1
|
Wieser J, Wardecki D, Fischer JWA, Newton MA, Dejoie C, Knorpp AJ, Hansen TC, Jeschke G, Rzepka P, van Bokhoven JA. Quantifying the Hydration-Dependent Dynamics of Cu Migration and Activity in Zeolite Omega for the Partial Oxidation of Methane. Angew Chem Int Ed Engl 2024; 63:e202407395. [PMID: 39137132 PMCID: PMC11586698 DOI: 10.1002/anie.202407395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Copper-exchanged zeolite omega (Cu-omega) is a potent material for the selective conversion of methane-to-methanol (MtM) via the oxygen looping approach. However, its performance exhibits substantial variation depending on the operational conditions. Under an isothermal temperature regime, Cu-omega demonstrates subdued activity below 230 °C, but experiences a remarkable increase in activity at 290 °C. Applying a high-temperature activation protocol at 450 °C causes a rapid deactivation of the material. This behavioral divergence is investigated by combining reactivity studies, neutron diffraction and in situ high-resolution anomalous X-ray powder diffraction (HR-AXRPD), as well as electron paramagnetic resonance spectroscopy, to reveal that the migration of Cu throughout the framework is the primary cause of these behaviors, which in turn is predominantly governed by the degree of hydration of the system. This work suggests that control over the Cu migration throughout the zeolite framework may be harnessed to significantly increase the activity of Cu-omega by generating more active sites for the MtM conversion. These results underscore the power of in situ HR-AXRPD for unraveling the behavior of materials under reaction conditions and suggest that a re-evaluation of Cu-zeolites priorly deemed inactive for the MtM conversion across a broader range of conditions and looping protocols may be warranted.
Collapse
Affiliation(s)
- Johannes Wieser
- Department of Chemistry and Applied Biosciences, Institute for Chemical and BioengineeringETH Zurich8093ZürichSwitzerland
| | - Dariusz Wardecki
- Institute of Experimental Physics, Faculty of PhysicsUniversity of Warsaw02-093WarsawPoland
| | - Jörg W. A. Fischer
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical ScienceETH Zurich8093ZürichSwitzerland
| | - Mark A. Newton
- Department of Chemistry and Applied Biosciences, Institute for Chemical and BioengineeringETH Zurich8093ZürichSwitzerland
- Department of Structure and Dynamics in CatalysisJ. Heyrovsky Institute of Physical ChemistryDolejškova 2155/3182 23Prague 8Czech Republic
| | | | - Amy J. Knorpp
- Department of Chemistry and Applied Biosciences, Institute for Chemical and BioengineeringETH Zurich8093ZürichSwitzerland
| | | | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical ScienceETH Zurich8093ZürichSwitzerland
| | - Przemyslaw Rzepka
- Department of Chemistry and Applied Biosciences, Institute for Chemical and BioengineeringETH Zurich8093ZürichSwitzerland
- Department of Structure and Dynamics in CatalysisJ. Heyrovsky Institute of Physical ChemistryDolejškova 2155/3182 23Prague 8Czech Republic
- Center for Energy and Environmental SciencePaul Scherrer Institute (PSI)5232VilligenSwitzerland
| | - Jeroen A. van Bokhoven
- Department of Chemistry and Applied Biosciences, Institute for Chemical and BioengineeringETH Zurich8093ZürichSwitzerland
- Center for Energy and Environmental SciencePaul Scherrer Institute (PSI)5232VilligenSwitzerland
| |
Collapse
|
2
|
Brenig A, Fischer JWA, Klose D, Jeschke G, van Bokhoven JA, Sushkevich VL. Redox and Kinetic Properties of Composition-Dependent Active Sites in Copper-Exchanged Chabazite for Direct Methane-to-Methanol Oxidation. Angew Chem Int Ed Engl 2024; 63:e202411662. [PMID: 39054903 DOI: 10.1002/anie.202411662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The CH4 oxidation performance of Cu-chabazite zeolites characterized by distinct Si/Al ratios and Cu loadings has been studied and the observed variations in reactivity have been correlated to the differences in the nature of the formed active centers. Plug flow reactor tests, in situ Fourier-transform infrared, and X-ray absorption spectroscopy demonstrate that a decrease in Cu loading shifts the reactivity/redox profile to higher temperatures and increases the CH3OH selectivity and Cu-efficiency. In situ electron paramagnetic resonance, Raman, ultraviolet-visible, Fourier-transform infrared, and photoluminescence spectroscopies reveal that this behavior is associated with the presence of monomeric Cu active sites, including bare Cu2+ and [CuOH]+ present at low Si/Al ratio and Cu loading. Formation of two distinct [Cu2(μ-O)]2+ moieties at higher Si/Al ratio or Cu loading forces these trends into the opposite direction. Operando electron paramagnetic resonance and ultraviolet-visible spectroscopy show that the apparent activation energy of monomeric Cu active species decreases with increasing Si/Al ratio, whereas the one of dimeric centers is unaffected.
Collapse
Affiliation(s)
- Andreas Brenig
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Jörg W A Fischer
- Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Daniel Klose
- Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Gunnar Jeschke
- Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Vitaly L Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| |
Collapse
|
3
|
Ezenwa S, Gounder R. Advances and challenges in designing active site environments in zeolites for Brønsted acid catalysis. Chem Commun (Camb) 2024; 60:12118-12143. [PMID: 39344420 DOI: 10.1039/d4cc04728a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Zeolites contain proton active sites in diverse void environments that stabilize the reactive intermediates and transition states formed in converting hydrocarbons and oxygenates to chemicals and energy carriers. The catalytic diversity that exists among active sites in voids of varying sizes and shapes, even within a given zeolite topology, has motivated research efforts to position and quantify active sites within distinct voids (synthesis-structure) and to link active site environment to catalytic behavior (structure-reactivity). This Feature Article describes advances and challenges in controlling the position of framework Al centers and associated protons within distinct voids during zeolite synthesis or post-synthetic modification, in identifying and quantifying distinct active site environments using characterization techniques, and in determining the influence of active site environments on catalysis. During zeolite synthesis, organic structure directing agents (SDAs) influence Al substitution at distinct lattice positions via intermolecular interactions (e.g., electrostatics, hydrogen bonding) that depend on the size, structure, and charge distribution of organic SDAs and their mobility when confined within zeolitic voids. Complementary post-synthetic strategies to alter intrapore active site distributions include the selective removal of protons by differently-sized titrants or unreactive organic residues and the selective exchange of framework heteroatoms of different reactivities, but remain limited to certain zeolite frameworks. The ability to identify and quantify active sites within distinct intrapore environments depends on the resolution with which a given characterization technique can distinguish Al T-site positions or proton environments in a given zeolite framework. For proton sites in external unconfined environments, various (post-)synthetic strategies exist to control their amounts, with quantitative methods to distinguish them from internal sites that largely depend on using stoichiometric or catalytic probes that only interact with external sites. Protons in different environments influence reactivity by preferentially stabilizing larger transition states over smaller precursor states and influence selectivity by preferentially stabilizing or destabilizing competing transition states of varying sizes that share a common precursor state. We highlight opportunities to address challenges encountered in the design of active site environments in zeolites by closely integrating precise (post-)synthetic methods, validated characterization techniques, well-defined kinetic probes, and properly calibrated theoretical models. Further advances in understanding the molecular details that underlie synthesis-structure-reactivity relationships for active site environments in zeolite catalysis can accelerate the predictive design of tailored zeolites for desired catalytic transformations.
Collapse
Affiliation(s)
- Sopuruchukwu Ezenwa
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Rajamani Gounder
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Feng Y, Grönbeck H. Kinetic Monte Carlo Simulations of Low-Temperature NH 3-SCR over Cu-Exchanged Chabazite. Chemphyschem 2024; 25:e202400558. [PMID: 38941111 DOI: 10.1002/cphc.202400558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 06/29/2024]
Abstract
Cu-exchanged chabazite (Cu-CHA) is widely used for ammonia assisted selective catalytic reduction of nitrogen oxides (NH3-SCR). The Cu+ ions are at low temperatures solvated by NH3 forming mobile [Cu(NH3)2]+ complexes. The dynamic behaviour of the complexes is critical as O2 adsorption requires a pair of complexes to form a [Cu2(NH3)4O2]2+ peroxo-species over which NO couples with NH3. Here we introduce a first principles-based kinetic Monte Carlo approach to explore the effect of the Al-distribution on the reaction kinetics of NH3-SCR over Cu-CHA. The method allows us to scrutinize the interplay between the pairing of [Cu(NH3)2]+ complexes and the reaction landscape for the NH3-SCR reaction over the peroxo-complex. The Al-distribution affects the stability of the [Cu(NH3)2]+ pairs as well as the kinetic parameters of the SCR-reaction. The turn-over frequency is determined by the stability of the [Cu(NH3)2]+ pairs and the relative strength of NO and NH3 adsorption once a pair is present. The results establish the hierarchy of effects that influences the performance of Cu-CHA over NH3-SCR and provide a computational basis for further development of the Cu-CHA material.
