol 2016; 64:217-224. [PMID: 28024103 DOI: 10.1111/lam.12706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 11/28/2022]
Abstract
Clostridium perfringens epsilon toxin, staphylococcal enterotoxin B and shiga toxin are implicated in a number of diseases and food-borne intoxications and are considered potential agents for bioterrorism and warfare. Artificially generated aerosol is the likely mode of delivery of these for nefarious uses, potentially capable of causing mass destruction to human and animal health by inhalation of toxic bioaerosol. Multiplex and unambiguous detection of these agents is of paramount importance for emergency response in a biothreat scenario and for food safety. Multiple-reaction monitoring (MRM) assay for simultaneous monitoring of the three toxins is reported here using reverse-phase high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Three different peptides with two fragment ions each were considered for quantification and confirmation. One of the three MRM transitions from each toxin, which exhibited the best sensitivity, was selected for multiplexing of the assay. Simulating a biothreat scenario wherein the bioaerosol is collected in 10 ml of buffer, the multiplex assay was tested with blind samples with one or more of the three toxins even in the presence of interfering Escherichia coli lysate proteins.
Collapse
Affiliation(s)
- S I Alam
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, India
| | - A Uppal
- Sciex, A Division of DHR Holding India Pvt. Ltd., Gurgaon, India
| | - P Gupta
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, India
| | - D V Kamboj
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
45
|
Antiochia R, Bollella P, Favero G, Mazzei F. Nanotechnology-Based Surface Plasmon Resonance Affinity Biosensors for In Vitro Diagnostics. Int J Anal Chem 2016; 2016:2981931. [PMID: 27594884 PMCID: PMC4995327 DOI: 10.1155/2016/2981931] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/05/2016] [Accepted: 07/10/2016] [Indexed: 01/17/2023] Open
Abstract
In the last decades, in vitro diagnostic devices (IVDDs) became a very important tool in medicine for an early and correct diagnosis, a proper screening of targeted population, and also assessing the efficiency of a specific therapy. In this review, the most recent developments regarding different configurations of surface plasmon resonance affinity biosensors modified by using several nanostructured materials for in vitro diagnostics are critically discussed. Both assembly and performances of the IVDDs tested in biological samples are reported and compared.
Collapse
Affiliation(s)
- Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Paolo Bollella
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gabriele Favero
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Franco Mazzei
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
46
|
Wu S, Duan N, Gu H, Hao L, Ye H, Gong W, Wang Z. A Review of the Methods for Detection of Staphylococcus aureus Enterotoxins. Toxins (Basel) 2016; 8:E176. [PMID: 27348003 PMCID: PMC4963824 DOI: 10.3390/toxins8070176] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/30/2016] [Indexed: 01/08/2023] Open
Abstract
Food safety has attracted extensive attention around the world, and food-borne diseases have become one of the major threats to health. Staphylococcus aureus is a major food-borne pathogen worldwide and a frequent contaminant of foodstuffs. Staphylococcal enterotoxins (SEs) produced by some S. aureus strains will lead to staphylococcal food poisoning (SFP) outbreaks. The most common symptoms caused by ingestion of SEs within food are nausea, vomiting, diarrhea and cramps. Children will suffer SFP by ingesting as little as 100 ng of SEs, and only a few micrograms of SEs are enough to cause SPF in vulnerable populations. Therefore, it is a great challenge and of urgent need to detect and identify SEs rapidly and accurately for governmental and non-governmental agencies, including the military, public health departments, and health care facilities. Herein, an overview of SE detection has been provided through a comprehensive literature survey.
