1
|
Trouvé J, Delahaye V, Tomasini M, Rajeshwaran P, Roisnel T, Poater A, Gramage-Doria R. Repurposing a supramolecular iridium catalyst via secondary Zn⋯O[double bond, length as m-dash]C weak interactions between the ligand and substrate leads to ortho-selective C(sp 2)-H borylation of benzamides with unusual kinetics. Chem Sci 2024; 15:11794-11806. [PMID: 39092112 PMCID: PMC11290415 DOI: 10.1039/d4sc01515k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
The iridium-catalyzed C-H borylation of benzamides typically leads to meta and para selectivities using state-of-the-art iridium-based N,N-chelating bipyridine ligands. However, reaching ortho selectivity patterns requires extensive trial-and-error screening via molecular design at the ligand first coordination sphere. Herein, we demonstrate that triazolylpyridines are excellent ligands for the selective iridium-catalyzed ortho C-H borylation of tertiary benzamides and, importantly, we demonstrate the almost negligible effect of the first coordination sphere in the selectivity, which is so far unprecedented in iridium C-H bond borylations. Remarkably, the activity is dramatically enhanced by exploiting a remote Zn⋯O[double bond, length as m-dash]C weak interaction between the substrate and a rationally designed molecular-recognition site in the catalyst. Kinetic studies and DFT calculations indicate that the iridium-catalyzed C-H activation step is not rate-determining, this being unique for remotely controlled C-H functionalizations. Consequently, a previously established supramolecular iridium catalyst designed for meta-borylation of pyridines is now compatible with the ortho-borylation of benzamides, a regioselectivity switch that is counter-intuitive regarding precedents in the literature. In addition, we highlight the role of the cyclohexene additive in avoiding the formation of undesired side-products as well as accelerating the HBpin release event that precedes the catalyst regeneration step, which is highly relevant for the design of powerful and selective iridium borylating catalysts.
Collapse
Affiliation(s)
| | | | - Michele Tomasini
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona c/Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | | | | | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona c/Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | | |
Collapse
|
2
|
Liu S, Kumar K, Bell T, Ramamoorthy A, Van Winkle D, Lenhert S. Lipid-Based Catalysis Demonstrated by Bilayer-Enabled Ester Hydrolysis. MEMBRANES 2024; 14:168. [PMID: 39195420 DOI: 10.3390/membranes14080168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Lipids have not traditionally been considered likely candidates for catalyzing reactions in biological systems. However, there is significant evidence that aggregates of amphiphilic compounds are capable of catalyzing reactions in synthetic organic chemistry. Here, we demonstrate the potential for the hydrophobic region of a lipid bilayer to provide an environment suitable for catalysis by means of a lipid aggregate capable of speeding up a chemical reaction. By bringing organic molecules into the nonpolar or hydrophobic region of a lipid bilayer, reactions can be catalyzed by individual or collections of small, nonpolar, or amphiphilic molecules. We demonstrate this concept by the ester hydrolysis of calcein-AM to produce a fluorescent product, which is a widely used assay for esterase activity in cells. The reaction was first carried out in a two-phase octanol-water system, with the organic phase containing the cationic amphiphiles cetyltrimethylammonium bromide (CTAB) or octadecylamine. The octanol phase was then replaced with phospholipid vesicles in water, where the reaction was also found to be carried out. The reaction was monitored using quantitative fluorescence, which revealed catalytic turnover numbers on a scale of 10-7 to 10-8 s-1 for each system, which is much slower than enzymatic catalysis. The reaction product was characterized by 1H-NMR measurements, which were consistent with ester hydrolysis. The implications of thinking about lipids and lipid aggregates as catalytic entities are discussed in the context of biochemistry, pharmacology, and synthetic biology.
Collapse
Affiliation(s)
- Shu Liu
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, Tallahassee, FL 32306, USA
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| | - Kiran Kumar
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
- Department of Chemical and Biomedical Engineering, FAMU-FSU, Tallahassee, FL 32310, USA
| | - Tracey Bell
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, Tallahassee, FL 32306, USA
| | - Ayyalusamy Ramamoorthy
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
- Department of Chemical and Biomedical Engineering, FAMU-FSU, Tallahassee, FL 32310, USA
| | - David Van Winkle
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| | - Steven Lenhert
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
3
|
Tang P, Harding CJ, Dickson AL, da Silva RG, Harrison DJ, Czekster CM. Snapshots of the Reaction Coordinate of a Thermophilic 2'-Deoxyribonucleoside/ribonucleoside Transferase. ACS Catal 2024; 14:3090-3102. [PMID: 38449528 PMCID: PMC10913048 DOI: 10.1021/acscatal.3c06260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 03/08/2024]
Abstract
Nucleosides are ubiquitous to life and are required for the synthesis of DNA, RNA, and other molecules crucial for cell survival. Despite the notoriously difficult organic synthesis of nucleosides, 2'-deoxynucleoside analogues can interfere with natural DNA replication and repair and are successfully employed as anticancer, antiviral, and antimicrobial compounds. Nucleoside 2'-deoxyribosyltransferase (dNDT) enzymes catalyze transglycosylation via a covalent 2'-deoxyribosylated enzyme intermediate with retention of configuration, having applications in the biocatalytic synthesis of 2'-deoxynucleoside analogues in a single step. Here, we characterize the structure and function of a thermophilic dNDT, the protein from Chroococcidiopsis thermalis (CtNDT). We combined enzyme kinetics with structural and biophysical studies to dissect mechanistic features in the reaction coordinate, leading to product formation. Bell-shaped pH-rate profiles demonstrate activity in a broad pH range of 5.5-9.5, with two very distinct pKa values. A pronounced viscosity effect on the turnover rate indicates a diffusional step, likely product (nucleobase1) release, to be rate-limiting. Temperature studies revealed an extremely curved profile, suggesting a large negative activation heat capacity. We trapped a 2'-fluoro-2'-deoxyarabinosyl-enzyme intermediate by mass spectrometry and determined high-resolution structures of the protein in its unliganded, substrate-bound, ribosylated, 2'-difluoro-2'-deoxyribosylated, and in complex with probable transition-state analogues. We reveal key features underlying (2'-deoxy)ribonucleoside selection, as CtNDT can also use ribonucleosides as substrates, albeit with a lower efficiency. Ribonucleosides are the building blocks of RNA and other key intracellular metabolites participating in energy and metabolism, expanding the scope of use of CtNDT in biocatalysis.
Collapse
Affiliation(s)
- Peijun Tang
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| | - Christopher J. Harding
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| | - Alison L. Dickson
- School
of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, United Kingdom
| | - Rafael G. da Silva
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| | - David J. Harrison
- School
of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, United Kingdom
| | - Clarissa Melo Czekster
- School
of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| |
Collapse
|
4
|
Mojanaga OO, Acharya KR, Lloyd MD. Recombinant protein production for structural and kinetic studies: A case study using M. tuberculosis α-methylacyl-CoA racemase (MCR). Methods Enzymol 2023; 690:1-37. [PMID: 37858526 DOI: 10.1016/bs.mie.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Modern drug discovery is a target-driven approach in which a particular protein such as an enzyme is implicated in the disease process. Commonly, small-molecule drugs are identified using screening, rational design, and structural biology approaches. Drug screening, testing and optimization is typically conducted in vitro, and copious amounts of protein are required. The advent of recombinant DNA technologies has resulted in a rise in proteins purified by affinity techniques, typically by incorporating an "affinity tag" at the N- or C-terminus. Use of these tagged proteins and affinity techniques comes with a host of issues. This chapter describes the production of an untagged enzyme, α-methylacyl-CoA racemase (MCR) from Mycobacterium tuberculosis, using a recombinant E. coli system. Purification of the enzyme on a 100 mg scale using tandem anion-exchange chromatographies (DEAE-sepharose and RESOURCE-Q columns), and size-exclusion chromatographies is described. A modified protocol allowing the purification of cationic proteins is also described, based on tandem cation-exchange chromatographies (using CM-sepharose and RESOURCE-S columns) and size-exclusion chromatographies. The resulting MCR protein is suitable for biochemical and structural biology applications. The described protocols have wide applicability to the purification of other recombinant proteins and enzymes without using affinity chromatography.
