1
|
Cui L, Li H, Shi W, Jing Y, Sun S, Ai S, Guo Z. The coordination effect of organic ligands in Ce-MOF brings about atomically dispersed Fe in CeO 2 for TAC detection in commercial samples. Talanta 2024; 285:127405. [PMID: 39689638 DOI: 10.1016/j.talanta.2024.127405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 12/19/2024]
Abstract
Reducing the size of active species is a powerful means to improve the utilization rate of active metals and enhance the properties of bimetallic nanozymes. In this work, Fe was introduced into Ce-MOF through the coordination of Fe3+ and organic ligands, and the coordination effect resulted in atomically dispersed Fe in the derived Fe/CeO2 nanozyme. Due to the atomically dispersed Fe embedded in the lattice of CeO2, a large number of defect sites were generated, endowing the nanozyme with excellent peroxidase (POD)-like activity. The constructed total antioxidant capacity (TAC) sensor based on the POD-like activity of Fe1.01/CeO2 nanozyme displayed a very wide linear concentration range for AA, Cys, Glu and Trolox. More importantly, this TAC sensor can be applied to the TAC detection in vitamin C tablets and beverages. This work provides theoretical guidance for the synthesis of high-performance bimetallic nanozymes for TAC detection.
Collapse
Affiliation(s)
- Lulu Cui
- School of Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271000, PR China
| | - Houshen Li
- School of Chemistry and Materials Science, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271000, PR China
| | - Weijie Shi
- School of Chemistry and Materials Science, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271000, PR China
| | - Yingying Jing
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, PR China
| | - Shuhong Sun
- School of Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271000, PR China; Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271000, PR China.
| | - Shiyun Ai
- School of Chemistry and Materials Science, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271000, PR China; School of Food Science and Engineering, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271000, PR China.
| | - Zeyi Guo
- School of Chemistry and Materials Science, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271000, PR China; School of Food Science and Engineering, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271000, PR China.
| |
Collapse
|
2
|
Kulandaivel S, Wang YM, Chen SF, Lin CH, Yeh YC. A Cu-based metal-organic framework synthesized via a green method exhibits unique catecholase-like activity for epigallocatechin gallate detection in teas. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8307-8315. [PMID: 39513318 DOI: 10.1039/d4ay01733a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Tea contains various antioxidant compounds, including polyphenols, catechins, theaflavins, theasinensins, and flavonoids. Among these, epigallocatechin gallate (EGCG) is a crucial antioxidant recognized for its potent bioactivity. This study presents the synthesis of a highly selective Cu-PyC NH4+-based metal-organic framework (MOF) nanozyme that exhibits catecholase-like activity to assess the antioxidant capabilities of EGCG. The developed nanozyme demonstrates robust stability and specificity in oxidizing 3,5-di-tert-butylcatechol (3,5-DTBC), showcasing unique catecholase activity distinct from that of typical oxidase nanozymes. Furthermore, this nanozyme displays exceptional efficacy, sensitivity, and selectivity in targeting EGCG, enabling accurate quantification of EGCG levels in commercial tea products via UV-spectroscopy. The assay exhibits a linear response within the EGCG concentration range of 0.5-125 μM, with a detection limit of 0.83 μM, alongside excellent reproducibility and stability. These findings suggest that this nanozyme offers a promising approach for precisely evaluating antioxidants, with significant implications for the food and beverage industry and health research.
Collapse
Affiliation(s)
| | - Yu-Meng Wang
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
| | - Sung-Fang Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
| |
Collapse
|
3
|
Zheng X, Shi Z, Han C, Mu H, Cheng S, Yan X. Convenient in situ self-assembled formation of dual-functional Ag/MXene nanozymes for efficient chemiluminescence sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8324-8332. [PMID: 39526932 DOI: 10.1039/d4ay00584h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
MXenes are attracting increasing interest as a low-cost carrier for the development of nanozymes with enhanced peroxidase or oxidase-like activity. In this work, silver nanoparticles (AgNPs) were synthesized and loaded on Ti3C2 MXene nanosheets (denoted as Ag/MXene) by a simple method, using MXene as a support and reducing agent. The synthesized Ag/MXene composites exhibited satisfactory stability and the peroxidase activity was higher than that of the single components. In the presence of luminol and hydrogen peroxide (H2O2), Ag/MXene could catalyze H2O2 to produce reactive oxygen species (ROS) and act on luminol to generate strong chemiluminescent (CL) signals. Free radical scavenging experiments and electron paramagnetic resonance spectroscopy confirmed the production of these radicals. In this regard, we fabricated a facile biosensor for glutathione (GSH) and uric acid (UA) detection and the results showed good linear relationship between GSH and UA. The linear ranges of GSH and UA were 50 nM to 20 μM and 1 μM to 35 μM, respectively, with low detection limits of 0.83 nM and 0.37 μM. The sensor platform established in this study provides the possibility for developing MXene biosensors with high sensitivity and performance, and lays the solid foundation for expanding the application of MXene in biosensors.
Collapse
Affiliation(s)
- Xiangjuan Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Zhiying Shi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Chun Han
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Centre for Disease Control and Prevention, Nanchang, P. R. China, 330038
| | - Hongyi Mu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Shiyun Cheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xiluan Yan
- College of Pharmacy, Nanchang University, Nanchang 330031, China.
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|
4
|
Shi Y, Zheng X, Zhao Q, Feng Y, Zhang H, Gao G, Wang H, Zhi J. Onion-Like Carbon Nanozyme: Controlling Peroxidase-Like Activity by Carbon Hybridization Patterns for Antibacterial Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405577. [PMID: 39359023 DOI: 10.1002/smll.202405577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Indexed: 10/04/2024]
Abstract
Since the inception of the concept of nanozymes, there has been a growing interest in the rational design and controllable synthesis of nanozymes with adjustable activities. In this study, onion-liked carbon (OLC) with remarkable peroxidase-like (POD) activity are developed through delicately controlling the sp2/sp3 configuration. The investigation reveals that enzymatic activity of OLC increases first and then decreases with the increased graphitic degree, with the highest activity observed at a moderate sp2/sp3 ratio of 17.17%. A series of experiments and theoretical calculations are conducted to elucidate the catalytic mechanism, and the structure-dependent activity is attributed to a synergistic effect of surface adsorption and electron transfer processes. The POD activity enables the OLC to catalyze the decomposition of H2O2, producing reactive oxygen species for eradicating Gram-positive and Gram-negative bacteria. Additionally, toxicity tests based on nematode and mouse models confirmed the excellent biocompatibility of OLC. Furthermore, the OLC exhibited antibacterial ability and promoted bacterial-infected wound healing in a mouse model. This work not only gives a deeper understanding of the structure-activity relationship and catalytic mechanism of carbon-based nanozymes, but also unveils a novel avenue for antibacterial therapy and wound healing applications.
Collapse
Affiliation(s)
- Yuxi Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangyun Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuchen Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hanxin Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanyue Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Wang
- Cancer Center, Peking University Third Hospital, Beijing, 100191, P. R. China
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Huang L, Pu H, Sun DW. Spatiotemporally Guided Single-Atom Bionanozyme for Targeted Antibiofilm Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407747. [PMID: 39370579 DOI: 10.1002/smll.202407747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Indexed: 10/08/2024]
Abstract
The heterogeneous and dynamic microenvironment of biofilms complicates bacterial infection treatment. Nanozyme catalytic therapy has recently been promising in treating biofilm infections. However, active nanozymes designed with the required precision targeting the biofilm microenvironment are lacking. This work proposes a spatiotemporally guided single-atom bionanozyme (BioSAzyme) for targeted antibiofilm therapy based on protein engineering of copper single-atom nanozyme (Cu SAzyme). The Cu SAzyme, synthesized via a novel mechanochemistry-assisted method, features highly accessible Cu-N4 active sites exposed on 2D N-doped carbon, exhibiting excellent triple enzyme-like activities according to experimental results and density functional theory calculations. Inheriting biofunctionality from both glucose oxidase and concanavalin A, BioSAzyme can localize the biofilm glycocalyx and catalyze endogenous glucose into H₂O₂ and gluconic acid, thus triggering multiplex cascade reactions with pH self-adaption to consume glucose and glutathione and generate •OH radicals. This spatiotemporally guided bionanocatalytic agent effectively inhibits E. coli O157: H7 and methicillin-resistant S. aureus biofilms in vitro and in vivo. Taking together, this work opens up new avenues for the rational design of single-atom nanozymes for precise antibiofilm therapy.
Collapse
Affiliation(s)
- Lunjie Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin, D04 V1W8, Ireland
| |
Collapse
|
6
|
Xu S, Zhang H, Qian Z, Yuan W. pH-Responsive injectable self-healing hydrogels loading Au nanoparticles-decorated bimetallic organic frameworks for synergistic sonodynamic-chemodynamic-starvation-chemo therapy of cancer. J Colloid Interface Sci 2024; 675:746-760. [PMID: 38996704 DOI: 10.1016/j.jcis.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
A novel and efficient cancer therapy was developed using a smart hydrogel containing multifunctional bimetallic organic frameworks and anticancer drugs. The injectable self-healing hydrogel with pH-responsiveness was constructed through borate ester and imine bonds among dopamine-grafted sodium alginate (SADA), hydroxypropyl chitosan (HPCS) and 2-formylphenylboronic acid (2-FPBA). The Au nanoparticles-decorated Ti/Fe bimetallic organic framework tetragonal nanosheets (Au/TF-MOF TNS) were synthesized and incorporated into the hydrogel with the anticancer drugs doxorubicin (DOX). Upon intratumoral injection of nanocomposite hydrogel, the acidic tumor microenvironment triggered the cleavage of borate ester and imine bonds, causing the hydrogel to break down and accelerating the release of both Au/TF-MOF TNS and DOX. These Au/TF-MOF TNS functioned as nanozymes, producing hydroxyl radicals (·OH) for chemodynamic therapy (CDT), generating oxygen (O2) to support sonodynamic therapy (SDT), and depleting glucose for starvation therapy (ST). Additionally, the Au/TF-MOF TNS served as sonosensitizers, capable of converting O2 into singlet oxygen (1O2) upon ultrasound irradiation to achieve SDT. Therefore, this nanocomposite hydrogel system enabled synergistic sonodynamic-chemodynamic-starvation-chemo therapy (SDT-CDT-ST-CT) of cancer, presenting a promising platform for advanced cancer therapy strategies.
Collapse
Affiliation(s)
- Sicheng Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Hanyan Zhang
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Zhiyi Qian
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China.
| |
Collapse
|
7
|
Chen X, Zhang X, Zhao Y. Metal-organic framework-based hybrids with photon upconversion. Chem Soc Rev 2024. [PMID: 39540626 DOI: 10.1039/d4cs00571f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Upconversion materials (UCMs) featuring an anti-Stokes type emission establish them as an important category of photoluminescent materials. Metal-organic frameworks (MOFs) are rapidly gaining prominence as a class of versatile materials with favourable physical and chemical properties, including high porosity, controllable pore size, flexible design, and diverse functional sites. To endow MOFs with upconversion capability and improve the properties and performance of UCMs, the hybrids integrating UCMs and MOFs are proven to be successful. This review focuses on the research advancements of upconverting MOF-based hybrids, encompassing classifications, luminescence mechanisms, designs, properties, and applications in energy, catalysis, and biomedical fields. The analyses on the functions of upconversion and MOFs, as well as the advantages and disadvantages of various upconverting MOF-based hybrids, are included. Future research directions spanning from properties and performance to applications are explored. This review will be valuable in highlighting the research accomplishments, inspiring more ideas, facilitating deeper investigations in diverse avenues, and further advancing the research field.