Collapse
Affiliation(s)
- Yingxin Feng
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412, 96, Göteborg, Sweden
| | - Henrik Grönbeck
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412, 96, Göteborg, Sweden
| |
Collapse
|
5
|
Han J, Bjerregaard JD, Grönbeck H, Creaser D, Olsson L. Effect of SO 2 and SO 3 Exposure to Cu-CHA on Surface Nitrate and N 2O Formation for NH 3-SCR. ACS ENGINEERING AU 2024; 4:405-421. [PMID: 39185390 PMCID: PMC11342297 DOI: 10.1021/acsengineeringau.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 08/27/2024]
Abstract
We report effects of SO2 and SO3 exposure on ammonium nitrate (AN) and N2O formation in Cu-CHA used for NH3-SCR. First-principles calculations and several characterizations (ICP, BET, XRD, UV-vis-DRS) were applied to characterize the Cu-CHA material and speciation of sulfur species. The first-principles calculations demonstrate that the SO2 exposure results in both (bi)sulfite and (bi)sulfate whereas the SO3 exposure yields only (bi)sulfate. Furthermore, SOx adsorption on framework-bound dicopper species is shown to be favored with respect to adsorption onto framework-bound monocopper species. Temperature-programmed reduction with H2 shows two clear reduction states and larger sulfur uptake for the SO3-exposed Cu-CHA compared to the SO2-exposed counterpart. Temperature-programmed desorption of formed ammonium nitrate (AN) highlights a significant decrease in nitrate storage due to sulfur species interacting with copper sites in the form of ammonium/copper (bi)bisulfite/sulfate. Especially, highly stable sulfur species from SO3 exposure influence the NO2-SCR chemistry by decreasing the N2O selectivity during NH3-SCR whereas an increased N2O selectivity was observed for the SO2-exposed Cu-CHA sample. This study provides fundamental insights into how SO2 and SO3 affect the N2O formation during ammonium nitrate decomposition in NH3-SCR applications, which is a very important topic for practical applications.
Collapse
Affiliation(s)
- Joonsoo Han
- Department
of Chemistry and Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Joachim D. Bjerregaard
- Department
of Physics and Competence Centre for Catalysis, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Henrik Grönbeck
- Department
of Physics and Competence Centre for Catalysis, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Derek Creaser
- Department
of Chemistry and Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Louise Olsson
- Department
of Chemistry and Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Göteborg 41296, Sweden
| |
Collapse
|
6
|
Jia L, Zhang L, Liu B, Cheng H, Li H, Zhao Z, Zhu W, Song W, Liu J, Liu J. Interface Induced by Hydrothermal Aging Boosts the Low-Temperature Activity of Cu-SSZ-13 for Selective Catalytic Reduction of NO x. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39138907 DOI: 10.1021/acs.est.4c04101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Hitherto, sulfur poisoning and hydrothermal aging have still been the challenges faced in practical applications of the Cu-SSZ-13 catalyst for the selective catalytic reduction (SCR) of NOx from diesel engine exhaust. Here, we elaborately design and conduct an in-depth investigation of the synthetic effects of hydrothermal aging and SO2 poisoning on pristine Cu-SSZ-13 and Cu-SSZ-13@Ce0.75Zr0.25O2 core@shell structure catalysts (Cu@CZ). It has been discovered that Cu@CZ susceptible to 750 °C with 5 vol % H2O followed by 200 ppm SO2 with 5 vol % H2O (Cu@CZ-A-S) could still maintain nearly 100% NOx conversion across the significantly wider temperature region of 200-425 °C, which is remarkably broader than that of the Cu-SSZ-13-A-S (300-400 °C) counterpart. The experimental results show that the hydrothermal aging process results in the migration of highly active Cu species within the cage of Cu-SSZ-13 to the CZ surface, forming CuO/CZ with abundant interfaces, which significantly enhances the adsorption and subsequent activation of NO, leading to the generation of reactive N2O3 and HONO intermediates. Moreover, density functional theory (DFT) calculations reveal that the H of the HONO* species can function as Brønsted acid sites, effectively adsorbing NH3 to generate the active NH4NO2* intermediate, which readily decomposes into N2 and H2O. Furthermore, this pathway is the rate-determining step with an energy barrier of 0.93 eV, notably lower than that of the "standard SCR" pathway (1.42 eV). Therefore, the formation of the new CuO/CZ interface profoundly boosts the low-temperature NH3-SCR activity and improves the coresistance of the Cu@CZ catalyst to sulfur poisoning and hydrothermal aging.
Collapse
Affiliation(s)
- Lingfeng Jia
- School of Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang 212013, P. R. China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, P. R. China
| | - Li Zhang
- CATARC Automotive Test Center (Tianjin) Co., Ltd, China Automotive Technology & Research Center Co., Ltd., Tianjin 300300, P. R. China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Huifang Cheng
- School of Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Huiquan Li
- Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, P. R. China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang 212013, P. R. China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, P. R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, P. R. China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, P. R. China
- Laboratory of Heavy Oil at Karamay, China University of Petroleum (Beijing) at Karamay, Karamay 834000, P. R. China
| | - Jixing Liu
- School of Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
7
|
Goswami A, Krishna SH, Gounder R, Schneider WF. Kinetic Monte Carlo Analysis Reveals Non-mean-field Active Site Dynamics in Cu-Zeolite-Catalyzed NO x Reduction. ACS Catal 2024; 14:8376-8388. [PMID: 38868104 PMCID: PMC11166141 DOI: 10.1021/acscatal.4c01856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/14/2024]
Abstract
Copper-exchanged chabazite (Cu-CHA) zeolites are the preferred catalysts for the selective catalytic reduction of NO x with NH3. The low temperature (473 K) SCR mechanism proceeds through a redox cycle between mobile and ammonia-solvated Cu(I) and Cu(II) complexes, as demonstrated by multiple experimental and computational investigations. The oxidation step requires two Cu(I) to migrate into the same cha cage to activate O2 and form a binuclear Cu(II)-di-oxo complex. Prior steady state and transient kinetic experiments find that the apparent rate constants for oxidation (per Cu ion) are sensitive to catalyst composition and follow nonmean-field kinetics. We develop a nonmean-field kinetic model for NO x SCR that incorporates a composition-dependent Cu(I) volumetric footprint centered at anionic [AlO4]- tetrahedral sites on the CHA lattice. We use Bayesian optimization to parameterize a kinetic Monte Carlo model against available experimental composition-dependent SCR rates and in situ Cu(II) fractions. We find that both rates and Cu(II) fractions of a majority of catalyst compositions can be captured by single oxidation and reduction rate constants combined with a composition-dependent Cu(I) cation footprint, highlighting the contributions of both Cu and Al densities to steady-state SCR performance of Cu-CHA. The work illustrates a pathway for extracting robust molecular insights from the kinetics of a dynamic catalytic system.
Collapse
Affiliation(s)
- Anshuman Goswami
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Siddarth H. Krishna
- Charles
D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Rajamani Gounder
- Charles
D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - William F. Schneider
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| |
Collapse
|
8
|
Zhao Y, Yi X, Dou B, Kang R, Bin F. Improving Copper Active Site Speciation on Cu-Ce/SSZ-13 for Ammonia Oxidation via Si/Al Ratio Modulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26088-26098. [PMID: 38717977 DOI: 10.1021/acsami.4c01898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Catalytic oxidation is a promising purification technique for ammonia (NH3) emission. However, high ignition temperatures and NOx peroxide generation limit its effectiveness due to a lack of active sites. Herein, the effects of Si/Al ratio (SAR) modulation on the speciation of copper active sites and the reaction mechanism at different acidic sites were investigated by loading CuO-CeO2 onto SSZ-13 with different SARs (Cu-Ce/SAR15, 20, and 30). Among them, Cu-Ce/SAR20 exhibits the lowest induction temperature (T20 = 180 °C) and the highest nitrogen selectivity (above 95%), attributing to a higher number of Cu2+ exchange sites. In situ IR spectroscopy and isotopic (18O2) transient response experiments indicate that more active Cu2+ in Cu-Ce/SAR20 provides sufficient Lewis acidic sites for NH3 adsorption and favors the stability of Si-OH-Al structures (Brønsted acid sites). NH3 adsorbed at Lewis acidic sites tends to form peroxide byproducts (NOx), while the NH4+ adsorbed at Brønsted acidic sites generates the key intermediate NH4NO2, which decomposes to N2 at high temperatures, thus enhancing nitrogen selectivity. The whole process mainly follows the Mars-van Krevelen (M-K) mechanism, with the Langmuir-Hinshelwood (L-H) mechanism playing a supporting role. Z2Cu2+ coordinates with adjacent Al atoms within the six-membered ring (6MR) and undergoes a slight deformation at high temperatures, facilitating the migration of the lattice oxygen. SAR plays a crucial role in local environmental speciation of reactive Cu2+, where the sufficient isolated Al provided in SAR20 pulls Cu2+ into the eight-membered ring (8MR), allowing it to come into contact with NH3 more readily.
