1
|
Zheng M, Zheng T, Huan Z, Li C, Li X, Wang M. Sampling-rate calibration vs. equilibrium calibration for in vivo solid-phase microextraction: Analysis of neonicotinoids in bananas. J Chromatogr A 2024; 1730:465152. [PMID: 39003980 DOI: 10.1016/j.chroma.2024.465152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
In vivo solid-phase microextraction (in vivo SPME) is an emerging fascinating sample pretreatment technique, but its quantitative correction method is different from the traditional correction methods, which has become a bottleneck limiting its development. At present, the sampling-rate calibration and equilibrium calibration are mainly used, however, their characteristics and applicability are not clear. In this study, the sampling-rate calibration and equilibrium calibration were evaluated in the case of the determination of neonicotinoids in bananas by in vivo SPME. The factors that affect the sampling rate (Rs), such as the matrix states, sampling durations, and individual differences were studied, and they all had impacts on Rs. Conversely, the equilibrium distribution coefficient (Kfs) remained constant after extraction equilibrium and the individual differences were smaller. The highest accuracy and precision were achieved by equilibrium calibration, and the relative recoveries were in the range of 83.2 %-104.3 % with the relative standard deviations below 8.1 % compared to a standard QuEChERS-based method. The lower limits of quantification for 4 neonicotinoids in bananas were below 5 ng g-1, lower than the standard method and the maximum residue levels in China and the European Union. This work clarifies the characteristics, rules and performance of the sampling-rate calibration and equilibrium calibration, which is of crucial importance for the development and application of in vivo SPME. The developed method is convenient, sensitive, and accurate for the determination of pesticide residues, which is of great significance to guide the safe use of pesticides in the field and prevent products with excessive pesticide residues from entering the market.
Collapse
Affiliation(s)
- Meijie Zheng
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, 430070, China; Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China
| | - Tengfei Zheng
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, 430070, China; Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China
| | - Zhibo Huan
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China
| | - Chunli Li
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China
| | - Xiujuan Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Dietology (Ministry of Education), Wuhan, 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, 430070, China.
| | - Mingyue Wang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China.
| |
Collapse
|
2
|
Akhdhar A, Yakout AA. Enhanced simultaneous sequestration of Cd(II) and Pb(II) ions from industrial wastewater samples based on poly-(2-aminothiophenol) functionalized graphene oxide. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2122495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Abdullah Akhdhar
- Department of Chemistry, College of Science, University of Jeddah, Saudi Arabia
| | - Amr A. Yakout
- Department of Chemistry, College of Science, University of Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Jagirani MS, Soylak M. A review: Recent advances in solid phase microextraction of toxic pollutants using nanotechnology scenario. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105436] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
4
|
Panio A, Fabbri Corsarini S, Bruno A, Lasagni M, Labra M, Saliu F. Determination of phthalates in fish fillets by liquid chromatography tandem mass spectrometry (LC-MS/MS): A comparison of direct immersion solid phase microextraction (SPME) versus ultrasonic assisted solvent extraction (UASE). CHEMOSPHERE 2020; 255:127034. [PMID: 32679634 DOI: 10.1016/j.chemosphere.2020.127034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/20/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Due to the increasing presence of plastic and plastic associated contaminants in the aquatic environments, the monitoring of this contamination in fish products and the understanding of possible human health implications is considered urgent. However, data are still relatively scarce, mostly due to the methodological challenges in the chemical analysis: these contaminants are ubiquitous and procedural contamination from the laboratory is frequent. In this work, we compared solid-phase microextraction (SPME) to ultrasonic assisted solvent extraction (UASE) as sample preparation methods for the liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phthalates in fish fillets. UASE was carried out with an acetone-hexane (1:1) solution and according to a reference procedure aimed to obtain the exhaustive extraction of the target analytes. SPME was carried out by applying C18 fibers in direct immersion mode and by using water/methanol 20:80 mixture to desorb the aliquot required for the analysis. Overall, SPME displayed an improved control of the background contamination and enabled lower LOQs. Precision, calculated as relative standard deviation (RSD) on replicates of a reference sample, was below 24% for both the method. Analysis of real samples purchased from Italian supermarkets showed that SPME might be an efficient tool for estimating the risk associated with fish consumption.
