1
|
Bose P, Srikrishnarka P, Paatelainen M, Nonappa, Kini AR, Som A, Pradeep T. Nanocluster reaction-driven in situ transformation of colloidal nanoparticles to mesostructures. NANOSCALE 2024. [PMID: 39377419 DOI: 10.1039/d4nr02820a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Atomically precise noble metal nanoclusters (NCs) are molecular materials known for their precise composition, electronic structure, and unique optical properties, exhibiting chemical reactivity. Herein, we demonstrated a simple one-pot method for fabricating self-assembled Ag-Au bimetallic mesostructures using a reaction between 2-phenylethanethiol (PET)-protected atomically precise gold NCs and colloidal silver nanoparticles (Ag NPs) in a tunable reaction microenvironment. The reaction carried out in toluene at 45 °C with constant stirring at 250 revolutions per minute (RPM) yielded a thermally stable, micron-sized cuboidal mesocrystals of self-assembled AgAu@PET nanocrystals. However, the reaction in dichloromethane at room temperature with constant stirring at 250 RPM resulted in a self-assembled mesostructure of randomly close-packed AgAu@PET NPs. Using a host of experimental techniques, including optical and electron microscopy, optical absorption spectroscopy, and light scattering, we studied the nucleation and growth processes. Our findings highlight a strategy to utilize precision and plasmonic NP chemistry in tailored microenvironments, leading to customizable bimetallic hybrid three-dimensional nanomaterials with potential applications.
Collapse
Affiliation(s)
- Paulami Bose
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Pillalamarri Srikrishnarka
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Matias Paatelainen
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland
| | - Amoghavarsha Ramachandra Kini
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Anirban Som
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
2
|
Yao Y, Hao W, Tang J, Kirschbaum K, Gianopoulos CG, Ren A, Ma L, Zheng L, Li H, Li Q. Anomalous Structural Transformation of Cu(I) Clusters into Multifunctional CuAg Nanoclusters. Angew Chem Int Ed Engl 2024; 63:e202407214. [PMID: 38777942 DOI: 10.1002/anie.202407214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
We report an anomalous structural transformation of a Cu(I) cluster into two different types of copper-silver (CuAg) alloy nanoclusters. Different from previous reports, we demonstrate that under specifically designed reaction conditions, the Ag-doping could induce a substantial growth of the starting Cu15 and a Ag13Cu20 nanocluster was obtained via the unexpected insertion of an Ag13 kernel inside the Cu(I)-S shell. Ag13Cu20 demonstrates high activity to initiate the photopolymerization of previously hard-to-print inorganic polymers in 3D laser microprinting. Interestingly, a slight modification of the reaction condition leads to the formation of another Ag18-xCuxS (8≤x) nanocluster templated by a central S2- anion, which possesses a unique electronic structure compared to conventional template-free CuAg nanoclusters. Overall, this work unveils the intriguing doping chemistry of Cu clusters, as well as their capability to create different types of alloy nanoclusters with previously unobtainable structures and multifunctionality.
Collapse
Affiliation(s)
- Yuqing Yao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Hao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jin Tang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kristin Kirschbaum
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, 43606, United States
| | | | - An Ren
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liang Ma
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Letian Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hanying Li
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qi Li
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
3
|
Sooraj BS, Roy J, Mukherjee M, Jose A, Pradeep T. Extensive Polymerization of Atomically Precise Alloy Metal Clusters During Solid-State Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15244-15251. [PMID: 38918935 DOI: 10.1021/acs.langmuir.4c01737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Exploring the reactions between atomically precise metal clusters and the consequences of such reactions has been an exciting field of research during the past decade. Initial studies in the area were on reactions between clusters in the solution phase, which proceed through the formation of dimers of reacting clusters. In the present work, we examine the interaction between two atomically precise clusters, [Au25(PET)18]- and [Ag25(DMBT)18]-, in the solid state, where PET and DMBT are 2-phenylethanethiol and 2,4-dimethylbenzenethiol, respectively. The experiments were performed using different ratios of these two clusters, and it was inferred that the kinetics of the reactions were faster compared with reactions in the solution. The metal exchange between these two clusters, due to their interactions in the solid state, leads to the formation of dimers, trimers, tetramers, and polymers of atomically precise alloy metal clusters. We observed polymer entities up to hexamers, which were observed for the first time. Control experiments revealed that metal exchange is a key factor leading to polymerization. Our work points to a new approach for synthesizing polymers of atomically precise alloy metal clusters.
Collapse
Affiliation(s)
- B S Sooraj
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600036, India
| | - Jayoti Roy
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600036, India
| | - Manish Mukherjee
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600036, India
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata, Kolkata 741246, India
| | - Anagha Jose
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600036, India
| | - Thalappil Pradeep
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600036, India
- International Centre for Clean Water, Chennai 600113, India
| |
Collapse
|
4
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
5
|
Bose P, Kumaranchira Ramankutty K, Chakraborty P, Khatun E, Pradeep T. A concise guide to chemical reactions of atomically precise noble metal nanoclusters. NANOSCALE 2024; 16:1446-1470. [PMID: 38032061 DOI: 10.1039/d3nr05128e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nanoparticles (NPs) with atomic precision, known as nanoclusters (NCs), are an emerging field in materials science in view of their fascinating structure-property relationships. Ultrasmall noble metal NPs have molecule-like properties that make them fundamentally unique compared with their plasmonic counterparts and bulk materials. In this review, we present a comprehensive account of the chemistry of monolayer-protected atomically precise noble metal nanoclusters with a focus on the chemical reactions, their diversity, associated kinetics, and implications. To begin with, we briefly review the history of the evolution of such precision materials. Then the review explores the diverse chemistry of noble metal nanoclusters, including ligand exchange reactions, ligand-induced structural transformations, and reactions with metal ions, metal thiolates, and halocarbons. Just as molecules do, these precision materials also undergo intercluster reactions in solution. Supramolecular forces between these systems facilitate the creation of well-defined hierarchical assemblies, composites, and hybrid materials. We conclude the review with a future perspective and scope of such chemistry.
Collapse
Affiliation(s)
- Paulami Bose
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Krishnadas Kumaranchira Ramankutty
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Papri Chakraborty
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Esma Khatun
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Thalappil Pradeep
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| |
Collapse
|
6
|
Kuda-Singappulige GU, Window PS, Hosier CA, Anderson ID, Aikens CM, Ackerson CJ. Chiral and Achiral Crystal Structures of Au 25 (PET) 18 0 Reveal Effects of Ligand Rotational Isomerization on Optoelectronic Properties. Chemistry 2024; 30:e202202760. [PMID: 37955851 DOI: 10.1002/chem.202202760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Indexed: 11/14/2023]
Abstract
The crystal structures of 4 ligand-rotational isomers of Au25 (PET)18 are presented. Two new ligand-rotational isomers are revealed, and two higher-quality structures (allowing complete solution of the ligand shell) of previously solved Au25 (PET)18 clusters are also presented. One of the structures lacks an inversion center, making it the first chiral Au25 (SR)18 structure solved. These structures combined with previously published Au25 (SR)18 structures enable an analysis of the empirical ligand conformation landscape for Au25 (SR)18 clusters. This analysis shows that the dihedral angles within the PET ligand are restricted to certain observable values, and also that the dihedral angle values are interdependent, in a manner reminiscent of biomolecule dihedral angles such as those in proteins and DNA. The influence of ligand conformational isomerism on optical and electronic properties was calculated, revealing that the ligand conformations affect the nanocluster absorption spectrum, which potentially provides a way to distinguish between isomers at low temperature.
Collapse
Affiliation(s)
- Gowri Udayangani Kuda-Singappulige
- Department of Chemistry, Kansas State University, USA
- Present Address, Unilever Food Innovation Centre Hive, bronland 14, 6708WH, Wageningen, Netherlands
| | | | | | | | | | | |
Collapse
|
7
|
Wei X, Li H, Shen H, Zhou C, Wang S, Kang X, Zhu M. Symmetry breaking of highly symmetrical nanoclusters for triggering highly optical activity. FUNDAMENTAL RESEARCH 2024; 4:63-68. [PMID: 38933845 PMCID: PMC11197546 DOI: 10.1016/j.fmre.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022] Open
Abstract
Developing new approaches to fulfill the enantioseparation of nanocluster racemates and construct cluster-based nanomaterials with optical activity remains highly desired in cluster science, because it is an essential prerequisite for fundamental research and extensive applications of these nanomaterials. We herein propose a strategy termed "active-site exposing and partly re-protecting" to trigger the symmetry breaking of highly symmetrical nanoclusters and to render cluster crystals optically active. The vertex PPh3 of the symmetrical Ag29(SSR)12(PPh3)4 (SSR = 1, 3-benzenedithiol) nanocluster was firstly dissociated in the presence of counterions with large steric hindrance, and then the exposed Ag active sites of the obtained Ag29(SSR)12 nanocluster were partly re-protected by Ag+, yielding an Ag29(SSR)12-Ag2 nanocluster with a symmetry-breaking construction. Ag29(SSR)12-Ag2 followed a chiral crystallization mode, and its crystal displayed strong optical activity, derived from CD and CPL characterizations. Overall, this work presents a new approach (i.e., active-site exposing and partly re-protecting) for the symmetry breaking of highly symmetrical nanoclusters, the enantioseparation of nanocluster racemates, and the achievement of highly optical activity.
Collapse
Affiliation(s)
- Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| | - Honglei Shen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| | - Chuanjun Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| | - Shuxin Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei 230601, China
| |
Collapse
|
8
|
Zou X, Kang X, Zhu M. Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters. Chem Soc Rev 2023; 52:5892-5967. [PMID: 37577838 DOI: 10.1039/d2cs00876a] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metal nanoclusters serve as an emerging class of modular nanomaterials. The transformation of metal nanoclusters has been fully reflected in their studies from every aspect, including the structural evolution analysis, physicochemical property regulation, and practical application promotion. In this review, we highlight the driving forces for transforming atomically precise metal nanoclusters and summarize the related transforming principles and fundamentals. Several driving forces for transforming nanoclusters are meticulously reviewed herein: ligand-exchange-induced transformations, metal-exchange-induced transformations, intercluster reactions, photochemical transformations, oxidation/reduction-induced transformations, and other factors (intrinsic instability, pH, temperature, and metal salts) triggering transformations. The exploitation of transforming principles to customize the preparations, structures, physicochemical properties, and practical applications of metal nanoclusters is also disclosed. At the end of this review, we provide our perspectives and highlight the challenges remaining for future research on the transformation of metal nanoclusters. Our intended audience is the broader scientific community interested in metal nanoclusters, and we believe that this review will provide researchers with a comprehensive synthetic toolbox and insights on the research fundamentals needed to realize more cluster-based nanomaterials with customized compositions, structures, and properties.