Collapse
Affiliation(s)
- Yang Zhao
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xiaokun Yi
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, PR China
- State Key Laboratory of High-Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Baojuan Dou
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Running Kang
- State Key Laboratory of High-Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Feng Bin
- State Key Laboratory of High-Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
9
|
Fu Y, Ding W, Lei H, Sun Y, Du J, Yu Y, Simon U, Chen P, Shan Y, He G, He H. Spatial Distribution of Brønsted Acid Sites Determines the Mobility of Reactive Cu Ions in the Cu-SSZ-13 Catalyst during the Selective Catalytic Reduction of NO x with NH 3. J Am Chem Soc 2024; 146:11141-11151. [PMID: 38600025 DOI: 10.1021/jacs.3c13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The formation of dimer-Cu species, which serve as the active sites of the low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR), relies on the mobility of CuI species in the channels of the Cu-SSZ-13 catalysts. Herein, the key role of framework Brønsted acid sites in the mobility of reactive Cu ions was elucidated via a combination of density functional theory calculations, in situ impedance spectroscopy, and in situ diffuse reflectance ultraviolet-visible spectroscopy. When the number of framework Al sites decreases, the Brønsted acid sites decrease, leading to a systematic increase in the diffusion barrier for [Cu(NH3)2]+ and less formation of highly reactive dimer-Cu species, which inhibits the low-temperature NH3-SCR reactivity and vice versa. When the spatial distribution of Al sites is uneven, the [Cu(NH3)2]+ complexes tend to migrate from an Al-poor cage to an Al-rich cage (e.g., cage with paired Al sites), which effectively accelerates the formation of dimer-Cu species and hence promotes the SCR reaction. These findings unveil the mechanism by which framework Brønsted acid sites influence the intercage diffusion and reactivity of [Cu(NH3)2]+ complexes in Cu-SSZ-13 catalysts and provide new insights for the development of zeolite-based catalysts with excellent SCR activity by regulating the microscopic spatial distribution of framework Brønsted acid sites.
Collapse
Affiliation(s)
- Yu Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenqing Ding
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Huarong Lei
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Yu Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinpeng Du
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Peirong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Han J, Li J, Zhao W, Li L, Chen M, Ge X, Wang S, Liu Q, Mei D, Yu J. Cu-OFF/ERI Zeolite: Intergrowth Structure Synergistically Boosting Selective Catalytic Reduction of NO x with NH 3. J Am Chem Soc 2024; 146:7605-7615. [PMID: 38467427 DOI: 10.1021/jacs.3c13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Cu-SSZ-13 has been commercialized for selective catalytic reduction with ammonia (NH3-SCR) to remove NOx from diesel exhaust. As its synthesis usually requires toxic and costly organic templates, the discovery of alternative Cu-based zeolite catalysts with organotemplate-free synthesis and comparable or even superior NH3-SCR activity to that of Cu-SSZ-13 is of great academic and industrial significance. Herein, we demonstrated that Cu-T with an intergrowth structure of offretite (OFF) and erionite (ERI) synthesized by an organotemplate-free method showed better catalytic performance than Cu-ERI and Cu-OFF as well as Cu-SSZ-13. Structure characterizations and density functional theory calculations indicated that the intergrowth structure promoted more isolated Cu2+ located at the 6MR of the intergrowth interface, resulting in a better hydrothermal stability of Cu-T than Cu-ERI and Cu-OFF. Strikingly, the low-temperature activity of Cu-T significantly increased after hydrothermal aging, while that of Cu-ERI and Cu-OFF substantially decreased. Based on in situ diffuse reflectance infrared Fourier transform spectra analysis and density functional theory calculations, the reason can be attributed to the fact that NH4NO3 formed on the CuxOy species within ERI polymorph of Cu-T underwent a fast SCR reaction pathway with the assistance of Brønsted acid sites at the intergrowth interfaces under standard SCR reaction conditions. Significantly, Cu-T exhibited a wider temperature window at a catalytic activity of over 90% than Cu-SSZ-13 (175-550 vs 175-500 °C for fresh and 225-500 vs 250-400 °C for hydrothermal treatment). This work provides a new direction for the design of high-performance NH3-SCR catalysts in terms of the interplay of the intergrowth structure of zeolites.
Collapse
Affiliation(s)
- Jinfeng Han
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, P. R. China
| | - Junyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Center for High-Resolution Electron Microscopy (CℏEM), School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Wenru Zhao
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Lin Li
- Electron Microscopy Center, Jilin University, Changchun 130012, P. R. China
| | - Mengyang Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| | - Xin Ge
- Electron Microscopy Center, Jilin University, Changchun 130012, P. R. China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
| | - Qingling Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, P. R. China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, P. R. China
| | - Donghai Mei
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
11
|
Wijerathne A, Sawyer A, Daya R, Paolucci C. Competition between Mononuclear and Binuclear Copper Sites across Different Zeolite Topologies. JACS AU 2024; 4:197-215. [PMID: 38274255 PMCID: PMC10806779 DOI: 10.1021/jacsau.3c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024]
Abstract
A key challenge for metal-exchanged zeolites is the determination of metal cation speciation and nuclearity under synthesis and reaction conditions. Copper-exchanged zeolites, which are widely used in automotive emissions control and potential catalysts for partial methane oxidation, have in particular evidenced a wide variety of Cu structures that are observed to change with exposure conditions, zeolite composition, and topology. Here, we develop predictive models for Cu cation speciation and nuclearity in CHA, MOR, BEA, AFX, and FER zeolite topologies using interatomic potentials, quantum chemical calculations, and Monte Carlo simulations to interrogate this vast configurational and compositional space. Model predictions are used to rationalize experimentally observed differences between Cu-zeolites in a wide-body of literature, including nuclearity populations, structural variations, and methanol per Cu yields. Our results show that both topological features and commonly observed Al-siting biases in MOR zeolites increase the population of binuclear Cu sites, explaining the small population of mononuclear Cu sites observed in these materials relative to other zeolites such as CHA and BEA. Finally, we used a machine learning classification model to determine the preference to form mononuclear or binuclear Cu sites at different Al configurations in 200 zeolites in the international zeolite database. Model results reveal several zeolite topologies at extreme ends of the mononuclear vs binuclear spectrum, highlighting synthetic options for realization of zeolites with strong Cu nuclearity preferences.
Collapse
Affiliation(s)
- Asanka Wijerathne
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Allison Sawyer
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Rohil Daya
- Cummins
Inc, Columbus, Indiana 47201, United States
| | - Christopher Paolucci
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
12
|
Groppo E, Rojas-Buzo S, Bordiga S. The Role of In Situ/ Operando IR Spectroscopy in Unraveling Adsorbate-Induced Structural Changes in Heterogeneous Catalysis. Chem Rev 2023; 123:12135-12169. [PMID: 37882638 PMCID: PMC10636737 DOI: 10.1021/acs.chemrev.3c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 10/27/2023]
Abstract
Heterogeneous catalysts undergo thermal- and/or adsorbate-induced dynamic changes under reaction conditions, which consequently modify their catalytic behavior. Hence, it is increasingly crucial to characterize the properties of a catalyst under reaction conditions through the so-called "operando" approach. Operando IR spectroscopy is probably one of the most ubiquitous and versatile characterization methods in the field of heterogeneous catalysis, but its potential in identifying adsorbate- and thermal-induced phenomena is often overlooked in favor of other less accessible methods, such as XAS spectroscopy and high-resolution microscopy. Without detracting from these techniques, and while aware of the enormous value of a multitechnique approach, the purpose of this Review is to show that IR spectroscopy alone can provide relevant information in this field. This is done by discussing a few selected case studies from our own research experience, which belong to the categories of both "single-site"- and nanoparticle-based catalysts.
Collapse
Affiliation(s)
- Elena Groppo
- Department of Chemistry,
NIS Centre and INSTM, University of Torino, via Giuria 7, 10125 Turin, Italy
| | - Sergio Rojas-Buzo
- Department of Chemistry,
NIS Centre and INSTM, University of Torino, via Giuria 7, 10125 Turin, Italy
| | - Silvia Bordiga
- Department of Chemistry,
NIS Centre and INSTM, University of Torino, via Giuria 7, 10125 Turin, Italy
| |
Collapse
|
13
|
Chen D, Khetan A, Lei H, Rizzotto V, Yang JY, Jiang J, Sun Q, Peng B, Chen P, Palkovits R, Ye D, Simon U. Copper Site Motion Promotes Catalytic NO x Reduction under Zeolite Confinement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16121-16130. [PMID: 37842921 DOI: 10.1021/acs.est.3c03422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Ammonia-mediated selective catalytic reduction (NH3-SCR) is currently the key approach to abate nitrogen oxides (NOx) emitted from heavy-duty lean-burn vehicles. The state-of-art NH3-SCR catalysts, namely, copper ion-exchanged chabazite (Cu-CHA) zeolites, perform rather poorly at low temperatures (below 200 °C) and are thus incapable of eliminating effectively NOx emissions under cold-start conditions. Here, we demonstrate a significant promotion of low-temperature NOx reduction by reinforcing the dynamic motion of zeolite-confined Cu sites during NH3-SCR. Combining complex impedance-based in situ spectroscopy (IS) and extended density-functional tight-binding molecular dynamics simulation, we revealed an environment- and temperature-dependent nature of the dynamic Cu motion within the zeolite lattice. Further coupling in situ IS with infrared spectroscopy allows us to unravel the critical role of monovalent Cu in the overall Cu mobility at a molecular level. Based on these mechanistic understandings, we elicit a boost of NOx reduction below 200 °C by reinforcing the dynamic Cu motion in various Cu-zeolites (Cu-CHA, Cu-ZSM-5, Cu-Beta, etc.) via facile postsynthesis treatments, either in a reductive mixture at low temperatures (below 250 °C) or in a nonoxidative atmosphere at high temperatures (above 450 °C).