Collapse
Affiliation(s)
- Antonella Panio
- Earth and Environmental Sciences Department, University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Stefano Fabbri Corsarini
- Biotechnologies and Biosciences Department University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Antonia Bruno
- Earth and Environmental Sciences Department, University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Marina Lasagni
- Biotechnologies and Biosciences Department University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Massimo Labra
- Earth and Environmental Sciences Department, University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Francesco Saliu
- Biotechnologies and Biosciences Department University of Milano-Bicocca, Piazza Della Scienza 1, 20126, Milano, Italy.
| |
Collapse
|
5
|
Lendor S, Gómez-Ríos GA, Boyacı E, Vander Heide H, Pawliszyn J. Space-Resolved Tissue Analysis by Solid-Phase Microextraction Coupled to High-Resolution Mass Spectrometry via Desorption Electrospray Ionization. Anal Chem 2019; 91:10141-10148. [DOI: 10.1021/acs.analchem.9b02157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Qiu L, Liu Q, Zeng X, Liu Q, Hou X, Tian Y, Wu L. Sensitive detection of bisphenol A by coupling solid phase microextraction based on monolayer graphene-coated Ag nanoparticles on Si fibers to surface enhanced Raman spectroscopy. Talanta 2018; 187:13-18. [DOI: 10.1016/j.talanta.2018.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 11/24/2022]
|
7
|
Tian Y, Sun M, Wang X, Luo C, Feng J. A Nanospherical Metal–Organic Framework UiO-66 for Solid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons. Chromatographia 2018. [DOI: 10.1007/s10337-018-3524-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Liu Y, Rong Z, Xiang D, Zhang C, Liu D. Detection technologies and metabolic profiling of bile acids: a comprehensive review. Lipids Health Dis 2018; 17:121. [PMID: 29792192 PMCID: PMC5966875 DOI: 10.1186/s12944-018-0774-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/10/2018] [Indexed: 12/15/2022] Open
Abstract
Bile acids (BAs) are important regulatory factors of life activities, which are involved in the regulation of glucose, lipid and energy metabolisms, and closely associated with intestinal hormones, microbiotas and energy balance. BAs abnormalities easily lead to inflammation and metabolic diseases, in turn, the progress of diseases could influence characteristics of BAs. Therefore, accurate detection of BAs contents is of great significance to disease prevention, diagnosis and treatment. At present, the most widely used enzymatic method in clinical practice is applicable to the detection of total bile acid (TBA). In laboratory research, different types of BAs can be accurately separated and quantified by liquid chromatography-mass spectrometry (LC-MS). The metabolic profiling of BAs based on detection technologies can completely and accurately monitor their types and contents, playing a crucial role in disease prevention, diagnosis and treatment. We herein reviewed the main detection technologies of BAs and the application of metabolic profiling in related diseases in recent years.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Pharmacy of Tongji Hospital, Tongji Medical School, Huazhong Science and Technology University, Wuhan, 430030, China
| | - Zhihui Rong
- Department of Paediatrics of Tongji Hospital, Tongji Medical School, Huazhong Science and Technology University, Wuhan, 430030, China
| | - Dong Xiang
- Department of Pharmacy of Tongji Hospital, Tongji Medical School, Huazhong Science and Technology University, Wuhan, 430030, China
| | - Chengliang Zhang
- Department of Pharmacy of Tongji Hospital, Tongji Medical School, Huazhong Science and Technology University, Wuhan, 430030, China.
| | - Dong Liu
- Department of Pharmacy of Tongji Hospital, Tongji Medical School, Huazhong Science and Technology University, Wuhan, 430030, China.
| |
Collapse
|
9
|
Tang Y, Huang S, Xu J, Ouyang G, Liu Y. PLGA-based nanofibers with a biomimetic polynoradrenaline sheath for rapid in vivo sampling of tetrodotoxin and sulfonamides in pufferfish. J Mater Chem B 2018; 6:3655-3664. [DOI: 10.1039/c8tb00757h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PLGA nanofibers with PNA sheath modification achieve enhanced extraction performance and antibiofouling capacity for in vivo sampling in pufferfish.