Collapse
Affiliation(s)
- Otsile O Mojanaga
- Department of Life Sciences, University of Bath, Claverton Down, Bath, United Kingdom
| | - K Ravi Acharya
- Department of Life Sciences, University of Bath, Claverton Down, Bath, United Kingdom.
| | - Matthew D Lloyd
- Department of Life Sciences, University of Bath, Claverton Down, Bath, United Kingdom.
| |
Collapse
|
5
|
Brooke H, Ghoshray M, Ibrahim A, Lloyd MD. Steady-state kinetic analysis of reversible enzyme inhibitors: A case study on calf intestine alkaline phosphatase. Methods Enzymol 2023; 690:39-84. [PMID: 37858536 DOI: 10.1016/bs.mie.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Enzymes are important drug targets and inhibition of enzymatic activity is an important therapeutic strategy. Enzyme assays measuring catalytic activity are utilized in both the discovery and development of new drugs. Colorimetric assays based on the release of 4-nitrophenol from substrates are commonly used. 4-Nitrophenol is only partly ionized to 4-nitrophenolate under typical assay conditions (pH 7-9) leading to under-estimation of product formation rates due to the much lower extinction coefficient of 4-nitrophenol compared to 4-nitrophenolate. Determination of 4-nitrophenol pKa values based on absorbance at 405 nm as a function of experimental pH values is reported, allowing for calculation of a corrected extinction coefficient at the assay pH. Characterization of inhibitor properties using steady-state enzyme kinetics is demonstrated using calf intestine alkaline phosphatase and 4-nitrophenyl phosphate as substrate at pH ∼8.2. The following kinetic parameters were determined: Km= 40±3 µM; Vmax= 72.8±1.2 µmolmin-1mg protein-1; kcat= 9.70±0.16 s-1; kcat/Km= 2.44±0.16 × 105 M-1s-1 (mean± SEM, N = 4). Sodium orthovanadate and EDTA were used as model inhibitors and the following pIC50 values were measured using dose-response curves: 6.61±0.08 and 3.07±0.03 (mean±SEM, N = 4). Rapid dilution experiments determined that inhibition was reversible for sodium orthovanadate and irreversible for EDTA. A Ki value for orthovanadate of 51±8 nM (mean±SEM, N = 3) was determined. Finally, data analysis and statistical design of experiments are discussed.
Collapse
Affiliation(s)
- Henry Brooke
- Department of Life Sciences, University of Bath, Claverton Down, Bath, United Kingdom
| | - Meghna Ghoshray
- Department of Life Sciences, University of Bath, Claverton Down, Bath, United Kingdom
| | - Archad Ibrahim
- Department of Life Sciences, University of Bath, Claverton Down, Bath, United Kingdom
| | - Matthew D Lloyd
- Department of Life Sciences, University of Bath, Claverton Down, Bath, United Kingdom.
| |
Collapse
|
6
|
Tseng PS, Ande C, Moremen KW, Crich D. Influence of Side Chain Conformation on the Activity of Glycosidase Inhibitors. Angew Chem Int Ed Engl 2023; 62:e202217809. [PMID: 36573850 PMCID: PMC9908843 DOI: 10.1002/anie.202217809] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Indexed: 12/28/2022]
Abstract
Substrate side chain conformation impacts reactivity during glycosylation and glycoside hydrolysis and is restricted by many glycosidases and glycosyltransferases during catalysis. We show that the side chains of gluco and manno iminosugars can be restricted to predominant conformations by strategic installation of a methyl group. Glycosidase inhibition studies reveal that iminosugars with the gauche,gauche side chain conformations are 6- to 10-fold more potent than isosteric compounds with the gauche,trans conformation; a manno-configured iminosugar with the gauche,gauche conformation is a 27-fold better inhibitor than 1-deoxymannojirimycin. The results are discussed in terms of the energetic benefits of preorganization, particularly when in synergy with favorable hydrophobic interactions. The demonstration that inhibitor side chain preorganization can favorably impact glycosidase inhibition paves the way for improved inhibitor design through conformational preorganization.
Collapse
Affiliation(s)
- Po-Sen Tseng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602 (USA),Department of Chemistry, University of Georgia, Athens, GA 30602 (USA),Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 (USA)
| | - Chennaiah Ande
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602 (USA)
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 (USA),Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 (USA)
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602 (USA),Department of Chemistry, University of Georgia, Athens, GA 30602 (USA),Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 (USA)
| |
Collapse
|
7
|
Gao S, Zhang W, Barrow SL, Iavarone AT, Klinman JP. Temperature-dependent hydrogen deuterium exchange shows impact of analog binding on adenosine deaminase flexibility but not embedded thermal networks. J Biol Chem 2022; 298:102350. [PMID: 35933011 PMCID: PMC9483566 DOI: 10.1016/j.jbc.2022.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
The analysis of hydrogen deuterium exchange by mass spectrometry as a function of temperature and mutation has emerged as a generic and efficient tool for the spatial resolution of protein networks that are proposed to function in the thermal activation of catalysis. In this work, we extend temperature-dependent hydrogen deuterium exchange from apo-enzyme structures to protein-ligand complexes. Using adenosine deaminase as a prototype, we compared the impacts of a substrate analog (1-deaza-adenosine) and a very tight-binding inhibitor/transition state analog (pentostatin) at single and multiple temperatures. At a single temperature, we observed different hydrogen deuterium exchange-mass spectrometry properties for the two ligands, as expected from their 106-fold differences in strength of binding. By contrast, analogous patterns for temperature-dependent hydrogen deuterium exchange mass spectrometry emerge in the presence of both 1-deaza-adenosine and pentostatin, indicating similar impacts of either ligand on the enthalpic barriers for local protein unfolding. We extended temperature-dependent hydrogen deuterium exchange to a function-altering mutant of adenosine deaminase in the presence of pentostatin and revealed a protein thermal network that is highly similar to that previously reported for the apo-enzyme (Gao et al., 2020, JACS 142, 19936-19949). Finally, we discuss the differential impacts of pentostatin binding on overall protein flexibility versus site-specific thermal transfer pathways in the context of models for substrate-induced changes to a distributed protein conformational landscape that act in synergy with embedded protein thermal networks to achieve efficient catalysis.
Collapse
Affiliation(s)
- Shuaihua Gao
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, USA
| | - Wenju Zhang
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Samuel L Barrow
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Anthony T Iavarone
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, USA
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.
| |
Collapse
|
8
|
Probing strigolactone perception mechanisms with rationally designed small-molecule agonists stimulating germination of root parasitic weeds. Nat Commun 2022; 13:3987. [PMID: 35810153 PMCID: PMC9271048 DOI: 10.1038/s41467-022-31710-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 06/29/2022] [Indexed: 01/11/2023] Open
Abstract
The development of potent strigolactone (SL) agonists as suicidal germination inducers could be a useful strategy for controlling root parasitic weeds, but uncertainty about the SL perception mechanism impedes real progress. Here we describe small-molecule agonists that efficiently stimulate Phelipanchce aegyptiaca, and Striga hermonthica, germination in concentrations as low as 10−8 to 10−17 M. We show that full efficiency of synthetic SL agonists in triggering signaling through the Striga SL receptor, ShHTL7, depends on the receptor-catalyzed hydrolytic reaction of the agonists. Additionally, we reveal that the stereochemistry of synthetic SL analogs affects the hydrolytic ability of ShHTL7 by influencing the probability of the privileged conformations of ShHTL7. Importantly, an alternative ShHTL7-mediated hydrolysis mechanism, proceeding via nucleophilic attack of the NE2 atom of H246 to the 2′C of the D-ring, is reported. Together, our findings provide insight into SL hydrolysis and structure-perception mechanisms, and potent suicide germination stimulants, which would contribute to the elimination of the noxious parasitic weeds. Strigolactone agonists could potentially help control noxious weeds by promoting suicidal germination. Here the authors describe a series of small molecule agonists that stimulate germination via the Striga ShHTL7 receptor and show that stereochemistry and hydrolysis-independent signalling mediate potency.
Collapse
|
9
|
Ahmad K, Rizzi A, Capelli R, Mandelli D, Lyu W, Carloni P. Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective. Front Mol Biosci 2022; 9:899805. [PMID: 35755817 PMCID: PMC9216551 DOI: 10.3389/fmolb.2022.899805] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
The dissociation rate (k off) associated with ligand unbinding events from proteins is a parameter of fundamental importance in drug design. Here we review recent major advancements in molecular simulation methodologies for the prediction of k off. Next, we discuss the impact of the potential energy function models on the accuracy of calculated k off values. Finally, we provide a perspective from high-performance computing and machine learning which might help improve such predictions.