Collapse
Affiliation(s)
- Xiaokai Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang link, Singapore, 637371, Singapore.
| | - Xiaodong Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang link, Singapore, 637371, Singapore.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang link, Singapore, 637371, Singapore.
| |
Collapse
|
8
|
Xu H, Ge L, Zhou S, Guo Q, Mondarte EAQ, Jiang X, Yu J. Enzyme-Mimetic, Cascade Catalysis-Based Triblock Polypeptide-Assembled Micelles for Enhanced Chemodynamic Therapy. Biomacromolecules 2024; 25:7349-7360. [PMID: 39479882 DOI: 10.1021/acs.biomac.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Peptides and their conjugates are appealing as molecular scaffolds for constructing supramolecular biomaterials from the bottom up. Through strategic sequence design and interaction modulation, these peptides can self-assemble into diverse nanostructures that can, in turn, mimic the structural and catalytic functions of contemporary proteins. Here, inspired by the histidine brace active site identified in the metalloenzyme, we developed a triblock polypeptide with a hydrophobic polyleucine segment, a hydrophilic polylysine segment, and a terminal oligohistidine segment. This polypeptide demonstrates tunable and adaptive self-assembly morphologies. Moreover, copper ions can interact with the oligohistidine chelator and mediate the supramolecular assembly, generating metal-ligand centers for redox flow. The triblock polypeptide-based peptide micelles show Fenton-type activity with high substrate affinity when coassembled with copper ions. We have also engineered therapeutic micelles by coassembling two polypeptides, one integrated with copper ions and the other conjugated with glucose oxidase. This coassembled nanoplatform shows high in vitro and in vivo antitumor efficacy through a mechanism that combines triggered starvation and chemodynamic therapy. The versatility of this polypeptide sequence, which is compatible with various metal ions and functional ligands, paves the way for a broad spectrum of therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Hanyan Xu
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Lei Ge
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 639798 Singapore
| | - Sensen Zhou
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qi Guo
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | | | - Xiqun Jiang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 639798 Singapore
| |
Collapse
|
9
|
Teng R, Li M, Chen Z, Lin J, Zhang Y, Li H, Yan Z, Zhang D, Ding C, Huang Y. Intelligent Screening of Prostate Cancer Individuals Using an Enzyme-Assisted Multicolor Visualization Platform. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2408825. [PMID: 39513381 DOI: 10.1002/advs.202408825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/25/2024] [Indexed: 11/15/2024]
Abstract
Rapid and intelligent identification of prostate cancer (PCa) is critical for early diagnosis. Herein, a convenient, reliable, and intelligent strategy is proposed to screen PCa individuals through indirectly quantifying sarcosine (Sar), an early indicator of PCa, in clinical urine samples. Success is achieved by integrating sarcosine oxidase (SOX) as a specific recognition unit; nanozyme-assisted multicolor intelligent visualization platform as a signal reporter. With the Fe-MOFs and peroxidase, the synergetic action of SOX and response gold nanorods (Au NRs) is controlled etched to exhibit a multicolored signal. The sensor exhibits excellent linearity with Sar within 1-60 × 10-6 m, boasting a remarkable detection limit of 0.12 × 10-6 m. The RGB value of the display color can be directly extracted using a mobile phone camera. PCa diagnosis can be swiftly made (within 15 min) and directly by identifying two RGB colors (R < 175 or B > 135). The enzyme-assisted multicolor intelligent visualization platform is adept at detecting minute differences in Sar concentration in urine samples between PCa patients and healthy individuals. The concept of enzyme-assisted multicolor sensing can be further expanded by modifying the type of immobilized enzymes, providing a valuable guideline for the rational design of multiple probes to measure specific biomarkers in biological samples.
Collapse
Affiliation(s)
- Ruomei Teng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Department of Orthopedics, Hangzhou Normal University Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ming Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Department of Orthopedics, Hangzhou Normal University Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Department of Urology & Nephrology, The First Affiliated Hospital of Ningbo University, 59, Liuting Street, Ningbo, Zhejiang, 315010, China
| | - Zikang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Department of Orthopedics, Hangzhou Normal University Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jianli Lin
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Department of Orthopedics, Hangzhou Normal University Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yuhan Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Department of Orthopedics, Hangzhou Normal University Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hang Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Department of Orthopedics, Hangzhou Normal University Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zejun Yan
- Department of Urology & Nephrology, The First Affiliated Hospital of Ningbo University, 59, Liuting Street, Ningbo, Zhejiang, 315010, China
| | - Dingyuan Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Department of Orthopedics, Hangzhou Normal University Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Caiping Ding
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Department of Orthopedics, Hangzhou Normal University Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Department of Orthopedics, Hangzhou Normal University Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| |
Collapse
|
10
|
Zhang Y, Zhang C, Qian W, Lei F, Chen Z, Wu X, Lin Y, Wang F. Recent advances in MOF-based nanozymes: Synthesis, activities, and bioapplications. Biosens Bioelectron 2024; 263:116593. [PMID: 39059178 DOI: 10.1016/j.bios.2024.116593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Nanozymes have garnered considerable research interest for their unique capacity to bridge nanotechnology and biology. Current studies predominantly concentrate on exploring nanozymes with diverse catalytic activities and their potential applications across various disciplines. Among them, nanoscale metal-organic frameworks (MOFs) are promising nanomaterials for constructing nanozymes. In this review, we firstly introduce the general construction strategies for MOF-based nanozymes. In addition, we also classify the MOF-based nanozymes in detail based on their catalytic performance. Thirdly, the recent research progress of MOF-based nanozymes in the field of biosensing, cancer therapy, antibacterial infection, and antioxidation are also comprehensively reviewed. Finally, we discuss the current challenges and future perspectives of MOF-based nanozymes, with the aim of assisting in their construction and maximizing their potential in bioapplications. It is hoped that we could provide scientists in materials science and biomedical research with valuable and comprehensive information, fostering advancements in interdisciplinary fields.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China.
| | - Chengfeng Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China
| | - Wanlong Qian
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China
| | - Fang Lei
- School of Public Health, Nantong University, Nantong, 226019, China
| | - Zhongping Chen
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China
| | - Xiaomei Wu
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China
| | - Youhui Lin
- Department of Physics, Xiamen University, Xiamen, 361005, China.
| | - Faming Wang
- School of Public Health, Nantong University, Nantong, 226019, China.
| |
Collapse
|
11
|
Park YS, Park BU, Jeon HJ. Advances in machine learning-enhanced nanozymes. Front Chem 2024; 12:1483986. [PMID: 39483853 PMCID: PMC11524833 DOI: 10.3389/fchem.2024.1483986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Nanozymes, synthetic nanomaterials that mimic the catalytic functions of natural enzymes, have emerged as transformative technologies for biosensing, diagnostics, and environmental monitoring. Since their introduction, nanozymes have rapidly evolved with significant advancements in their design and applications, particularly through the integration of machine learning (ML). Machine learning (ML) has optimized nanozyme efficiency by predicting ideal size, shape, and surface chemistry, reducing experimental time and resources. This review explores the rapid advancements in nanozyme technology, highlighting the role of ML in improving performance across various bioapplications, including real-time monitoring and the development of chemiluminescent, electrochemical and colorimetric sensors. We discuss the evolution of different types of nanozymes, their catalytic mechanisms, and the impact of ML on their property optimization. Furthermore, this review addresses challenges related to data quality, scalability, and standardization, while highlighting future directions for ML-driven nanozyme development. By examining recent innovations, this review highlights the potential of combining nanozymes with ML to drive the development of next-generation diagnostic and detection technologies.
Collapse
Affiliation(s)
- Yeong-Seo Park
- Department of Advanced Mechanical Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Byeong Uk Park
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Hee-Jae Jeon
- Department of Advanced Mechanical Engineering, Kangwon National University, Chuncheon, Republic of Korea
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
12
|
Xie L, Wu H, Li Y, Shi L, Liu Y. Recent Development of Nanozymes for Combating Bacterial Drug Resistance: A Review. Adv Healthc Mater 2024:e2402659. [PMID: 39388414 DOI: 10.1002/adhm.202402659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/31/2024] [Indexed: 10/12/2024]
Abstract
The World Health Organization has warned that without effective action, deaths from drug-resistant bacteria can exceed 10 million annually, making it the leading cause of death. Conventional antibiotics are becoming less effective due to rapid bacterial drug resistance and slowed new antibiotic development, necessitating new strategies. Recently, materials with catalytic/enzymatic properties, known as nanozymes, have been developed, inspired by natural enzymes essential for bacterial eradication. Unlike recent literature reviews that broadly cover nanozyme design and biomedical applications, this review focuses on the latest advancements in nanozymes for combating bacterial drug resistance, emphasizing their design, structural characteristics, applications in combination therapy, and future prospects. This approach aims to promote nanozyme development for combating bacterial drug resistance, especially towards clinical translation.
Collapse
Affiliation(s)
- Lingping Xie
- The People's Hospital of Yuhuan, Taizhou, Zhejiang, 317600, China
| | - Haoyue Wu
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Yuanfeng Li
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yong Liu
- The People's Hospital of Yuhuan, Taizhou, Zhejiang, 317600, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| |
Collapse
|
13
|
Zhao Y, Pan Y, Sun H, Huo P, Wang G, Liu S. A Nanoparticle-Coated Cellulose Acetate Membrane for Highly Efficient, Low-Cost Circulating Tumor Cell Detection. BIOSENSORS 2024; 14:472. [PMID: 39451685 PMCID: PMC11505997 DOI: 10.3390/bios14100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
Detecting circulating tumor cells has exhibited great significance in treating cancers since its concentration is an index strongly associated with the development and transfer of the tumor. However, the present commercial method for CTC detection is still expensive, because special antibodies and complicated devices must be used for cell separation and imaging. Hence, it is quite necessary to apply alternative materials and methods to decrease the cost of CTC detection. In this article, we coated a cellulose acetate membrane with nanoparticles formed by the polymerization of melamine and furfural, creating a surface with nanoscale roughness for the highly efficient capture of the sparse CTCs in a blood sample. Subsequently, the CTCs on the surface can be quantitatively detected by colorimetry with the aid of a COF-based nanozyme. The detection limit (LOD) can be as low as 3 cells/mL, which is the lowest LOD among the colorimetric methods to our knowledge. Considering the low cost of fabricating the membrane for CTC capture and the robustness of nanozymes compared with natural enzymes, this CTC detection approach displays great potential to decrease the financial burden of commercial CTC detection.