Collapse
Affiliation(s)
- Yijia Tang
- Department of Food Science and Technology
- School of Agriculture and Biology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Siming Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
- China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
- China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
- China
| | - Yuan Liu
- Department of Food Science and Technology
- School of Agriculture and Biology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
10
|
Tang Y, Xu J, Chen L, Qiu J, Liu Y, Ouyang G. Rapid in vivo determination of fluoroquinolones in cultured puffer fish (Takifugu obscurus) muscle by solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry. Talanta 2017; 175:550-556. [DOI: 10.1016/j.talanta.2017.07.066] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/18/2017] [Accepted: 07/22/2017] [Indexed: 11/24/2022]
|
11
|
Tian Y, Feng J, Bu Y, Wang X, Luo C, Sun M. In-situ hydrothermal synthesis of titanium dioxide nanorods on titanium wire for solid-phase microextraction of polycyclic aromatic hydrocarbons. Anal Bioanal Chem 2017; 409:4071-4078. [DOI: 10.1007/s00216-017-0353-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/25/2017] [Accepted: 03/30/2017] [Indexed: 01/03/2023]
|
12
|
Wang F, Zheng J, Qiu J, Liu S, Chen G, Tong Y, Zhu F, Ouyang G. In Situ Hydrothermally Grown TiO 2@C Core-Shell Nanowire Coating for Highly Sensitive Solid Phase Microextraction of Polycyclic Aromatic Hydrocarbons. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1840-1846. [PMID: 28001349 DOI: 10.1021/acsami.6b14748] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanostructured materials have great potential for solid phase microextraction (SPME) on account of their tiny size, distinct architectures and superior physical and chemical properties. Herein, a core-shell TiO2@C fiber for SPME was successfully fabricated by the simple hydrothermal reaction of a titanium wire and subsequent amorphous carbon coating. The readily hydrothermal procedure afforded in situ synthesis of TiO2 nanowires on a titanium wire and provided a desirable substrate for further coating of amorphous carbon. Benefiting from the much larger surface area of subsequent TiO2 and good adsorption property of the amorphous carbon coating, the core-shell TiO2@C fiber was utilized for the SPME device for the first time and proved to have better performance in extraction of polycyclic aromatic hydrocarbons. In comparison to the polydimethylsiloxane (PDMS) and PDMS/divinylbenzene (DVB) fiber for commercial use, the TiO2@C fiber obtained gas chromatography responses 3-8 times higher than those obtained by the commercial 100 μm PDMS and 1-9 times higher than those obtained by the 65 μm PDMS/DVB fiber. Under the optimized extraction conditions, the low detection limits were obtained in the range of 0.4-7.1 ng L-1 with wider linearity in the range of 10-2000 ng L-1. Moreover, the fiber was successfully used for the determination of polycyclic aromatic hydrocarbons in Pearl River water, which demonstrated the applicability of the core-shell TiO2@C fiber.
Collapse
Affiliation(s)
- Fuxin Wang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Junlang Qiu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Shuqin Liu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Guosheng Chen
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Yexiang Tong
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| |
Collapse
|
13
|
Xu J, Chen G, Huang S, Qiu J, Jiang R, Zhu F, Ouyang G. Application of in vivo solid-phase microextraction in environmental analysis. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Hierarchical Graphene coating for highly sensitive solid phase microextraction of organochlorine pesticides. Talanta 2016; 160:217-224. [DOI: 10.1016/j.talanta.2016.07.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 02/02/2023]
|
15
|
Song W, Guo M, Zhang Y, Yang Y, Wang X, Du X. Hydroxyundecanethiol-Modified Steel Fibers for the Selective Solid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons from River and Wastewater. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1225306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wenlan Song
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Mei Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Yida Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Yaoxia Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Xuemei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
- Department of Environmental Analysis, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu, Lanzhou, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
- Department of Environmental Analysis, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu, Lanzhou, China
| |
Collapse
|
16
|
Zali S, Jalali F, Es-haghi A, Shamsipur M. New nanostructure of polydimethylsiloxane coating as a solid-phase microextraction fiber: Application to analysis of BTEX in aquatic environmental samples. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:287-295. [DOI: 10.1016/j.jchromb.2016.08.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
|
17
|
Wang H, Song W, Zhang M, Zhen Q, Guo M, Zhang Y, Du X. Hydrothermally grown and self-assembled modified titanium and nickel oxide composite nanosheets on Nitinol-based fibers for efficient solid phase microextraction. J Chromatogr A 2016; 1468:33-41. [PMID: 27667650 DOI: 10.1016/j.chroma.2016.09.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 10/21/2022]
Abstract