Collapse
Affiliation(s)
- Dongdong Chen
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Abhishek Khetan
- Multiscale Modelling of Heterogeneous Catalysis in Energy Systems, RWTH Aachen University, Schinkelstrasse 8, 52062 Aachen, Germany
| | - Huarong Lei
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen Germany
| | - Valentina Rizzotto
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen Germany
| | - Jia-Yue Yang
- Optics & Thermal Radiation Research Center, Shandong University, 266237 Qingdao, China
| | - Jiuxing Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
| | - Qiming Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Peirong Chen
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Regina Palkovits
- Chair of Heterogeneous Catalysis and Chemical Technology, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Daiqi Ye
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen Germany
| |
Collapse
|
14
|
Radhakrishnan S, Smet S, Chandran CV, Sree SP, Duerinckx K, Vanbutsele G, Martens JA, Breynaert E. Prediction of Cu Zeolite NH 3-SCR Activity from Variable Temperature 1H NMR Spectroscopy. Molecules 2023; 28:6456. [PMID: 37764230 PMCID: PMC10537069 DOI: 10.3390/molecules28186456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Selective catalytic reduction (SCR) of NOx by ammonia is one of the dominant pollution abatement technologies for near-zero NOx emission diesel engines. A crucial step in the reduction of NOx to N2 with Cu zeolite NH3-SCR catalysts is the generation of a multi-electron donating active site, implying the permanent or transient dimerization of Cu ions. Cu atom mobility has been implicated by computational chemistry as a key factor in this process. This report demonstrates how variable temperature 1H NMR reveals the Cu induced generation of sharp 1H resonances associated with a low concentration of sites on the zeolite. The onset temperature of the appearance of these signals was found to strongly correlate with the NH3-SCR activity and was observed for a range of catalysts covering multiple frameworks (CHA, AEI, AFX, ERI, ERI-CHA, ERI-OFF, *BEA), with different Si/Al ratios and different Cu contents. The results point towards universal applicability of variable temperature NMR to predict the activity of a Cu-zeolite SCR catalyst. The unique relationship of a spectroscopic feature with catalytic behavior for zeolites with different structures and chemical compositions is exceptional in heterogeneous catalysis.
Collapse
Affiliation(s)
- Sambhu Radhakrishnan
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Sam Smet
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - C. Vinod Chandran
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Sreeprasanth Pulinthanathu Sree
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Karel Duerinckx
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Gina Vanbutsele
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Johan A. Martens
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Eric Breynaert
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| |
Collapse
|
15
|
Lei H, Chen D, Yang JY, Khetan A, Jiang J, Peng B, Simon U, Ye D, Chen P. Revealing the Formation and Reactivity of Cage-Confined Cu Pairs in Catalytic NO x Reduction over Cu-SSZ-13 Zeolites by In Situ UV-Vis Spectroscopy and Time-Dependent DFT Calculation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12465-12475. [PMID: 37556316 DOI: 10.1021/acs.est.3c00458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The low-temperature mechanism of chabazite-type small-pore Cu-SSZ-13 zeolite, a state-of-the-art catalyst for ammonia-assisted selective reduction (NH3-SCR) of toxic NOx pollutants from heavy-duty vehicles, remains a debate and needs to be clarified for further improvement of NH3-SCR performance. In this study, we established experimental protocols to follow the dynamic redox cycling (i.e., CuII ↔ CuI) of Cu sites in Cu-SSZ-13 during low-temperature NH3-SCR catalysis by in situ ultraviolet-visible spectroscopy and in situ infrared spectroscopy. Further integrating the in situ spectroscopic observations with time-dependent density functional theory calculations allows us to identify two cage-confined transient states, namely, the O2-bridged Cu dimers (i.e., μ-η2:η2-peroxodiamino dicopper) and the proximately paired, chemically nonbonded CuI(NH3)2 sites, and to confirm the CuI(NH3)2 pair as a precursor to the O2-bridged Cu dimer. Comparative transient experiments reveal a particularly high reactivity of the CuI(NH3)2 pairs for NO-to-N2 reduction at low temperatures. Our study demonstrates direct experimental evidence for the transient formation and high reactivity of proximately paired CuI sites under zeolite confinement and provides new insights into the monomeric-to-dimeric Cu transformation for completing the Cu redox cycle in low-temperature NH3-SCR catalysis over Cu-SSZ-13.
Collapse
Affiliation(s)
- Huarong Lei
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Dongdong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Jia-Yue Yang
- Optics & Thermal Radiation Research Center, Shandong University, Qingdao 266237 China
| | - Abhishek Khetan
- Fuel Science Center, RWTH Aachen University, Schinkelstr. 8, 52074 Aachen, Germany
| | - Jiuxing Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275 China
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, Bochum 44780 Germany
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- Fuel Science Center, RWTH Aachen University, Schinkelstr. 8, 52074 Aachen, Germany
| | - Daiqi Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Peirong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| |
Collapse
|
16
|
Wu Y, Zhao W, Ahn SH, Wang Y, Walter ED, Chen Y, Derewinski MA, Washton NM, Rappé KG, Wang Y, Mei D, Hong SB, Gao F. Interplay between copper redox and transfer and support acidity and topology in low temperature NH 3-SCR. Nat Commun 2023; 14:2633. [PMID: 37149681 PMCID: PMC10164144 DOI: 10.1038/s41467-023-38309-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/25/2023] [Indexed: 05/08/2023] Open
Abstract
Low-temperature standard NH3-SCR over copper-exchanged zeolite catalysts occurs on NH3-solvated Cu-ion active sites in a quasi-homogeneous manner. As key kinetically relevant reaction steps, the reaction intermediate CuII(NH3)4 ion hydrolyzes to CuII(OH)(NH3)3 ion to gain redox activity. The CuII(OH)(NH3)3 ion also transfers between neighboring zeolite cages to form highly reactive reaction intermediates. Via operando electron paramagnetic resonance spectroscopy and SCR kinetic measurements and density functional theory calculations, we demonstrate here that such kinetically relevant steps become energetically more difficult with lower support Brønsted acid strength and density. Consequently, Cu/LTA displays lower Cu atomic efficiency than Cu/CHA and Cu/AEI, which can also be rationalized by considering differences in their support topology. By carrying out hydrothermal aging to eliminate support Brønsted acid sites, both CuII(NH3)4 ion hydrolysis and CuII(OH)(NH3)3 ion migration are hindered, leading to a marked decrease in Cu atomic efficiency for all catalysts.
Collapse
Affiliation(s)
- Yiqing Wu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, US
| | - Wenru Zhao
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Sang Hyun Ahn
- Center for Ordered Nanoporous Materials Synthesis, Division of Environmental Science and Engineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Yilin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, US
| | - Eric D Walter
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, US
| | - Ying Chen
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, US
| | - Miroslaw A Derewinski
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, US
- J. Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239, Krakow, Poland
| | - Nancy M Washton
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, US
| | - Kenneth G Rappé
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, US
| | - Yong Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, US
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99163, US
| | - Donghai Mei
- School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China.
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Suk Bong Hong
- Center for Ordered Nanoporous Materials Synthesis, Division of Environmental Science and Engineering, POSTECH, Pohang, 37673, Republic of Korea.
| | - Feng Gao
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, US.
| |
Collapse
|
17
|
Krishna SH, Goswami A, Wang Y, Jones CB, Dean DP, Miller JT, Schneider WF, Gounder R. Influence of framework Al density in chabazite zeolites on copper ion mobility and reactivity during NOx selective catalytic reduction with NH3. Nat Catal 2023. [DOI: 10.1038/s41929-023-00932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
18
|
Nasello ND, Usberti N, Iacobone U, Gramigni F, Hu W, Liu S, Nova I, Gao X, Tronconi E. Dual-Site RHC and OHC Transient Kinetics Predict Low-T Standard SCR Steady-State Rates over a Cu-CHA Catalyst. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Nicole Daniela Nasello
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156Milano, Italy
| | - Nicola Usberti
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156Milano, Italy
| | - Umberto Iacobone
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156Milano, Italy
| | - Federica Gramigni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156Milano, Italy
| | - Wenshuo Hu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, 310027Hangzhou, China
| | - Shaojun Liu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, 310027Hangzhou, China
| | - Isabella Nova
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156Milano, Italy
| | - Xiang Gao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, 310027Hangzhou, China
| | - Enrico Tronconi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156Milano, Italy
| |
Collapse
|
19
|
Vanlommel S, Hoffman AEJ, Smet S, Radhakrishnan S, Asselman K, Chandran CV, Breynaert E, Kirschhock CEA, Martens JA, Van Speybroeck V. How Water and Ion Mobility Affect the NMR Fingerprints of the Hydrated JBW Zeolite: A Combined Computational-Experimental Investigation. Chemistry 2022; 28:e202202621. [PMID: 36005885 PMCID: PMC10092413 DOI: 10.1002/chem.202202621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/08/2022]
Abstract
An important aspect within zeolite synthesis is to make fully tunable framework materials with controlled aluminium distribution. A major challenge in characterising these zeolites at operating conditions is the presence of water. In this work, we investigate the effect of hydration on the 27 Al NMR parameters of the ultracrystalline K,Na-compensated aluminosilicate JBW zeolite using experimental and computational techniques. The JBW framework, with Si/Al ratio of 1, is an ideal benchmark system as a stepping stone towards more complicated zeolites. The presence and mobility of water and extraframework species directly affect NMR fingerprints. Excellent agreement between theoretical and experimental spectra is obtained provided dynamic methods are employed with hydrated structural models. This work shows how NMR is instrumental in characterising aluminium distributions in zeolites at operating conditions.