Collapse
Affiliation(s)
- Yize Zhao
- Key Laboratory of Bio-Based Materials Science & Technology (Ministry of Education), College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China;
| | - Yaqi Pan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China;
| | - Hao Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China;
| | - Pengfei Huo
- Key Laboratory of Bio-Based Materials Science & Technology (Ministry of Education), College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China;
| | - Guangtong Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Shaoqin Liu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
14
|
Ma X, Ge Y, Xia N. Overview of the Design and Application of Dual-Signal Immunoassays. Molecules 2024; 29:4551. [PMID: 39407482 PMCID: PMC11477509 DOI: 10.3390/molecules29194551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/15/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Immunoassays have been widely used for the determination of various analytes in the fields of disease diagnosis, food safety, and environmental monitoring. Dual-signal immunoassays are now advanced and integrated detection technologies with excellent self-correction and self-validation capabilities. In this work, we summarize the recent advances in the development of optical and electrochemical dual-signal immunoassays, including colorimetric, fluorescence, surface-enhanced Raman spectroscopy (SERS), electrochemical, electrochemiluminescence, and photoelectrochemical methods. This review particularly emphasizes the working principle of diverse dual-signal immunoassays and the utilization of dual-functional molecules and nanomaterials. It also outlines the challenges and prospects of future research on dual-signal immunoassays.
Collapse
Affiliation(s)
- Xiaohua Ma
- Department of Physical and Healthy Education, Nanchang Vocational University, Nanchang 330000, China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China
| | - Yijing Ge
- Department of Physical and Healthy Education, Nanchang Vocational University, Nanchang 330000, China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
15
|
Zhao Y, Cheng J, Li Z, Wang J, Chen X. Nanozymes in Biomedical Applications: Innovations Originated From Metal-Organic Frameworks. Adv Healthc Mater 2024:e2402066. [PMID: 39319491 DOI: 10.1002/adhm.202402066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/18/2024] [Indexed: 09/26/2024]
Abstract
Nanozymes exhibit significant potential in medical theranostics, environmental protection, energy development, and biopharmaceuticals due to their exceptional catalytic performance. Compared with natural enzymes, nanozymes have the advantages of simple preparation and purification, convenient production and low cost. Therefore, it is very important to prepare nanozymes quickly and efficiently, which not only helps to expand their application scope, but also can further exert their great potential in various fields. Metal-organic frameworks (MOF) materials serve as versatile substrates for constructing nanozymes, offering unique advantages like adjustable structure, high specific surface area, and porous channels. MOF coordination nodes constructed from metal ions or metal clusters have unique properties that can be leveraged to tailor nanozyme characteristics for different applications. This review describes and analyzes recent methods for constructing nanozymes using MOF materials, and explores their application prospects in biomedicine. By expounding the preparation techniques and biomedical applications of nanozymes, this review aims to inspire researchers to develop innovative nanozyme materials and explore new application directions.
Collapse
Affiliation(s)
- Yuewu Zhao
- College of Pharmacy, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, 253023, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Junjie Cheng
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Zhen Li
- College of Pharmacy, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, 253023, China
| | - Jine Wang
- College of Pharmacy, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, 253023, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore
| |
Collapse
|
16
|
Liang JG, Gao WX, Chung CW, Dayao LA, Chou HH, Lin ZH, Wan D, Huang JH, Chen YC, Lu TT. Structure-dependent magnetoelectric and magnetothermal effects of MOF-derived zero-valence cobalt and iron oxide nanoparticles on a carbonaceous matrix. Chem Commun (Camb) 2024; 60:10136-10139. [PMID: 39189125 DOI: 10.1039/d4cc03743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
For the first time, the dominant magnetoelectric activity of ZIF-67-derived carbonaceous microparticles embedded with Co nanoparticles and distinctive magnetothermal effect of MIL-88B-derived Fe3O4 nanocubes decorated on carbonaceous microrods, respectively, were explored to be controlled by the structure of the MOF-derived electrically conductive carbonaceous matrix and metal nanoparticles.
Collapse
Affiliation(s)
- Jing-Guan Liang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Wei-Xiang Gao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chieh-Wei Chung
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Loise Ann Dayao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Zong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei, 106319, Taiwan
| | - Dehui Wan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jen-Huang Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
17
|
Yang Y, Li D, Qie S, Su S, Hu M. Composite Eu@Cd-CP as a fluorescent probe for the detection of some food additives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124401. [PMID: 38703414 DOI: 10.1016/j.saa.2024.124401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
A transition metal coordination polymer (CP), [Cd(Hdpcp)]n (Cd-CP) was prepared based on 3-(2,4-dicarboxyphenyl)-6-carboxypyridine ligand (H3dpcp), and then its composite Eu@Cd-CP was synthesized by the post-modification through loading Eu3+ ions on Cd-CP. Eu@Cd-CP has outstanding fluorescence stability in aqueous solution with a wide range of pH. Furthermore, Eu@Cd-CP can distinguish sodium salicylate (SS) and sodium dehydroacetate (SA) in some food additives by quenching the characteristic fluorescence of Eu3+ ion. Eu@Cd-CP is the first known CP-based fluorescent probe for selective detection of SS and SA. In addition, the fluorescence mechanisms of discerning above analytes by Eu@Cd-CP have been thoroughly evaluated. It has found that synergistic effect of the dynamic process, photoinduced electron transfer (PET) process, energy absorption competition, and formation of Eu-O bonding interactions in sensing SA lead to the fluorescence quenching of Eu@Cd-CP. The fluorescence response mechanism of Eu@Cd-CP with SA is ascribed to the combination of the dynamic process, PET process, and energy absorption competition. A series of portable devices based on Eu@Cd-CP including fluorescence test strips, lamp beads, and composite films were developed to discern SS and SA via visual changes in luminescence color. This composite material can be potentially used as a multifunctional fluorescent probe for practical applications.
Collapse
Affiliation(s)
- Yefang Yang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, Hohhot 010021, China
| | - Dechao Li
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, Hohhot 010021, China
| | - Shaowen Qie
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, Hohhot 010021, China
| | - Shuai Su
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, Hohhot 010021, China
| | - Ming Hu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, Hohhot 010021, China.
| |
Collapse
|
18
|
Miao Y, Zhao X, Sun X, Lv J. Wide temperature adaptive oxidase-like based on mesoporous manganese based metal-organic framework for detecting total antioxidant capacity. Food Chem 2024; 451:139378. [PMID: 38670019 DOI: 10.1016/j.foodchem.2024.139378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
Overcoming the intense variation of enzymatic activity among different temperatures is very critical in catalytic medicine and catalytic biology. Here, Mn-based metal-organic framework-based wide-temperature-adaptive mesoporous artificial enzymes (Mn-TMA-MOF) were designed and synthesized. The oxidase-like Mn-TMA-MOF showed excellent catalytic activity at 0-50 °C and avoided the activity loss and instability due to temperature variation that occurred. The excellent oxidase-like properties of Mn-TMA-MOF with wide temperature adaptativeness are mainly ascribed to the mixed oxidized state (Mn3+/Mn2+) and high substrate affinity (Km = 0.034 mM) of Mn. Moreover, the mesopore-micropores two-level structure of Mn-TMA-MOF provides a large space and surface area for enzyme catalysis. Based on the stability of Mn-TMA-MOF, we developed a colorimetric sensor that can detect total antioxidant capacity in fruits with a limit of detection up to 0.59 μM.
Collapse
Affiliation(s)
- Yanming Miao
- Shanxi Normal University, Taiyuan 030006, PR China.
| | - Xujuan Zhao
- Shanxi Normal University, Taiyuan 030006, PR China
| | - Xiaojie Sun
- Shanxi Normal University, Taiyuan 030006, PR China
| | - Jinzhi Lv
- Shanxi Normal University, Taiyuan 030006, PR China.
| |
Collapse
|
19
|
Xiong Y, Mi B, Liu G, Zhao Y. Microenvironment-sensitive nanozymes for tissue regeneration. Biomaterials 2024; 309:122585. [PMID: 38692147 DOI: 10.1016/j.biomaterials.2024.122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Tissue defect is one of the significant challenges encountered in clinical practice. Nanomaterials, including nanoparticles, nanofibers, and metal-organic frameworks, have demonstrated an extensive potential in tissue regeneration, offering a promising avenue for future clinical applications. Nonetheless, the intricate landscape of the inflammatory tissue microenvironment has engendered challenges to the efficacy of nanomaterial-based therapies. This quandary has spurred researchers to pivot towards advanced nanotechnological remedies for overcoming these therapeutic constraints. Among these solutions, microenvironment-sensitive nanozymes have emerged as a compelling instrument with the capacity to reshape the tissue microenvironment and enhance the intricate process of tissue regeneration. In this review, we summarize the microenvironmental characteristics of damaged tissues, offer insights into the rationale guiding the design and engineering of microenvironment-sensitive nanozymes, and explore the underlying mechanisms that underpin these nanozymes' responsiveness. This analysis includes their roles in orchestrating cellular signaling, modulating immune responses, and promoting the delicate process of tissue remodeling. Furthermore, we discuss the diverse applications of microenvironment-sensitive nanozymes in tissue regeneration, including bone, soft tissue, and cartilage regeneration. Finally, we shed our sights on envisioning the forthcoming milestones in this field, prospecting a future where microenvironment-sensitive nanozymes contribute significantly to the development of tissue regeneration and improved clinical outcomes.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Bobin Mi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
20
|
Bagherpour S, Pérez-García L. Recent advances on nanomaterial-based glutathione sensors. J Mater Chem B 2024; 12:8285-8309. [PMID: 39081041 DOI: 10.1039/d4tb01114g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Glutathione (GSH) is one of the most common thiol-containing molecules discovered in biological systems, and it plays an important role in many cellular functions, where changes in physiological glutathione levels contribute to the progress of a variety of diseases. Molecular imaging employing fluorescent probes is thought to be a sensitive technique for online fluorescence detection of GSH. Although various molecular probes for (intracellular) GSH sensing have been reported, some aspects remain unanswered, such as quantitative intracellular analysis, dynamic monitoring, and compatibility with biological environment. Some of these drawbacks can be overcome by sensors based on nanostructured materials, that have attracted considerable attention owing to their exceptional properties, including a large surface area, heightened electro-catalytic activity, and robust mechanical resilience, for which they have become integral components in the development of highly sensitive chemo- and biosensors. Additionally, engineered nanomaterials have demonstrated significant promise in enhancing the precision of disease diagnosis and refining treatment specificity. The aim of this review is to investigate recent advancements in fabricated nanomaterials tailored for detecting GSH. Specifically, it examines various material categories, encompassing carbon, polymeric, quantum dots (QDs), covalent organic frameworks (COFs), metal-organic frameworks (MOFs), metal-based, and silicon-based nanomaterials, applied in the fabrication of chemo- and biosensors. The fabrication of nano-biosensors, mechanisms, and methodologies employed for GSH detection utilizing these fabricated nanomaterials will also be elucidated. Remarkably, there is a noticeable absence of existing reviews specifically dedicated to the nanomaterials for GSH detection since they are not comprehensive in the case of nano-fabrication, mechanisms and methodologies of detection, as well as applications in various biological environments. This research gap presents an opportune moment to thoroughly assess the potential of nanomaterial-based approaches in advancing GSH detection methodologies.