A novel titanium and nickel oxide composite nanosheets (TiO2/NiOCNSs) coating was in situ grown on a Nitinol (NiTi) wire by direct hydrothermal treatment and modified by self-assembly of trichlorophenylsilane for solid phase microextraction (SPME). TiO2/NiOCNSs were radially oriented and chemically bonded to the NiTi substrate with double-faced open access sites. Moreover the phenyl modified TiO2/NiOCNSs (TiO2/NiOCNSs-Ph) coating exhibited original surface supporting framework favorable for effective SPME. The extraction performance of TiO2/NiOCNSs-Ph coated NiTi (NiTi-TiO2/NiOCNSs-Ph) fiber was investigated for the concentration and detection of ultraviolet (UV) filters, polycyclic aromatic hydrocarbons (PAHs), phthalate acid esters and polychlorinated biphenyls coupled to HPLC with UV detection. The novel fiber exhibited better selectivity for UV filters and PAHs and presented greater extraction capability compared to commercial polydimethylsiloxane and polyacrylate fibers. Under the optimized conditions for SPME of UV filters, the proposed method presented linear ranges from 0.1 to 300μg/L with correlation coefficients of higher than 0.999 and limits of detection from 0.030μg/L to 0.064μg/L. Relative standard deviations (RSDs) were below 7.16% and 8.42% for intra-day and inter-day measurements with the single fiber, respectively. Furthermore RSDs for fiber-to-fiber reproducibility from 6.57% to 8.93% were achieved. The NiTi-TiO2/NiOCNSs-Ph fiber can be used up to 200 times. The proposed method was successfully applied to the preconcentration and determination of trace target UV filters in different environmental water samples. The relative recoveries from 87.3% to 104% were obtained with RSDs less than 8.7%.
Collapse
Affiliation(s)
- Huiju Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Wenlan Song
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Qi Zhen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Mei Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Yida Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, China.
| |
Collapse
|
18
|
Zhang M, Zhen Q, Wang H, Guo M, Zhou S, Wang X, Du X. Innovative fabrication of the flower-like nanocomposite coating on a nitinol fiber through Fenton’s oxidation for selective and sensitive solid-phase microextraction. Talanta 2016; 158:214-221. [DOI: 10.1016/j.talanta.2016.05.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 11/30/2022]
|
19
|
Direct tissue sampling of diazepam and amitriptyline using mixed-mode SPME fibers: A feasibility study. Forensic Chem 2016. [DOI: 10.1016/j.forc.2016.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Au-coated ZnO nanorods on stainless steel fiber for self-cleaning solid phase microextraction-surface enhanced Raman spectroscopy. Anal Chim Acta 2016; 923:66-73. [DOI: 10.1016/j.aca.2016.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/30/2016] [Accepted: 04/06/2016] [Indexed: 11/18/2022]
|
21
|
Xu CH, Chen GS, Xiong ZH, Fan YX, Wang XC, Liu Y. Applications of solid-phase microextraction in food analysis. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.02.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Souza-Silva ÉA, Reyes-Garcés N, Gómez-Ríos GA, Boyacı E, Bojko B, Pawliszyn J. A critical review of the state of the art of solid-phase microextraction of complex matrices III. Bioanalytical and clinical applications. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.017] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Guo M, Song W, Wang T, Li Y, Wang X, Du X. Phenyl-functionalization of titanium dioxide-nanosheets coating fabricated on a titanium wire for selective solid-phase microextraction of polycyclic aromatic hydrocarbons from environment water samples. Talanta 2015; 144:998-1006. [PMID: 26452919 DOI: 10.1016/j.talanta.2015.07.064] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/17/2015] [Accepted: 07/23/2015] [Indexed: 11/15/2022]
Abstract
A novel titanium dioxide-nanosheets coating on a titanium wire (TiO2NS-Ti) was in situ fabricated by one-step electrochemical anodization in ethylene glycol with ammonium fluoride and followed by phenyl-functionalization for selective solid-phase microextraction (SPME). The fabricated TiO2NS coating exhibits higher specific surface area and more active sites, it also provides an ideal nanostructure and a robust substrate for subsequent surface modification. These characteristics were useful for efficient extraction. The SPME performance of phenyl-functionalized TiO2NS-Ti (ph-TiO2NS-Ti) fiber was evaluated by using ultraviolet filters, polychlorinated biphenyls and polycyclic aromatic hydrocarbons (PAHs) as model compounds coupled to high performance liquid chromatography with UV detection (HPLC-UV). It was found that the ph-TiO2NS-Ti fiber exhibited high extraction capability, good selectivity and rapid mass transfer for PAHs. The main parameters affecting extraction performance were investigated and optimized. Under optimized conditions, the proposed fiber showed good extraction efficiency comparable to those of commercial polydimethylsiloxane and polyacrylate fibers toward PAHs. The calibration graphs were linear over the range of 0.05-300 µg L(-1). The limits of detection of the proposed method were 0.008-0.043 µg L(-1) (S/N=3). Single fiber repeatability varied from 3.51% to 5.23% and fiber-to-fiber reproducibility ranged from 4.43% to 7.65% for the extraction of water spiked with 25 µg L(-1) each analyte (n=5). The established SPME-HPLC-UV method was successfully applied to selective concentration and sensitive determination of target PAHs from real environmental water samples with recoveries from 86.2% to 112% at the spiking level of 10 µg L(-1) and 50 µg L(-1). The relative standard deviations were below 9.45%. Furthermore, the ph-TiO2NS-Ti fiber can be fabricated in a reproducible manner, and has high stability and long service lifetime.