Collapse
Affiliation(s)
- Xuejuan Zou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
9
|
Knoppe S, Muñoz-Castro A. Intermediate Silver Doping of Au 25(SR) 18: Variation of Electronic, Optical, and Chiroptical Properties along Au 25-xAg x(SH) 18- ( x = 0-12) Stoichiometry from DFT Calculations. Inorg Chem 2023; 62:7079-7086. [PMID: 37104868 DOI: 10.1021/acs.inorgchem.3c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The silver analogue of the prominent Au25(SR)18 nanocluster reveals the possibility of finding "gold"-like behavior despite their different nature, in addition to the common features among molecular AgNP. Herein, we explore the effect of successive additions of silver atoms reaching an intermediate Ag/Au doping ratio where the parent gold cluster exhibits properties from both elements. Our results show a more favorable situation as the Ag/Au ratio increases along the Au25-xAgx(SH)18- (x = 0-12) clusters, with structural distortions mainly centered at the ligand-protected shell. The calculated optical spectrum shows that from the Au19Ag6 species, a plasmon-like peak appears along species with a doping ratio above 25%, where all the silver atoms are located within the M12 icosahedron. In addition, the chiral properties were explored, showing mild optical activity from the calculated circular dichroism spectra due to the distorted ligand-shell avoiding a centrosymmetric structure. Thus, an intermediate doping ratio ascribed to a specific structural layer can recover inherent properties to both elements in the binary Au25-xAgx(SH)18- series, suggesting the possibility of having clusters with dual properties at a certain degree of element exchange. This can be useful for further exploration theoretically and synthetically toward different and larger-nuclearity clusters.
Collapse
Affiliation(s)
- Stefan Knoppe
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart, Baden-Wurttemberg 70569, Germany
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8420524, Chile
| |
Collapse
|
10
|
Chakraborty A, Stanley MM, Mondal B, Bodiuzzaman M, Chakraborty P, Kannan MP, Pradeep T. Tunable reactivity of silver nanoclusters: a facile route to synthesize a range of bimetallic nanostructures. NANOSCALE 2023; 15:2690-2699. [PMID: 36651628 DOI: 10.1039/d2nr06350f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Quantized energy levels and unique optoelectronic properties of atomically precise noble metal nanoclusters (NCs) have made them important in materials science, catalysis, sensors, and biomedicine. Recent studies on the profound chemical interactions of such NCs within themselves and with ultrasmall plasmonic nanoparticles (NPs) indicate that depending on the size, shape, and composition of the second reactant, NCs can either take part in colloidal assembly without any chemical modifications or lead to products with atoms exchanged. Anisotropic NPs are a unique class of plasmonic nanomaterials as their sharp edges and protrusions show higher chemical reactivity compared to flat surfaces, often leading to site-specific growth of foreign metals and metal oxide shells. Here, using chemical interactions between gold nanotriangles (AuNTs) and Ag NCs of different compositions, we show for the first time that metal atom etching, alloying/atom exchange, and colloidal assembly can all happen at a particular length scale. Specifically, Ag25(DMBT)18 NCs (denoted as 1), upon reacting with AuNTs of ∼57 nm edge length, etch gold atoms from their sharp tips and edges. Simultaneously, the two nanosystems exchange metal atoms, resulting in Ag-doped AuNTs and AuxAg24-x(DMBT)18 (x = 1, 2). However, another Ag NC with the same metallic core, but a different ligand shell, namely, Ag25H22(DPPE)8 (denoted as 2), creates dendritic shells made of Ag, surrounding these AuNTs under the same reaction conditions. Furthermore, we show that in the case of a more reactive thiol-protected Ag NC, namely, Ag44(pMBA)30 (denoted as 3), gold etching is faster from the edges and tips, which drastically alters the identities of both the reactants. Interestingly, when the AuNTs are protected by pMBA, 3 systematically assembles on AuNTs through H-bonding, resulting in an AuNT core-Ag NC shell nanocomposite. Thus, while shedding light on various factors affecting the reactivity of Ag NCs towards AuNTs, the present study proposes a single strategy to obtain a number of bimetallic nanosystems of targeted morphology and functionality.
Collapse
Affiliation(s)
- Amrita Chakraborty
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Megha Maria Stanley
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Biswajit Mondal
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Mohammad Bodiuzzaman
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Papri Chakraborty
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600 036, India.
| | - M P Kannan
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Thalappil Pradeep
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
11
|
Lionello C, Perego C, Gardin A, Klajn R, Pavan GM. Supramolecular Semiconductivity through Emerging Ionic Gates in Ion-Nanoparticle Superlattices. ACS NANO 2023; 17:275-287. [PMID: 36548051 PMCID: PMC9835987 DOI: 10.1021/acsnano.2c07558] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The self-assembly of nanoparticles driven by small molecules or ions may produce colloidal superlattices with features and properties reminiscent of those of metals or semiconductors. However, to what extent the properties of such supramolecular crystals actually resemble those of atomic materials often remains unclear. Here, we present coarse-grained molecular simulations explicitly demonstrating how a behavior evocative of that of semiconductors may emerge in a colloidal superlattice. As a case study, we focus on gold nanoparticles bearing positively charged groups that self-assemble into FCC crystals via mediation by citrate counterions. In silico ohmic experiments show how the dynamically diverse behavior of the ions in different superlattice domains allows the opening of conductive ionic gates above certain levels of applied electric fields. The observed binary conductive/nonconductive behavior is reminiscent of that of conventional semiconductors, while, at a supramolecular level, crossing the "band gap" requires a sufficient electrostatic stimulus to break the intermolecular interactions and make ions diffuse throughout the superlattice's cavities.
Collapse
Affiliation(s)
- Chiara Lionello
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Claudio Perego
- Department
of Innovative Technologies, University of
Applied Sciences and Arts of Southern Switzerland, Polo Universitario
Lugano, Campus Est, Via
la Santa 1, 6962 Lugano-Viganello, Switzerland
| | - Andrea Gardin
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Rafal Klajn
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Giovanni M. Pavan
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Department
of Innovative Technologies, University of
Applied Sciences and Arts of Southern Switzerland, Polo Universitario
Lugano, Campus Est, Via
la Santa 1, 6962 Lugano-Viganello, Switzerland
| |
Collapse
|
12
|
Huang JH, Liu LY, Wang ZY, Zang SQ, Mak TCW. Modular Cocrystallization of Customized Carboranylthiolate-Protected Copper Nanoclusters via Host-Guest Interactions. ACS NANO 2022; 16:18789-18794. [PMID: 36286585 DOI: 10.1021/acsnano.2c07521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cocrystals containing distinct atom-precise metal nanoclusters (NCs) provide an opportunity to elucidate the crystallization process, architectural complexity, and newly emerging properties of condensed-state metal NC-assembled materials. However, the controllable preparation of such cocrystals is still challenging. Herein, we present a modular strategy to cocrystallize two customized carboranylthiolate-protected copper NCs, Cu14(C2B10H10S2)6(CH3CN)6 (Cu14) and Cu16(C2B10H10S2)8 (Cu16), which adopt matched surface patterns by host-guest chemistry. The Cu14·Cu16 cocrystals show integrated UV-vis adsorption and dual emission stemming from the Cu14 and Cu16 NCs. Moreover, the component NCs are selectively doped by gold atoms, which is a promising way to incorporate diverse properties of metal cluster-based cocrystals. This work not only provides a copper NC-based cocrystal for a profound study on a condensed-state copper nanomaterial but also develops a modular strategy for the cocrystallization of metal NCs.
Collapse
Affiliation(s)
- Jia-Hong Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Ying Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong SAR, China
| |
Collapse
|
13
|
Zhu C, Xin J, Li J, Li H, Kang X, Pei Y, Zhu M. Fluorescence or Phosphorescence? The Metallic Composition of the Nanocluster Kernel Does Matter. Angew Chem Int Ed Engl 2022; 61:e202205947. [PMID: 35596616 DOI: 10.1002/anie.202205947] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 12/20/2022]
Abstract
It remains challenging to manipulate the nature of photoluminescence as either fluorescence or phosphorescence for a correlated cluster series. In this work, two correlated nanoclusters, Au5 Ag11 (SR)8 (DPPOE)2 and Pt1 Ag16 (SR)8 (DPPOE)2 with comparable structure features, were synthesized and structurally determined. These two alloy nanoclusters displayed distinct photoluminescent nature-the Au5 Ag11 nanocluster is fluorescent, whereas the Pt1 Ag16 nanocluster is phosphorescent. The decay processes of the excited electrons in these two nanoclusters have been explicitly mapped out by both experimental and theoretical approaches, disclosing the mechanisms of their fluorescence and phosphorescence. Specifically, the metallic compositions of the nanocluster kernels mattered in determining their photoluminescent nature. The results herein provide an intriguing nanomodel that enables us to grasp the origin of photoluminescence at the atomic level, which further paves the way for fabricating novel nanoclusters or cluster-based nanomaterials with customized photophysical properties.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Junsheng Xin
- Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Jing Li
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province, China, P. R. China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province, China, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.,Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
14
|
Pensa E, Azofra LM, Salvarezza RC, Carro P. Effect of Ligands on the Stability of Gold Nanoclusters. J Phys Chem Lett 2022; 13:6475-6480. [PMID: 35816759 DOI: 10.1021/acs.jpclett.2c01616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gold nanoclusters (AuNCs) are atomic architectures that can be precisely tailored for catalytic applications. In this work, we studied two benchmark AuNCs, Au25(SR)18 and Au144(SR)60, covered by aromatic and aliphatic ligands to envision how the 3D structure of the ligand impacts the stability of the nanomaterial. Surprisingly, we found that increasing the alkanethiol length has a poor or null effect on the stability of the AuNCs, a trend opposite to that on Au(111) surfaces. When considering the aromatic or aliphatic nature, the AuNC stability follows the same trend as on Au(111): the thermodynamical stability is dictated by the ligand density rather than its chemical nature, where the aliphatic ligand imparts more stability than the aromatic one. Our findings provide a tool to predict how an ultrasmall gold core can interact with the environment, substrate, and themselves according to the stability of its protecting ligand shell.