Collapse
Affiliation(s)
- Siebe Vanlommel
- Center for Molecular Modeling (CMM)Ghent UniversityTechnologiepark 469052ZwijnaardeBelgium
| | | | - Sam Smet
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | - Sambhu Radhakrishnan
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- NMR-Xray platform for Convergence Research (NMRCoRe)KU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | - Karel Asselman
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | - C. Vinod Chandran
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- NMR-Xray platform for Convergence Research (NMRCoRe)KU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | - Eric Breynaert
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- NMR-Xray platform for Convergence Research (NMRCoRe)KU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- National High Magnetic Field Laboratory 1800 E. Paul Dirac Dr.TallahasseeFL32310United States
| | | | - Johan A. Martens
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- NMR-Xray platform for Convergence Research (NMRCoRe)KU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | | |
Collapse
|
20
|
Bozbağ SE, Sarı TB, Karadağ GH, Şanlı D, Özener B, Hisar G, Erkey C. Origins of Bi-modal NO conversion behavior in NH3-SCR over Cu-chabazite revealed by mass transfer and surface kinetics analysis. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Chen W, Tarach KA, Yi X, Liu Z, Tang X, Góra-Marek K, Zheng A. Charge-separation driven mechanism via acylium ion intermediate migration during catalytic carbonylation in mordenite zeolite. Nat Commun 2022; 13:7106. [DOI: 10.1038/s41467-022-34708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
AbstractBy employing ab initio molecular dynamic simulations, solid-state NMR spectroscopy, and two-dimensional correlation analysis of rapid scan Fourier transform infrared spectroscopy data, a new pathway is proposed for the formation of methyl acetate (MA) via the acylium ion (i.e.,CH3 − C ≡ O+) in 12-membered ring (MR) channel of mordenite by an integrated reaction/diffusion kinetics model, and this route is kinetically and thermodynamically more favorable than the traditional viewpoint in 8MR channel. From perspective of the complete catalytic cycle, the separation of these two reaction zones, i.e., the C-C bond coupling in 8MR channel and MA formation in 12MR channel, effectively avoids aggregation of highly active acetyl species or ketene, thereby reducing undesired carbon deposit production. The synergistic effect of different channels appears to account for the high carbonylation activity in mordenite that has thus far not been fully explained, and this paradigm may rationalize the observed catalytic activity of other reactions.
Collapse
|
22
|
Nasello ND, Gramigni F, Nova I, Tronconi E, Hofmann F, Dieterich S, Crocoll M, Weibel M. Transient Redox Behavior of a NH3-SCR Cu-CHA SCR Catalyst: Effect of O2 Feed Content Variation. Top Catal 2022. [DOI: 10.1007/s11244-022-01715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Simplified Kinetic Model for $$\hbox {NH}_3$$-SCR Over Cu-CHA Based on First-Principles Calculations. Top Catal 2022. [DOI: 10.1007/s11244-022-01711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractSelective catalytic reduction with ammonia as reducing agent ($$\hbox {NH}_3$$
NH
3
-SCR) is an efficient technology to control $$\hbox {NO}_\mathrm{x}$$
NO
x
emission during oxygen excess. Catalysts based on Cu-chabazite (Cu-CHA) have shown good performance for $$\hbox {NH}_3$$
NH
3
-SCR with high activity and selectivity at low temperature and good hydrothermal stability. Here, we explore a first-principles based kinetic model to analyze in detail which reaction steps that control the selectivity for $$\hbox {N}_2$$
N
2
and the light-off temperature. Moreover, a simplified kinetic model is developed by fitting lumped kinetic parameters to the full model. The simplified model describes the reaction with high accuracy using only five reaction steps. The present work provides insight into the governing reaction mechanism and stimulates design of knowledge-based Cu-CHA catalysts for $$\hbox {NH}_3$$
NH
3
-SCR.
Collapse
|
24
|
Khurana I, Albarracin-Caballero JD, Shih AJ. Identification and quantification of multinuclear Cu active sites derived from monomeric Cu moieties for dry NO oxidation over Cu-SSZ-13. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
25
|
Yasumura S, Qian Y, Kato T, Mine S, Toyao T, Maeno Z, Shimizu KI. In Situ/ Operando Spectroscopic Studies on the NH 3–SCR Mechanism over Fe–Zeolites. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shunsaku Yasumura
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Yucheng Qian
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Taisetsu Kato
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Shinya Mine
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Zen Maeno
- School of Advanced Engineering, KKogakuin University, Tokyo 192-0015, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| |
Collapse
|
26
|
Bruzzese PC, Salvadori E, Civalleri B, Jäger S, Hartmann M, Pöppl A, Chiesa M. The Structure of Monomeric Hydroxo-Cu II Species in Cu-CHA. A Quantitative Assessment. J Am Chem Soc 2022; 144:13079-13083. [PMID: 35819401 PMCID: PMC9335873 DOI: 10.1021/jacs.2c06037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Using EPR and HYSCORE spectroscopies in conjunction with ab initio calculations, we assess the structure of framework-bound
monomeric hydroxo-CuII in copper-loaded chabazite (CHA).
The species is an interfacial distorted square-planar [CuIIOH(O-8MRs)3] complex located at eight-membered-ring windows,
displaying three coordinating bonds with zeolite lattice oxygens and
the hydroxo ligand hydrogen-bonded to the cage. The complex has a
distinctive EPR signature with g = [2.072 2.072 2.290], CuA= [30 30 410] MHz, and HA = [−13.0 −4.5 +11.5] MHz, distinctively different
from other CuII species in CHA.
Collapse
Affiliation(s)
- Paolo Cleto Bruzzese
- Felix Bloch Institute for Solid State Physics, Leipzig University, 04103 Leipzig, Germany.,Department of Chemistry and NIS Centre of Excellence, University of Turin, 10125 Torino, Italy
| | - Enrico Salvadori
- Department of Chemistry and NIS Centre of Excellence, University of Turin, 10125 Torino, Italy
| | - Bartolomeo Civalleri
- Department of Chemistry and NIS Centre of Excellence, University of Turin, 10125 Torino, Italy
| | - Stefan Jäger
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Martin Hartmann
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Andreas Pöppl
- Felix Bloch Institute for Solid State Physics, Leipzig University, 04103 Leipzig, Germany
| | - Mario Chiesa
- Department of Chemistry and NIS Centre of Excellence, University of Turin, 10125 Torino, Italy
| |
Collapse
|
27
|
Zhang W, Shen M, Wang J, Li X, Wang J, Shen G, Wang C. Unraveling the nature of cerium on stabilizing Cu/SAPO-34 NH3-SCR catalysts under hydrothermal aging at low temperatures. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
Wu Y, Ma Y, Wang Y, Rappé KG, Washton NM, Wang Y, Walter ED, Gao F. Rate Controlling in Low-Temperature Standard NH 3-SCR: Implications from Operando EPR Spectroscopy and Reaction Kinetics. J Am Chem Soc 2022; 144:9734-9746. [PMID: 35605129 DOI: 10.1021/jacs.2c01933] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of seven Cu/SSZ-13 catalysts with Si/Al = 6.7 are used to elucidate key rate-controlling factors during low-temperature standard ammonia-selective catalytic reduction (NH3-SCR), via a combination of SCR kinetics and operando electron paramagnetic resonance (EPR) spectroscopy. Strong Cu-loading-dependent kinetics, with Cu atomic efficiency increasing nearly by an order of magnitude, is found when per chabazite cage occupancy for Cu ion increases from ∼0.04 to ∼0.3. This is due mainly to the release of intercage Cu transfer constraints that facilitates the redox chemistry, as evidenced from detailed Arrhenius analysis. Operando EPR spectroscopy studies reveal strong connectivity between Cu-ion dynamics and SCR kinetics, based on which it is concluded that under low-temperature steady-state SCR, kinetically most relevant Cu species are those with the highest intercage mobility. Transient binuclear Cu species are mechanistically relevant species, but their splitting and cohabitation are indispensable for low-temperature kinetics.