Collapse
Affiliation(s)
- Mei Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Wenlan Song
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tiane Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yi Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xuemei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, China.
| |
Collapse
|
24
|
Zheng J, Wang K, Luo E, Wu D, Zhu F, Jiang R, Su C, Wei C, Ouyang G. Monodisperse microporous carbon nanospheres: An efficient and stable solid phase microextraction coating material. Anal Chim Acta 2015; 884:44-51. [DOI: 10.1016/j.aca.2015.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 01/03/2023]
|
25
|
In vivo and ex vivo SPME: a low invasive sampling and sample preparation tool in clinical bioanalysis. Bioanalysis 2015; 6:1227-39. [PMID: 24946923 DOI: 10.4155/bio.14.91] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Solid phase microextraction (SPME) is well-established technology in bioanalysis. Current review discusses the features of SPME, which determine the non- or low-invasiveness of the method in biomedical analysis. In the first section we analyze the factors, which have significant influence on the SPME sampling device performance in the view of sampling safety and efficiency. In the later sections applicability of various SPME approaches for analysis of easily accessible samples routinely used for analysis (e.g., urine, blood) as well as limited availability samples (tissues) is discussed. Moreover, the examples of sampling alternative matrices such as hair, saliva, sweat or breath are presented. The advantages and limitation of the technology in the view of future development of SPME are also reviewed.
Collapse
|
26
|
Polyaniline sheathed electrospun nanofiber bar for in vivo extraction of trace acidic phytohormones in plant tissue. J Chromatogr A 2014; 1342:16-23. [DOI: 10.1016/j.chroma.2014.03.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 11/22/2022]
|
27
|
Gholivand MB, Shamsipur M, Shamizadeh M, Moradian R, Astinchap B. Cobalt oxide nanoparticles as a novel high-efficiency fiber coating for solid phase microextraction of benzene, toluene, ethylbenzene and xylene from aqueous solutions. Anal Chim Acta 2014; 822:30-6. [DOI: 10.1016/j.aca.2014.02.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/13/2014] [Accepted: 02/22/2014] [Indexed: 11/24/2022]
|
28
|
Ma C, Ji J, Tan C, Chen D, Luo F, Wang Y, Chen X. Headspace solid-phase microextraction coupled to gas chromatography for the analysis of aldehydes in edible oils. Talanta 2014; 120:94-9. [DOI: 10.1016/j.talanta.2013.11.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 11/28/2022]
|
29
|
Cudjoe E, Bojko B, de Lannoy I, Saldivia V, Pawliszyn J. Solid-Phase Microextraction: A Complementary In Vivo Sampling Method to Microdialysis. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Cudjoe E, Bojko B, de Lannoy I, Saldivia V, Pawliszyn J. Solid-Phase Microextraction: A Complementary In Vivo Sampling Method to Microdialysis. Angew Chem Int Ed Engl 2013; 52:12124-6. [DOI: 10.1002/anie.201304538] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/29/2013] [Indexed: 11/11/2022]
|
31
|
Yang C, Wang J, Li D. Microextraction techniques for the determination of volatile and semivolatile organic compounds from plants: a review. Anal Chim Acta 2013; 799:8-22. [PMID: 24091369 DOI: 10.1016/j.aca.2013.07.069] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 11/25/2022]
Abstract
Vegetables and fruits are necessary for human health, and traditional Chinese medicine that uses plant materials can cure diseases. Thus, understanding the composition of plant matrix has gained increased attention in recent years. Since plant matrix is very complex, the extraction, separation and quantitation of these chemicals are challenging. In this review we focus on the microextraction techniques used in the determination of volatile and semivolatile organic compounds (such as esters, alcohols, aldehydes, hydrocarbons, ketones, terpenes, sesquiterpene, phenols, acids, plant secondary metabolites and pesticides) from plants (e.g., fruits, vegetables, medicinal plants, tree leaves, etc.). These microextraction techniques include: solid phase microextraction (SPME), stir-bar sorptive extraction (SBSE), single drop microextraction (SDME), hollow fiber liquid phase microextraction (HF-LPME), dispersive liquid liquid microextraction (DLLME), and gas purge microsyringe extraction (GP-MSE). We have taken into consideration papers published from 2008 to the end of January 2013, and provided critical and interpretative review on these techniques, and formulated future trends in microextraction for the determination of volatile and semivolatile compounds from plants.