Collapse
Affiliation(s)
- Evangelina Pensa
- Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Luis Miguel Azofra
- Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain
| | - Roberto C Salvarezza
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata 1900, Argentina
| | - Pilar Carro
- Área de Química Física, Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, Instituto de Materiales y Nanotecnología, 38200 La Laguna, Spain
| |
Collapse
|
15
|
Nag A, Pradeep T. Assembling Atomically Precise Noble Metal Nanoclusters Using Supramolecular Interactions. ACS NANOSCIENCE AU 2022; 2:160-178. [PMID: 37101822 PMCID: PMC10114813 DOI: 10.1021/acsnanoscienceau.1c00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Supramolecular chemistry (SC) of noble metal nanoclusters (NMNCs) is one of the fascinating areas of contemporary materials science. It is principally concerned with the noncovalent interactions between NMNCs, as well as between NMNCs and molecules or nanoparticles. This review focuses on recent advances in the supramolecular assembly of NMNCs and applications of the resulting structures. We have divided the topics into four distinct subgroups: (i) SC of NMNCs in gaseous and solution phases, (ii) supramolecular interactions of NMNCs in crystal lattices, (iii) supramolecular assemblies of NMNCs with nanoparticles and NMNCs, and (iv) SC of NMNCs with other molecules. The last explores their interactions with fullerenes, cyclodextrins, cucurbiturils, crown ethers, and more. After discussing these topics concisely, various emerging properties of the assembled systems in terms of their mechanical, optical, magnetic, charge-transfer, etc. properties and applications are presented. SC is seen to provide a crucial role to induce new physical and chemical properties in such hybrid nanomaterials. Finally, we highlight the scope for expansion and future research in the area. This review would be useful to those working on functional nanostructures in general and NMNCs in particular.
Collapse
|
16
|
Jana A, Unnikrishnan PM, Poonia AK, Roy J, Jash M, Paramasivam G, Machacek J, Adarsh KNVD, Base T, Pradeep T. Carboranethiol-Protected Propeller-Shaped Photoresponsive Silver Nanomolecule. Inorg Chem 2022; 61:8593-8603. [PMID: 35621298 DOI: 10.1021/acs.inorgchem.2c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis, structural characterization, and photophysical properties of a propeller-shaped Ag21 nanomolecule with six rotary arms, protected with m-carborane-9-thiol (MCT) and triphenylphosphine (TPP) ligands. Structural analysis reveals that the nanomolecule has an Ag13 central icosahedral core with six directly connected silver atoms and two more silver atoms connected through three Ag-S-Ag bridging motifs. While 12 MCT ligands protect the core through metal-thiolate bonds in a 3-6-3-layered fashion, two TPP ligands solely protect the two bridging silver atoms. Interestingly, the rotational orientation of a silver sulfide staple motif is opposite to the orientation of carborane ligands, resembling the existence of a bidirectional rotational orientation in the nanomolecule. Careful analysis reveals that the orientation of carborane ligands on the cluster's surface resembles an assembly of double rotors. The zero circular dichroism signal indicates its achiral nature in solution. There are multiple absorption peaks in its UV-vis absorption spectrum, characteristic of a quantized electronic structure. The spectrum appears as a fingerprint for the cluster. High-resolution electrospray ionization mass spectrometry proves the structure and composition of the nanocluster in solution, and systematic fragmentation of the molecular ion starts with the loss of surface-bound ligands with increasing collision energy. Its multiple optical absorption features are in good agreement with the theoretically calculated spectrum. The cluster shows a narrow near-IR emission at 814 nm. The Ag21 nanomolecule is thermally stable at ambient conditions up to 100 °C. However, white-light illumination (lamp power = 120-160 W) shows photosensitivity, and this induces structural distortion, as confirmed by changes in the Raman and electronic absorption spectra. Femtosecond and nanosecond transient absorption studies reveal an exceptionally stable excited state having a lifetime of 3.26 ± 0.02 μs for the carriers, spread over a broad wavelength region of 520-650 nm. The formation of core-centered long-lived carriers in the excited state is responsible for the observed light-activated structural distortion.
Collapse
Affiliation(s)
- Arijit Jana
- Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| | - Parvathy M Unnikrishnan
- Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| | - Ajay K Poonia
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Jayoti Roy
- Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| | - Madhuri Jash
- Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| | - Ganesan Paramasivam
- Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| | - Jan Machacek
- Department of Synthesis, Institute of Inorganic Chemistry, The Czech Academy of Science 1001 Husinec, Rez 25068, Czech Republic
| | | | - Tomas Base
- Department of Synthesis, Institute of Inorganic Chemistry, The Czech Academy of Science 1001 Husinec, Rez 25068, Czech Republic
| | - Thalappil Pradeep
- Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai 600036, India
| |
Collapse
|
17
|
Linko V, Zhang H, Nonappa, Kostiainen MA, Ikkala O. From Precision Colloidal Hybrid Materials to Advanced Functional Assemblies. Acc Chem Res 2022; 55:1785-1795. [PMID: 35647700 PMCID: PMC9260957 DOI: 10.1021/acs.accounts.2c00093] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ConspectusThe concept of colloids encompasses a wide range of isotropic and anisotropic particles with diverse sizes, shapes, and functions from synthetic nanoparticles, nanorods, and nanosheets to functional biological units. They are addressed in materials science for various functions, while they are ubiquitous in the biological world for multiple functions. A large variety of synthetic colloids have been researched due to their scientific and technological importance; still they characteristically suffer from finite size distributions, imperfect shapes and interactions, and not fully engineered functions. This contrasts with biological colloids that offer precision in their size, shape, and functionality. Materials science has searched for inspiration from the biological world to allow structural control by self-assembly and hierarchy and to identify novel routes for combinations of functions in bio-inspiration.Herein, we first discuss different approaches for highly defined structural control of technically relevant synthetic colloids based on guided assemblies of biological motifs. First, we describe how polydisperse nanoparticles can be assembled within hollow protein cages to allow well-defined assemblies and hierarchical packings. Another approach relies on DNA nanotechnology-based assemblies, where engineered DNA structures allow programmed assembly. Then we will discuss synthetic colloids that have either particularly narrow size dispersity or even atomically precise structures for new assemblies and potential functions. Such colloids can have well-defined packings for membranes allowing high modulus. They can be switchable using light-responsive moieties, and they can initiate packing of larger assemblies of different geometrical shapes. The emphasis is on atomically defined nanoclusters that allow well-defined assemblies by supramolecular interactions, such as directional hydrogen bonding. Finally, we will discuss stimulus-responsive colloids for new functions, even toward complex responsive functions inspired by life. Therein, stimulus-responsive materials inspired by biological learning could allow the next generation of such materials. Classical conditioning is among the simplest biological learning concepts, requiring two stimuli and triggerable memory. Therein we use thermoresponsive hydrogels with plasmonic gold nanoparticles and a spiropyran photoacid as a model. Heating is the unconditioned stimulus leading to melting of the thermoresponsive gel, whereas light (at a specified wavelength) originally leads to reduced pH without plasmonic or structural changes because of steric gel stabilization. Under heat-induced gel melting, light results in pH-decrease and chain-like aggregation of the gold nanoparticles, allowing a new plasmonic response. Thus, simultaneous heating and light irradiation allow conditioning for a newly derived stimulus, where the logic diagram is analogous to Pavlovian conditioning. The shown assemblies demonstrate the different functionalities achievable using colloids when the sizes and the dispersity are controlled.
Collapse
Affiliation(s)
- Veikko Linko
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, FI-00076 Espoo, Finland
| | - Hang Zhang
- Department of Applied Physics, Aalto University School of Science, FI-00076 Espoo, Finland
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101 Tampere, Finland
| | - Mauri A. Kostiainen
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, FI-00076 Espoo, Finland
| | - Olli Ikkala
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, FI-00076 Espoo, Finland
- Department of Applied Physics, Aalto University School of Science, FI-00076 Espoo, Finland
| |
Collapse
|
18
|
Zhu C, Xin J, Li J, Li H, Kang X, Pei Y, Zhu M. Fluorescence or Phosphorescence? The Metallic Composition of Nanocluster Kernel Does Matter. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chen Zhu
- Anhui University Department of Chemistry CHINA
| | | | - Jing Li
- Xiangtan University Department of Chemistry CHINA
| | - Hao Li
- Anhui University Department of Chemistry CHINA
| | - Xi Kang
- Anhui University Department of Chemistry CHINA
| | - Yong Pei
- Xiangtan University Department of Chemistry CHINA
| | - Manzhou Zhu
- Anhui University Department of Chemistry and Chemical Engineering 111 Jiulong Rd 230601 Hefei CHINA
| |
Collapse
|
19
|
Negishi Y. Metal-nanocluster Science and Technology: My Personal History and Outlook. Phys Chem Chem Phys 2022; 24:7569-7594. [DOI: 10.1039/d1cp05689a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal nanoclusters (NCs) are among the leading targets in research of nanoscale materials, and elucidation of their properties (science) and development of control techniques (technology) have been continuously studied for...
Collapse
|
20
|
Mahendranath A, Mondal B, Sugi KS, Pradeep T. Direct imaging of lattice planes in atomically precise noble metal cluster crystals using a conventional transmission electron microscope. Chem Commun (Camb) 2021; 58:1906-1909. [PMID: 34842250 DOI: 10.1039/d1cc05643c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imaging finer structural details of atomically precise noble metal cluster crystals has been difficult with electron microscopy, owing to their extreme beam sensitivity. Here we present a simple method whereby lattice planes in single crystals of nanoclusters can be observed using a conventional transmission electron microscope, enabling further expansion of cluster research.
