1
|
Dash S, Fihey A, Favereau L, Lagrost C, Benchouaia R, Blanchard S, Ménand M, Le Gac S. Encoding and Expressing the Handedness of a Möbius π System in a Totemic Architecture. J Am Chem Soc 2025. [PMID: 40261812 DOI: 10.1021/jacs.5c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The efficient control of the chirality of Möbius π systems remains a challenging task that hinders the development of such molecules into information processing systems. Achieving such control through a redox process would thus open new opportunities. In this context, redox behaviors of Ni(II) and Pd(II) complexes of a Möbius aromatic [28]hexaphyrin doubly linked to an α-cyclodextrin have been investigated. This totemic architecture embedding three types of chirality elements generates two pseudoenantiomers after coordination with either metal. These isomeric pairs possess marked and opposite chiroptical signatures resulting from the P and M configurations of the Möbius π systems. Chemical oxidation to 26-π systems led to behaviors reminiscent to The Oak and the Reeds fable, due to a N3C coordination sphere of Ni(II) being more robust than that of Pd(II). Oxidized Ni(II) complexes (the Oak) maintain a Möbius-type conformation at the expense of the π-systems, which undergo an interruption due to inevitable water insertion. In contrast, oxidation of Pd(II) complexes (the Reeds) converts the Möbius aromatic systems into Hückel (rectangular) aromatic ones that are maintained in the chiral environment provided by the linking pattern with the cyclodextrin. This constitutes an effective chiral instructing site, as reduction back to their original Möbius configuration occurs with high stereoselectivity. Such a reversible shape-shifting process corresponds to a chiral memory phenomenon where the handedness of a cyclic π system is encoded in a scaffold and expressed upon changing an electronic state. For both metals, spectroelectrochemical studies ultimately revealed robust ON-OFF chiroptical switches, which is unprecedented with Möbius π-systems.
Collapse
Affiliation(s)
- Syamasrit Dash
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes F-35000, France
| | - Arnaud Fihey
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes F-35000, France
| | - Ludovic Favereau
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes F-35000, France
| | - Corinne Lagrost
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes F-35000, France
| | - Rajaa Benchouaia
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes F-35000, France
| | - Sébastien Blanchard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4 place Jussieu, Paris 75005, France
| | - Mickaël Ménand
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4 place Jussieu, Paris 75005, France
| | - Stéphane Le Gac
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes F-35000, France
| |
Collapse
|
2
|
Sotome H, Higashi M, Tanaka Y, Shinokubo H, Kobori Y, Fukui N. Effect of structural bending on the photophysical properties of perylene bisimide. J Chem Phys 2025; 162:114305. [PMID: 40105140 DOI: 10.1063/5.0255756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/26/2025] [Indexed: 03/20/2025] Open
Abstract
The effect of nonplanarity on the electronic properties of π-systems has been difficult to study systematically because of the limited availability of suitable model compounds. Our group recently synthesized a series of end-to-end bent perylene bisimide (PBI) cyclophanes, whose degree of bending is adjustable by modifying the internal alkyl tethers. Herein, we subjected these bent PBI derivatives to theoretical calculations and time-resolved spectroscopy. The current study has offered rational explanations for several unique photophysical characteristics of bent PBIs: (1) the redshifts of the S0-S1 transitions, (2) the decrease in extinction coefficients, (3) the broadening of spectral shapes, and (4) the suppression of nonradiative decay processes. Furthermore, the investigation of the S1 states and radical anions has revealed that structural bending also substantially alters the energy levels of upper molecular orbitals such as LUMO+2.
Collapse
Affiliation(s)
- Hikaru Sotome
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masahiro Higashi
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yuki Tanaka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- CREST, Japan Science and Technology Agency (JST), Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- PRESTO, JST, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
3
|
Zhou Q, Yuan W, Li Y, Han Y, Bao L, Fan W, Jiao L, Zhao Y, Ni Y, Zou Y, Yang HB, Wu J. [5]Helicene Based π-Conjugated Macrocycles with Persistent Figure-Eight and Möbius Shapes: Efficient Synthesis, Chiral Resolution and Bright Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2025; 64:e202417749. [PMID: 39431291 DOI: 10.1002/anie.202417749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 10/22/2024]
Abstract
π-Conjugated chiral shape-persistent molecular nanocarbons hold great potential as chiroptical materials, though their synthesis remains a considerable challenge. Here, we present a simple approach using Suzuki coupling of a [5]helicene building block with various aromatic units, enabling the one-pot synthesis of a series of chiral macrocycles with persistent figure-eight and Möbius shapes. Single-crystal structures of 7 compounds were solved, and 22 enantiomers were separated by preparative chiral HPLC. A notable pyrene-bridged figure-eight macrocycle, with its rigid, fully π-conjugated and overcrowded structure, exhibited pure excimer emission and outstanding circularly polarized luminescence (CPL) properties, including a large dissymmetric factor (|glum|=3.8×10-2) and significant CPL brightness (BCPL=710.5 M-1cm-1). This method provides a versatile synthetic platform for producing various chiral D2-symmetric figure-eight macrocycles and singly or triply twisted Möbius macrocycles with C2 and D3 symmetry, offering tunable chiroptical properties for CPL applications.