Collapse
Affiliation(s)
- Saman Bagherpour
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Lluïsa Pérez-García
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
21
|
Wu YN, Cai J, Hou S, Chen R, Wang Z, Kabtamu DM, Zelekew OA, Li F. Room-temperature synthesis of a Zr-UiO-66 metal-organic framework via mechanochemical pretreatment for the rapid removal of EDTA-chelated copper from water. Dalton Trans 2024; 53:14098-14107. [PMID: 39120524 DOI: 10.1039/d4dt01671h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Treatment of heavy metal pollution in complexed states within water bodies presents significant challenges in the current water treatment field. Adsorption as a means for the removal of heavy metals is characterized by its simplicity of operation, stable effluent, and minimal equipment requirements. Metal-organic frameworks (MOFs) as adsorbents hold significant interest for applications in water treatment. In this study, we investigated a green synthesis approach for the ball-milling pretreated synthesis of UiO-66(Zr) at room temperature, abbreviated as UiO-66(Zr)-rm. Besides having the same thermal stability and crystal structure as the product from microwave-assisted synthesis (UiO-66(Zr)-mw), the resulting UiO-66(Zr)-rm features smaller particle size and superior mesoporous structure. The adsorption efficiency and mechanism for removing EDTA-chelated copper (EDTA-CuII), a complexed heavy metal in water, were extensively analyzed. UiO-66(Zr)-rm presented a maximum adsorption capacity over EDTA-CuII of 43 mg g-1 and a much higher adsorption rate (0.16 g (mg h)-1) than UiO-66(Zr)-mw (0.06 g (mg h)-1). Hierarchically mesostructured defects allow the sorbate to have more effective diffusion in a shorter time to achieve faster adsorption kinetics. Benefiting from the mild synthesis conditions and nontoxic solvents, UiO-66(Zr) has the potential to be produced at a scaled-up level, thereby exhibiting excellent adsorption performance for the removal of complexed heavy metals in the future.
Collapse
Affiliation(s)
- Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P.R. China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Junyi Cai
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P.R. China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Shuliang Hou
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P.R. China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Rui Chen
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P.R. China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Ziqi Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P.R. China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | | | - Osman Ahmed Zelekew
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P.R. China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Fengting Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P.R. China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| |
Collapse
|
22
|
Zhang J, Guo M, He Q, Zhang Z, Wu B, Wu H, Li R, Zhang Q, Tang Y, Lin Y, Jin Y. Precise Control of Metal Active Sites of Metal-Organic Framework Nanozymes for Achieving Excellent Enzyme-Like Activity and Efficient Pancreatitis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310675. [PMID: 38488710 DOI: 10.1002/smll.202310675] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/28/2024] [Indexed: 08/09/2024]
Abstract
Acute pancreatitis (AP) is a potentially life-threatening inflammatory disease that can lead to the development of systemic inflammatory response syndrome and its progression to severe acute pancreatitis. Hence, there is an urgent need for the rational design of highly efficient antioxidants to treat AP. Herein, an optimized Cu-based metal-organic framework (MOF) nanozyme with exceptional antioxidant activity is introduced, designed to effectively alleviate AP, by engineering the metal coordination centers in MN2Cl2 (M = Co, Ni, Cu). Specifically, the Cu MOF, which benefits from a Cu active center similar to that of natural superoxide dismutase (SOD), exhibited at least four times higher SOD-like activity than the Ni/Co MOF. Theoretical analyses further demonstrate that the CuN2Cl2 site not only has a moderate adsorption effect on the substrate molecule •OOH but also reduces the dissociation energy of the product H2O2. Additionally, the Cu MOF nanozyme possesses the excellent catalase-like activity and •OH removal ability. Consequently, the Cu MOF with broad-spectrum antioxidant activity can efficiently scavenge reactive oxygen species to alleviate arginine-induced AP. More importantly, it can also mitigate apoptosis and necrosis of acinar cells by activating the PINK1/PARK2-mediated mitophagy pathway. This study highlights the distinctive functions of tunable MOF nanozymes and their potential bio-applications.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Meilin Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Qikuan He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Zhisen Zhang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China
| | - Boda Wu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Hongji Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Rizhao Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Qiyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Yonghua Tang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China
| | - Youhui Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, P. R. China
| | - Yuepeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| |
Collapse
|
23
|
Zhao X, Liu Z, Qiu Y, Zhang Q, Chen Y, Wang D, Zhu Z, Meng L, Zheng H. Pt-Cluster-Embedded Metal-Organic Frameworks-Derived Fe@C as Dual-Enzyme Mimics for NADH Detection in Serum. Anal Chem 2024; 96:12120-12128. [PMID: 38990044 DOI: 10.1021/acs.analchem.4c02208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Dihydro-nicotinamide adenine dinucleotide (NADH) detection is crucial since it is a vital coenzyme in organism metabolism. Compared to the traditional method based on natural NADH oxidase (NOX), nanozymes with multienzyme-like activity can catalyze multistage reactions in a singular setup, simplifying detection processes and enhancing sensitivity. In this study, an innovative NADH detection method was developed using iron-doped carbon (Fe@C) nanozyme synthesized from metal-organic frameworks with in situ reduced Pt clusters. This nanozyme composite (Pt/Fe@C) demonstrated dual NOX and peroxidase-like characteristics, significantly enhancing the catalytic efficiency and enabling NADH conversion to NAD+ and H2O2 with subsequent detection. The collaborative research involving both experimental and theoretical simulations has uncovered the catalytic process and the cooperative effect of Fe and Pt atoms, leading to enhanced oxygen adsorption and activation, as well as a decrease in the energy barrier of the key step in the H2O2 decomposition process. These findings indicate that the catalytic performance of Pt/Fe@C in NOX-like and POD-like reactions can be significantly improved. The colorimetric sensor detects NADH with a limit of detection as low as 0.4 nM, signifying a breakthrough in enzyme-mimicking nanozyme technology for precise NADH measurement.
Collapse
Affiliation(s)
- Xiaoping Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou 730000, P. R. China
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhicheng Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yao Qiu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Qingmiao Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yanni Chen
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Daquan Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lingjie Meng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou 730000, P. R. China
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
24
|
Han X, Li B, Wang W, Feng B, Tang Q, Qi Y, Zhao R, Qiu W, Zhao S, Pan Z, Guo X, Du H, Qiu J, Liu H, Li G, Xue H. Cerium Vanadate Nanozyme with pH-Dependent Dual Enzymatic Activity for Glioblastoma Targeted Therapy and Postradiotherapy Damage Protection. ACS NANO 2024; 18. [PMID: 39016679 PMCID: PMC11295195 DOI: 10.1021/acsnano.4c06616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Nanocatalytic therapy is an emerging technology that uses synthetic nanoscale enzyme mimics for biomedical treatment. However, in the field of neuroscience, achieving neurological protection while simultaneously killing tumor cells is a technical challenge. Herein, we synthesized a biomimic and translational cerium vanadate (CeVO4) nanozyme for glioblastoma (GBM) therapy and the repair of brain damage after GBM ionizing radiation (IR). This system exhibited pH dependence: it showed potent Superoxide dismutase (SOD) enzyme activity in a neutral environment and Peroxidase (POD) enzyme activity in an acidic environment. In GBM cells, this system acted in lysosomes, causing cellular damage and reactive oxygen species (ROS) accumulation; in neuronal cells, this nanozyme could undergo lysosomal escape and nanozyme aggregation with mitochondria, reversing the mitochondrial damage caused by IR and restoring the expression level of the antiapoptotic BCL-2 protein. Mechanistically, we believe that this distribution difference is related to the specific uptake internalization mechanism and lysosomal repair pathway in neurons, and ultimately led to the dual effect of tumor killing and nerve repair in the in vivo model. In summary, this study provides insight into the repair of brain damage after GBM radiation therapy.
Collapse
Affiliation(s)
- Xiao Han
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
- Department
of Neurosurgery, Children’s Hospital
Affiliated to Shandong University, Jinan Children’s Hospital, Jinan, Shandong 250001, P.R. China
| | - Boyan Li
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Wenhan Wang
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Bowen Feng
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Qilin Tang
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Yanhua Qi
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Rongrong Zhao
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Wei Qiu
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Shulin Zhao
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Ziwen Pan
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Xiaofan Guo
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Hao Du
- Department
of Cell Biology, University of Connecticut
School of Medicine, Farmington, Connecticut 06032, United States
| | - Jichuan Qiu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan, Shandong 250100, P. R. China
| | - Hong Liu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan, Shandong 250100, P. R. China
- Institute
for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Gang Li
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| | - Hao Xue
- Department
of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute
of Brain and Brain-Inspired Science, Shandong
University, Jinan, Shandong 250012, P. R. China
- Shandong
Key Laboratory of Brain Function Remodeling, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
25
|
Ullah Z, Abbas Y, Gu J, Ko Soe S, Roy S, Peng T, Guo B. Chemodynamic Therapy of Glioblastoma Multiforme and Perspectives. Pharmaceutics 2024; 16:942. [PMID: 39065639 PMCID: PMC11280080 DOI: 10.3390/pharmaceutics16070942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma multiforme (GBM), a potential public health issue, is a huge challenge for the advanced scientific realm to solve. Chemodynamic therapy (CDT) based on the Fenton reaction emerged as a state-of-the-art therapeutic modality to treat GBM. However, crossing the blood-brain barrier (BBB) to reach the GBM is another endless marathon. In this review, the physiology of the BBB has been elaborated to understand the mechanism of crossing these potential barriers to treat GBM. Moreover, the designing of Fenton-based nanomaterials has been discussed for the production of reactive oxygen species in the tumor area to eradicate the cancer cells. For effective tumor targeting, biological nanomaterials that can cross the BBB via neurovascular transport channels have also been explored. To overcome the neurotoxicity caused by inorganic nanomaterials, the use of smart nanoagents having both enhanced biocompatibility and effective tumor targeting ability to enhance the efficiency of CDT are systematically summarized. Finally, the advancements in intelligent Fenton-based nanosystems for a multimodal therapeutic approach in addition to CDT are demonstrated. Hopefully, this systematic review will provide a better understanding of Fenton-based CDT and insight into GBM treatment.
Collapse
Affiliation(s)
- Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China; (Z.U.); (Y.A.); (S.K.S.); (S.R.)
| | - Yasir Abbas
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China; (Z.U.); (Y.A.); (S.K.S.); (S.R.)
| | - Jingsi Gu
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen 518055, China;
| | - Sai Ko Soe
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China; (Z.U.); (Y.A.); (S.K.S.); (S.R.)