Collapse
Affiliation(s)
- Cui Yang
- Key Laboratory of Natural Resource of the Changbai Mountain and Functional Molecular (Yanbian University), Ministry of Education, Park Road 977, Yanji City, Jilin Province 133002, China
| | | | | |
Collapse
|
32
|
Feng J, Qiu H, Liu X, Jiang S, Feng J. The development of solid-phase microextraction fibers with metal wires as supporting substrates. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.01.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Abstract
Conventional in vitro or ex vivo bioanalytical quantitative sample preparation methods for the determination of compounds in biological tissues are often coupled with challenges in obtaining an assay representative of the system of interest. The rising interest in in vivo microsampling bioanalytical methods is due to the unique advantages they offer over their in vitro counterparts. In vivo solid-phase microextraction (SPME), a diffusion-based microsampling tool, has been successfully applied in recent studies to various biological systems. This review presents recent trends in tissue bioanalysis using in vivo SPME as a sample preparation tool. Efforts were made to discuss the various bioapplications of the method while highlighting possible strategies for improved sensitivity where needed. In vivo SPME devices currently employed for the various applications have also been described. In addition, we highlight selectivity of a new class of biocompatible coatings that can potentially improve the coverage of metabolites for untargeted metabolomics.
Collapse
|
34
|
Bojko B, Cudjoe E, Gómez-Ríos GA, Gorynski K, Jiang R, Reyes-Garcés N, Risticevic S, Silva ÉA, Togunde O, Vuckovic D, Pawliszyn J. SPME – Quo vadis? Anal Chim Acta 2012; 750:132-51. [DOI: 10.1016/j.aca.2012.06.052] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/29/2012] [Accepted: 06/30/2012] [Indexed: 01/01/2023]
|
35
|
Zhang X, Oakes KD, Hoque ME, Luong D, Taheri-Nia S, Lee C, Smith BM, Metcalfe CD, de Solla S, Servos MR. Depth-Profiling of Environmental Pharmaceuticals in Biological Tissue by Solid-Phase Microextraction. Anal Chem 2012; 84:6956-62. [DOI: 10.1021/ac3004659] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xu Zhang
- Department of Biology, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Ken D. Oakes
- Department of Biology, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Md Ehsanul Hoque
- Water Quality Centre, Trent University, Peterborough, Ontario, K9J 7B8, Canada
| | - Di Luong
- Department of Biology, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Shirin Taheri-Nia
- Department of Biology, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Claudia Lee
- Department of Biology, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Brendan M. Smith
- Department of Biology, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Chris D. Metcalfe
- Water Quality Centre, Trent University, Peterborough, Ontario, K9J 7B8, Canada
| | - Shane de Solla
- Wildlife and Landscape Science
Directorate, Environment Canada, 867 Lakeshore
Road, Burlington, Ontario, L7R 4A6
| | - Mark R. Servos
- Department of Biology, University of Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
36
|
Togunde OP, Oakes KD, Servos MR, Pawliszyn J. Determination of pharmaceutical residues in fish bile by solid-phase microextraction couple with liquid chromatography-tandem mass spectrometry (LC/MS/MS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:5302-5309. [PMID: 22510069 DOI: 10.1021/es203758n] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The present study investigates possible uptake and bioconcentration of different classes of pharmaceuticals residues (organic contaminants) in fish bile using a simplified analytical methodology based on solid phase microextration (SPME). The use of solid phase microextraction (SPME), as a simple analytical tool, to screen for target pharmaceuticals in fish bile samples was validated in rainbow trout (Oncorhynchus mykiss) following short-term laboratory exposures to carbamazepine and fluoxetine. While fish bioconcentrated both fluoxetine and carbamazepine from exposure water, fluoxetine accumulated to a greater degree in bile than carbamazepine. Good agreement was obtained for both analytes in bile samples between SPME and traditional liquid (solvent) extraction approaches (R(2) > 0.99). The field application of SPME sampling was further demonstrated in fathead minnow (Pimephales promelas), a small-bodied fish caged upstream and downstream of a local wastewater treatment plant where fluoxetine, atorvastatin, and sertraline were detected in fish bile at the downstream location. SPME is a promising analytical tool for investigating the bioconcentration of trace contaminants in fish bile, facilitating detection of trace environmental contaminants otherwise undetectable due to low concentrations in the environment and biological tissues as well as the complexity of the sample matrices.