Collapse
Affiliation(s)
- Katya Ahmad
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
| | - Andrea Rizzi
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
- Atomistic Simulations, Istituto Italiano di Tecnologia, Genova, Italy
| | - Riccardo Capelli
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Torino, Italy
| | - Davide Mandelli
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
| | - Wenping Lyu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Paolo Carloni
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
- Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
10
|
Abstract
Adenosylcobalamin- (AdoCbl) dependent enzyme reactions involved the transfer of hydrogen atoms between the 5'-carbon of the coenzyme and the substrates and products of the reaction. Tritium and deuterium kinetic isotope effect measurements are, therefore, a valuable tool to probe the mechanisms of AdoCbl-dependent enzymes, as they can provide information about the reaction pathway and the rate-determining step. Furthermore, if the intrinsic kinetic isotope effect can be isolated, information on the nature of the transition state associated with hydrogen transfer can be obtained. In this chapter I present methods for the preparation of isotopically-labeled AdoCbl and their use in rapid chemical quench experiments that allow isotope effects on specific steps in the reaction to be isolated. These techniques are illustrated with examples from my laboratory's studies on the AdoCbl dependent enzyme, glutamate mutase.
Collapse
Affiliation(s)
- E Neil G Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
11
|
Tvaroška I. Glycosyltransferases as targets for therapeutic intervention in cancer and inflammation: molecular modeling insights. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Brown M, Zoi I, Antoniou D, Namanja-Magliano HA, Schwartz SD, Schramm VL. Inverse heavy enzyme isotope effects in methylthioadenosine nucleosidases. Proc Natl Acad Sci U S A 2021; 118:e2109118118. [PMID: 34580228 PMCID: PMC8501826 DOI: 10.1073/pnas.2109118118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 11/18/2022] Open
Abstract
Heavy enzyme isotope effects occur in proteins substituted with 2H-, 13C-, and 15N-enriched amino acids. Mass alterations perturb femtosecond protein motions and have been used to study the linkage between fast motions and transition-state barrier crossing. Heavy enzymes typically show slower rates for their chemical steps. Heavy bacterial methylthioadenosine nucleosidases (MTANs from Helicobactor pylori and Escherichia coli) gave normal isotope effects in steady-state kinetics, with slower rates for the heavy enzymes. However, both enzymes revealed rare inverse isotope effects on their chemical steps, with faster chemical steps in the heavy enzymes. Computational transition-path sampling studies of H. pylori and E. coli MTANs indicated closer enzyme-reactant interactions in the heavy MTANs at times near the transition state, resulting in an improved reaction coordinate geometry. Specific catalytic interactions more favorable for heavy MTANs include improved contacts to the catalytic water nucleophile and to the adenine leaving group. Heavy bacterial MTANs depart from other heavy enzymes as slowed vibrational modes from the heavy isotope substitution caused improved barrier-crossing efficiency. Improved sampling frequency and reactant coordinate distances are highlighted as key factors in MTAN transition-state stabilization.
Collapse
Affiliation(s)
- Morais Brown
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ioanna Zoi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
| | - Dimitri Antoniou
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
| | | | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461;
| |
Collapse
|
13
|
Quirke JCK, Crich D. GH47 and Other Glycoside Hydrolases Catalyze Glycosidic Bond Cleavage with the Assistance of Substrate Super-arming at the Transition State. ACS Catal 2021; 11:10308-10315. [PMID: 34777906 PMCID: PMC8579916 DOI: 10.1021/acscatal.1c02750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Super-armed glycosyl donors, whose substituents are predominantly held in pseudoaxial positions, exhibit strongly increased reactivity in glycosylation through significant stabilization of oxocarbenium-like transition states. Examination of X-ray crystal structures reveals that the GH47 family of glycoside hydrolases have evolved so as to distort their substrates away from the ground state conformation in such a manner as to present multiple C-O bonds in pseudoaxial positions and so benefit from conformational super-arming of their substrates, thereby enhancing catalysis. Through analysis of literature mutagenic studies, we show that a suitably placed aromatic residue in GHs 6 and 47 sterically enforces super-armed conformations on their substrates. GH families 45, 81, and 134 on the other hand impose conformational super-arming on their substrates, by maintaining the more active ring conformation through hydrogen bonding rather than steric interactions. The recognition of substrate super-arming by select GH families provides a further parallel with synthetic carbohydrate chemistry and nature and opens further avenues for the design of improved glycosidase inhibitors.
Collapse
Affiliation(s)
- Jonathan C K Quirke
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
14
|
Lloyd MD, Yevglevskis M, Nathubhai A, James TD, Threadgill MD, Woodman TJ. Racemases and epimerases operating through a 1,1-proton transfer mechanism: reactivity, mechanism and inhibition. Chem Soc Rev 2021; 50:5952-5984. [PMID: 34027955 PMCID: PMC8142540 DOI: 10.1039/d0cs00540a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Racemases and epimerases catalyse changes in the stereochemical configurations of chiral centres and are of interest as model enzymes and as biotechnological tools. They also occupy pivotal positions within metabolic pathways and, hence, many of them are important drug targets. This review summarises the catalytic mechanisms of PLP-dependent, enolase family and cofactor-independent racemases and epimerases operating by a deprotonation/reprotonation (1,1-proton transfer) mechanism and methods for measuring their catalytic activity. Strategies for inhibiting these enzymes are reviewed, as are specific examples of inhibitors. Rational design of inhibitors based on substrates has been extensively explored but there is considerable scope for development of transition-state mimics and covalent inhibitors and for the identification of inhibitors by high-throughput, fragment and virtual screening approaches. The increasing availability of enzyme structures obtained using X-ray crystallography will facilitate development of inhibitors by rational design and fragment screening, whilst protein models will facilitate development of transition-state mimics.
Collapse
Affiliation(s)
- Matthew D Lloyd
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Maksims Yevglevskis
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and CatSci Ltd., CBTC2, Capital Business Park, Wentloog, Cardiff CF3 2PX, UK
| | - Amit Nathubhai
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and University of Sunderland, School of Pharmacy & Pharmaceutical Sciences, Sciences Complex, Sunderland SR1 3SD, UK
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK and School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Michael D Threadgill
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth SY23 3BY, UK
| | - Timothy J Woodman
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
15
|
Quirke JCK, Crich D. Side Chain Conformation Restriction in the Catalysis of Glycosidic Bond Formation by Leloir Glycosyltransferases, Glycoside Phosphorylases, and Transglycosidases. ACS Catal 2021; 11:5069-5078. [PMID: 34367723 PMCID: PMC8336929 DOI: 10.1021/acscatal.1c00896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbohydrate side chain conformation is an important factor in the control of reactivity at the anomeric center, ie, in the making and breaking of glycosidic bonds, whether chemically or, for hydrolysis, by glycoside hydrolases. In nature glycosidic bond formation is catalyzed out by glycosyltransferases (GTs), glycoside phosphoryases, and transglycosidases. By analysis of 118 crystal structures of sugar nucleotide dependent (Leloir) GTs, 136 crystal structures of glycoside phosphorylases, and 54 crystal structures of transglycosidases bound to hexopyranosides or their analogs at the donor site (-1 site), we determined that most enzymes that catalyze glycoside synthesis, be they GTs, glycoside phosphorylases or transglycosidases, restrict their substrate side chains to the most reactive gauche,gauche (gg) conformation to achieve maximum stabilization of the oxocarbenium ion-like transition state for glycosyl transfer. The galactose series deviates from this trend, with α-galactosyltransferases preferentially restricting their substrates to the second-most reactive gauche,trans (gt) conformation, and β-galactosyltransferases favoring the least reactive trans,gauche (tg) conformation. This insight will help progress the design and development of improved, conformationally-restricted GT inhibitors that take advantage of these inherent side chain preferences.
Collapse
Affiliation(s)
- Jonathan C. K. Quirke
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
16
|
Minnow YVT, Harijan RK, Schramm VL. A resistant mutant of Plasmodium falciparum purine nucleoside phosphorylase uses wild-type neighbors to maintain parasite survival. J Biol Chem 2021; 296:100342. [PMID: 33524395 PMCID: PMC7949152 DOI: 10.1016/j.jbc.2021.100342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Plasmodium falciparum purine nucleoside phosphorylase (PfPNP) catalyzes an essential step in purine salvage for parasite growth. 4′-Deaza-1′-Aza-2′-Deoxy-1′-(9-Methylene)-Immucillin-G (DADMe-ImmG) is a transition state analog inhibitor of this enzyme, and P. falciparum infections in an Aotus primate malaria model can be cleared by oral administration of DADMe-ImmG. P. falciparum cultured under increasing DADMe-ImmG drug pressure exhibited PfPNP gene amplification, increased protein expression, and point mutations involved in DADMe-ImmG binding. However, the weak catalytic properties of the M183L resistance mutation (∼17,000-fold decrease in catalytic efficiency) are inconsistent with the essential function of PfPNP. We hypothesized that M183L subunits may form mixed oligomers of native and mutant PfPNP monomers to give hybrid hexameric enzymes with properties conferring DADMe-ImmG resistance. To test this hypothesis, we designed PfPNP constructs that covalently linked native and the catalytically weak M183L mutant subunits. Engineered hybrid PfPNP yielded trimer-of-dimer hexameric protein with alternating native and catalytically weak M183L subunits. This hybrid PfPNP gave near-native Km values for substrate, but the affinity for DADMe-ImmG and catalytic efficiency were both reduced approximately ninefold relative to a similar construct of native subunits. Contact between the relatively inactive M183L and native subunits is responsible for altered properties of the hybrid protein. Thus, gene amplification of PfPNP provides adequate catalytic activity while resistance to DADMe-ImmG occurs in the hybrid oligomer to promote parasite survival. Coupled with the slow development of drug resistance, this resistance mechanism highlights the potential for DADMe-ImmG use in antimalarial combination therapies.