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China; (Z.U.); (Y.A.); (S.K.S.); (S.R.)
| | - Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 511436, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China; (Z.U.); (Y.A.); (S.K.S.); (S.R.)
| |
Collapse
|
26
|
Zhao X, Chen Z, Zhang S, Hu Z, Shan J, Wang M, Chen XL, Wang X. Application of metal-organic frameworks in infectious wound healing. J Nanobiotechnology 2024; 22:387. [PMID: 38951841 PMCID: PMC11218092 DOI: 10.1186/s12951-024-02637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Metal-organic frameworks (MOFs) are metal-organic skeleton compounds composed of self-assembled metal ions or clusters and organic ligands. MOF materials often have porous structures, high specific surface areas, uniform and adjustable pores, high surface activity and easy modification and have a wide range of prospects for application. MOFs have been widely used. In recent years, with the continuous expansion of MOF materials, they have also achieved remarkable results in the field of antimicrobial agents. In this review, the structural composition and synthetic modification of MOF materials are introduced in detail, and the antimicrobial mechanisms and applications of these materials in the healing of infected wounds are described. Moreover, the opportunities and challenges encountered in the development of MOF materials are presented, and we expect that additional MOF materials with high biosafety and efficient antimicrobial capacity will be developed in the future.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Zenghong Chen
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, P. R. China
| | - Shuo Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Zhiyuan Hu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Min Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
| | - Xianwen Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China.
| |
Collapse
|
27
|
Liu W, Li Y, Wang Y, Feng Y. Bioactive Metal-Organic Frameworks as a Distinctive Platform to Diagnosis and Treat Vascular Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310249. [PMID: 38312082 DOI: 10.1002/smll.202310249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Indexed: 02/06/2024]
Abstract
Vascular diseases (VDs) pose the leading threat worldwide due to high morbidity and mortality. The detection of VDs is commonly dependent on individual signs, which limits the accuracy and timeliness of therapies, especially for asymptomatic patients in clinical management. Therefore, more effective early diagnosis and lesion-targeted treatments remain a pressing clinical need. Metal-organic frameworks (MOFs) are porous crystalline materials formed by the coordination of inorganic metal ions and organic ligands. Due to their unique high specific surface area, structural flexibility, and functional versatility, MOFs are recognized as highly promising candidates for diagnostic and therapeutic applications in the field of VDs. In this review, the potential of MOFs to act as biosensors, contrast agents, artificial nanozymes, and multifunctional therapeutic agents in the diagnosis and treatment of VDs from the clinical perspective, highlighting the integration between clinical methods with MOFs is generalized. At the same time, multidisciplinary cooperation from chemistry, physics, biology, and medicine to promote the substantial commercial transformation of MOFs in tackling VDs is called for.
Collapse
Affiliation(s)
- Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Yuanchao Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| |
Collapse
|
28
|
Chang J, Hu R, Zhang J, Hou T, Li F. Two-dimensional metal-organic framework nanozyme-mediated portable paper-based analytical device for dichlorophen assay. Biosens Bioelectron 2024; 255:116271. [PMID: 38583355 DOI: 10.1016/j.bios.2024.116271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The metal-organic frameworks (MOFs) nanozyme-mediated paper-based analytical devices (PADs) have shown great potential in portable visual determination of phenolic compounds in the environment. However, most MOF nanozymes suffer from poor dispersibility and block-like structure, which often prompts deposition and results in diminished enzymatic activity, severely hindering their environmental applications. Here, we proposed colorimetric PADs for the visual detection of dichlorophen (Dcp) based on its significant inhibitory effect on the two-dimensional (2D) MOF nanozyme activity. Specifically, we synthesized a 2D Cu TCPP (Fe) (defined as 2D-CTF) MOF nanozyme exhibiting excellent dispersibility and remarkable peroxidase-like (POD-like) activity, which could catalyze the oxidation and subsequent color change of 3,3',5,5'-tetramethylbenzidine even under neutral conditions. Notably, the POD-like activity of 2D-CTF demonstrated a unique response to Dcp because of the occupation of Fe-N4 active sites on the 2D-CTF. This property enables the use of 2D-CTF as a highly efficient catalyst to develop colorimetric PADs for naked-eye and portable detection of Dcp. We believe that the proposed colorimetric PADs offer an efficient method for Dcp assay and open fresh avenues for the advancement of colorimetric sensors for analyzing of phenolic toxic substances in real samples.
Collapse
Affiliation(s)
- Jiafu Chang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Ruixian Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Jinyan Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
29
|
Sun T, Yi X, Liu L, Zhao F. Colorimetric Immunoassays with Boronic Acid-Decorated, Peroxidase-like Metal-Organic Frameworks as the Carriers of Antibodies and Enzymes. Molecules 2024; 29:3000. [PMID: 38998952 PMCID: PMC11243670 DOI: 10.3390/molecules29133000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The sensitivity of immunoassays is generally limited by the low signal reporter/recognition element ratio. Nanomaterials serving as the carriers can enhance the loading number of signal reporters, thus improving the detection sensitivity. However, the general immobilization strategies, including direct physical adsorption and covalent coupling, may cause the random orientation and conformational change in proteins, partially or completely suppressing the enzymatic activity and the molecular recognition ability. In this work, we proposed a strategy to load recognition elements of antibodies and enzyme labels using boronic acid-modified metal-organic frameworks (MOFs) as the nanocarriers for signal amplification. The conjugation strategy was proposed based on the boronate ester interactions between the carbohydrate moieties in antibodies and enzymes and the boronic acid moieties on MOFs. Both enzymes and MOFs could catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2, therefore achieving dual signal amplification. To indicate the feasibility and sensitivity of the strategy, colorimetric immunoassays of prostate specific antigen (PSA) were performed with boronic acid-modified Cu-MOFs as peroxidase mimics to catalyze TMB oxidation and nanocarriers to load antibody and enzyme (horseradish peroxidase, HRP). According to the change in the absorbance intensity of the oxidized TMB (oxTMB), PSA at the concentration range of 1~250 pg/mL could be readily determined. In addition, this work presented a site-specific and oriented conjugation strategy for the modification of nanolabels with recognition elements and signal reporters, which should be valuable for the design of novel biosensors with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Ting Sun
- Guizhou Provincial University Key Laboratory of Advanced Functional Electronic Materials, School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Feng Zhao
- Guizhou Provincial University Key Laboratory of Advanced Functional Electronic Materials, School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
30
|
Xu Z, Chen L, Luo Y, Wei YM, Wu NY, Luo LF, Wei YB, Huang J. Advances in metal-organic framework-based nanozymes in ROS scavenging medicine. NANOTECHNOLOGY 2024; 35:362006. [PMID: 38865988 DOI: 10.1088/1361-6528/ad572a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Reactive oxygen species (ROS) play important roles in regulating various physiological functions in the human body, however, excessive ROS can cause serious damage to the human body, considering the various limitations of natural enzymes as scavengers of ROS in the body, the development of better materials for the scavenging of ROS is of great significance to the biomedical field, and nanozymes, as a kind of nanomaterials which can show the activity of natural enzymes. Have a good potential for the development in the area of ROS scavenging. Metal-organic frameworks (MOFs), which are porous crystalline materials with a periodic network structure composed of metal nodes and organic ligands, have been developed with a variety of active nanozymes including catalase-like, superoxide dismutase-like, and glutathione peroxidase-like enzymes due to the adjustability of active sites, structural diversity, excellent biocompatibility, and they have shown a wide range of applications and prospects. In the present review, we first introduce three representative natural enzymes for ROS scavenging in the human body, methods for the detection of relevant enzyme-like activities and mechanisms of enzyme-like clearance are discussed, meanwhile, we systematically summarize the progress of the research on MOF-based nanozymes, including the design strategy, mechanism of action, and medical application, etc. Finally, the current challenges of MOF-based nanozymes are summarized, and the future development direction is anticipated. We hope that this review can contribute to the research of MOF-based nanozymes in the medical field related to the scavenging of ROS.
Collapse
Affiliation(s)
- Zhong Xu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Liang Chen
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yan Luo
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yan-Mei Wei
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Ning-Yuan Wu
- Guangxi Medical University Life Sciences Institute, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Lan-Fang Luo
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yong-Biao Wei
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Jin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| |
Collapse
|
31
|
Meng Y, Han R, Tian Q, Chen Y, Zhang L. Quasi-MOF-Engineered MnO x/CeBTC Multinanozyme as a Robust Self-Cascade ROS Generator toward Antibacterial Face Mask. Adv Healthc Mater 2024; 13:e2304141. [PMID: 38412315 DOI: 10.1002/adhm.202304141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/21/2024] [Indexed: 02/29/2024]
Abstract
It is of great importance to endow personal protective equipments with bactericidal property combating against infected pathogens. Nanozyme that can generate reactive oxygen species (ROS) in an enzyme-catalytic manner is regarded as a novel and promising nanobactericide. But until now, very rare of them is designed specifically for personal protective equipments. In this study, a multinanozyme of manganese oxide supported on Ce-containing MOF (CeBTC) is constructed with post-engineering via a quasi-metal-organic framework (MOF) strategy (denoted as MnOx/q-CeBTC). The strategy enables a full exposure of the metal cluster nodes, introduction of new active Mn─O─Ce bonds and strengthens interaction between the metal nodes and the guest oxide. As an advanced multinanozyme, the MnOx/q-CeBTC exhibits excellent multiple enzymatic activities at low temperature, and enables abundant and self-cascade ROS generation without H2O2 addition. This empowers it with high efficiency in bacteria killing, which is also reflected when incorporated into face mask to combat against pathogen invasion even at low temperature. The results achieved in this work provide guidance for rational design of effective bactericide based on nanozyme and broaden their application in personal protective equipment and other fields.
Collapse
Affiliation(s)
- Yuqi Meng
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, 710072, China
| | - Ruiting Han
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, 710072, China
| | - Qing Tian
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, 710072, China
| | - Yao Chen
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, 710072, China
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, Xi'an, 710072, China
| |
Collapse
|
32
|
Patil PD, Karvekar A, Salokhe S, Tiwari MS, Nadar SS. When nanozymes meet enzyme: Unlocking the dual-activity potential of integrated biocomposites. Int J Biol Macromol 2024; 271:132357. [PMID: 38772461 DOI: 10.1016/j.ijbiomac.2024.132357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
Integrating enzymes and nanozymes in various applications is a topic of significant interest. The researchers have explored the encapsulation of enzymes using diverse nanostructures to create nanomaterial-enzyme hybrids. These nanomaterials introduce unique properties that contribute to the additional activity along with the stabilization of enzymes in immobilized form, enabling a cascade of second-order reactions. This review centers on dual-activity nanozymes, providing insights into their applications in biosensors and biocatalysis. These applications leverage the enhanced catalytic activity and stability offered by dual-activity nanozymes. These nanozymes find promising applications in fields like bioremediation, offering eco-friendly solutions for mitigating environmental pollution while showing potential in medical diagnostics. The review delves into various techniques for creating enzyme-nanozyme hybrid catalysts, including adsorption, encapsulation, and incorporation methods. The review also addresses the challenges that must be overcome, such as overlapping catalytic surfaces and disparities in reaction rates in multi-enzyme cascade reactions. It concludes by presenting strategies to tackle these issues and offers insights into the field's promising future, suggesting that machine learning may drive further advancements in enzyme-nanozyme integration. This comprehensive exploration illuminates the present and charts a promising course for future innovations in the seamless integration of enzymes and nanozymes, heralding a new era of catalytic possibilities.