Collapse
Affiliation(s)
- Oluranti P Togunde
- Department of Chemistry, University of Waterloo, Ontario, N2L 3G1, Canada
| | | | | | | |
Collapse
|
37
|
A Novel SPME Fiber Chemically Linked with 1-Vinyl-3-hexadecylimidazolium hexafluorophosphate Ionic Liquid Coupled with GC for the Simultaneous Determination of Pyrethroids in Vegetables. Chromatographia 2012. [DOI: 10.1007/s10337-012-2244-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Analytical procedures for the determination of emerging organic contaminants in plant material: A review. Anal Chim Acta 2012; 722:8-20. [DOI: 10.1016/j.aca.2012.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 11/19/2022]
|
39
|
Ji J, Liu H, Chen J, Zeng J, Huang J, Gao L, Wang Y, Chen X. ZnO nanorod coating for solid phase microextraction and its applications for the analysis of aldehydes in instant noodle samples. J Chromatogr A 2012; 1246:22-7. [PMID: 22342186 DOI: 10.1016/j.chroma.2012.01.080] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 11/16/2022]
Abstract
Zinc oxide (ZnO) nanorods based solid-phase microextraction (SPME) coating was directly prepared on stainless steel wires using in situ hydrothermal growth method. This coating has high surface-to-volume ratio with a diameter in the range of 300-500 nm and a thickness of about 3-5 μm. A guiding tube was introduced into the laboratory-made SPME fiber to protect the ZnO nanorods coating from shaving, which significantly improved the method repeatability and prolonged the service life of the coating. The extraction properties of the prepared fiber were investigated using headspace SPME (HS-SPME) coupled to gas chromatography (GC) for the determination of aldehydes in instant noodle samples. The extraction efficiency of the coating for the five aldehydes was comparable to that of a commercial 85 μm Carboxen/Polydimethylsiloxane fiber, which has been reported to have best affinity towards aldehydes among all commercial fibers. The linear ranges of the proposed HS-SPME-GC method were from 0.05 to 5 μg g⁻¹ (hexanal, nonanal and decanal) and 0.1-5 μg g⁻¹ (heptanal and octanal), with the correlation coefficients from 0.990 to 0.999. The method developed was successfully applied to the determination of five aldehydes in instant noodle samples, and the recoveries were found to be 70.5-129% at the spiking level of 2 μg g⁻¹.