Collapse
Affiliation(s)
- Yacoba V T Minnow
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rajesh K Harijan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
17
|
Site-Specific Tryptophan Labels Reveal Local Microsecond-Millisecond Motions of Dihydrofolate Reductase. Molecules 2020; 25:molecules25173819. [PMID: 32842574 PMCID: PMC7503464 DOI: 10.3390/molecules25173819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022] Open
Abstract
Many enzymes are known to change conformations during their catalytic cycle, but the role of these protein motions is not well understood. Escherichia coli dihydrofolate reductase (DHFR) is a small, flexible enzyme that is often used as a model system for understanding enzyme dynamics. Recently, native tryptophan fluorescence was used as a probe to study micro- to millisecond dynamics of DHFR. Yet, because DHFR has five native tryptophans, the origin of the observed conformational changes could not be assigned to a specific region within the enzyme. Here, we use DHFR mutants, each with a single tryptophan as a probe for temperature jump fluorescence spectroscopy, to further inform our understanding of DHFR dynamics. The equilibrium tryptophan fluorescence of the mutants shows that each tryptophan is in a different environment and that wild-type DHFR fluorescence is not a simple summation of all the individual tryptophan fluorescence signatures due to tryptophan–tryptophan interactions. Additionally, each mutant exhibits a two-phase relaxation profile corresponding to ligand association/dissociation convolved with associated conformational changes and a slow conformational change that is independent of ligand association and dissociation, similar to the wild-type enzyme. However, the relaxation rate of the slow phase depends on the location of the tryptophan within the enzyme, supporting the conclusion that the individual tryptophan fluorescence dynamics do not originate from a single collective motion, but instead report on local motions throughout the enzyme.
Collapse
|
18
|
Tvaroška I, Selvaraj C, Koča J. Selectins-The Two Dr. Jekyll and Mr. Hyde Faces of Adhesion Molecules-A Review. Molecules 2020; 25:molecules25122835. [PMID: 32575485 PMCID: PMC7355470 DOI: 10.3390/molecules25122835] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Selectins belong to a group of adhesion molecules that fulfill an essential role in immune and inflammatory responses and tissue healing. Selectins are glycoproteins that decode the information carried by glycan structures, and non-covalent interactions of selectins with these glycan structures mediate biological processes. The sialylated and fucosylated tetrasaccharide sLex is an essential glycan recognized by selectins. Several glycosyltransferases are responsible for the biosynthesis of the sLex tetrasaccharide. Selectins are involved in a sequence of interactions of circulated leukocytes with endothelial cells in the blood called the adhesion cascade. Recently, it has become evident that cancer cells utilize a similar adhesion cascade to promote metastases. However, like Dr. Jekyll and Mr. Hyde’s two faces, selectins also contribute to tissue destruction during some infections and inflammatory diseases. The most prominent function of selectins is associated with the initial stage of the leukocyte adhesion cascade, in which selectin binding enables tethering and rolling. The first adhesive event occurs through specific non-covalent interactions between selectins and their ligands, with glycans functioning as an interface between leukocytes or cancer cells and the endothelium. Targeting these interactions remains a principal strategy aimed at developing new therapies for the treatment of immune and inflammatory disorders and cancer. In this review, we will survey the significant contributions to and the current status of the understanding of the structure of selectins and the role of selectins in various biological processes. The potential of selectins and their ligands as therapeutic targets in chronic and acute inflammatory diseases and cancer will also be discussed. We will emphasize the structural characteristic of selectins and the catalytic mechanisms of glycosyltransferases involved in the biosynthesis of glycan recognition determinants. Furthermore, recent achievements in the synthesis of selectin inhibitors will be reviewed with a focus on the various strategies used for the development of glycosyltransferase inhibitors, including substrate analog inhibitors and transition state analog inhibitors, which are based on knowledge of the catalytic mechanism.
Collapse
Affiliation(s)
- Igor Tvaroška
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovak Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| | - Chandrabose Selvaraj
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jaroslav Koča
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| |
Collapse
|
19
|
Affiliation(s)
- Matthew D. Lloyd
- Drug & Target Development, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
20
|
Sarkar MR, Houston SD, Savage GP, Williams CM, Krenske EH, Bell SG, De Voss JJ. Rearrangement-Free Hydroxylation of Methylcubanes by a Cytochrome P450: The Case for Dynamical Coupling of C–H Abstraction and Rebound. J Am Chem Soc 2019; 141:19688-19699. [DOI: 10.1021/jacs.9b08064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Md. Raihan Sarkar
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sevan D. Houston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - G. Paul Savage
- Ian Wark Laboratory, CSIRO Manufacturing, Melbourne, VIC 3168, Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen G. Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - James J. De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
21
|
Angelastro A, Ruiz-Pernía JJ, Tuñón I, Moliner V, Luk LYP, Allemann RK. Loss of Hyperconjugative Effects Drives Hydride Transfer during Dihydrofolate Reductase Catalysis. ACS Catal 2019; 9:10343-10349. [PMID: 32051770 PMCID: PMC7007191 DOI: 10.1021/acscatal.9b02839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/20/2019] [Indexed: 02/06/2023]
Abstract
![]()
Hydride transfer
is widespread in nature and has an essential role
in applied research. However, the mechanisms of how this transformation
occurs in living organisms remain a matter of vigorous debate. Here,
we examined dihydrofolate reductase (DHFR), an enzyme that catalyzes
hydride from C4′ of NADPH to C6 of 7,8-dihydrofolate (H2F). Despite many investigations of the mechanism of this reaction,
the contribution of polarization of the π-bond of H2F in driving hydride transfer remains unclear. H2F was
stereospecifically labeled with deuterium β to the reacting
center, and β-deuterium kinetic isotope effects were measured.
Our experimental results combined with analysis derived from QM/MM
simulations reveal that hydride transfer is triggered by polarization
at the C6 of H2F. The σ Cβ–H
bonds contribute to the buildup of the cationic character during the
chemical transformation, and hyperconjugation influences the formation
of the transition state. Our findings provide key insights into the
hydride transfer mechanism of the DHFR-catalyzed reaction, which is
a target for antiproliferative drugs and a paradigmatic model in mechanistic
enzymology.