Collapse
Affiliation(s)
- Pravin D Patil
- Department of Basic Science & Humanities, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Aparna Karvekar
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Sakshi Salokhe
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Manishkumar S Tiwari
- Department of Data Science, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
33
|
Shi Q, Zhao Y, Liu M, Shi F, Chen L, Xu X, Gao J, Zhao H, Lu F, Qin Y, Zhang Z, Lian M. Engineering Platelet Membrane-Coated Bimetallic MOFs as Biodegradable Nanozymes for Efficient Antibacterial Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309366. [PMID: 38150620 DOI: 10.1002/smll.202309366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/03/2023] [Indexed: 12/29/2023]
Abstract
Nanocatalytic-based wound therapeutics present a promising strategy for generating reactive oxygen species (ROS) to antipathogen to promote wound healing. However, the full clinical potential of these nanocatalysts is limited by their low reactivity, limited targeting ability, and poor biodegradability in the wound microenvironment. Herein, a bio-organic nanozyme is developed by encapsulating a FeZn-based bimetallic organic framework (MOF) (MIL-88B-Fe/Zn) in platelet membranes (PM@MIL-88B-Fe/Zn) for antimicrobial activity during wound healing. The introduction of Zn in MIL-88B-Fe/Zn modulates the electronic structure of Fe thus accelerating the catalytic kinetics of its peroxidase-like activity to catalytically generate powerful ROS. The platelet membrane coating of MOF innovatively enhanced the interaction between nanoparticles and the biological environment, further developing bacterial-targeted therapy with excellent antibacterial activity against both gram-positive and gram-negative bacteria. Furthermore, this nanozyme markedly suppressed the levels of inflammatory cytokines and promoted angiogenesis in vivo to effectively treat skin surface wounds and accelerate wound healing. PM@MIL-88B-Fe/Zn exhibited superior biodegradability, favourable metabolism and non-toxic accumulation, eliminating concerns regarding side effects from long-term exposure. The high catalytic reactivity, excellent targeting features, and biodegradability of these nanoenzymes developed in this study provide useful insights into the design and synthesis of nanocatalysts/nanozymes for practical biomedical applications.
Collapse
Affiliation(s)
- Qingying Shi
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ye Zhao
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, 300300, China
| | - Meihan Liu
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, 300300, China
| | - Feiyu Shi
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, 300300, China
| | - Liuxing Chen
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, 300300, China
| | - Xinru Xu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jing Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huabing Zhao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yongji Qin
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, China
| | - Zhen Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Meiling Lian
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, 300300, China
| |
Collapse
|
34
|
Rong M, Liu J, Lu L. Self-Assembly of 2D Polyphthalocyanine in Lysosome Enables Multienzyme Activity Enhancement to Induce Tumor Ferroptosis. Adv Healthc Mater 2024; 13:e2400325. [PMID: 38364772 DOI: 10.1002/adhm.202400325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/15/2024] [Indexed: 02/18/2024]
Abstract
Nanozymes show great potential in facilitating tumor ferroptosis by upregulation of reactive oxygen species (ROS) and downregulation of glutathione (GSH). However, mild acidity (pH 6.5-6.9) of tumor microenvironment severely restricts the activity of nanozymes. Although lysosomes as acidic organelles (pH = 3.5-5.5) are hopeful for improving enzyme-like activity, most reported nanozymes are not capable of effectively accumulating in the lysosomes. Herein, an acid-responsive self-assembly strategy based on iron phthalocyanine-rich covalent organic framework nanosheets (COFFePc NSs) is developed, which enables lysosomal targeting aggregation of COFFePc NSs due to the existence of abundant negative hydroxyl groups and rigid structure. Meanwhile, COFFePc NSs display exceptional multienzyme-mimic performance at lower pH to efficiently generate ROS to cause lysosome damage and apoptosis by synergistic photothermal effect. Subsequently, the released COFFePc with GSH oxidase-mimicking activity can consume GSH to promote ferroptosis. This is the first report of a 2D COF using its own properties to achieve lysosomal self-assembly. Overall, the work provides a new paradigm for the development of lysosome-targeted nanosystems.
Collapse
Affiliation(s)
- Mingjie Rong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jian Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
35
|
Si Q, Wang F, Ding Q, Yang W, Lin H, Xu C, Li S. Chiral Cu xCo yS-Cu zS Nanoflowers with Bioinspired Enantioselective Catalytic Performances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311275. [PMID: 38196019 DOI: 10.1002/smll.202311275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Nanomaterials with biomimetic catalytic abilities have attracted significant attention. However, the stereoselectivity of natural enzymes determined by their unique configurations is difficult to imitate. In this work, a kind of chiral CuxCoyS-CuzS nanoflowers (L/D-Pen-NFs) is developed, using porous CuxCoyS nanoparticles (NPs) as stamens, CuzS sheets as petals, and chiral penicillamine as surface stabilizers. Compared to the natural laccase enzyme, L/D-Pen-NFs exhibit significant advantages in catalytic efficiency, stability against harsh environments, recyclability, and convenience in construction. Most importantly, they display high enantioselectivity toward chiral neurotransmitters, which is proved by L- and D-Pen-NFs' different catalytic efficiencies toward chiral enantiomers. L-Pen-NFs are more efficient in catalyzing the oxidation of L-epinephrine and L-dopamine compared with D-Pen-NFs. However, their catalytic efficiency in oxidizing L-norepinephrine and L-DOPA is lower than that of D-Pen-NFs. The reason for the difference in catalytic efficiency is the distinct binding affinities between CuxCoyS-CuzS nano-enantiomers and chiral molecules. This work can spur the development of chiral nanostructures with biomimetic functions.
Collapse
Affiliation(s)
- Qingrui Si
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Fang Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Qi Ding
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Weimin Yang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
36
|
Huang LH, Hsieh YY, Yang FA, Liao WC. DNA-modified Prussian blue nanozymes for enhanced electrochemical biosensing. NANOSCALE 2024; 16:9770-9780. [PMID: 38597919 DOI: 10.1039/d4nr00387j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Prussian blue nanoparticles exhibit the potential to be employed in bioanalytical applications due to their robust stability, peroxidase-like catalytic functionality, straightforward synthesis, and biocompatibility. An efficient approach is presented for the synthesis of nucleic acid-modified Prussian blue nanoparticles (DNA-PBNPs), utilizing nanoparticle porosity to adsorb nucleic acids (polyT). This strategic adsorption leads to the exposure of nucleic acid sequences on the particle surface while retaining catalytic activity. DNA-PBNPs further couple with functional nucleic acid sequences and aptamers through complementary base pairing to act as transducers in biosensors and amplify signal acquisition. Subsequently, we integrated a copper ion-dependent DNAzyme (Cu2+-DNAzyme) and a vascular endothelial growth factor aptamer (VEGF aptamer) onto screen-printed electrodes to serve as recognition elements for analytes. Significantly, our approach leverages DNA-PBNPs as a superior alternative to traditional enzyme-linked antibodies in electrochemical biosensors, thereby enhancing both the efficiency and adaptability of these devices. Our study conclusively demonstrates the application of DNA-PBNPs in two different biosensing paradigms: the sensitive detection of copper ions and vascular endothelial growth factor (VEGF). These results indicate the promising potential of DNA-modified Prussian blue nanoparticles in advancing bioanalytical sensing technologies.
Collapse
Affiliation(s)
- Lin-Hui Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Yu-Yu Hsieh
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Fu-An Yang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Wei-Ching Liao
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
37
|
Fu Z, Fan K, He X, Wang Q, Yuan J, Lim KS, Tang JN, Xie F, Cui X. Single-Atom-Based Nanoenzyme in Tissue Repair. ACS NANO 2024; 18:12639-12671. [PMID: 38718193 DOI: 10.1021/acsnano.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Since the discovery of ferromagnetic nanoparticles Fe3O4 that exhibit enzyme-like activity in 2007, the research on nanoenzymes has made significant progress. With the in-depth study of various nanoenzymes and the rapid development of related nanotechnology, nanoenzymes have emerged as a promising alternative to natural enzymes. Within nanozymes, there is a category of metal-based single-atom nanozymes that has been rapidly developed due to low cast, convenient preparation, long storage, less immunogenicity, and especially higher efficiency. More importantly, single-atom nanozymes possess the capacity to scavenge reactive oxygen species through various mechanisms, which is beneficial in the tissue repair process. Herein, this paper systemically highlights the types of metal single-atom nanozymes, their catalytic mechanisms, and their recent applications in tissue repair. The existing challenges are identified and the prospects of future research on nanozymes composed of metallic nanomaterials are proposed. We hope this review will illuminate the potential of single-atom nanozymes in tissue repair, encouraging their sequential clinical translation.
Collapse
Affiliation(s)
- Ziliang Fu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Kexin Fan
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xingjian He
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Yuan
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen, Guangdong 518001, China
| | - Khoon S Lim
- School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Jun-Nan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fangxi Xie
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, Guangdong 519082, China
| | - Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
38
|
Huang XL. Unveiling the role of inorganic nanoparticles in Earth's biochemical evolution through electron transfer dynamics. iScience 2024; 27:109555. [PMID: 38638571 PMCID: PMC11024932 DOI: 10.1016/j.isci.2024.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
This article explores the intricate interplay between inorganic nanoparticles and Earth's biochemical history, with a focus on their electron transfer properties. It reveals how iron oxide and sulfide nanoparticles, as examples of inorganic nanoparticles, exhibit oxidoreductase activity similar to proteins. Termed "life fossil oxidoreductases," these inorganic enzymes influence redox reactions, detoxification processes, and nutrient cycling in early Earth environments. By emphasizing the structural configuration of nanoparticles and their electron conformation, including oxygen defects and metal vacancies, especially electron hopping, the article provides a foundation for understanding inorganic enzyme mechanisms. This approach, rooted in physics, underscores that life's origin and evolution are governed by electron transfer principles within the framework of chemical equilibrium. Today, these nanoparticles serve as vital biocatalysts in natural ecosystems, participating in critical reactions for ecosystem health. The research highlights their enduring impact on Earth's history, shaping ecosystems and interacting with protein metal centers through shared electron transfer dynamics, offering insights into early life processes and adaptations.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-6044, USA
| |
Collapse
|
39
|
Zhang R, Yang J, Cao Y, Zhang Q, Xie C, Xiong W, Luo X, He Y. Efficient 2D MOFs nanozyme combining with magnetic SERS substrate for ultrasensitive detection of Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124062. [PMID: 38401506 DOI: 10.1016/j.saa.2024.124062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/05/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Biomimetic inorganic nanoenzyme is a kind of nanomaterial with long-term stability, easy preparation and low cost, which could instead of natural biological enzyme. Metal-organic framework (MOFs) as effectively nanoenzyme was attracted more attention for the adjustability and large specific surface area. This design is based on the catalase-like catalytic activity of 2D metal-organic frameworks (MOFs) and the high sensitivity of surface enhanced Raman spectroscopy (SERS) biosensors to construct a novel SERS biosensor capable of efficiently detecting mercury (Hg2+). In this study, 2D MOFs nanozyme was instead of 3D structure with more effecient catalytic site, which can catalyze o-Phenylenediamine (OPD) to OPDox with the assistance of H2O2. Besides, a magnetic composite nanomaterial Fe3O4@Ag@OPD was prepared as a signal carrier. In the presence of Hg2+, T-Hg2+-T base pairs were used to connect the two materials to realize Raman signal change. Based on this principle, the SERS sensor can realize the sensitive detection of Hg2+, the detection range is 1.0 × 10-12 ∼ 1.0 × 10-2 mol‧L-1, and the detection limit is 1.36 × 10-13 mol‧L-1. This method greatly improves the reliability of SERS sensor for detecting the target, and provides a new idea for detecting metal ions in the environment.