Collapse
Affiliation(s)
- Ananthu Mahendranath
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India. .,Centre of Excellence on Molecular Materials and Functions, Indian Institute of Technology Madras, Chennai, 600036, India.,Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Biswajit Mondal
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India. .,Centre of Excellence on Molecular Materials and Functions, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Korath Shivan Sugi
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India. .,Centre of Excellence on Molecular Materials and Functions, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India. .,Centre of Excellence on Molecular Materials and Functions, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
21
|
Bian T, Gardin A, Gemen J, Houben L, Perego C, Lee B, Elad N, Chu Z, Pavan GM, Klajn R. Electrostatic co-assembly of nanoparticles with oppositely charged small molecules into static and dynamic superstructures. Nat Chem 2021; 13:940-949. [PMID: 34489564 PMCID: PMC7611764 DOI: 10.1038/s41557-021-00752-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/14/2021] [Indexed: 02/08/2023]
Abstract
Coulombic interactions can be used to assemble charged nanoparticles into higher-order structures, but the process requires oppositely charged partners that are similarly sized. The ability to mediate the assembly of such charged nanoparticles using structurally simple small molecules would greatly facilitate the fabrication of nanostructured materials and harnessing their applications in catalysis, sensing and photonics. Here we show that small molecules with as few as three electric charges can effectively induce attractive interactions between oppositely charged nanoparticles in water. These interactions can guide the assembly of charged nanoparticles into colloidal crystals of a quality previously only thought to result from their co-crystallization with oppositely charged nanoparticles of a similar size. Transient nanoparticle assemblies can be generated using positively charged nanoparticles and multiply charged anions that are enzymatically hydrolysed into mono- and/or dianions. Our findings demonstrate an approach for the facile fabrication, manipulation and further investigation of static and dynamic nanostructured materials in aqueous environments.
Collapse
Affiliation(s)
- Tong Bian
- Department of Organic Chemistry, Weizmann Institute of Science,
Rehovot 76100, Israel
| | - Andrea Gardin
- Department of Innovative Technologies, University of Applied
Sciences and Arts of Southern Switzerland, CH-6928 Manno, Switzerland,Department of Applied Science and Technology, Politecnico di Torino,
10129 Torino, Italy
| | - Julius Gemen
- Department of Organic Chemistry, Weizmann Institute of Science,
Rehovot 76100, Israel
| | - Lothar Houben
- Department of Chemical Research Support, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Claudio Perego
- Department of Innovative Technologies, University of Applied
Sciences and Arts of Southern Switzerland, CH-6928 Manno, Switzerland
| | - Byeongdu Lee
- X-ray Science Division, Advanced Photon Source, Argonne National
Laboratory, Lemont, IL 60439, USA
| | - Nadav Elad
- Department of Chemical Research Support, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Zonglin Chu
- Department of Organic Chemistry, Weizmann Institute of Science,
Rehovot 76100, Israel
| | - Giovanni M. Pavan
- Department of Innovative Technologies, University of Applied
Sciences and Arts of Southern Switzerland, CH-6928 Manno, Switzerland,Department of Applied Science and Technology, Politecnico di Torino,
10129 Torino, Italy
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science,
Rehovot 76100, Israel,
| |
Collapse
|
22
|
Wang Y, Makkonen E, Chen X, Bürgi T. Absolute configuration retention of a configurationally labile ligand during dynamic processes of thiolate protected gold clusters. Chem Sci 2021; 12:9413-9419. [PMID: 34349915 PMCID: PMC8278927 DOI: 10.1039/d1sc01702k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/04/2021] [Indexed: 12/04/2022] Open
Abstract
Monolayer protected metal clusters are dynamic nanoscale objects. For example, the chiral Au38(2-PET)24 cluster (2-PET: 2-phenylethylthiolate) racemizes at moderate temperature. In addition, ligands and metal atoms can easily exchange between clusters. Such processes are important for applications of monolayer protected metal clusters; however, the mechanistic study of such processes turns out to be challenging. Here we use a configurationally labile, axially chiral ligand, biphenyl-2,2'-dithiol (R/S-BiDi), as a probe to study dynamic cluster processes. It is shown that the ligand exchange of free R/S-BiDi on a chiral Au38(2-PET)24 cluster is diastereospecific. Using chiral chromatography, isolated single diastereomers of the type anticlockwise/clockwise-Au38(2-PET)22(R/S-BiDi)1 could be isolated. Upon heating, the cluster framework racemizes, while the R/S-BiDi ligand does not. These findings demonstrate that during cluster racemization and/or ligand exchange between clusters, the R/S-BiDi ligand is sufficiently confined, thus preventing its racemization, and exclude the possibility that the ligand desorbs from the cluster surface.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| | - Esko Makkonen
- Department of Applied Physics, Aalto University Otakaari 1 FI-02150 Espoo Finland
| | - Xi Chen
- Department of Applied Physics, Aalto University Otakaari 1 FI-02150 Espoo Finland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| |
Collapse
|
23
|
Rival JV, Mymoona P, Lakshmi KM, Pradeep T, Shibu ES. Self-Assembly of Precision Noble Metal Nanoclusters: Hierarchical Structural Complexity, Colloidal Superstructures, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005718. [PMID: 33491918 DOI: 10.1002/smll.202005718] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/07/2020] [Indexed: 06/12/2023]
Abstract
Ligand protected noble metal nanoparticles are excellent building blocks for colloidal self-assembly. Metal nanoparticle self-assembly offers routes for a wide range of multifunctional nanomaterials with enhanced optoelectronic properties. The emergence of atomically precise monolayer thiol-protected noble metal nanoclusters has overcome numerous challenges such as uncontrolled aggregation, polydispersity, and directionalities faced in plasmonic nanoparticle self-assemblies. Because of their well-defined molecular compositions, enhanced stability, and diverse surface functionalities, nanoclusters offer an excellent platform for developing colloidal superstructures via the self-assembly driven by surface ligands and metal cores. More importantly, recent reports have also revealed the hierarchical structural complexity of several nanoclusters. In this review, the formulation and periodic self-assembly of different noble metal nanoclusters are focused upon. Further, self-assembly induced amplification of physicochemical properties, and their potential applications in molecular recognition, sensing, gas storage, device fabrication, bioimaging, therapeutics, and catalysis are discussed. The topics covered in this review are extensively associated with state-of-the-art achievements in the field of precision noble metal nanoclusters.
Collapse
Affiliation(s)
- Jose V Rival
- Smart Materials Lab, Electrochemical Power Sources (ECPS) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad, Uttar Pradesh, 201002, India
| | - Paloli Mymoona
- Smart Materials Lab, Electrochemical Power Sources (ECPS) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad, Uttar Pradesh, 201002, India
| | - Kavalloor Murali Lakshmi
- Smart Materials Lab, Electrochemical Power Sources (ECPS) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad, Uttar Pradesh, 201002, India
| | - Thalappil Pradeep
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, 600036, India
| | - Edakkattuparambil Sidharth Shibu
- Smart Materials Lab, Electrochemical Power Sources (ECPS) Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
24
|
Bodiuzzaman M, Dar WA, Pradeep T. Cocrystals of Atomically Precise Noble Metal Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2003981. [PMID: 33185007 DOI: 10.1002/smll.202003981] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Cocrystallization is a phenomenon involving the assembly of two or more different chemical entities in a lattice, occurring typically through supramolecular interactions. In this concept, recent advancements in the cocrystallization of atomically precise noble metal clusters and their potential future directions are presented. Different strategies to create coassemblies of thiolate-protected noble metal nanoclusters are presented first. An approach is the simultaneous synthesis, and cocrystallization of two clusters having similar structures. A unique pair of clusters found recently, namely Ag40 and Ag46 with same core but different shell are taken to illustrate this. In another category, the case of the same core is presented, namely Ag116 with different shells, as in a mixture of Ag210 and Ag211 . Next, an intercluster reaction is presented to create cocrystals through selective crystallization of the reaction products. The coexistence of competing effects, magic sizes, and magic electron shells in a coassembly of alloy nanoclusters is discussed next. Finally, an assembly strategy for nanoclusters using electrostatic interactions is described. This concept is concluded with a future perspective on the emerging possibilities of such solids. Advancements in this field will certainly help the development of novel materials with exciting properties.
Collapse
Affiliation(s)
- Mohammad Bodiuzzaman
- Department of Chemistry, DST Unit of Nanoscience and Thematic Unit of Excellence, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Wakeel Ahmed Dar
- Department of Chemistry, DST Unit of Nanoscience and Thematic Unit of Excellence, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Thalappil Pradeep
- Department of Chemistry, DST Unit of Nanoscience and Thematic Unit of Excellence, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
25
|
Omoda T, Takano S, Tsukuda T. Toward Controlling the Electronic Structures of Chemically Modified Superatoms of Gold and Silver. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2001439. [PMID: 32696588 DOI: 10.1002/smll.202001439] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Atomically precise gold/silver clusters protected by organic ligands L, [(Au/Ag)x Ly ]z , have gained increasing interest as building units of functional materials because of their novel photophysical and physicochemical properties. The properties of [(Au/Ag)x Ly ]z are intimately associated with the quantized electronic structures of the metallic cores, which can be viewed as superatoms from the analogy of naked Au/Ag clusters. Thus, establishment of the correlation between the geometric and electronic structures of the superatomic cores is crucial for rational design and improvement of the properties of [(Au/Ag)x Ly ]z . This review article aims to provide a qualitative understanding on how the electronic structures of [(Au/Ag)x Ly ]z are affected by geometric structures of the superatomic cores with a focus on three factors: size, shape, and composition, on the basis of single-crystal X-ray diffraction data. The knowledge accumulated here will constitute a basis for the development of ligand-protected Au/Ag clusters as new artificial elements on a nanometer scale.