Collapse
Affiliation(s)
- Antonio Angelastro
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | | | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| | - Louis Y. P. Luk
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Rudolf K. Allemann
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
22
|
Saha A, Dutta S, Nandi N. Inhibition of seryl tRNA synthetase by seryl nucleoside moiety (SB-217452) of albomycin antibiotic. J Biomol Struct Dyn 2019; 38:2440-2454. [PMID: 31241419 DOI: 10.1080/07391102.2019.1635912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Amrita Saha
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, India
| | - Saheb Dutta
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, India
| | - Nilashis Nandi
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, India
| |
Collapse
|
23
|
Subramanian A, Kadirvel P, Anishetty S. Insights into the pH-dependent catalytic mechanism of Sulfolobus solfataricus β-glycosidase: A molecular dynamics study. Carbohydr Res 2019; 480:42-53. [DOI: 10.1016/j.carres.2019.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 11/27/2022]
|
24
|
Mutreja I, Warring SL, Lim KS, Swadi T, Clinch K, Mason JM, Sheen CR, Thompson DR, Ducati RG, Chambers ST, Evans GB, Gerth ML, Miller AG, Woodfield TBF. Biofilm Inhibition via Delivery of Novel Methylthioadenosine Nucleosidase Inhibitors from PVA-Tyramine Hydrogels while Supporting Mesenchymal Stromal Cell Viability. ACS Biomater Sci Eng 2019; 5:748-758. [PMID: 33405836 DOI: 10.1021/acsbiomaterials.8b01141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The rise of antibiotic resistance, coupled with increased expectations for mobility in later life, is creating a need for biofilm inhibitors and delivery systems that will reduce surgical implant infection. A limitation of some of these existing delivery approaches is toxicity exhibited toward host cells. Here, we report the application of a novel inhibitor of the enzyme, methylthioadenosine nucleosidase (MTAN), a key enzyme in bacterial metabolic pathways, which include S-adenosylmethionine catabolism and purine nucleotide recycling, in combination with a poly(vinyl alcohol)-tyramine-based (PVA-Tyr) hydrogel delivery system. We demonstrate that a lead MTAN inhibitor, selected from a screened library of 34 candidates, (2S)-2-(4-amino-5H-pyrrolo3,2-dpyrimidin-7-ylmethyl)aminoundecan-1-ol (31), showed a minimum biofilm inhibitory concentration of 2.2 ± 0.4 μM against a clinical staphylococcal species isolated from an infected implant. We observed that extracellular DNA, a key constituent of biofilms, is significantly reduced when treated with 10 μM compound 31, along with a decrease in biofilm thickness. Compound 31 was incorporated into a hydrolytically degradable photo-cross-linked PVA-Tyr hydrogel and the release profile was evaluated by HPLC studies. Compound 31 released from the PVA-hydrogel system significantly reduced biofilm formation (77.2 ± 8.4% biofilm inhibition). Finally, compound 31 released from PVA-Tyr showed no negative impact on human bone marrow stromal cell (MSC) viability, proliferation, or morphology. The results demonstrate the potential utility of MTAN inhibitors in treating infections caused by Gram-positive bacteria, and the development of a nontoxic release system that has potential for tunability for time scale of delivery.
Collapse
Affiliation(s)
- Isha Mutreja
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, Christchurch 8140, New Zealand.,Medical Technologies Centre of Research Excellence, Auckland 1010, New Zealand
| | - Suzanne L Warring
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, Christchurch 8140, New Zealand.,Medical Technologies Centre of Research Excellence, Auckland 1010, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| | - Tara Swadi
- Department of Pathology, University of Otago Christchurch Christchurch 8140, New Zealand
| | - Keith Clinch
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5046, New Zealand
| | - Jennifer M Mason
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5046, New Zealand
| | - Campbell R Sheen
- Protein Science and Engineering, Callaghan Innovation, c/- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Dion R Thompson
- Protein Science and Engineering, Callaghan Innovation, c/- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Rodrigo G Ducati
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Stephen T Chambers
- Department of Pathology, University of Otago Christchurch Christchurch 8140, New Zealand
| | - Gary B Evans
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand.,Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5046, New Zealand
| | - Monica L Gerth
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| | - Antonia G Miller
- Protein Science and Engineering, Callaghan Innovation, c/- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, Christchurch 8140, New Zealand.,Medical Technologies Centre of Research Excellence, Auckland 1010, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| |
Collapse
|
25
|
Valls A, Altava B, Burguete MI, Escorihuela J, Martí-Centelles V, Luis SV. Supramolecularly assisted synthesis of chiral tripodal imidazolium compounds. Org Chem Front 2019. [DOI: 10.1039/c9qo00163h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Supramolecular interactions based on amide groups direct the preferential formation of tritopic instead of monotopic or ditopic imidazolium compounds.
Collapse
Affiliation(s)
- Adriana Valls
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | - Belén Altava
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | - M. Isabel Burguete
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | - Jorge Escorihuela
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | | | - Santiago V. Luis
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| |
Collapse
|
26
|
Li G, Pidko EA. The Nature and Catalytic Function of Cation Sites in Zeolites: a Computational Perspective. ChemCatChem 2018. [DOI: 10.1002/cctc.201801493] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Guanna Li
- Department Chemical EngineeringDelft University of Technology Van der Maasweg 9 Delft 2629 HZ The Netherlands
| | - Evgeny A. Pidko
- Department Chemical EngineeringDelft University of Technology Van der Maasweg 9 Delft 2629 HZ The Netherlands
- ITMO University Lomonosova str. 9 St. Petersburg 191002 Russia
| |
Collapse
|
27
|
Evans GB, Schramm VL, Tyler PC. The transition to magic bullets - transition state analogue drug design. MEDCHEMCOMM 2018; 9:1983-1993. [PMID: 30627387 PMCID: PMC6295874 DOI: 10.1039/c8md00372f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/24/2018] [Indexed: 12/17/2022]
Abstract
In the absence of industry partnerships, most academic groups lack the infrastructure to rationally design and build drugs via methods used in industry. Instead, academia needs to work smarter using mechanism-based design. Working smarter can mean the development of new drug discovery paradigms and then demonstrating their utility and reproducibility to industry. The collaboration between Vern Schramm's group at the Albert Einstein College of Medicine, USA and Peter Tyler at the Ferrier Research Institute at The Victoria University of Wellington, NZ has refined a drug discovery process called transition state analogue design. This process has been applied to several biomedically relevant nucleoside processing enzymes. In 2017, Mundesine®, conceived using transition state analogue design, received market approval for the treatment of peripheral T-cell lymphoma in Japan. This short review looks at a brief history of transition state analogue design, the fundamentals behind the development of this process, and the success of enzyme inhibitors produced using this drug design methodology.
Collapse
Affiliation(s)
- Gary B Evans
- The Ferrier Research Institute , Victoria University of Wellington , 69 Gracefield Rd , Lower Hutt , 5010 , New Zealand . ; Tel: +64 4 463 0048
- The Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Auckland , New Zealand
| | - Vern L Schramm
- Department of Biochemistry , Albert Einstein College of Medicine , Bronx , NY 10461 , USA
| | - Peter C Tyler
- The Ferrier Research Institute , Victoria University of Wellington , 69 Gracefield Rd , Lower Hutt , 5010 , New Zealand . ; Tel: +64 4 463 0048
| |
Collapse
|
28
|
Protein structure and computational drug discovery. Biochem Soc Trans 2018; 46:1367-1379. [DOI: 10.1042/bst20180202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
The first protein structures revealed a complex web of weak interactions stabilising the three-dimensional shape of the molecule. Small molecule ligands were then found to exploit these same weak binding events to modulate protein function or act as substrates in enzymatic reactions. As the understanding of ligand–protein binding grew, it became possible to firstly predict how and where a particular small molecule might interact with a protein, and then to identify putative ligands for a specific protein site. Computer-aided drug discovery, based on the structure of target proteins, is now a well-established technique that has produced several marketed drugs. We present here an overview of the various methodologies being used for structure-based computer-aided drug discovery and comment on possible future developments in the field.
Collapse
|
29
|
Brás NF, Fernandes PA, Ramos MJ. Understanding the Rate‐Limiting Step of Glycogenolysis by Using QM/MM Calculations on Human Glycogen Phosphorylase. ChemMedChem 2018; 13:1608-1616. [DOI: 10.1002/cmdc.201800218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/02/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Natércia F. Brás
- REQUIMTE/UCIBIO, Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal
| | - Pedro A. Fernandes
- REQUIMTE/UCIBIO, Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal
| | - Maria J. Ramos
- REQUIMTE/UCIBIO, Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal
| |
Collapse
|
30
|
Duff MR, Borreguero JM, Cuneo MJ, Ramanathan A, He J, Kamath G, Chennubhotla SC, Meilleur F, Howell EE, Herwig KW, Myles DAA, Agarwal PK. Modulating Enzyme Activity by Altering Protein Dynamics with Solvent. Biochemistry 2018; 57:4263-4275. [PMID: 29901984 DOI: 10.1021/acs.biochem.8b00424] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Optimal enzyme activity depends on a number of factors, including structure and dynamics. The role of enzyme structure is well recognized; however, the linkage between protein dynamics and enzyme activity has given rise to a contentious debate. We have developed an approach that uses an aqueous mixture of organic solvent to control the functionally relevant enzyme dynamics (without changing the structure), which in turn modulates the enzyme activity. Using this approach, we predicted that the hydride transfer reaction catalyzed by the enzyme dihydrofolate reductase (DHFR) from Escherichia coli in aqueous mixtures of isopropanol (IPA) with water will decrease by ∼3 fold at 20% (v/v) IPA concentration. Stopped-flow kinetic measurements find that the pH-independent khydride rate decreases by 2.2 fold. X-ray crystallographic enzyme structures show no noticeable differences, while computational studies indicate that the transition state and electrostatic effects were identical for water and mixed solvent conditions; quasi-elastic neutron scattering studies show that the dynamical enzyme motions are suppressed. Our approach provides a unique avenue to modulating enzyme activity through changes in enzyme dynamics. Further it provides vital insights that show the altered motions of DHFR cause significant changes in the enzyme's ability to access its functionally relevant conformational substates, explaining the decreased khydride rate. This approach has important implications for obtaining fundamental insights into the role of rate-limiting dynamics in catalysis and as well as for enzyme engineering.