Collapse
Affiliation(s)
- Yiqing Wu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yue Ma
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yilin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Kenneth G Rappé
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Nancy M Washton
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yong Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States.,Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Eric D Walter
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Feng Gao
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| |
Collapse
|
29
|
Daya R, Trandal D, Menon U, Deka DJ, Partridge WP, Joshi SY. Kinetic Model for the Reduction of Cu II Sites by NO + NH 3 and Reoxidation of NH 3-Solvated Cu I Sites by O 2 and NO in Cu-SSZ-13. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rohil Daya
- Cummins Inc., 1900 McKinley Avenue, Columbus, Indiana 47201, United States
| | - Dylan Trandal
- Cummins Inc., 1900 McKinley Avenue, Columbus, Indiana 47201, United States
| | - Unmesh Menon
- Cummins Inc., 1900 McKinley Avenue, Columbus, Indiana 47201, United States
| | - Dhruba J. Deka
- Oak Ridge National Laboratory, 2360 Cherahala Boulevard, Knoxville, Tennessee 37932, United States
| | - William P. Partridge
- Oak Ridge National Laboratory, 2360 Cherahala Boulevard, Knoxville, Tennessee 37932, United States
| | - Saurabh Y. Joshi
- Cummins Inc., 1900 McKinley Avenue, Columbus, Indiana 47201, United States
| |
Collapse
|
30
|
Nicholas CP. Commentary on Earth Day and the Relationship to Historical Developments in Air Pollution Control and Scientific Next Steps. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Hu W, Gramigni F, Nasello ND, Usberti N, Iacobone U, Liu S, Nova I, Gao X, Tronconi E. Dynamic Binuclear Cu II Sites in the Reduction Half-Cycle of Low-Temperature NH 3–SCR over Cu-CHA Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenshuo Hu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Federica Gramigni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Nicole Daniela Nasello
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Nicola Usberti
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Umberto Iacobone
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Shaojun Liu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Isabella Nova
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Xiang Gao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Enrico Tronconi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| |
Collapse
|
32
|
Hu ZP, Han J, Wei Y, Liu Z. Dynamic Evolution of Zeolite Framework and Metal-Zeolite Interface. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhong-Pan Hu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Jingfeng Han
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Yingxu Wei
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
33
|
Li W, Wu G, Hu W, Dang J, Wang C, Weng X, da Silva I, Manuel P, Yang S, Guan N, Li L. Direct Propylene Epoxidation with Molecular Oxygen over Cobalt-Containing Zeolites. J Am Chem Soc 2022; 144:4260-4268. [PMID: 35192361 DOI: 10.1021/jacs.2c00792] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Direct propylene epoxidation with molecular oxygen is a dream reaction with 100% atom economy, but aerobic epoxidation is challenging because of the undesired over-oxidation and isomerization of epoxide products. Herein, we report the construction of uniform cobalt ions confined in faujasite zeolite, namely, Co@Y, which exhibits unprecedented catalytic performance in the aerobic epoxidation of propylene. Propylene conversion of 24.6% is achieved at propylene oxide selectivity of 57% at 773 K, giving a state-of-the-art propylene oxide production rate of 4.7 mmol/gcat/h. The catalytic performance of Co@Y is very stable, and no activity loss can be observed for over 200 h. Spectroscopic analyses reveal the details of molecular oxygen activation on isolated cobalt ions, followed by interaction with propylene to produce epoxide, in which the Co2+-Coδ+-Co2+ (2 < δ < 3) redox cycle is involved. The reaction pathway of propylene oxide and byproduct acrolein formation from propylene epoxidation is investigated by density functional theory calculations, and the unique catalytic performance of Co@Y is interpreted. This work presents an explicit example of constructing specific transition-metal ions within the zeolite matrix toward selective catalytic oxidations.
Collapse
Affiliation(s)
- Weijie Li
- Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, Nankai University, Tianjin300350, China
| | - Guangjun Wu
- Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, Nankai University, Tianjin300350, China.,Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin300071, China
| | - Wende Hu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai201208, China
| | - Jian Dang
- Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, Nankai University, Tianjin300350, China
| | - Chuanming Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai201208, China
| | - Xuefei Weng
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Ivan da Silva
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, OxfordshireOX11 0QX, U.K
| | - Pascal Manuel
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, OxfordshireOX11 0QX, U.K
| | - Sihai Yang
- Department of Chemistry, The University of Manchester, ManchesterM13 9PL, U.K
| | - Naijia Guan
- Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, Nankai University, Tianjin300350, China
| | - Landong Li
- Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, Nankai University, Tianjin300350, China.,Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin300071, China
| |
Collapse
|
34
|
Heidarnezhad Z, Ghorbani-Choghamarani A, Taherinia Z. S‐Benzylisothiourea Complex of Palladium Supported on Modified Mesoporous Magnetic Nanoparticles (Pd-SBTU@Fe3O4@SBA-3) as Sustainable Environmental Catalyst for Suzuki and Stille Reactions. Catal Letters 2022. [DOI: 10.1007/s10562-021-03871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
35
|
Temperature dependence of Cu(I) oxidation and Cu(II) reduction kinetics in the selective catalytic reduction of NOx with NH3 on Cu-chabazite zeolites. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Han J, Wang A, Isapour G, Härelind H, Skoglundh M, Creaser D, Olsson L. N2O Formation during NH3-SCR over Different Zeolite Frameworks: Effect of Framework Structure, Copper Species, and Water. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joonsoo Han
- Department of Chemistry and Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Aiyong Wang
- Department of Chemistry and Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Ghodsieh Isapour
- Department of Chemistry and Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Hanna Härelind
- Department of Chemistry and Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Magnus Skoglundh
- Department of Chemistry and Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Derek Creaser
- Department of Chemistry and Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Louise Olsson
- Department of Chemistry and Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg 41296, Sweden
| |
Collapse
|
37
|
Feng Y, Wang X, Janssens TVW, Vennestrøm PNR, Jansson J, Skoglundh M, Grönbeck H. First-Principles Microkinetic Model for Low-Temperature NH 3-Assisted Selective Catalytic Reduction of NO over Cu-CHA. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yingxin Feng
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Xueting Wang
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | | | | | - Jonas Jansson
- Volvo Group Trucks Technology, SE-405 08 Göteborg, Sweden
| | - Magnus Skoglundh
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Henrik Grönbeck
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
38
|
Potts DS, Bregante DT, Adams JS, Torres C, Flaherty DW. Influence of solvent structure and hydrogen bonding on catalysis at solid-liquid interfaces. Chem Soc Rev 2021; 50:12308-12337. [PMID: 34569580 DOI: 10.1039/d1cs00539a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Solvent molecules interact with reactive species and alter the rates and selectivities of catalytic reactions by orders of magnitude. Specifically, solvent molecules can modify the free energies of liquid phase and surface species via solvation, participating directly as a reactant or co-catalyst, or competitively binding to active sites. These effects carry consequences for reactions relevant for the conversion of renewable or recyclable feedstocks, the development of distributed chemical manufacturing, and the utilization of renewable energy to drive chemical reactions. First, we describe the quantitative impact of these effects on steady-state catalytic turnover rates through a rate expression derived for a generic catalytic reaction (A → B), which illustrates the functional dependence of rates on each category of solvent interaction. Second, we connect these concepts to recent investigations of the effects of solvents on catalysis to show how interactions between solvent and reactant molecules at solid-liquid interfaces influence catalytic reactions. This discussion demonstrates that the design of effective liquid phase catalytic processes benefits from a clear understanding of these intermolecular interactions and their implications for rates and selectivities.
Collapse
Affiliation(s)
- David S Potts
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Daniel T Bregante
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jason S Adams
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Chris Torres
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
39
|
Millan R, Cnudde P, van Speybroeck V, Boronat M. Mobility and Reactivity of Cu + Species in Cu-CHA Catalysts under NH 3-SCR-NOx Reaction Conditions: Insights from AIMD Simulations. JACS AU 2021; 1:1778-1787. [PMID: 34723280 PMCID: PMC8549050 DOI: 10.1021/jacsau.1c00337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 05/25/2023]
Abstract
The mobility of the copper cations acting as active sites for the selective catalytic reduction of nitrogen oxides with ammonia in Cu-CHA catalysts varies with temperature and feed composition. Herein, the migration of [Cu(NH3)2]+ complexes between two adjacent cavities of the chabazite structure, including other reactant molecules (NO, O2, H2O, and NH3), in the initial and final cavities is investigated using ab initio molecular dynamics (AIMD) simulations combined with enhanced sampling techniques to describe hopping events from one cage to the other. We find that such diffusion is only significantly hindered by the presence of excess NH3 or NO in the initial cavity, since both reactants form with [Cu(NH3)2]+ stable intermediates which are too bulky to cross the 8-ring windows connecting the cavities. The presence of O2 modifies strongly the interaction of NO with Cu+. At low temperatures, we observe NO detachment from Cu+ and increased mobility of the [Cu(NH3)2]+ complex, while at high temperatures, NO reacts spontaneously with O2 to form NO2. The present simulations give evidence for recent experimental observations, namely, an NH3 inhibition effect on the SCR reaction at low temperatures, and transport limitations of NO and NH3 at high temperatures. Our first principle simulations mimicking operating conditions support the existence of two different reaction mechanisms operating at low and high temperatures, the former involving dimeric Cu(NH3)2-O2-Cu(NH3)2 species and the latter occurring by direct NO oxidation to NO2 in one single cavity.