Collapse
Affiliation(s)
- Tsubasa Omoda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto, 615-8520, Japan
| |
Collapse
|
26
|
Kawawaki T, Ebina A, Hosokawa Y, Ozaki S, Suzuki D, Hossain S, Negishi Y. Thiolate-Protected Metal Nanoclusters: Recent Development in Synthesis, Understanding of Reaction, and Application in Energy and Environmental Field. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005328. [PMID: 33522090 DOI: 10.1002/smll.202005328] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Metal nanoclusters (NCs), which are composed of about 250 or fewer metal atoms, possess great potential as novel functional materials. Fundamental research on metal NCs gradually started in the 1960s, and since 2000, thiolate (SR)-protected metal NCs have been the main metal NCs actively studied. The precise and systematic isolation of SR-protected metal NCs has been achieved in 2005. Since then, research on SR-protected metal NCs for both basic science and practical application has rapidly expanded. This review describes this recent progress in the field of SR-protected metal NCs in three areas: synthesis, understanding, and application. Specifically, the recent study of alloy NCs and connected structures composed of NCs is highlighted in the "synthesis" section, recent knowledge on the reactivity of NCs in solution is highlighted in the "understanding" section, and the applications of NCs in the energy and environmental field are highlighted in the "application" section. This review provides insight on the current state of research on SR-protected metal NCs and discusses the challenges to be overcome for further development in this field as well as the possibilities that these materials can contribute to solving the problems facing modern society.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ayano Ebina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yasunaga Hosokawa
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Shuhei Ozaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Daiki Suzuki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
27
|
Neumaier M, Baksi A, Weis P, Schneider EK, Chakraborty P, Hahn H, Pradeep T, Kappes MM. Kinetics of Intercluster Reactions between Atomically Precise Noble Metal Clusters [Ag 25(DMBT) 18] - and [Au 25(PET) 18] - in Room Temperature Solutions. J Am Chem Soc 2021; 143:6969-6980. [PMID: 33913724 DOI: 10.1021/jacs.1c01140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The kinetics of intercluster metal atom exchange reactions between solvated [Ag25(DMBT)18]- and [Au25(PET)18]- (DMBT and PET are 2,4-dimethylbenzenethiol and 2-phenylethanethiol, respectively, both C8H10S) were probed by electrospray ionization mass spectrometry and computer-based modeling. Anion mass spectra and collision induced dissociation (CID) measurements show that both cluster monomers and dimers are involved in the reactions. We have modeled the corresponding kinetics assuming a reaction mechanism in which metal atom exchange occurs through transient dimers. Our kinetic model contains three types of generic reactions: dimerization of monomers, metal atom exchange in the transient dimers, and dissociation of the dimers to monomers. There are correspondingly 377 discrete species connected by in total 1302 reactions (i.e., dimerization, dissociation and atom exchange reactions) leading to the entire series of monomeric and dimeric products [AgmAu25-m]- (m = 1-24) and [AgmAu50-m]2- (m = 0-50), respectively. The rate constants of the corresponding reactions were fitted to the experimental data, and good agreement was obtained with exchange rate constants which scale with the probability of finding a silver or gold atom in the respective monomeric subunit of the dimer, i.e., reflecting an entropic driving force for alloying. Allowing the dimerization rate constant to scale with increasing gold composition of the respective reactants improves the agreement further. The rate constants obtained are physically plausible, thus strongly supporting dimer-mediated metal atom exchange in this intercluster reaction system.
Collapse
Affiliation(s)
- Marco Neumaier
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ananya Baksi
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Erik K Schneider
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Papri Chakraborty
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Horst Hahn
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Thalappil Pradeep
- DST Unit of Nanoscience and Thematic Unit of Excellence, Indian Institute of Technology Madras, 600 036 Chennai, India
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
28
|
Zhong YJ, Liao JH, Chiu TH, Wu YY, Kahlal S, McGlinchey MJ, Saillard JY, Liu CW. Intercluster exchanges leading to hydride-centered bimetallic clusters: a multi-NMR, X-ray crystallographic, and DFT study. Dalton Trans 2021; 50:4727-4734. [PMID: 33734266 DOI: 10.1039/d1dt00072a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Encouraged by the successful syntheses of alloy nanoclusters (or nanoparticles) via intercluster (or interparticle) reactions, herein we apply this methodology to prepare a series of bimetallic hydride clusters. Mixing of two clusters, [Ag7(H){E2P(OiPr)2}6] (E = S, 1; Se, 3) and [Cu7(H){E2P(OiPr)2}6] (E = S, 2; Se, 4), yields two series of hydride-centered bimetallic clusters, [CuxAg7-x(H){E2P(OiPr)2}6] (x = 0-7; E = S, 5; Se, 6). Their compositions are fully characterized by positive-mode ESI-MS spectrometry, multi-NMR spectroscopy, and the structures of [Cu6Ag(H){S2P(OiPr)2}6] (5a) and [CuAg6(H){Se2P(OiPr)2}6] (6a) by single crystal X-ray diffraction. The presence of individual compounds in solution is the result of a (dynamic) chemical equilibrium primarily driven by metal exchanges. In fact, the process of inter-cluster exchange of 1 and 2 leading to hydride-centered bimetallic clusters 5 can be monitored by concentration-dependent 31P NMR spectroscopy of which the higher concentration of 1 in the reaction, the closer to its resonance will be the distribution, in accord with Le Chatelier's principle. The dynamic equilibrium is further confirmed by 2D exchange spectroscopy that reveals a stepwise process involving one metal exchange at a time. DFT calculations on a model series of clusters 6 show that silver prefers occupying the inner tetrahedral positions, while copper favors capping positions, in full agreement with the crystal structure of 5a and 6a.
Collapse
Affiliation(s)
- Yu-Jie Zhong
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan, Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang J, Wang ZY, Li SJ, Zang SQ, Mak TCW. Carboranealkynyl-Protected Gold Nanoclusters: Size Conversion and UV/Vis-NIR Optical Properties. Angew Chem Int Ed Engl 2021; 60:5959-5964. [PMID: 33314503 DOI: 10.1002/anie.202013027] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/10/2020] [Indexed: 01/02/2023]
Abstract
Structure evolution has become an effective way to assemble novel monolayer-protected metal nanomolecules. However, evolution with alkynyl-stabilized metal clusters still remains rarely explored. Herein, we present a carboranealkynyl-protected gold nanocluster [Au28 (C4 B10 H11 )12 (tht)8 ]3+ (Au28 , tht=tetrahydrothiophene) possessing an open-shell electronic structure with 13 free electrons, which was isolated by a facile self-reduction method with 9-HC≡C-closo-1,2-C2 B10 H11 as the two-in-one reducing and protecting agent. Notably, Au28 undergoes a complete transformation in methanol into a stable and smaller-sized nanocluster [Au23 (C4 B10 H11 )9 (tht)6 ]2+ (Au23 ) bearing 12 valence electrons and crystal-field-like split superatomic 1D orbitals. The transformation process was systematically monitored with ESI-MS and UV/Vis absorption spectra. Au28 and Au23 both display optical absorption covering the UV/Vis-NIR range and NIR emission, which facilitates their potential application in the biomedical and photocatalytic fields.
Collapse
Affiliation(s)
- Jie Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Thomas C W Mak
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
30
|
Wang J, Wang Z, Li S, Zang S, Mak TCW. Carboranealkynyl‐Protected Gold Nanoclusters: Size Conversion and UV/Vis–NIR Optical Properties. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jie Wang
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhao‐Yang Wang
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Shi‐Jun Li
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Shuang‐Quan Zang
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Thomas C. W. Mak
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 China
- Department of Chemistry The Chinese University of Hong Kong Shatin, New Territories Hong Kong SAR China
| |
Collapse
|
31
|
Pillay MN, van Zyl WE, Liu CW. A construction guide for high-nuclearity (≥50 metal atoms) coinage metal clusters at the nanoscale: bridging molecular precise constructs with the bulk material phase. NANOSCALE 2020; 12:24331-24348. [PMID: 33300525 DOI: 10.1039/d0nr05632d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthesis remains a major strength in chemistry and materials science and relies on the formation of new molecules and diverse forms of matter. The construction and identification of large molecules poses specific challenges and has historically lain in the realm of biological (organic)-type molecules with evolved synthesis methods to support such endeavours. But with the development of analytical tools such as X-ray crystallography, new synthesis methods toward large metal-based (inorganic) molecules and clusters have come to the fore, making it possible to accurately determine the precise distribution of hundreds of atoms in large clusters. In this review, we focus on different synthesis protocols used to form new metal clusters such as templating, alloying and size-focusing strategies. A specific focus is on group 11 metals (Cu, Ag, Au) as they currently predominate large metal cluster investigations and related Au and Ag bulk surface phenomena. This review focuses on metal clusters that have very high-nuclearity, i.e. with 50 or more metal centers within the isolated cluster. This size domain, it is believed, will become increasingly important for a variety of applications as these metal clusters are positioned at the interface between the molecular and bulk phases, whilst remaining a classic nanomaterial and retaining unique nano-sized properties.
Collapse
Affiliation(s)
- Michael N Pillay
- School of Chemistry and Physics, University of KwaZulu Natal, Westville Campus, Durban 4000, South Africa.
| | | | | |
Collapse
|
32
|
Xia N, Wu Z. Controlling ultrasmall gold nanoparticles with atomic precision. Chem Sci 2020; 12:2368-2380. [PMID: 34164001 PMCID: PMC8179260 DOI: 10.1039/d0sc05363e] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Gold nanoparticles are probably the nanoparticles that have been best studied for the longest time due to their stability, physicochemical properties and applications. Controlling gold nanoparticles with atomic precision is of significance for subsequent research on their structures, properties and applications, which is a dream that has been pursued for many years since ruby gold was first obtained by Faraday in 1857. Fortunately, this dream has recently been partially realized for some ultrasmall gold nanoparticles (nanoclusters). However, rationally designing and synthesizing gold nanoparticles with atomic precision are still distant goals, and this challenge might rely primarily on rich atomically precise gold nanoparticle libraries and the in-depth understanding of metal nanoparticle chemistry. Herein, we review general synthesis strategies and some facile synthesis methods, with an emphasis on the controlling parameters determined from well-documented results, which might have important implications for future nanoparticle synthesis with atomic precision and facilitate related research and applications.