Collapse
Affiliation(s)
- Michael R Duff
- Biochemistry & Cellular and Molecular Biology Department , University of Tennessee , Knoxville , Tennessee , United States
| | - Jose M Borreguero
- Neutron Data Analysis and Visualization Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Matthew J Cuneo
- Biology and Soft Matter Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Arvind Ramanathan
- Computer Science and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Junhong He
- Neutron Technologies Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Ganesh Kamath
- Computer Science and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - S Chakra Chennubhotla
- Department of Computational and Systems Biology , University of Pittsburgh , Pittsburgh , Pennsylvania , United States
| | - Flora Meilleur
- Biology and Soft Matter Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States.,Molecular and Structural Biochemistry Department , North Carolina State University , Raleigh , North Carolina , United States
| | - Elizabeth E Howell
- Biochemistry & Cellular and Molecular Biology Department , University of Tennessee , Knoxville , Tennessee , United States
| | - Kenneth W Herwig
- Neutron Technologies Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Dean A A Myles
- Biology and Soft Matter Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Pratul K Agarwal
- Biochemistry & Cellular and Molecular Biology Department , University of Tennessee , Knoxville , Tennessee , United States.,Computer Science and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| |
Collapse
|
31
|
|
32
|
Schulte M, Petrović D, Neudecker P, Hartmann R, Pietruszka J, Willbold S, Willbold D, Panwalkar V. Conformational Sampling of the Intrinsically Disordered C-Terminal Tail of DERA Is Important for Enzyme Catalysis. ACS Catal 2018; 8:3971-3984. [PMID: 30101036 PMCID: PMC6080863 DOI: 10.1021/acscatal.7b04408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/24/2018] [Indexed: 12/13/2022]
Abstract
2-Deoxyribose-5-phosphate aldolase (DERA) catalyzes the reversible conversion of acetaldehyde and glyceraldehyde-3-phosphate into deoxyribose-5-phosphate. DERA is used as a biocatalyst for the synthesis of drugs such as statins and is a promising pharmaceutical target due to its involvement in nucleotide catabolism. Despite previous biochemical studies suggesting the catalytic importance of the C-terminal tyrosine residue found in several bacterial DERAs, the structural and functional basis of its participation in catalysis remains elusive because the electron density for the last eight to nine residues (i.e., the C-terminal tail) is absent in all available crystal structures. Using a combination of NMR spectroscopy and molecular dynamics simulations, we conclusively show that the rarely studied C-terminal tail of E. coli DERA (ecDERA) is intrinsically disordered and exists in equilibrium between open and catalytically relevant closed states, where the C-terminal tyrosine (Y259) enters the active site. Nuclear Overhauser effect distance restraints, obtained due to the presence of a substantial closed state population, were used to derive the solution-state structure of the ecDERA closed state. Real-time NMR hydrogen/deuterium exchange experiments reveal that Y259 is required for efficiency of the proton abstraction step of the catalytic reaction. Phosphate titration experiments show that, in addition to the phosphate-binding residues located near the active site, as observed in the available crystal structures, ecDERA contains previously unknown auxiliary phosphate-binding residues on the C-terminal tail which could facilitate in orienting Y259 in an optimal position for catalysis. Thus, we present significant insights into the structural and mechanistic importance of the ecDERA C-terminal tail and illustrate the role of conformational sampling in enzyme catalysis.
Collapse
Affiliation(s)
- Marianne Schulte
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems 6 (ICS-6): Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dušan Petrović
- Institute of Complex Systems 6 (ICS-6): Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Philipp Neudecker
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems 6 (ICS-6): Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rudolf Hartmann
- Institute of Complex Systems 6 (ICS-6): Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich-Heine-Universität im Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Bio- and Geosciences 1 (IBG-1): Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Sabine Willbold
- Central Institute of Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems 6 (ICS-6): Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Vineet Panwalkar
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems 6 (ICS-6): Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
33
|
Domratcheva T, Schlichting I. Spiers Memorial Lecture. Introductory lecture: the impact of structure on photoinduced processes in nucleic acids and proteins. Faraday Discuss 2018; 207:9-26. [PMID: 29583144 DOI: 10.1039/c8fd00058a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light is an important environmental variable and most organisms have evolved means to sense, exploit or avoid it and to repair detrimental effects on their genome. In general, light absorption is the task of specific chromophores, however other biomolecules such as oligonucleotides also do so which can result in undesired outcomes such as mutations and cancer. Given the biological importance of light-induced processes and applications for imaging, optogenetics, photodynamic therapy or photovoltaics, there is a great interest in understanding the detailed molecular mechanisms of photoinduced processes in proteins and nucleic acids. The processes are typically characterized by time-resolved spectroscopic approaches or computation, inferring structural information on transient species from stable ground state structures. Recently, however, structure determination of excited states or other short-lived species has become possible with the advent of X-ray free-electron lasers. This review gives an overview of the impact of structure on the understanding of photoinduced processes in macromolecules, focusing on systems presented at this Faraday Discussion meeting.
Collapse
Affiliation(s)
- Tatiana Domratcheva
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany.
| | - Ilme Schlichting
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany.
| |
Collapse
|
34
|
Ranasinghe C, Guo Q, Sapienza PJ, Lee AL, Quinn DM, Cheatum CM, Kohen A. Protein Mass Effects on Formate Dehydrogenase. J Am Chem Soc 2017; 139:17405-17413. [PMID: 29083897 PMCID: PMC5800309 DOI: 10.1021/jacs.7b08359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Isotopically labeled enzymes (denoted as "heavy" or "Born-Oppenheimer" enzymes) have been used to test the role of protein dynamics in catalysis. The original idea was that the protein's higher mass would reduce the frequency of its normal-modes without altering its electrostatics. Heavy enzymes have been used to test if the vibrations in the native enzyme are coupled to the chemistry it catalyzes, and different studies have resulted in ambiguous findings. Here the temperature-dependence of intrinsic kinetic isotope effects of the enzyme formate dehydrogenase is used to examine the distribution of H-donor to H-acceptor distance as a function of the protein's mass. The protein dynamics are altered in the heavy enzyme to diminish motions that determine the transition state sampling in the native enzyme, in accordance with a Born-Oppenheimer-like effect on bond activation. Findings of this work suggest components related to fast frequencies that can be explained by Born-Oppenheimer enzyme hypothesis (vibrational) and also slower time scale events that are non-Born-Oppenheimer in nature (electrostatic), based on evaluations of protein mass dependence of donor-acceptor distance and forward commitment to catalysis along with steady state and single turnover measurements. Together, the findings suggest that the mass modulation affected both local, fast, protein vibrations associated with the catalyzed chemistry and the protein's macromolecular electrostatics at slower time scales; that is, both Born-Oppenheimer and non-Born-Oppenheimer effects are observed. Comparison to previous studies leads to the conclusion that isotopic labeling of the protein may have different effects on different systems, however, making heavy enzyme studies a very exciting technique for exploring the dynamics link to catalysis in proteins.
Collapse
Affiliation(s)
- Chethya Ranasinghe
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1727, USA
| | - Qi Guo
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1727, USA
| | - Paul J. Sapienza
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew L. Lee
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Daniel M. Quinn
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1727, USA
| | | | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1727, USA
| |
Collapse
|
35
|
Holdgate GA, Meek TD, Grimley RL. Mechanistic enzymology in drug discovery: a fresh perspective. Nat Rev Drug Discov 2017; 17:115-132. [PMID: 29192286 DOI: 10.1038/nrd.2017.219] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Given the therapeutic and commercial success of small-molecule enzyme inhibitors, as exemplified by kinase inhibitors in oncology, a major focus of current drug-discovery and development efforts is on enzyme targets. Understanding the course of an enzyme-catalysed reaction can help to conceptualize different types of inhibitor and to inform the design of screens to identify desired mechanisms. Exploiting this information allows the thorough evaluation of diverse compounds, providing the knowledge required to efficiently optimize leads towards differentiated candidate drugs. This review highlights the rationale for conducting high-quality mechanistic enzymology studies and considers the added value in combining such studies with orthogonal biophysical methods.