Collapse
Affiliation(s)
- Reisel Millan
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Avenida de los Naranjos s/n, 46022 València, Spain
| | - Pieter Cnudde
- Center
for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | | | - Mercedes Boronat
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Avenida de los Naranjos s/n, 46022 València, Spain
| |
Collapse
|
40
|
Guo A, Xie K, Lei H, Rizzotto V, Chen L, Fu M, Chen P, Peng Y, Ye D, Simon U. Inhibition Effect of Phosphorus Poisoning on the Dynamics and Redox of Cu Active Sites in a Cu-SSZ-13 NH 3-SCR Catalyst for NO x Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12619-12629. [PMID: 34510889 DOI: 10.1021/acs.est.1c03630] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) stemming from biodiesel and/or lubricant oil additives is unavoidable in real diesel exhausts and deactivates gradually the Cu-SSZ-13 zeolite catalyst for ammonia-assisted selective catalytic NOx reduction (NH3-SCR). Here, the deactivation mechanism of Cu-SSZ-13 by P-poisoning was investigated by ex situ examination of the structural changes and by in situ probing the dynamics and redox of Cu active sites via a combination of impedance spectroscopy, diffuse reflection infrared Fourier transform spectroscopy, and ultraviolet-visible spectroscopy. We unveiled that strong interactions between Cu and P led to not only a loss of Cu active sites for catalytic turnovers but also a restricted dynamic motion of Cu species during low-temperature NH3-SCR catalysis. Furthermore, the CuII ↔ CuI redox cycling of Cu sites, especially the CuI → CuII reoxidation half-cycle, was significantly inhibited, which can be attributed to the restricted Cu motion by P-poisoning disabling the formation of key dimeric Cu intermediates. As a result, the NH3-SCR activity at low temperatures (200 °C and below) decreased slightly for the mildly poisoned Cu-SSZ-13 and considerably for the severely poisoned Cu-SSZ-13.
Collapse
Affiliation(s)
- Anqi Guo
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Kunpeng Xie
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Huarong Lei
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Valentina Rizzotto
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Limin Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Mingli Fu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Peirong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yue Peng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Daiqi Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| |
Collapse
|
41
|
Negri C, Martini A, Deplano G, Lomachenko KA, Janssens TVW, Borfecchia E, Berlier G, Bordiga S. Investigating the role of Cu-oxo species in Cu-nitrate formation over Cu-CHA catalysts. Phys Chem Chem Phys 2021; 23:18322-18337. [PMID: 34612374 PMCID: PMC8409503 DOI: 10.1039/d1cp01754c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/16/2021] [Indexed: 12/04/2022]
Abstract
The speciation of framework-interacting CuII sites in Cu-chabazite zeolite catalysts active in the selective catalytic reduction of NOx with NH3 is studied, to investigate the influence of the Al content on the copper structure and their reactivity towards a NO/O2 mixture. To this aim, three samples with similar Cu densities and different Si/Al ratios (5, 15 and 29) were studied using in situ X-ray absorption spectroscopy (XAS), FTIR and diffuse reflectance UV-Vis during pretreatment in O2 followed by the reaction. XAS and UV-Vis data clearly show the main presence of Z2CuII sites (with Z representing a framework negative charge) at a low Si/Al ratio, as predicted. EXAFS wavelet transform analysis showed a non-negligible fraction of proximal Z2CuII monomers, possibly stabilized into two 6-membered rings within the same cage. These sites are not able to form Cu-nitrates by interaction with NO/O2. By contrast, framework-anchored Z[CuII(NO3)] complexes with a chelating bidentate structure are formed in samples with a higher Si/Al ratio, by reaction of NO/O2 with Z[CuII(OH)] sites or structurally similar mono- or multi-copper Zx[CuIIxOy] sites. Linear combination fit (LCF) analysis of the XAS data showed good agreement between the fraction of Z[CuII(OH)]/Zx[CuIIxOy] sites formed during activation in O2 and that of Z[CuII(NO3)] complexes formed by reaction with NO/O2, further confirming the chemical inertia of Z2CuII towards these reactants in the absence of solvating NH3 molecules.
Collapse
Affiliation(s)
- Chiara Negri
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
| | - Andrea Martini
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
- The Smart Materials Research Institute, Southern Federal UniversitySladkova 178/24344090 Rostov-on-DonRussia
| | - Gabriele Deplano
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
| | - Kirill A. Lomachenko
- European Synchrotron Radiation Facility71 Avenue des Martyrs, CS 4022038043 Grenoble Cedex 9France
| | | | - Elisa Borfecchia
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
| | - Gloria Berlier
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
| | - Silvia Bordiga
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
| |
Collapse
|
42
|
Hu W, Iacobone U, Gramigni F, Zhang Y, Wang X, Liu S, Zheng C, Nova I, Gao X, Tronconi E. Unraveling the Hydrolysis of Z2Cu2+ to ZCu2+(OH)− and Its Consequences for the Low-Temperature Selective Catalytic Reduction of NO on Cu-CHA Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02761] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wenshuo Hu
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Umberto Iacobone
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, Milano 20156, Italy
| | - Federica Gramigni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, Milano 20156, Italy
| | - Yu Zhang
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Xiaoxiang Wang
- Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Shaojun Liu
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Chenghang Zheng
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Isabella Nova
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, Milano 20156, Italy
| | - Xiang Gao
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Enrico Tronconi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, Milano 20156, Italy
| |
Collapse
|
43
|
Kubota H, Toyao T, Maeno Z, Inomata Y, Murayama T, Nakazawa N, Inagaki S, Kubota Y, Shimizu KI. Analogous Mechanistic Features of NH 3-SCR over Vanadium Oxide and Copper Zeolite Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02860] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroe Kubota
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Yusuke Inomata
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Toru Murayama
- Research Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Naoto Nakazawa
- Division of Materials Science and Chemical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Satoshi Inagaki
- Division of Materials Science and Chemical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yoshihiro Kubota
- Division of Materials Science and Chemical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
44
|
Bruzzese PC, Salvadori E, Jäger S, Hartmann M, Civalleri B, Pöppl A, Chiesa M. 17O-EPR determination of the structure and dynamics of copper single-metal sites in zeolites. Nat Commun 2021; 12:4638. [PMID: 34330914 PMCID: PMC8324863 DOI: 10.1038/s41467-021-24935-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
The bonding of copper ions to lattice oxygens dictates the activity and selectivity of copper exchanged zeolites. By 17O isotopic labelling of the zeolite framework, in conjunction with advanced EPR methodologies and DFT modelling, we determine the local structure of single site CuII species, we quantify the covalency of the metal-framework bond and we assess how this scenario is modified by the presence of solvating H216O or H217O molecules. This enables to follow the migration of CuII species as a function of hydration conditions, providing evidence for a reversible transfer pathway within the zeolite cage as a function of the water pressure. The results presented in this paper establish 17O EPR as a versatile tool for characterizing metal-oxide interactions in open-shell systems.
Collapse
Affiliation(s)
- Paolo Cleto Bruzzese
- grid.9647.c0000 0004 7669 9786Felix Bloch Institute for Solid State Physics, Universität Leipzig, Leipzig, Germany ,grid.7605.40000 0001 2336 6580Department of Chemistry and NIS Centre of Excellence, University of Turin, Torino, Italy
| | - Enrico Salvadori
- grid.7605.40000 0001 2336 6580Department of Chemistry and NIS Centre of Excellence, University of Turin, Torino, Italy
| | - Stefan Jäger
- Erlangen Center for Interface Research and Catalysis (ECRC), Erlangen, Germany
| | - Martin Hartmann
- Erlangen Center for Interface Research and Catalysis (ECRC), Erlangen, Germany
| | - Bartolomeo Civalleri
- grid.7605.40000 0001 2336 6580Department of Chemistry and NIS Centre of Excellence, University of Turin, Torino, Italy
| | - Andreas Pöppl
- grid.9647.c0000 0004 7669 9786Felix Bloch Institute for Solid State Physics, Universität Leipzig, Leipzig, Germany
| | - Mario Chiesa
- grid.7605.40000 0001 2336 6580Department of Chemistry and NIS Centre of Excellence, University of Turin, Torino, Italy
| |
Collapse
|
45
|
Cnudde P, Redekop EA, Dai W, Porcaro NG, Waroquier M, Bordiga S, Hunger M, Li L, Olsbye U, Van Speybroeck V. Experimental and Theoretical Evidence for the Promotional Effect of Acid Sites on the Diffusion of Alkenes through Small-Pore Zeolites. Angew Chem Int Ed Engl 2021; 60:10016-10022. [PMID: 33496374 PMCID: PMC8251642 DOI: 10.1002/anie.202017025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Indexed: 12/18/2022]
Abstract
The diffusion of saturated and unsaturated hydrocarbons is of fundamental importance for many zeolite‐catalyzed processes. Transport of small alkenes in the confined zeolite pores can become hindered, resulting in a significant impact on the ultimate product selectivity and separation. Herein, intracrystalline light olefin/paraffin diffusion through the 8‐ring windows of zeolite SAPO‐34 is characterized by a complementary set of first‐principle molecular dynamics simulations, PFG‐NMR experiments, and pulse‐response temporal analysis of products measurements, yielding information at different length and time scales. Our results clearly show a promotional effect of the presence of Brønsted acid sites on the diffusion rate of ethene and propene, whereas transport of alkanes is found to be insensitive to the presence of acid sites. The enhanced diffusivity of unsaturated hydrocarbons is ascribed to the formation of favorable π–H interactions with acid protons, as confirmed by IR spectroscopy measurements. The acid site distribution is proven to be an important design parameter for optimizing product distributions and separations.