Collapse
Affiliation(s)
- Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences Hefei 230031 P. R. China
- Institute of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| |
Collapse
|
33
|
Andrew GN, Wu H, Anumula R, Luo Z. Cl@Ag 22 Au 6 (4-TBBT) 28 (PPh 4 ): A Chloride-Centered Ag-Au Bimetallic Cluster for Optics. Chem Asian J 2020; 15:4077-4081. [PMID: 33047476 DOI: 10.1002/asia.202001171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 12/27/2022]
Abstract
We report the single-crystal synthesis of a chlorine-centered bimetallic cluster, Cl@Ag22 Au6 (4-TBBT)28 (PPh4 ), which bears a quatrefoil-structured Cl@Ag22 (SR)16 core studded by six Au(SR)2 staples showing a quasi Td symmetry. This cluster bears 28 metal atoms and 28 ligands, with a chlorine atom hosted in the center of the metallic Ag22 Au6 core. Single-crystal analysis shows that this cluster possesses essentially a different bonding nature compared with other monolayer-protected metal clusters (MPCs) or traditional metal-sulfur complexes. We fully dissect the structure evolution in forming such a chlorine-centered cluster. Interestingly, this cluster, Cl@Ag22 Au6 (4-TBBT)28 (PPh4 ), displays a fluorescence emission at 570 nm and supports the solid emission with a minor red shift at 574 nm. On the other hand, we have tested the nonlinear optical property and observed unambiguous nonlinear optical property with a normal valley-shaped transmittance curve corresponding to reverse saturated absorption (RSA) of the cluster.
Collapse
Affiliation(s)
- Gaya N Andrew
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100090, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haiming Wu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100090, P. R. China
| | - Rajini Anumula
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100090, P. R. China
| | - Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100090, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
34
|
Baksi A, Schneider EK, Weis P, Chakraborty I, Fuhr O, Lebedkin S, Parak WJ, Kappes MM. Linear Size Contraction of Ligand Protected Ag 29 Clusters by Substituting Ag with Cu. ACS NANO 2020; 14:15064-15070. [PMID: 33089986 DOI: 10.1021/acsnano.0c05082] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There are only a few examples of atomically precise, ligand protected, bimetallic coinage metal clusters in which molecular structure remains essentially unchanged over a wide composition range starting from the corresponding homometallic species. Such model systems are particularly useful to study the dynamics of alloy formation on the nanoscale. Here we demonstrate the unusual reactivity of solvated metalloid-superatom Ag29(BDT)12(PPh3)4 (BDT = 1,3 benzenedithiol) clusters toward semiconducting Cu12S6(DPPPT)4 (DPPPT = bis(diphenylphosphino)pentane) clusters as an efficient way to exchange multiple copper atoms into the atomically precise silver clusters without changing overall the structure type. Concentration-dependent UV-vis absorption and online mass spectrometry shows that 14 Cu atoms can be exchanged into the silver cluster. Beyond the 14 Cu atom exchange, the cluster degrades to smaller thiolates. Information on cluster structures is obtained from high-resolution ion mobility mass spectrometry, which shows a linear decrease in collision cross section (CCS) with each Ag/Cu exchanged. Several isomeric structures are calculated by density functional theory (DFT), and their calculated collision cross sections are used to identify the most stable isomers for each Ag/Cu exchange product. Ag/Cu exchange is essentially limited to the cluster surface/shell. The core appears not to be involved.
Collapse
Affiliation(s)
- Ananya Baksi
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Erik Karsten Schneider
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Indranath Chakraborty
- Center for Hybrid Nanostructures (CHyN), University of Hamburg, 22761 Hamburg, Germany
| | - Olaf Fuhr
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Karlsruher Nano-Micro-Facility (KNMF), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Sergei Lebedkin
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), University of Hamburg, 22761 Hamburg, Germany
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
35
|
Yao Q, Wu Z, Liu Z, Lin Y, Yuan X, Xie J. Molecular reactivity of thiolate-protected noble metal nanoclusters: synthesis, self-assembly, and applications. Chem Sci 2020; 12:99-127. [PMID: 34163584 PMCID: PMC8178751 DOI: 10.1039/d0sc04620e] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
Thiolate-protected noble metal (e.g., Au and Ag) nanoclusters (NCs) are ultra-small particles with a core size of less than 3 nm. Due to the strong quantum confinement effects and diverse atomic packing modes in this ultra-small size regime, noble metal NCs exhibit numerous molecule-like optical, magnetic, and electronic properties, making them an emerging family of "metallic molecules". Based on such molecule-like structures and properties, an individual noble metal NC behaves as a molecular entity in many chemical reactions, and exhibits structurally sensitive molecular reactivity to various ions, molecules, and other metal NCs. Although this molecular reactivity determines the application of NCs in various fields such as sensors, biomedicine, and catalysis, there is still a lack of systematic summary of the molecular interaction/reaction fundamentals of noble metal NCs at the molecular and atomic levels in the current literature. Here, we discuss the latest progress in understanding and exploiting the molecular interactions/reactions of noble metal NCs in their synthesis, self-assembly and application scenarios, based on the typical M(0)@M(i)-SR core-shell structure scheme, where M and SR are the metal atom and thiolate ligand, respectively. In particular, the continuous development of synthesis and characterization techniques has enabled noble metal NCs to be produced with molecular purity and atomically precise structural resolution. Such molecular purity and atomically precise structure, coupled with the great help of theoretical calculations, have revealed the active sites in various structural hierarchies of noble metal NCs (e.g., M(0) core, M-S interface, and SR ligand) for their molecular interactions/reactions. The anatomy of such molecular interactions/reactions of noble metal NCs in synthesis, self-assembly, and applications (e.g., sensors, biomedicine, and catalysis) constitutes another center of our discussion. The basis and practicality of the molecular interactions/reactions of noble metal NCs exemplified in this Review may increase the acceptance of metal NCs in various fields.
Collapse
Affiliation(s)
- Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
| | - Zhennan Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
| | - Zhihe Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou China 350207
| | - Yingzheng Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou China 350207
| | - Xun Yuan
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao China 266042
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou China 350207
| |
Collapse
|
36
|
Garcia C, Truttmann V, Lopez I, Haunold T, Marini C, Rameshan C, Pittenauer E, Kregsamer P, Dobrezberger K, Stöger-Pollach M, Barrabés N, Rupprechter G. Dynamics of Pd Dopant Atoms inside Au Nanoclusters during Catalytic CO Oxidation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:23626-23636. [PMID: 33154783 PMCID: PMC7604939 DOI: 10.1021/acs.jpcc.0c05735] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/10/2020] [Indexed: 05/12/2023]
Abstract
Doping gold nanoclusters with palladium has been reported to increase their catalytic activity and stability. PdAu24 nanoclusters, with the Pd dopant atom located at the center of the Au cluster core, were supported on titania and applied in catalytic CO oxidation, showing significantly higher activity than supported monometallic Au25 nanoclusters. After pretreatment, operando DRIFTS spectroscopy detected CO adsorbed on Pd during CO oxidation, indicating migration of the Pd dopant atom from the Au cluster core to the cluster surface. Increasing the number of Pd dopant atoms in the Au structure led to incorporation of Pd mostly in the S-(M-S) n protecting staples, as evidenced by in situ XAFS. A combination of oxidative and reductive thermal pretreatment resulted in the formation of isolated Pd surface sites within the Au surface. The combined analysis of in situ XAFS, operando DRIFTS, and ex situ XPS thus revealed the structural evolution of bimetallic PdAu nanoclusters, yielding a Pd single-site catalyst of 2.7 nm average particle size with improved CO oxidation activity.