Collapse
Affiliation(s)
- Geoffrey A Holdgate
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Building 310, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Thomas D Meek
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Rachel L Grimley
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Building 310, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| |
Collapse
|
36
|
Angelastro A, Dawson WM, Luk LYP, Loveridge EJ, Allemann RK. Chemoenzymatic Assembly of Isotopically Labeled Folates. J Am Chem Soc 2017; 139:13047-13054. [PMID: 28820585 DOI: 10.1021/jacs.7b06358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pterin-containing natural products have diverse functions in life, but an efficient and easy scheme for their in vitro synthesis is not available. Here we report a chemoenzymatic 14-step, one-pot synthesis that can be used to generate 13C- and 15N-labeled dihydrofolates (H2F) from glucose, guanine, and p-aminobenzoyl-l-glutamic acid. This synthesis stands out from previous approaches to produce H2F in that the average yield of each step is >91% and it requires only a single purification step. The use of a one-pot reaction allowed us to overcome potential problems with individual steps during the synthesis. The availability of labeled dihydrofolates allowed the measurement of heavy-atom isotope effects for the reaction catalyzed by the drug target dihydrofolate reductase and established that protonation at N5 of H2F and hydride transfer to C6 occur in a stepwise mechanism. This chemoenzymatic pterin synthesis can be applied to the efficient production of other folates and a range of other natural compounds with applications in nutritional, medical, and cell-biological research.
Collapse
Affiliation(s)
- Antonio Angelastro
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, United Kingdom
| | - William M Dawson
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, United Kingdom
| | - Louis Y P Luk
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, United Kingdom
| | - E Joel Loveridge
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, United Kingdom
| | - Rudolf K Allemann
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
37
|
Reddish MJ, Callender R, Dyer RB. Resolution of Submillisecond Kinetics of Multiple Reaction Pathways for Lactate Dehydrogenase. Biophys J 2017; 112:1852-1862. [PMID: 28494956 DOI: 10.1016/j.bpj.2017.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022] Open
Abstract
Enzymes are known to exhibit conformational flexibility. An important consequence of this flexibility is that the same enzyme reaction can occur via multiple reaction pathways on a reaction landscape. A model enzyme for the study of reaction landscapes is lactate dehydrogenase. We have previously used temperature-jump (T-jump) methods to demonstrate that the reaction landscape of lactate dehydrogenase branches at multiple points creating pathways with varied reactivity. A limitation of this previous work is that the T-jump method makes only small perturbations to equilibrium and may not report conclusively on all steps in a reaction. Therefore, interpreting T-jump results of lactate dehydrogenase kinetics has required extensive computational modeling work. Rapid mixing methods offer a complementary approach that can access large perturbations from equilibrium; however, traditional enzyme mixing methods like stopped-flow do not allow for the observation of fast protein dynamics. In this report, we apply a microfluidic rapid mixing device with a mixing time of <100 μs that allows us to study these fast dynamics and the catalytic redox step of the enzyme reaction. Additionally, we report UV absorbance and emission T-jump results with improved signal-to-noise ratio at fast times. The combination of mixing and T-jump results yields an unprecedented view of lactate dehydrogenase enzymology, confirming the timescale of substrate-induced conformational change and presence of multiple reaction pathways.
Collapse
Affiliation(s)
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York.
| | - R Brian Dyer
- Department of Chemistry, Emory University, Atlanta, Georgia
| |
Collapse
|
38
|
Abstract
Enzyme isotope effects, or the kinetic effects of "heavy" enzymes, refer to the effect of isotopically labeled protein residues on the enzyme's activity or physical properties. These effects are increasingly employed in the examination of the possible contributions of protein dynamics to enzyme catalysis. One hypothesis assumed that isotopic substitution of all 12C, 14N, and nonexchangeable 1H by 13C, 15N, and 2H, would slow down protein picosecond to femtosecond dynamics without any effect on the system's electrostatics following the Born-Oppenheimer approximation. It was suggested that reduced reaction rates reported for several "heavy" enzymes accords with that hypothesis. However, numerous deviations from the predictions of that hypothesis were also reported. Current studies also attempt to test the role of individual residues by site-specific labeling or by labeling a pattern of residues on activity. It appears that in several systems the protein's fast dynamics are indeed reduced in "heavy" enzymes in a way that reduces the probability of barrier crossing of its chemical step. Other observations, however, indicated that slower protein dynamics are electrostatically altered in isotopically labeled enzymes. Interestingly, these effects appear to be system dependent, thus it might be premature to suggest a general role of "heavy" enzymes' effect on catalysis.
Collapse
|
39
|
Carlson GM, Fenton AW. What Mutagenesis Can and Cannot Reveal About Allostery. Biophys J 2017; 110:1912-23. [PMID: 27166800 DOI: 10.1016/j.bpj.2016.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/24/2016] [Accepted: 03/14/2016] [Indexed: 10/21/2022] Open
Abstract
Allosteric regulation of protein function is recognized to be widespread throughout biology; however, knowledge of allosteric mechanisms, the molecular changes within a protein that couple one binding site to another, is limited. Although mutagenesis is often used to probe allosteric mechanisms, we consider herein what the outcome of a mutagenesis study truly reveals about an allosteric mechanism. Arguably, the best way to evaluate the effects of a mutation on allostery is to monitor the allosteric coupling constant (Qax), a ratio of the substrate binding constants in the absence versus presence of an allosteric effector. A range of substitutions at a given residue position in a protein can reveal when a particular substitution causes gain-of-function, which addresses a key challenge in interpreting mutation-dependent changes in the magnitude of Qax. Thus, whole-protein mutagenesis studies offer an acceptable means of identifying residues that contribute to an allosteric mechanism. With this focus on monitoring Qax, and keeping in mind the equilibrium nature of allostery, we consider alternative possibilities for what an allosteric mechanism might be. We conclude that different possible mechanisms (rotation-of-solid-domains, movement of secondary structure, side-chain repacking, changes in dynamics, etc.) will result in different findings in whole-protein mutagenesis studies.
Collapse
Affiliation(s)
- Gerald M Carlson
- Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Aron W Fenton
- Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
40
|
Marcos-Alcalde Í, Mendieta-Moreno JI, Puisac B, Gil-Rodríguez MC, Hernández-Marcos M, Soler-Polo D, Ramos FJ, Ortega J, Pié J, Mendieta J, Gómez-Puertas P. Two-step ATP-driven opening of cohesin head. Sci Rep 2017; 7:3266. [PMID: 28607419 PMCID: PMC5468275 DOI: 10.1038/s41598-017-03118-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023] Open
Abstract
The cohesin ring is a protein complex composed of four core subunits: Smc1A, Smc3, Rad21 and Stag1/2. It is involved in chromosome segregation, DNA repair, chromatin organization and transcription regulation. Opening of the ring occurs at the "head" structure, formed of the ATPase domains of Smc1A and Smc3 and Rad21. We investigate the mechanisms of the cohesin ring opening using techniques of free molecular dynamics (MD), steered MD and quantum mechanics/molecular mechanics MD (QM/MM MD). The study allows the thorough analysis of the opening events at the atomic scale: i) ATP hydrolysis at the Smc1A site, evaluating the role of the carboxy-terminal domain of Rad21 in the process; ii) the activation of the Smc3 site potentially mediated by the movement of specific amino acids; and iii) opening of the head domains after the two ATP hydrolysis events. Our study suggests that the cohesin ring opening is triggered by a sequential activation of the ATP sites in which ATP hydrolysis at the Smc1A site induces ATPase activity at the Smc3 site. Our analysis also provides an explanation for the effect of pathogenic variants related to cohesinopathies and cancer.