Collapse
Affiliation(s)
- Pieter Cnudde
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, 9052, Zwijnaarde, Belgium
| | - Evgeniy A Redekop
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, P.O. Box 1126 Blindern, 0318, Oslo, Norway
| | - Weili Dai
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Natale G Porcaro
- Department of Chemistry, NIS Centre of Excellence and INSTM Reference Center, University of Turin, Via P. Giuria 7, 10125 10, Torino, Italy
| | - Michel Waroquier
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, 9052, Zwijnaarde, Belgium
| | - Silvia Bordiga
- Department of Chemistry, NIS Centre of Excellence and INSTM Reference Center, University of Turin, Via P. Giuria 7, 10125 10, Torino, Italy
| | - Michael Hunger
- Institute of Chemical Technology, University of Stuttgart, 70550, Stuttgart, Germany
| | - Landong Li
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Unni Olsbye
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, P.O. Box 1126 Blindern, 0318, Oslo, Norway
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, 9052, Zwijnaarde, Belgium
| |
Collapse
|
46
|
Krishna SH, Jones CB, Gounder R. Dynamic Interconversion of Metal Active Site Ensembles in Zeolite Catalysis. Annu Rev Chem Biomol Eng 2021; 12:115-136. [PMID: 33826852 DOI: 10.1146/annurev-chembioeng-092120-010920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Catalysis science is founded on understanding the structure, number, and reactivity of active sites. Kinetic models that consider active sites to be static and noninteracting entities are routinely successful in describing the behavior of heterogeneous catalysts. Yet, active site ensembles often restructure in response to their external environment and even during steady-state catalytic turnover, sometimes requiring non-mean-field kinetic treatments to describe distance-dependent interactions among sites. Such behavior is being recognized more frequently in modern catalysis research, with the advent of experimental methods to quantify turnover rates with increasing precision, an expanding arsenal of operando characterization tools, and computational descriptions of atomic structure and motion at chemical potentials and timescales increasingly relevant to reaction conditions. This review focuses on dynamic changes to metal active site ensembles on zeolite supports, which are silica-based crystalline materials substituted with Al that generate binding sites for isolated and low-nuclearity metal site ensembles. Metal sites can become solvated and mobilized during reaction, facilitating interactions among sites that change their nuclearity and function. Such intersite communication can be regulated by the zeolite support, resulting in non-single-site and potentially non-mean-field kinetic behavior arising from mechanisms of catalytic action that combine elements of those canonically associated with homogeneous and heterogeneous catalysis.We discuss recent literature examples that document dynamic active site behavior in metal-zeolites and outline methodologies to identify and interpret such behavior. We conclude with our outlook on future research directions to develop this evolving branch of catalysis science and harness it for practical applications.
Collapse
Affiliation(s)
- Siddarth H Krishna
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Casey B Jones
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
47
|
Cnudde P, Redekop EA, Dai W, Porcaro NG, Waroquier M, Bordiga S, Hunger M, Li L, Olsbye U, Van Speybroeck V. Experimental and Theoretical Evidence for the Promotional Effect of Acid Sites on the Diffusion of Alkenes through Small‐Pore Zeolites. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Pieter Cnudde
- Center for Molecular Modeling (CMM) Ghent University Technologiepark 46 9052 Zwijnaarde Belgium
| | - Evgeniy A. Redekop
- Center for Materials Science and Nanotechnology (SMN) Department of Chemistry University of Oslo P.O. Box 1126 Blindern 0318 Oslo Norway
| | - Weili Dai
- School of Materials Science and Engineering & National Institute for Advanced Materials Nankai University Tianjin 300350 P. R. China
| | - Natale G. Porcaro
- Department of Chemistry NIS Centre of Excellence and INSTM Reference Center University of Turin Via P. Giuria 7 10125 10 Torino Italy
| | - Michel Waroquier
- Center for Molecular Modeling (CMM) Ghent University Technologiepark 46 9052 Zwijnaarde Belgium
| | - Silvia Bordiga
- Department of Chemistry NIS Centre of Excellence and INSTM Reference Center University of Turin Via P. Giuria 7 10125 10 Torino Italy
| | - Michael Hunger
- Institute of Chemical Technology University of Stuttgart 70550 Stuttgart Germany
| | - Landong Li
- School of Materials Science and Engineering & National Institute for Advanced Materials Nankai University Tianjin 300350 P. R. China
| | - Unni Olsbye
- Center for Materials Science and Nanotechnology (SMN) Department of Chemistry University of Oslo P.O. Box 1126 Blindern 0318 Oslo Norway
| | | |
Collapse
|
48
|
Ohata Y, Ohnishi T, Moteki T, Ogura M. High NH 3-SCR reaction rate with low dependence on O 2 partial pressure over Al-rich Cu-*BEA zeolite. RSC Adv 2021; 11:10381-10384. [PMID: 35423523 PMCID: PMC8695709 DOI: 10.1039/d1ra00943e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
Dependence of NH3-SCR reaction rate on O2 partial pressure was investigated at 473 K over Cu ion-exchanged MOR, MFI, CHA and *BEA zeolites with varying “Cu density in micropores”. Among the zeolites, Cu–*BEA zeolite demonstrated promising potential as an effective catalyst for NH3-SCR over a wide range of O2 partial pressure. It was revealed that Al-rich Cu–*BEA zeolite exhibit high reaction rate for NH3-SCR at 473 K in low PO2 reaction condition.![]()
Collapse
Affiliation(s)
- Yusuke Ohata
- Institute of Industrial Science, The University of Tokyo Komaba, Meguro Tokyo 153-8505 Japan
| | - Takeshi Ohnishi
- Institute of Industrial Science, The University of Tokyo Komaba, Meguro Tokyo 153-8505 Japan
| | - Takahiko Moteki
- Institute of Industrial Science, The University of Tokyo Komaba, Meguro Tokyo 153-8505 Japan .,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University Katsura Kyoto 615-8520 Japan
| | - Masaru Ogura
- Institute of Industrial Science, The University of Tokyo Komaba, Meguro Tokyo 153-8505 Japan .,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University Katsura Kyoto 615-8520 Japan
| |
Collapse
|
49
|
Yang G, Ran J, Du X, Wang X, Ran Z, Chen Y, Zhang L, Crittenden J. Understanding the nature of NH 3-coordinated active sites and the complete reaction schemes for NH 3-SCR using Cu-SAPO-34 catalysts. Phys Chem Chem Phys 2021; 23:4700-4710. [PMID: 33595551 DOI: 10.1039/d0cp06285e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cu-SAPO-34 zeolite catalysts show excellent NH3-SCR performance at low temperature, which is due to the catalytic capacity of copper species. Isolated CuII ions and CuIIOH are active sites, but their nature and role are not fully understood. This paper reports the DFT calculations in combination with ab initio thermodynamics to investigate NH3 and H2O coordination to copper species under typical NH3-SCR reaction conditions. In the reduction part of the NH3-SCR reaction, NH2NO and NH4NO2 intermediates will form on CuII-2NH3/3NH3 and CuIIOH-2NH3 complexes, respectively. The Brønsted acid sites are crucial for the decomposition of these intermediates, rather than copper species. Furthermore, the decomposition of NH2NO is more energetically favorable than NH4NO2 which are formed on the Brønsted acid sites. In the re-oxidation part of the NH3-SCR reaction, O2 dissociation and NO2 formation occur on CuI-2NH3 complexes in the presence of NO, and the regeneration of CuIIOH-2NH3 requires the participation of H2O. The proposed complete mechanisms highlight the importance of ligand coordinated copper species for intermediate formation and O2 activation in NH3-SCR.
Collapse
Affiliation(s)
- Guangpeng Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China.
| | - Jingyu Ran
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China.
| | - Xuesen Du
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China.
| | - Xiangmin Wang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China.
| | - Zhilin Ran
- School of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Yanrong Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China.
| | - Li Zhang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China.
| | - John Crittenden
- Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
50
|
In situ X-ray absorption study of Cu species in Cu-CHA catalysts for NH3-SCR during temperature-programmed reduction in NO/NH3. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04350-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractAmmonia-mediated selective catalytic reduction (NH3-SCR) using Cu-exchanged chabazite zeolites as catalysts is one of the leading technologies for NOx removal from exhaust gases, with CuII/CuI redox cycles being the basis of the catalytic reaction. The amount of CuII ions reduced by NO/NH3 can be quantified by the consumption of NO during temperature-programmed reduction experiments (NO-TPR). In this article, we show the capabilities of in situ X-ray absorption near-edge spectroscopy (XANES), coupled with multivariate curve resolution (MCR) and principal component analysis (PCA) methods, in following CuII/CuI speciation during reduction in NO/NH3 after oxidation in NO/O2 at 50 °C on samples with different copper loading and pretreatment conditions. Our XANES results show that during the NO/NH3 ramp CuII ions are fully reduced to CuI in the 50–290 °C range. The number of species involved in the process, their XANES spectra and their concentration profiles as a function of the temperature were obtained by MCR and PCA. Mixed ligand ammonia solvated complexes [CuII(NH3)3(X)]+ (X = OH−/O− or NO3−) are present at the beginning of the experiment, and are transformed into mobile [CuI(NH3)2]+ complexes: these complexes lose an NH3 ligand and become framework-coordinated above 200 °C. In the process, multiple CuII/CuI reduction events are observed: the first one around 130 °C is identified with the reduction of [CuII(NH3)3(OH/O)]+ moieties, while the second one occurs around 220–240 °C and is associated with the reduction of the ammonia-solvated Cu-NO3− species. The nitrate concentration in the catalysts is found to be dependent on the zeolite Cu loading and on the applied pretreatment conditions. Ammonia solvation increases the number of CuII sites available for the formation of nitrates, as confirmed by infrared spectroscopy.
Collapse
|