Collapse
Affiliation(s)
- Clara Garcia
- Institute
of Materials Chemistry, Technische Universität
Wien, Getreidemarkt 9/BC/165, 1060 Vienna, Austria
| | - Vera Truttmann
- Institute
of Materials Chemistry, Technische Universität
Wien, Getreidemarkt 9/BC/165, 1060 Vienna, Austria
| | - Irene Lopez
- Instituto
De Tecnología Química, Universitat
Politecnica de Valencia - Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Av. de los Naranjos, s/n, 46022 Valencia, Spain
| | - Thomas Haunold
- Institute
of Materials Chemistry, Technische Universität
Wien, Getreidemarkt 9/BC/165, 1060 Vienna, Austria
| | - Carlo Marini
- ALBA
Synchrotron Light Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Valles, Barcelona, Spain
| | - Christoph Rameshan
- Institute
of Materials Chemistry, Technische Universität
Wien, Getreidemarkt 9/BC/165, 1060 Vienna, Austria
| | - Ernst Pittenauer
- Institute
of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Peter Kregsamer
- Atominstitut, Technische Universität
Wien, Stadionallee 2, 1020 Vienna, Austria
| | - Klaus Dobrezberger
- Institute
of Materials Chemistry, Technische Universität
Wien, Getreidemarkt 9/BC/165, 1060 Vienna, Austria
| | - Michael Stöger-Pollach
- University
Service Center for Transmission Electron Microscopy (USTEM), Technische Universität Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - Noelia Barrabés
- Institute
of Materials Chemistry, Technische Universität
Wien, Getreidemarkt 9/BC/165, 1060 Vienna, Austria
| | - Günther Rupprechter
- Institute
of Materials Chemistry, Technische Universität
Wien, Getreidemarkt 9/BC/165, 1060 Vienna, Austria
| |
Collapse
|
37
|
Hirai H, Ito S, Takano S, Koyasu K, Tsukuda T. Ligand-protected gold/silver superatoms: current status and emerging trends. Chem Sci 2020; 11:12233-12248. [PMID: 34094434 PMCID: PMC8162828 DOI: 10.1039/d0sc04100a] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Monolayer-protected gold/silver clusters have attracted much interest as nano-scale building units for novel functional materials owing to their nonbulk-like structures and size-specific properties. They can be viewed as ligand-protected superatoms because their magic stabilities and fundamental properties are well explained in the framework of the jellium model. In the last decade, the number of ligand-protected superatoms with atomically-defined structures has been increasing rapidly thanks to the well-established synthesis and structural determination by X-ray crystallography. This perspective summarizes the current status and emerging trends in synthesis and characterization of superatoms. The topics related to synthesis include (1) development of targeted synthesis based on transformation, (2) enhancement of robustness and synthetic yield for practical applications, and (3) development of controlled fusion and assembly of well-defined superatoms to create new properties. New characterization approaches are also introduced such as (1) mass spectrometry and laser spectroscopies in the gas phase, (2) determination of static and dynamic structures, and (3) computational analysis by machine learning. Finally, future challenges and prospects are discussed for further promotion and development of materials science of superatoms. This perspective summarizes the current status and emerging trends in synthesis and characterization of ligand-protected gold/silver superatoms.![]()
Collapse
Affiliation(s)
- Haru Hirai
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Shun Ito
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Kiichirou Koyasu
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan .,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University Katsura Kyoto 615-8520 Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan .,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University Katsura Kyoto 615-8520 Japan
| |
Collapse
|
38
|
Kang X, Li Y, Zhu M, Jin R. Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem Soc Rev 2020; 49:6443-6514. [PMID: 32760953 DOI: 10.1039/c9cs00633h] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal nanoclusters fill the gap between discrete atoms and plasmonic nanoparticles, providing unique opportunities for investigating the quantum effects and precise structure-property correlations at the atomic level. As a versatile strategy, alloying can largely improve the physicochemical performances compared to the corresponding homo-metal nanoclusters, and thus benefit the applications of such nanomaterials. In this review, we highlight the achievements of atomically precise alloy nanoclusters, and summarize the alloying principles and fundamentals, including the synthetic methods, site-preferences for different heteroatoms in the templates, and alloying-induced structure and property changes. First, based on various Au or Ag nanocluster templates, heteroatom doping modes are presented. The templates with electronic shell-closing configurations tend to maintain their structures during doping, while the others may undergo transformation and give rise to alloy nanoclusters with new structures. Second, alloy nanoclusters of specific magic sizes are reviewed. The arrangement of different atoms is related to the symmetry of the structures; that is, different atoms are symmetrically located in the nanoclusters of smaller sizes, and evolve into shell-by-shell structures at larger sizes. Then, we elaborate on the alloying effects in terms of optical, electrochemical, electroluminescent, magnetic and chiral properties, as well as the stability and reactivity via comparisons between the doped nanoclusters and their homo-metal counterparts. For example, central heteroatom-induced photoluminescence enhancement is emphasized. The applications of alloy nanoclusters in catalysis, chemical sensing, bio-labeling, and other fields are further discussed. Finally, we provide perspectives on existing issues and future efforts. Overall, this review provides a comprehensive synthetic toolbox and controllable doping modes so as to achieve more alloy nanoclusters with customized compositions, structures, and properties for applications. This review is based on publications available up to February 2020.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | | | | | | |
Collapse
|
39
|
Hosier CA, Anderson ID, Ackerson CJ. Acetylide-for-thiolate and thiolate-for-acetylide exchange on gold nanoclusters. NANOSCALE 2020; 12:6239-6242. [PMID: 32150189 DOI: 10.1039/d0nr00869a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Acetylide-protected gold nanoclusters represent a recently described class of nanocluster compounds that are computationally predicted to be more stable than well-studied thiolate-protected clusters. Ligand exchange of thiolates-for-acetylides on these clusters as well as the reverse reaction are so-far unknown. Such reactions can inform a practical understanding of stability and other differences between thiolate- and acetylide-protected gold clusters. Here it is shown that acetylide-for-thiolate ligand exchange is facile when using either a lithium phenylacetylide or a gold(i)-phenylacetylide complex as incoming ligand to thiolate-protected gold clusters, whereas the reaction fails when using phenylacetylene. Both partial and full exchange are possible, as is the reverse reaction. While the overall reaction resembles ligand exchange, it may be better described as a metathesis reaction. Notably, while the simple thiolate-for-acetylide exchange reaction is enthalpically unfavorable, metathesis reactions between these ligands are enthalpically favorable. Intercluster exchange is also observed between thiolate-protected and acetylide-protected clusters.
Collapse
Affiliation(s)
- Christopher A Hosier
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Ian D Anderson
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | |
Collapse
|
40
|
Ma X, Tang Z, Qin L, Peng J, Li L, Chen S. Unravelling the formation mechanism of alkynyl protected gold clusters: a case study of phenylacetylene stabilized Au 144 molecules. NANOSCALE 2020; 12:2980-2986. [PMID: 31994572 DOI: 10.1039/c9nr10930g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite recent progress in the preparation of alkynyl protected Au clusters with molecular purity (e.g., Na[Au25(C[triple bond, length as m-dash]CAr)18, Ar = 3,5-(CF3)2C6H3-, Au36(C[triple bond, length as m-dash]CPh)24, Au44(C[triple bond, length as m-dash]CPh)28, and Au144(C[triple bond, length as m-dash]CAr)60, Ar = 2-F-C6H4-), the formation mechanism still remains elusive. Herein, a new molecule-like alkynyl Au cluster was successfully prepared, and its formula was determined as Au144(PA)60 (PA = PhC[triple bond, length as m-dash]C-, phenylacetylene). In the formation of Au144(PA)60, the introduction of ethanol in post-synthesis treatment to manipulate the aggregation state of the precursor was found to play a critical role in producing the Au144 clusters. During the Au144(PA)60 formation process, the contents of PA, (PA)2 and (PA)4 were monitored by absorbance and gas chromatography-mass spectrometry (GC-MS), disclosing that Au144(PA)60 molecules were generated in sync with (PA)4. Finally, the formation mechanism of Au144(PA)60 molecules has been tentatively proposed, of which three major stages are involved. This study can shed light on the formation mechanism that may be exploited for the precise control of the synthesis of alkynyl protected coinage metal clusters.
Collapse
Affiliation(s)
- Xiaoshuang Ma
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P. R. China.
| | - Zhenghua Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P. R. China. and Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, Guangdong 510006, P. R. China
| | - Lubing Qin
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P. R. China.
| | - Jin Peng
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P. R. China.
| | - Ligui Li
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P. R. China.
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, USA.
| |
Collapse
|
41
|
Maity S, Bain D, Patra A. An overview on the current understanding of the photophysical properties of metal nanoclusters and their potential applications. NANOSCALE 2019; 11:22685-22723. [PMID: 31774095 DOI: 10.1039/c9nr07963g] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photophysics of atomically precise metal nanoclusters (MNCs) is an emerging area of research due to their potential applications in optoelectronics, photovoltaics, sensing, bio-imaging and catalysis. An overview of the recent advances in the photophysical properties of MNCs is presented in this review. To begin with, we illustrate general synthesis methodologies of MNCs using direct reduction, chemical etching, ligand exchange, metal exchange and intercluster reaction. Due to strong quantum confinement, the NCs possess unique electronic properties such as discrete optical absorption, intense photoluminescence (PL), molecular-like electron dynamics and non-linear optical behavior. Discussions have also been carried out to unveil the influence of the core size, nature of ligands, heteroatom doping, and surrounding environments on the optical absorption and photophysical properties of metal clusters. Recent findings reveal that the excited-state dynamics, nonlinear optical properties and aggregation induced emission of metal clusters offer exciting opportunities for potential applications. We discuss briefly about their versatile applications in optoelectronics, sensing, catalysis and bio-imaging. Finally, the future perspective of this research field is given.
Collapse
Affiliation(s)
- Subarna Maity
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India.
| | - Dipankar Bain
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India.
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India.
| |
Collapse
|
42
|
Dar WA, Bodiuzzaman M, Ghosh D, Paramasivam G, Khatun E, Sugi KS, Pradeep T. Interparticle Reactions between Silver Nanoclusters Leading to Product Cocrystals by Selective Cocrystallization. ACS NANO 2019; 13:13365-13373. [PMID: 31675211 DOI: 10.1021/acsnano.9b06740] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present an example of an interparticle reaction between atomically precise nanoclusters (NCs) of the same metal, resulting in entirely different clusters. In detail, the clusters [Ag12(TBT)8(TFA)5(CH3CN)]+ (TBT = tert-butylthiolate, TFA = trifluoroacetate, CH3CN = acetonitrile) and [Ag18(TPP)10H16]2+ (TPP = triphenylphosphine) abbreviated as Ag12 and Ag18, respectively, react leading to [Ag16(TBT)8(TFA)7(CH3CN)3Cl]+ and [Ag17(TBT)8(TFA)7(CH3CN)3Cl]+, abbreviated as Ag16 and Ag17, respectively. The two product NCs crystallize together as both possess the same metal chalcogenolate shell, composed of Ag16S8, making them indistinguishable. The occupancies of Ag16 and Ag17 are 66.66 and 33.33%, respectively, in a single crystal. Electrospray ionization mass spectrometry (ESI MS) of the reaction product and a dissolved crystal show the population of Ag16 and Ag17 NCs to be in a 1:1 and 2:1 ratio, respectively. This suggests selective crystallization in the cocrystal. Time-dependent ESI MS was employed to understand the formation of product clusters by monitoring the reaction intermediates formed in the course of the reaction. We present an unprecedented growth mechanism for the formation of silver NCs mediated by silver thiolate intermediates.