Collapse
Affiliation(s)
- Runzi Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Jia Yang
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Yongguo Cao
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Qianyan Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Chenfeng Xie
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Wanyi Xiong
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Xiaojun Luo
- Department of Chemistry, School of Science, Xihua University, Chengdu, China.
| | - Yi He
- Department of Chemistry, School of Science, Xihua University, Chengdu, China.
| |
Collapse
|
40
|
Zhang X, Wang J, Chang N, Yang Y, Li Y, Wei Q, Ni C, Song W, Ma M, Feng X, Fan R. Cu-BTC Derived Mesoporous CuS Nanomaterial as Nanozyme for Colorimetric Detection of Glutathione. Molecules 2024; 29:2117. [PMID: 38731608 PMCID: PMC11085296 DOI: 10.3390/molecules29092117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
In this paper, Cu-BTC derived mesoporous CuS nanomaterial (m-CuS) was synthesized via a two-step process involving carbonization and sulfidation of Cu-BTC for colorimetric glutathione detection. The Cu-BTC was constructed by 1,3,5-benzenetri-carboxylic acid (H3BTC) and Cu2+ ions. The obtained m-CuS showed a large specific surface area (55.751 m2/g), pore volume (0.153 cm3/g), and pore diameter (15.380 nm). In addition, the synthesized m-CuS exhibited high peroxidase-like activity and could catalyze oxidation of the colorless substrate 3,3',5,5'-tetramethylbenzidine to a blue product. Peroxidase-like activity mechanism studies using terephthalic acid as a fluorescent probe proved that m-CuS assists H2O2 decomposition to reactive oxygen species, which are responsible for TMB oxidation. However, the catalytic activity of m-CuS for the oxidation of TMB by H2O2 could be potently inhibited in the presence of glutathione. Based on this phenomenon, the colorimetric detection of glutathione was demonstrated with good selectivity and high sensitivity. The linear range was 1-20 μM and 20-300 μM with a detection limit of 0.1 μM. The m-CuS showing good stability and robust peroxidase catalytic activity was applied for the detection of glutathione in human urine samples.
Collapse
Affiliation(s)
- Xiwen Zhang
- School of Basic Medicine, Shenyang Medical College, Shenyang 110034, China;
| | - Jie Wang
- Department of Science and Technology, Shenyang Medical College, Shenyang 110034, China;
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China; (Y.L.); (Q.W.); (C.N.); (W.S.)
| | - Nan Chang
- Department of Food Science, School of Public Health, Shenyang Medical College, Shenyang 110034, China;
| | - Yu Yang
- Department of Physiology, School of Basic Medicine, Shenyang Medical College, Shenyang 110034, China;
| | - Yuqi Li
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China; (Y.L.); (Q.W.); (C.N.); (W.S.)
| | - Qi Wei
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China; (Y.L.); (Q.W.); (C.N.); (W.S.)
| | - Chang Ni
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China; (Y.L.); (Q.W.); (C.N.); (W.S.)
| | - Wanying Song
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China; (Y.L.); (Q.W.); (C.N.); (W.S.)
| | - Mingyue Ma
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang 110034, China;
| | - Xun Feng
- Department of Sanitary Chemisrty, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Ronghua Fan
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China; (Y.L.); (Q.W.); (C.N.); (W.S.)
| |
Collapse
|
41
|
Haidar LL, Bilek M, Akhavan B. Surface Bio-engineered Polymeric Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310876. [PMID: 38396265 DOI: 10.1002/smll.202310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Surface bio-engineering of polymeric nanoparticles (PNPs) has emerged as a cornerstone in contemporary biomedical research, presenting a transformative avenue that can revolutionize diagnostics, therapies, and drug delivery systems. The approach involves integrating bioactive elements on the surfaces of PNPs, aiming to provide them with functionalities to enable precise, targeted, and favorable interactions with biological components within cellular environments. However, the full potential of surface bio-engineered PNPs in biomedicine is hampered by obstacles, including precise control over surface modifications, stability in biological environments, and lasting targeted interactions with cells or tissues. Concerns like scalability, reproducibility, and long-term safety also impede translation to clinical practice. In this review, these challenges in the context of recent breakthroughs in developing surface-biofunctionalized PNPs for various applications, from biosensing and bioimaging to targeted delivery of therapeutics are discussed. Particular attention is given to bonding mechanisms that underlie the attachment of bioactive moieties to PNP surfaces. The stability and efficacy of surface-bioengineered PNPs are critically reviewed in disease detection, diagnostics, and treatment, both in vitro and in vivo settings. Insights into existing challenges and limitations impeding progress are provided, and a forward-looking discussion on the field's future is presented. The paper concludes with recommendations to accelerate the clinical translation of surface bio-engineered PNPs.
Collapse
Affiliation(s)
- Laura Libnan Haidar
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Marcela Bilek
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Behnam Akhavan
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
42
|
Shan J, Du L, Wang X, Zhang S, Li Y, Xue S, Tang Q, Liu P. Ultrasound Trigger Ce-Based MOF Nanoenzyme For Efficient Thrombolytic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304441. [PMID: 38576170 PMCID: PMC11132072 DOI: 10.1002/advs.202304441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/02/2024] [Indexed: 04/06/2024]
Abstract
The inflammatory damage caused by thrombus formation and dissolution can increase the risk of thrombotic complications on top of cell death and organ dysfunction caused by thrombus itself. Therefore, a rapid and precise thrombolytic therapy strategy is in urgent need to effectively dissolve thrombus and resist oxidation simultaneously. In this study, Ce-UiO-66, a cerium-based metal-organic framework (Ce-MOF) with reactive oxygen species (ROS) scavenging properties, encapsulated by low-immunogenic mesenchymal stem cell membrane with inflammation-targeting properties, is used to construct a targeted nanomedicine Ce-UiO-CM. Ce-UiO-CM is applied in combination with external ultrasound stimulation for thrombolytic therapy in rat femoral artery. Ce-UiO-66 has abundant Ce (III)/Ce (IV) coupling sites that react with hydrogen peroxide (H2O2) to produce oxygen, exhibiting catalase (CAT) activity. The multi-cavity structure of Ce-UiO-66 can generate electron holes, and its pore channels can act as micro-reactors to further enhance its ROS scavenging capacity. Additionally, the porous structure of Ce-UiO-66 and the oxygen produced by its reaction with H2O2 may enhance the cavitation effects of ultrasound, thereby improving thrombolysis efficacy.
Collapse
Affiliation(s)
- Jianggui Shan
- Department of Cardiovascular SurgeryReiji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Ling Du
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Xingang Wang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Sidi Zhang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Yiping Li
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Song Xue
- Department of Cardiovascular SurgeryReiji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Qianyun Tang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Peifeng Liu
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| |
Collapse
|
43
|
Mo F, Lin C, Lu J, Sun D. Integrating Artificial DNAzymes with Natural Enzymes on 2D MOF Hybrid Nanozymes for Enhanced Treatment of Bacteria-Infected Wounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307256. [PMID: 38018326 DOI: 10.1002/smll.202307256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/30/2023] [Indexed: 11/30/2023]
Abstract
Removal of invasive bacteria is critical for proper wound healing. This task is challenging because these bacteria can trigger intense oxidative stress and gradually develop antibiotic resistance. Here, the use of a multienzyme-integrated nanocatalytic platform is reported for efficient bacterial clearance and mitigation of inflammatory responses, constructed by physically adsorbing natural superoxide dismutase (SOD), in situ reduction of gold nanoparticles (Au NPs), and incorporation of a DNAzyme on 2D NiCoCu metal-organic frameworks (DNAzyme/SOD/Au@NiCoCu MOFs, termed DSAM), which can adapt to infected wounds. O2 and H2O2 replenishment is achieved and alleviated the hypoxic microenvironment using the antioxidant properties of SOD. The H2O2 produced during the reaction is decomposed by peroxidase (POD)-like activity enhanced by Au NPs and DNAzyme, releasing highly toxic hydroxyl radicals (•OH) to kill the bacteria. In addition, it possesses glutathione peroxidase (GPx)-like activity, which depletes GSH and prevents •OH loss. Systematic antimicrobial tests are performed against bacteria using this multienzyme-integrated nanoplatform. A dual-mode strategy involving natural enzyme-enhanced antioxidant capacity and artificial enzyme-enhanced •OH release to develop an efficient and novel enzyme-integrated therapeutic platform is integrated.
Collapse
Affiliation(s)
- Fayin Mo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Chuyan Lin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Zhongshan City People's Hospital, Zhongshan, 528403, China
| | - Jing Lu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Duanping Sun
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| |
Collapse
|
44
|
Cui Z, Li Y, Tsyusko OV, Wang J, Unrine JM, Wei G, Chen C. Metal-Organic Framework-Enabled Sustainable Agrotechnologies: An Overview of Fundamentals and Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38600745 DOI: 10.1021/acs.jafc.4c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
With aggravated abiotic and biotic stresses from increasing climate change, metal-organic frameworks (MOFs) have emerged as versatile toolboxes for developing environmentally friendly agrotechnologies aligned with agricultural practices and safety. Herein, we have explored MOF-based agrotechnologies, focusing on their intrinsic properties, such as structural and catalytic characteristics. Briefly, MOFs possess a sponge-like porous structure that can be easily stimulated by the external environment, facilitating the controlled release of agrochemicals, thus enabling precise delivery of agrochemicals. Additionally, MOFs offer the ability to remove or degrade certain pollutants by capturing them within their pores, facilitating the development of MOF-based remediation technologies for agricultural environments. Furthermore, the metal-organic hybrid nature of MOFs grants them abundant catalytic activities, encompassing photocatalysis, enzyme-mimicking catalysis, and electrocatalysis, allowing for the integration of MOFs into degradation and sensing agrotechnologies. Finally, the future challenges that MOFs face in agrotechnologies were proposed to promote the development of sustainable agriculture practices.
Collapse
Affiliation(s)
- Zhaowen Cui
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
- Kentucky Water Resources Research Institute, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Chun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
45
|
Yu B, Sun W, Lin J, Fan C, Wang C, Zhang Z, Wang Y, Tang Y, Lin Y, Zhou D. Using Cu-Based Metal-Organic Framework as a Comprehensive and Powerful Antioxidant Nanozyme for Efficient Osteoarthritis Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307798. [PMID: 38279574 PMCID: PMC10987124 DOI: 10.1002/advs.202307798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/13/2023] [Indexed: 01/28/2024]
Abstract
Developing nanozymes with effective reactive oxygen species (ROS) scavenging ability is a promising approach for osteoarthritis (OA) treatment. Nonetheless, numerous nanozymes lie in their relatively low antioxidant activity. In certain circumstances, some of these nanozymes may even instigate ROS production to cause side effects. To address these challenges, a copper-based metal-organic framework (Cu MOF) nanozyme is designed and applied for OA treatment. Cu MOF exhibits comprehensive and powerful activities (i.e., SOD-like, CAT-like, and •OH scavenging activities) while negligible pro-oxidant activities (POD- and OXD-like activities). Collectively, Cu MOF nanozyme is more effective at scavenging various types of ROS than other Cu-based antioxidants, such as commercial CuO and Cu single-atom nanozyme. Density functional theory calculations also confirm the origin of its outstanding enzyme-like activities. In vitro and in vivo results demonstrate that Cu MOF nanozyme exhibits an excellent ability to decrease intracellular ROS levels and relieve hypoxic microenvironment of synovial macrophages. As a result, Cu MOF nanozyme can modulate the polarization of macrophages from pro-inflammatory M1 to anti-inflammatory M2 subtype, and inhibit the degradation of cartilage matrix for efficient OA treatment. The excellent biocompatibility and protective properties of Cu MOF nanozyme make it a valuable asset in treating ROS-related ailments beyond OA.