Collapse
Affiliation(s)
| | - Jesús I Mendieta-Moreno
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Beatriz Puisac
- Unidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, 50009, Zaragoza, Spain
| | - María Concepción Gil-Rodríguez
- Unidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, 50009, Zaragoza, Spain
| | - María Hernández-Marcos
- Unidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, 50009, Zaragoza, Spain
| | - Diego Soler-Polo
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Feliciano J Ramos
- Unidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, 50009, Zaragoza, Spain
| | - José Ortega
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Juan Pié
- Unidad de Genética Clínica y Genómica Funcional, Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, 50009, Zaragoza, Spain
| | - Jesús Mendieta
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Departamento de Biotecnología, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | | |
Collapse
|
41
|
Peng Y, Hansen AL, Bruschweiler-Li L, Davulcu O, Skalicky JJ, Chapman MS, Brüschweiler R. The Michaelis Complex of Arginine Kinase Samples the Transition State at a Frequency That Matches the Catalytic Rate. J Am Chem Soc 2017; 139:4846-4853. [PMID: 28287709 DOI: 10.1021/jacs.7b00236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arginine kinase (AK), which is a member of the phosphagen kinase family, serves as a model system for studying the structural and dynamic determinants of biomolecular enzyme catalysis of all major states involved of the enzymatic cycle. These states are the apo state (substrate free), the Michaelis complex analogue AK:Arg:Mg·AMPPNP (MCA), a product complex analogue AK:pAIE:Mg·ADP (PCA), and the transition state analogue AK:Arg:Mg·ADP:NO3- (TSA). The conformational dynamics of these states have been studied by NMR relaxation dispersion measurements of the methyl groups of the Ile, Leu, and Val residues at two static magnetic fields. Although all states undergo significant amounts of μs-ms time scale dynamics, only the MCA samples a dominant excited state that resembles the TSA, as evidenced by the strong correlation between the relaxation dispersion derived chemical shift differences Δω and the equilibrium chemical shift differences Δδ of these states. The average lifetime of the MCA is 36 ms and the free energy difference to the TSA-like form is 8.5 kJ/mol. It is shown that the conformational energy landscape of the Michaelis complex analogue is shaped in a way that at room temperature it channels passage to the transition state, thereby determining the rate-limiting step of the phosphorylation reaction of arginine. Conversely, relaxation dispersion experiments of the TSA reveal that it samples the structures of the Michaelis complex analogue or the apo state as its dominant excited state. This reciprocal behavior shows that the free energy of the TSA, with all ligands bound, is lower by only about 8.9 kJ/mol than that of the Michaelis or apo complex conformations with the TSA ligands present.
Collapse
Affiliation(s)
| | | | | | - Omar Davulcu
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University , Portland, Oregon 97239, United States
| | - Jack J Skalicky
- Department of Biochemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Michael S Chapman
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University , Portland, Oregon 97239, United States
| | | |
Collapse
|
42
|
Colombo C, Bennet AJ. Probing Transition State Analogy in Glycoside Hydrolase Catalysis. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.apoc.2017.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Harris ME, York DM, Piccirilli JA, Anderson VE. Kinetic Isotope Effect Analysis of RNA 2′- O -Transphosphorylation. Methods Enzymol 2017; 596:433-457. [DOI: 10.1016/bs.mie.2017.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Zhang S, Gu H, Chen H, Strong E, Ollie EW, Kellerman D, Liang D, Miyagi M, Anderson VE, Piccirilli JA, York DM, Harris ME. Isotope effect analyses provide evidence for an altered transition state for RNA 2'-O-transphosphorylation catalyzed by Zn(2+). Chem Commun (Camb) 2016; 52:4462-5. [PMID: 26859380 DOI: 10.1039/c5cc10212j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Solvent D2O and (18)O kinetic isotope effects on RNA 2'-O-transphosphorylation catalyzed by Zn(2+) demonstrate an altered transition state relative to specific base catalysis. A recent model from DFT calculations involving inner sphere coordination to the non-bridging and leaving group oxygens is consistent with the data.
Collapse
Affiliation(s)
- Shuming Zhang
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Hong Gu
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Haoyuan Chen
- Center for Integrative Proteomics Research, BioMaPS Institute for Quantitative Biology and Department of Chemistry and Chemical Biology, Rutgers University Piscataway, NJ 08854, USA
| | - Emily Strong
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Edward W Ollie
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Daniel Kellerman
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Danni Liang
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Masaru Miyagi
- Case Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Vernon E Anderson
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Joseph A Piccirilli
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Darrin M York
- Center for Integrative Proteomics Research, BioMaPS Institute for Quantitative Biology and Department of Chemistry and Chemical Biology, Rutgers University Piscataway, NJ 08854, USA
| | - Michael E Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
45
|
Roston D, Cui Q. QM/MM Analysis of Transition States and Transition State Analogues in Metalloenzymes. Methods Enzymol 2016; 577:213-50. [PMID: 27498640 DOI: 10.1016/bs.mie.2016.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enzymology is approaching an era where many problems can benefit from computational studies. While ample challenges remain in quantitatively predicting behavior for many enzyme systems, the insights that often come from computations are an important asset for the enzymology community. Here we provide a primer for enzymologists on the types of calculations that are most useful for mechanistic problems in enzymology. In particular, we emphasize the integration of models that range from small active-site motifs to fully solvated enzyme systems for cross-validation and dissection of specific contributions from the enzyme environment. We then use a case study of the enzyme alkaline phosphatase to illustrate specific application of the methods. The case study involves examination of the binding modes of putative transition state analogues (tungstate and vanadate) to the enzyme. The computations predict covalent binding of these ions to the enzymatic nucleophile and that they adopt the trigonal bipyramidal geometry of the expected transition state. By comparing these structures with transition states found through free energy simulations, we assess the degree to which the transition state analogues mimic the true transition states. Technical issues worth treating with care as well as several remaining challenges to quantitative analysis of metalloenzymes are also highlighted during the discussion.
Collapse
Affiliation(s)
- D Roston
- Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, United States.
| | - Q Cui
- Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
46
|
Wei G, Xi W, Nussinov R, Ma B. Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell. Chem Rev 2016; 116:6516-51. [PMID: 26807783 PMCID: PMC6407618 DOI: 10.1021/acs.chemrev.5b00562] [Citation(s) in RCA: 279] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All soluble proteins populate conformational ensembles that together constitute the native state. Their fluctuations in water are intrinsic thermodynamic phenomena, and the distributions of the states on the energy landscape are determined by statistical thermodynamics; however, they are optimized to perform their biological functions. In this review we briefly describe advances in free energy landscape studies of protein conformational ensembles. Experimental (nuclear magnetic resonance, small-angle X-ray scattering, single-molecule spectroscopy, and cryo-electron microscopy) and computational (replica-exchange molecular dynamics, metadynamics, and Markov state models) approaches have made great progress in recent years. These address the challenging characterization of the highly flexible and heterogeneous protein ensembles. We focus on structural aspects of protein conformational distributions, from collective motions of single- and multi-domain proteins, intrinsically disordered proteins, to multiprotein complexes. Importantly, we highlight recent studies that illustrate functional adjustment of protein conformational ensembles in the crowded cellular environment. We center on the role of the ensemble in recognition of small- and macro-molecules (protein and RNA/DNA) and emphasize emerging concepts of protein dynamics in enzyme catalysis. Overall, protein ensembles link fundamental physicochemical principles and protein behavior and the cellular network and its regulation.
Collapse
Affiliation(s)
- Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Wenhui Xi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|
47
|
Barends TRM, Foucar L, Ardevol A, Nass K, Aquila A, Botha S, Doak RB, Falahati K, Hartmann E, Hilpert M, Heinz M, Hoffmann MC, Köfinger J, Koglin JE, Kovacsova G, Liang M, Milathianaki D, Lemke HT, Reinstein J, Roome CM, Shoeman RL, Williams GJ, Burghardt I, Hummer G, Boutet S, Schlichting I. Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 2015; 350:445-50. [PMID: 26359336 DOI: 10.1126/science.aac5492] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/26/2015] [Indexed: 11/02/2022]
Abstract
The hemoprotein myoglobin is a model system for the study of protein dynamics. We used time-resolved serial femtosecond crystallography at an x-ray free-electron laser to resolve the ultrafast structural changes in the carbonmonoxy myoglobin complex upon photolysis of the Fe-CO bond. Structural changes appear throughout the protein within 500 femtoseconds, with the C, F, and H helices moving away from the heme cofactor and the E and A helices moving toward it. These collective movements are predicted by hybrid quantum mechanics/molecular mechanics simulations. Together with the observed oscillations of residues contacting the heme, our calculations support the prediction that an immediate collective response of the protein occurs upon ligand dissociation, as a result of heme vibrational modes coupling to global modes of the protein.
Collapse
Affiliation(s)
- Thomas R M Barends
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany.
| | - Lutz Foucar
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Albert Ardevol
- Max-Planck-Institut für Biophysik, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Karol Nass
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Andrew Aquila
- European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
| | - Sabine Botha
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - R Bruce Doak
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Konstantin Falahati
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Elisabeth Hartmann
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Mario Hilpert
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Marcel Heinz
- Max-Planck-Institut für Biophysik, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany. Institut für Physikalische und Theoretische Chemie, Goethe-Universität, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Matthias C Hoffmann
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jürgen Köfinger
- Max-Planck-Institut für Biophysik, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Jason E Koglin
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Gabriela Kovacsova
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Mengning Liang
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Despina Milathianaki
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Henrik T Lemke
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jochen Reinstein
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Christopher M Roome
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Robert L Shoeman
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Garth J Williams
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Irene Burghardt
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Max-Planck-Institut für Biophysik, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Sébastien Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ilme Schlichting
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany.
| |
Collapse
|