Collapse
Affiliation(s)
- Jiaojiao Ji
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory of Analytical Sciences of Xiamen & State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang X, Oakes KD, Wang S, Servos MR, Cui S, Pawliszyn J, Metcalfe CD. In vivo sampling of environmental organic contaminants in fish by solid-phase microextraction. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2011.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Zhang X, Oakes KD, Luong D, Metcalfe CD, Servos MR. Solid-phase microextraction coupled to LC-ESI-MS/MS: evaluation and correction for matrix-induced ionization suppression/enhancement for pharmaceutical analysis in biological and environmental samples. Anal Chem 2011; 83:6532-8. [PMID: 21770444 DOI: 10.1021/ac200718d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solid-phase microextraction (SPME) coupled to liquid chromatography with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) has been widely used to analyze biological fluids, tissues, and environmental matrixes for a variety of organic compounds including pharmaceuticals. However, effects of the sample matrix coextracted by SPME on tandem mass spectrometry analysis have not been systematically investigated. In this study, we characterized the complexity of matrix effects (ME) by analyzing SPME extracts of fish muscle and brain tissue, blood, and bile, as well as tap water, surface water, and the influent and effluent from a wastewater treatment plant. Significant enhancement or suppression of ionization (>15%) was observed with all biological and environmental samples. Intrasample ME variability was assessed through comparison of multiple samples from the same sample matrix, while intersample variability between different experimental subjects or varying sample treatment, storage, and sampling conditions were evaluated. To correct for ME, an isotopic internal standard (IIS) method was developed, with the strengths and limitations of the approach discussed. This study provides a framework for applying SPME within complex sample systems where the influences of ME are inevitable, thus ensuring more accurate quantitation of analytes during biological and environmental analysis.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | | | | | | | | |
Collapse
|
42
|
Lord HL, Zhang X, Musteata FM, Vuckovic D, Pawliszyn J. In vivo solid-phase microextraction for monitoring intravenous concentrations of drugs and metabolites. Nat Protoc 2011; 6:896-924. [DOI: 10.1038/nprot.2011.329] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
In Vivo Solid-Phase Microextraction in Metabolomics: Opportunities for the Direct Investigation of Biological Systems. Angew Chem Int Ed Engl 2011; 50:5618-28. [DOI: 10.1002/anie.201006896] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Indexed: 12/31/2022]
|
44
|
Vuckovic D, Risticevic S, Pawliszyn J. In-vivo-Festphasen-Mikroextraktion in der Metabolomik: Möglichkeiten zur direkten Erforschung biologischer Systeme. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006896] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
45
|
Vuckovic D, de Lannoy I, Gien B, Yang Y, Musteata FM, Shirey R, Sidisky L, Pawliszyn J. In vivo solid-phase microextraction for single rodent pharmacokinetics studies of carbamazepine and carbamazepine-10,11-epoxide in mice. J Chromatogr A 2011; 1218:3367-75. [DOI: 10.1016/j.chroma.2010.07.060] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/19/2010] [Accepted: 07/24/2010] [Indexed: 10/19/2022]
|
46
|
Affiliation(s)
- Ana Ballesteros-Gómez
- Department of Analytical Chemistry, Edificio Anexo Marie Curie, Campus de Rabanales, 14071 Córdoba, Spain
| | - Soledad Rubio
- Department of Analytical Chemistry, Edificio Anexo Marie Curie, Campus de Rabanales, 14071 Córdoba, Spain
| |
Collapse
|
47
|
Vuckovic D, de Lannoy I, Gien B, Shirey RE, Sidisky LM, Dutta S, Pawliszyn J. In vivo solid-phase microextraction: capturing the elusive portion of metabolome. Angew Chem Int Ed Engl 2011; 50:5344-8. [PMID: 21509917 DOI: 10.1002/anie.201006715] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Indexed: 11/07/2022]
Affiliation(s)
- Dajana Vuckovic
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, N2L 3G1, Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Vuckovic D, de Lannoy I, Gien B, Shirey RE, Sidisky LM, Dutta S, Pawliszyn J. In Vivo Solid-Phase Microextraction: Capturing the Elusive Portion of Metabolome. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006715] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Zhang X, Oakes KD, Hoque ME, Luong D, Metcalfe CD, Pawliszyn J, Servos MR. Pre-Equilibrium Solid-Phase Microextraction of Free Analyte in Complex Samples: Correction for Mass Transfer Variation from Protein Binding and Matrix Tortuosity. Anal Chem 2011; 83:3365-70. [DOI: 10.1021/ac2004899] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Md Ehsanul Hoque
- Worsfold Water Quality Center, Trent University, Peterborough, Ontario K9J 7B8, Canada
| | | | - Chris D. Metcalfe
- Worsfold Water Quality Center, Trent University, Peterborough, Ontario K9J 7B8, Canada
| | | | | |
Collapse
|
50
|
Zhang X, Oakes KD, Luong D, Metcalfe CD, Pawliszyn J, Servos MR. Kinetically-Calibrated Solid-Phase Microextraction Using Label-Free Standards and Its Application for Pharmaceutical Analysis. Anal Chem 2011; 83:2371-7. [DOI: 10.1021/ac200032k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Chris D. Metcalfe
- Worsfold Water Quality Center, Trent University, Peterborough, Ontario, K9J 7B8, Canada
| | | | | |
Collapse
|