Collapse
Affiliation(s)
- Wakeel Ahmed Dar
- Department of Chemistry, DST Unit of Nanoscience and Thematic Unit of Excellence , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Mohammad Bodiuzzaman
- Department of Chemistry, DST Unit of Nanoscience and Thematic Unit of Excellence , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Debasmita Ghosh
- Department of Chemistry, DST Unit of Nanoscience and Thematic Unit of Excellence , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Ganesan Paramasivam
- Department of Chemistry, DST Unit of Nanoscience and Thematic Unit of Excellence , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Esma Khatun
- Department of Chemistry, DST Unit of Nanoscience and Thematic Unit of Excellence , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Korath Shivan Sugi
- Department of Chemistry, DST Unit of Nanoscience and Thematic Unit of Excellence , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Thalappil Pradeep
- Department of Chemistry, DST Unit of Nanoscience and Thematic Unit of Excellence , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
43
|
Kang X, Zhu M. Metal Nanoclusters Stabilized by Selenol Ligands. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902703. [PMID: 31482648 DOI: 10.1002/smll.201902703] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Indexed: 06/10/2023]
Abstract
The past decades have witnessed great advances in controllable synthesis, structure determination, and property investigation of metal nanoclusters. Selenolated nanoclusters, a special branch in the nanocluster family, have attracted great interest in these years. The electronegativity and atomic radius of selenium is different from sulfur, and thus the selenolated nanoclusters are anticipated to display different electronic/geometric structures and distinct chemical/physical properties relative to their thiolated analogues. This review covers the syntheses, structures, and properties of selenolated nanoclusters (including Au, Ag, Cu, and alloy nanoclusters). Ligand effects (between SeR and SR) on nanocluster properties, including optical absorption, stability, and electrochemical properties, are disclosed as well. At the end of the review, a scope for improvements and future perspectives of selenolated nanoclusters is highlighted. The review hopefully opens up new horizons for cluster scientists to synthesize more selenolated nanoclusters with novel structures and properties. This review is based on publications available up to May 2019.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| |
Collapse
|
44
|
Krishnadas KR, Natarajan G, Baksi A, Ghosh A, Khatun E, Pradeep T. Metal-Ligand Interface in the Chemical Reactions of Ligand-Protected Noble Metal Clusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11243-11254. [PMID: 30521344 DOI: 10.1021/acs.langmuir.8b03493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We discuss the role of the metal-ligand (M-L) interfaces in the chemistry of ligand-protected, atomically precise noble metal clusters, a new and expanding family of nanosystems, in solution as well as in the gas phase. A few possible mechanisms by which the structure and dynamics of M-L interfaces could trigger intercluster exchange reactions are presented first. How interparticle chemistry can be a potential mechanism of Ostwald ripening, a well-known particle coarsening process, is also discussed. The reaction of Ag59(2,5-DCBT)32 (DCBT = dichlorobenzenethiol) with 2,4-DCBT leading to the formation of Ag44(2,4-DCBT)30 is presented, demonstrating the influence of the ligand structure in ligand-induced chemical transformations of clusters. We also discuss the structural isomerism of clusters such as Ag44(SR)30 (-SR = alkyl/aryl thiolate) in the gas phase wherein the occurrence of isomerism is attributed to the structural rearrangements in the M-L bonding network. Interfacial bonding between Au25(SR)18 clusters leading to the formation of cluster dimers and trimers is also discussed. Finally, we show that the desorption of phosphine and hydride ligands on a silver cluster, [Ag18(TPP)10H16]2+ (TPP = triphenylphosphine) in the gas phase, leads to the formation of a naked silver cluster of precise nuclearity, such as Ag17+. We demonstrate that the nature of the M-L interfaces, i.e., the oxidation state of metal atoms, structure of the ligand, M-L bonding network, and so forth, plays a key role in the chemical reactivity of clusters. The structure, dynamics, and chemical reactivity of nanosystems in general are to be explored together to obtain new insights into their emerging science.
Collapse
Affiliation(s)
- Kumaranchira Ramankutty Krishnadas
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE) , Indian Institute of Technology Madras , Chennai 600 036 , India
| | - Ganapati Natarajan
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE) , Indian Institute of Technology Madras , Chennai 600 036 , India
| | - Ananya Baksi
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE) , Indian Institute of Technology Madras , Chennai 600 036 , India
| | - Atanu Ghosh
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE) , Indian Institute of Technology Madras , Chennai 600 036 , India
| | - Esma Khatun
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE) , Indian Institute of Technology Madras , Chennai 600 036 , India
| | - Thalappil Pradeep
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE) , Indian Institute of Technology Madras , Chennai 600 036 , India
| |
Collapse
|
45
|
Intra-cluster growth meets inter-cluster assembly: The molecular and supramolecular chemistry of atomically precise nanoclusters. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.05.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Suyama M, Takano S, Nakamura T, Tsukuda T. Stoichiometric Formation of Open-Shell [PtAu24(SC2H4Ph)18]− via Spontaneous Electron Proportionation between [PtAu24(SC2H4Ph)18]2– and [PtAu24(SC2H4Ph)18]0. J Am Chem Soc 2019; 141:14048-14051. [DOI: 10.1021/jacs.9b06254] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Megumi Suyama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
47
|
Malola S, Häkkinen H. Chiral Inversion of Thiolate-Protected Gold Nanoclusters via Core Reconstruction without Breaking a Au-S Bond. J Am Chem Soc 2019; 141:6006-6012. [PMID: 30889350 PMCID: PMC6727375 DOI: 10.1021/jacs.9b01204] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
On the basis of density functional
theory computations of the well-known
chiral Au38(SR)24 nanocluster and its Pd- and
Ag-doped derivatives, we propose here a mechanism for chiral inversion
that does not require the breaking of a metal–sulfur bond at
the metal–ligand interface but features a collective rotation
of the gold core. The calculated energy barriers for this mechanism
for Au38 and Pd-doped Au38 are in the range
of 1–1.5 eV, significantly lower than barriers involving the
breakage of Au–S bonds (2.5 eV). For Ag-doped Au38, barriers for both mechanisms are similar (1.3–1.5 eV). Inversion
barriers for a larger chiral Au144(SR)60 are
much higher (2.5−2.8 eV). Our computed barriers are in good
agreement with racemization barriers estimated from existing experiments
for bare and doped Au38. These results highlight the sensitivity
of chiral inversion to the size, structure, and metal composition
of the metal core and sensitivity to the detailed structure of the
metal–thiolate interface. Our work also predicts that enantiopure
Au144(SR)60 clusters would be promising materials
for applications requiring high resistance to chiral inversion.
Collapse
Affiliation(s)
- Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center , University of Jyväskylä , FI-40014 Jyväskylä , Finland
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center , University of Jyväskylä , FI-40014 Jyväskylä , Finland
| |
Collapse
|
48
|
Du Y, Sheng H, Astruc D, Zhu M. Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chem Rev 2019; 120:526-622. [DOI: 10.1021/acs.chemrev.8b00726] [Citation(s) in RCA: 526] [Impact Index Per Article: 105.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yuanxin Du
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Hongting Sheng
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Didier Astruc
- Université de Bordeaux, ISM, UMR CNRS 5255, Talence 33405 Cedex, France
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
49
|
Kazan R, Müller U, Bürgi T. Doping of thiolate protected gold clusters through reaction with metal surfaces. NANOSCALE 2019; 11:2938-2945. [PMID: 30693918 DOI: 10.1039/c8nr09214a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A new technique is introduced for doping gold nanoclusters by using a metal surface such as Ag, Cu and Cd as a source of heteroatoms. The importance of the thiol ligand in the doping process is examined by following the reactions with MALDI-TOF mass spectrometry in the presence and the absence of the thiols on the surface. The doping reactions depend greatly on the type of the cluster and the availability of the ligand which is a crucial element for alloying. The thiol acts as a messenger exchanging the metal atoms between the cluster and the metal surface as revealed by the XPS studies performed on the metal surfaces.
Collapse
Affiliation(s)
- Rania Kazan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | | | | |
Collapse
|
50
|
Chakraborty P, Nag A, Chakraborty A, Pradeep T. Approaching Materials with Atomic Precision Using Supramolecular Cluster Assemblies. Acc Chem Res 2019; 52:2-11. [PMID: 30507167 DOI: 10.1021/acs.accounts.8b00369] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supramolecular chemistry is a major area of chemistry that utilizes weaker non-covalent interactions between molecules, including hydrogen bonding, van der Waals, electrostatic, π···π, and C-H···π interactions. Such forces have been the basis of several molecular self-assemblies and host-guest complexes in organic, inorganic, and biological systems. Atomically precise nanoclusters (NCs) are materials of growing interest that display interesting structure-property correlations. The evolving science of such systems reaffirms their molecular behavior. This gives a possibility of exploring their supramolecular chemistry, leading to assemblies with similar or dissimilar cluster molecules. Such assemblies with compositional, structural, and conformational precision may ultimately result in cluster-assembled hybrid materials. In this Account, we present recent advancements on different possibilities of supramolecular interactions in atomically precise cluster systems that can occur at different length scales. We first present a brief discussion of the aspicule model of clusters, considering Au25(SR)18 as an example, that can explain various aspects of its atomic precision and distinguish the similar or dissimilar interacting sites in their structures. The supramolecular interaction of 4- tert-butylbenzyl mercaptan (BBSH)-protected [Au25(SBB)18]- NCs with cyclodextrins (CD) to form Au25SBB18∩CD n ( n = 1-4) and that of [Ag29(BDT)12]3- with fullerenes to form [Ag29(BDT)12(C60) n]3- ( n = 1-9) (BDT = 1,3-benzenedithiolate) are discussed subsequently. The formation of these adducts was studied by electrospray ionization mass spectrometry (ESI MS), optical absorption and NMR spectroscopy. In the subsequent sections, we discuss how variation in intercluster interactions can lead to polymorphic crystals, which are observable in single-crystal X-ray diffraction. Taking [Ag29(BDT)12(TPP)4]3- (TPP = triphenylphosphine) clusters as an example, we discuss how the different patterns of C-H···π and π···π interactions between the secondary ligands can alter the packing of the NCs into cubic and trigonal lattices. Finally, we discuss how the supramolecular interactions of atomically precise clusters can result in their hybrid assemblies with plasmonic nanostructures. The interaction of p-mercaptobenzoic acid ( p-MBA)-protected Ag44( p-MBA)30 NCs with tellurium nanowires (Te NWs) can form crossed-bilayer precision assemblies with a woven-fabric-like structure with an angle of 81° between the layers. Similar crossed-bilayer assemblies show an angle of 77° when Au102( p-MBA)44 clusters are used to form the structure. Such assemblies were studied by transmission electron microscopy (TEM). Precision in these hybrid assemblies of Te NWs was highly controlled by the geometry of the ligands on the NC surface. Moreover, we also present how Ag44( p-MBA)30 clusters can encapsulate gold nanorods to form cage-like nanostructures. Such studies involved TEM, scanning transmission electron microscopy (STEM), and three-dimensional tomographic reconstructions of the nanostructures. The hydrogen bonding interactions of the -COOH groups of the p-MBA ligands were the major driving force in both of these cases. An important aspect that is central to the advancement of the area is the close interplay of molecular tools such as MS with structural tools such as TEM along with detailed computational modeling. We finally conclude this Account with a future perspective on the supramolecular chemistry of clusters. Advancements in this field will help in developing new materials with potential optical, electrical, and mechanical properties.
Collapse
Affiliation(s)
- Papri Chakraborty
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Abhijit Nag
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Amrita Chakraborty
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|