Collapse
Affiliation(s)
- Shijia Wu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Huajie Gu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Liling Hao
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hua Ye
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wenhui Gong
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
47
|
Krithiga N, Viswanath KB, Vasantha V, Jayachitra A. Specific and selective electrochemical immunoassay for Pseudomonas aeruginosa based on pectin–gold nano composite. Biosens Bioelectron 2016; 79:121-9. [DOI: 10.1016/j.bios.2015.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/24/2015] [Accepted: 12/04/2015] [Indexed: 01/01/2023]
|
48
|
Kumar S, Johnson TW, Wood C, Qu T, Wittenberg N, Otto LM, Shaver J, Long NJ, Victora RH, Edel JB, Oh SH. Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing. ACS APPLIED MATERIALS & INTERFACES 2016; 8:9319-9326. [PMID: 26837912 PMCID: PMC4832397 DOI: 10.1021/acsami.5b12157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
We present large-scale reproducible fabrication of multifunctional ultrasharp metallic structures on planar substrates with capabilities including magnetic field nanofocusing and plasmonic sensing. Objects with sharp tips such as wedges and pyramids made with noble metals have been extensively used for enhancing local electric fields via the lightning-rod effect or plasmonic nanofocusing. However, analogous nanofocusing of magnetic fields using sharp tips made with magnetic materials has not been widely realized. Reproducible fabrication of sharp tips with magnetic as well as noble metal layers on planar substrates can enable straightforward application of their material and shape-derived functionalities. We use a template-stripping method to produce plasmonic-shell-coated nickel wedge and pyramid arrays at the wafer-scale with tip radius of curvature close to 10 nm. We further explore the magnetic nanofocusing capabilities of these ultrasharp substrates, deriving analytical formulas and comparing the results with computer simulations. These structures exhibit nanoscale spatial control over the trapping of magnetic microbeads and nanoparticles in solution. Additionally, enhanced optical sensing of analytes by these plasmonic-shell-coated substrates is demonstrated using surface-enhanced Raman spectroscopy. These methods can guide the design and fabrication of novel devices with applications including nanoparticle manipulation, biosensing, and magnetoplasmonics.
Collapse
Affiliation(s)
- Shailabh Kumar
- Department of Electrical and Computer Engineering, Department of Biomedical
Engineering, and Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy W. Johnson
- Department of Electrical and Computer Engineering, Department of Biomedical
Engineering, and Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher
K. Wood
- Department of Chemistry, Imperial College
London, South Kensington, SW7 2AZ London, United Kingdom
| | - Tao Qu
- Department of Electrical and Computer Engineering, Department of Biomedical
Engineering, and Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nathan
J. Wittenberg
- Department of Electrical and Computer Engineering, Department of Biomedical
Engineering, and Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lauren M. Otto
- Department of Electrical and Computer Engineering, Department of Biomedical
Engineering, and Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jonah Shaver
- Department of Electrical and Computer Engineering, Department of Biomedical
Engineering, and Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nicholas J. Long
- Department of Chemistry, Imperial College
London, South Kensington, SW7 2AZ London, United Kingdom
| | - Randall H. Victora
- Department of Electrical and Computer Engineering, Department of Biomedical
Engineering, and Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joshua B. Edel
- Department of Chemistry, Imperial College
London, South Kensington, SW7 2AZ London, United Kingdom
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, Department of Biomedical
Engineering, and Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
49
|
Differential detection of a surrogate biological threat agent ( Bacillus globigii ) with a portable surface plasmon resonance biosensor. Biosens Bioelectron 2016; 78:160-166. [DOI: 10.1016/j.bios.2015.11.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/23/2022]
|
50
|
Ortega GA, Zuaznabar-Gardona JC, Morales-Tarré O, Reguera E. Immobilization of dengue specific IgM antibodies on magnetite nanoparticles by using facile conjugation strategies. RSC Adv 2016. [DOI: 10.1039/c6ra23260d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Five strategies to conjugate IgM antibodies on magnetite nanoparticles were evaluated and the most effective used for IgM-dengue detection.
Collapse
Affiliation(s)
- G. A. Ortega
- Center for Applied Science and Advanced Technology of IPN
- Mexico City
- Mexico
- University of Havana
- Faculty of Chemistry
| | | | - O. Morales-Tarré
- Center of Molecular Immunology
- INIM
- Process Development Direction
- Havana
- Cuba
| | - E. Reguera
- Center for Applied Science and Advanced Technology of IPN
- Mexico City
- Mexico
| |
Collapse
|