Collapse
Affiliation(s)
- Bo Yu
- Department of Orthopaedics and Traumatology & Department of Ultrasonic Diagnosis, Zhujiang HospitalKey Laboratory of Mental Health of the Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Wei Sun
- Department of Orthopaedics and Traumatology & Department of Ultrasonic Diagnosis, Zhujiang HospitalKey Laboratory of Mental Health of the Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Juntao Lin
- Department of Orthopaedics and Traumatology & Department of Ultrasonic Diagnosis, Zhujiang HospitalKey Laboratory of Mental Health of the Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Chaoyu Fan
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen UniversityXiamen361005P. R. China
| | - Chengxinqiao Wang
- Department of Orthopaedics and Traumatology & Department of Ultrasonic Diagnosis, Zhujiang HospitalKey Laboratory of Mental Health of the Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Zhisen Zhang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen UniversityXiamen361005P. R. China
| | - Yupeng Wang
- Department of Orthopaedics and Traumatology & Department of Ultrasonic Diagnosis, Zhujiang HospitalKey Laboratory of Mental Health of the Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Yonghua Tang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen UniversityXiamen361005P. R. China
| | - Youhui Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen UniversityXiamen361005P. R. China
| | - Dongfang Zhou
- Department of Orthopaedics and Traumatology & Department of Ultrasonic Diagnosis, Zhujiang HospitalKey Laboratory of Mental Health of the Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| |
Collapse
|
46
|
Qiao W, Chen J, Zhou H, Hu C, Dalangood S, Li H, Yang D, Yang Y, Gui J. A Single-Atom Manganese Nanozyme Mn-N/C Promotes Anti-Tumor Immune Response via Eliciting Type I Interferon Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305979. [PMID: 38308189 PMCID: PMC11005736 DOI: 10.1002/advs.202305979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/17/2024] [Indexed: 02/04/2024]
Abstract
Tumor microenvironment (TME)-induced nanocatalytic therapy is a promising strategy for cancer treatment, but the low catalytic efficiency limits its therapeutic efficacy. Single-atom catalysts (SACs) are a new type of nanozyme with incredible catalytic efficiency. Here, a single-atom manganese (Mn)-N/C nanozyme is constructed. Mn-N/C catalyzes the conversion of cellular H2O2 to ∙OH through a Fenton-like reaction and enables the sufficient generation of reactive oxygen species (ROS), which induces immunogenic cell death (ICD) of tumor cells and significantly promotes CD8+T anti-tumor immunity. Moreover, RNA sequencing analysis reveals that Mn-N/C treatment activates type I interferon (IFN) signaling, which is critical for Mn-N/C-mediated anti-tumor immune response. Mechanistically, the release of cytosolic DNA and Mn2+ triggered by Mn-N/C collectively activates the cGAS-STING pathway, subsequently stimulating type I IFN induction. A highly efficient single-atom nanozyme, Mn-N/C, which enhances anti-tumor immune response and exhibits synergistic therapeutic effects when combined with the anti-PD-L1 blockade, is proposed.
Collapse
Affiliation(s)
- Wen Qiao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Jingqi Chen
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Huayuan Zhou
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Cegui Hu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Sumiya Dalangood
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Hanjun Li
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Dandan Yang
- Evergrande Center for Immunologic DiseasesAnn Romney Center for Neurologic DiseasesHarvard Medical School and Mass General BrighamBostonMA02115USA
| | - Yu Yang
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Jun Gui
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
47
|
Jana D, He B, Chen Y, Liu J, Zhao Y. A Defect-Engineered Nanozyme for Targeted NIR-II Photothermal Immunotherapy of Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2206401. [PMID: 36210733 DOI: 10.1002/adma.202206401] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Multienzyme-mimicking redox nanozymes, curated by defect engineering, in synergy with immunotherapy offer promising prospects for safe and efficient cancer therapy. However, the spatiotemporally precise immune response often gets challenged by off-target adverse effects and insufficient therapeutic response. Herein, a tumor cell membrane coated redox nanozyme (CMO-R@4T1) is reported for combinational second near-infrared window (NIR-II) photothermal immunotherapy. CMO-R@4T1 consists of a Cu-doped MoOx (CMO) nanozyme as the core, which is cloaked with tumor-cell-derived fused membranes with immunostimulants immobilized in the membrane shell. In addition to the enhanced tumor accumulation, the nanozyme can cause oxidative damage to tumor cells by the production of reactive oxygen species and attenuation of the antioxidant mechanism. CMO-R@4T1 also mediates a photothermal effect under NIR-II photoirradiation to trigger tumor eradication and immunogenic cell death, where the liberated agonist elicits the immune activation. Such a controlled therapeutic paradigm potentiates systemic primary tumor ablation, inhibits cancer metastasis to distant tumor, and procures long-term immunological memory. Thereby, this study takes advantage of defect engineering to illustrate a generic strategy to prepare cell-membrane-camouflaged nanozymes for targeted photo-immunotherapy of cancer.
Collapse
Affiliation(s)
- Deblin Jana
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Bing He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jiawei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
48
|
Li L, Xu W, Wu Z, Geng W, Li S, Sun S, Wang M, Cheng C, Zhao C. Engineering Zinc-Organic Frameworks-Based Artificial Carbonic Anhydrase with Ultrafast Biomimetic Centers for Efficient Hydration Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307537. [PMID: 37939303 DOI: 10.1002/smll.202307537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Constructing effective and robust biocatalysts with carbonic anhydrase (CA)-mimetic activities offers an alternative and promising pathway for diverse CO2-related catalytic applications. However, there is very limited success has been achieved in controllably synthesizing CA-mimetic biocatalysts. Here, inspired by the 3D coordination environments of CAs, this study reports on the design of an ultrafast ZnN3-OH2 center via tuning the 3D coordination structures and mesoporous defects in a zinc-dipyrazolate framework to serve as new, efficient, and robust CA-mimetic biocatalysts (CABs) to catalyze the hydration reactions. Owing to the structural advantages and high similarity with the active center of natural CAs, the double-walled CAB with mesoporous defects displays superior CA-like reaction kinetics in p-NPA hydrolysis (V0 = 445.16 nM s-1, Vmax = 3.83 µM s-1, turnover number: 5.97 × 10-3 s-1), which surpasses the by-far-reported metal-organic frameworks-based biocatalysts. This work offers essential guidance in tuning 3D coordination environments in artificial enzymes and proposes a new strategy to create high-performance CA-mimetic biocatalysts for broad applications, such as CO2 hydration/capture, CO2 sensing, and abundant hydrolytic reactions.
Collapse
Affiliation(s)
- Lin Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenjie Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Geng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
49
|
Chen Y, Tian Q, Wang H, Ma R, Han R, Wang Y, Ge H, Ren Y, Yang R, Yang H, Chen Y, Duan X, Zhang L, Gao J, Gao L, Yan X, Qin Y. A Manganese-Based Metal-Organic Framework as a Cold-Adapted Nanozyme. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2206421. [PMID: 36329676 DOI: 10.1002/adma.202206421] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The development of cold-adapted enzymes with high efficiency and good stability is an advanced strategy to overcome the limitations of catalytic medicine in low and cryogenic temperatures. In this work, inspired by natural enzymes, a novel cold-adapted nanozyme based on a manganese-based nanosized metal-organic framework (nMnBTC) is designed and synthesized. The nMnBTC as an oxidase mimetic not only exhibits excellent activity at 0 °C, but also presents almost no observable activity loss as the temperature is increased to 45 °C. This breaks the traditional recognition that enzymes show maximum activity only under specific psychrophilic or thermophilic condition. The superior performance of nMnBTC as a cold-adapted nanozyme can be attributed to its high-catalytic efficiency at low temperature, good substrate affinity, and flexible conformation. Based on the robust performance of nMnBTC, a low-temperature antiviral strategy is developed to inactivate influenza virus H1N1 even at -20 °C. These results not only provide an important guide for the rational design of highly efficient artificial cold-adapted enzymes, but also pave a novel way for biomedical application in cryogenic fields.
Collapse
Affiliation(s)
- Yao Chen
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
| | - Qing Tian
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
| | - Haoyu Wang
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
| | - Ruonan Ma
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, P. R. China
| | - Ruiting Han
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
| | - Yu Wang
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
| | - Huibin Ge
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
| | - Yujing Ren
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
| | - Rong Yang
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
| | - Huimin Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan Road, 030001, Taiyuan, P. R. China
| | - Yinjuan Chen
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, 21 Yinghu Road, 213164, Changzhou, P. R. China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 66 West Changjiang Road, 266580, Qingdao, P. R. China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 500 Dongchuan Road, 200237, Shanghai, P. R. China
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
| | - Jie Gao
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, P. R. China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics Chinese Academy of Sciences, 15 Datun Road, 100101, Beijing, P. R. China
| | - Yong Qin
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Road, 710072, Xi'an, P. R. China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan Road, 030001, Taiyuan, P. R. China
| |
Collapse
|
50
|
Zandieh M, Liu J. Nanozymes: Definition, Activity, and Mechanisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211041. [PMID: 36799556 DOI: 10.1002/adma.202211041] [Citation(s) in RCA: 112] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/03/2023] [Indexed: 06/18/2023]
Abstract
"Nanozyme" is used to describe various catalysts from immobilized inorganic metal complexes, immobilized enzymes to inorganic nanoparticles. Here, the history of nanozymes is dvescribed in detail, and they can be largely separated into two types. Type 1 nanozymes refer to immobilized catalysts or enzymes on nanomaterials, which were dominant in the first decade since 2004. Type 2 nanozymes, which rely on the surface catalytic properties of inorganic nanomaterials, are the dominating type in the past decade. The definition of nanozymes is evolving, and a definition based on the same substrates and products as enzymes are able to cover most currently claimed nanozymes, although they may have different mechanisms compared to their enzyme counterparts. A broader definition can inspire application-based research to replace enzymes with nanomaterials for analytical, environmental, and biomedical applications. Comparison with enzymes also requires a clear definition of a nanozyme unit. Four ways of defining a nanozyme unit are described, with iron oxide and horseradish peroxidase activity comparison as examples in each definition. Growing work is devoted to understanding the catalytic mechanism of nanozymes, which provides a basis for further rational engineering of active sites. Finally, future perspective of the nanozyme field is discussed.
Collapse
Affiliation(s)
- Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|