Collapse
Affiliation(s)
- Qifeng Zhou
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Wei Yuan
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yunfei Li
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Lintao Bao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Wei Fan
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Liuying Jiao
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore, 637371, Singapore
| | - Yong Ni
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Ya Zou
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
4
|
Wu J, Yoshikawa D, Kuzuhara D, Gao Z, Wang Y, Huang H, Qiu F, Xue S. Synthesis and Structure of Porphyrin(2.1.2.1) Bows. Inorg Chem 2024; 63:24618-24622. [PMID: 39692224 DOI: 10.1021/acs.inorgchem.4c03813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A new series of porphyrin(2.1.2.1) arches have been successfully synthesized by using porphyrin(2.1.2.1) as natural "arch limbs" for the construction of the arches. X-ray single-crystal diffraction revealed that the porphyrin(2.1.2.1) derivatives have a beautiful bow-shaped structure. The strong, rigid structure of the porphyrin(2.1.2.1) bow prevents hydrogenation with the Lindlar catalyst. The heterogeneous electrocatalytic HER activity of the porphyrin(2.1.2.1) bow indicated that the "bowstring" butadiyne-bridge reduced the HER capacity.
Collapse
Affiliation(s)
- Jinrong Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Daichi Yoshikawa
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan
| | - Daiki Kuzuhara
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan
| | - Zijian Gao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yemei Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Hongling Huang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
5
|
Wang D, Zhao C, Zhu Y, Zhang X, Wang X, An P. Selectively Extending the Curved Side of N-Doped Hexa-peri- hexabenzocoronene. Chemistry 2024; 30:e202402723. [PMID: 39227315 DOI: 10.1002/chem.202402723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
A curved nanographene, conceptually by insertion of nitrogen into a trapezoidal planar nanographene at the edge was synthesized by π-extension of the nitrogen-doped hexa-peri-hexabenzocoronene. This N-doped nanographene exhibited a π-electronic concave face containing a nonaromatic azepine ring in the middle with a size of 14.0 Å length and 4.0 Å depth, which represents an unprecedented half-side concave geometry of curved nanographene. The bent π-extension exhibited a low degree of conjugation suggested by calculation results. Due to the unique 3D structure and electron-rich property, this nanographene showed pronounced intermolecular charge transfer with C60.
Collapse
Affiliation(s)
- Di Wang
- School of Chemical Science and Technology & Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunmimg, 650500, PR China
| | - Chunxue Zhao
- School of Chemical Science and Technology & Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunmimg, 650500, PR China
| | - Yimin Zhu
- School of Chemical Science and Technology & Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunmimg, 650500, PR China
| | - Xianyu Zhang
- School of Chemical Science and Technology & Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunmimg, 650500, PR China
| | - Xinyue Wang
- School of Chemical Science and Technology & Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunmimg, 650500, PR China
| | - Peng An
- School of Chemical Science and Technology & Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunmimg, 650500, PR China
| |
Collapse
|
6
|
Jin K, Xiao Z, Xie H, Shen X, Wang J, Chen X, Wang Z, Zhao Z, Yan K, Ding Y, Ding L. Tether-entangled conjugated helices. Chem Sci 2024; 15:d4sc04796f. [PMID: 39355229 PMCID: PMC11440437 DOI: 10.1039/d4sc04796f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
A new design concept, tether-entangled conjugated helices (TECHs), is introduced for helical polyaromatic molecules. TECHs consist of a linear polyaromatic ladder backbone and periodically entangling tethers with the same planar chirality. By limiting the length of tether, all tethers synchronously bend and twist the backbone with the same manner, and change it into a helical ribbon with a determinate helical chirality. The 3D helical features are customizable via modular synthesis by using two types of synthons, the planar chiral tethering unit (C 2 symmetry) and the docking unit (C 2h symmetry), and no post chiral resolution is needed. Moreover, TECHs possess persistent chiral properties due to the covalent locking of helical configuration by tethers. Concave-type and convex-type oligomeric TECHs are prepared as a proof-of-concept. Unconventional double-helix π-dimers are observed in the single crystals of concave-type TECHs. Theoretical studies indicate the smaller binding energies in double-helix π-dimers than conventional planar π-dimers. A concentration-depend emission is found for concave-type TECHs, probably due to the formation of double-helix π-dimers in the excited state. All TECHs show strong circularly polarized luminescence (CPL) with dissymmetric factors (|g lum|) generally over 10-3. Among them, the (P)-T4-tBu shows the highest |g lum| of 1.0 × 10-2 and a high CPL brightness of 316 M-1 cm-1.
Collapse
Affiliation(s)
- Ke Jin
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zuo Xiao
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huidong Xie
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xingxing Shen
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066004 China
| | - Jizheng Wang
- Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Xiangyu Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences Beijing 101400 China
| | - Zhijie Wang
- Institute of Semiconductors, Chinese Academy of Sciencess Beijing 100083 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Keyou Yan
- School of Environment and Energy, South China University of Technology Guangzhou 510006 China
| | - Yong Ding
- Beijing Key Laboratory of Novel Thin-Film Solar Cells, North China Electric Power University Beijing 102206 China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
7
|
Lin CC, Pan ML, Li PL, Ou WT, Cheng MJ, Wu YT. Syntheses, Structural Analyses, and Properties of Condensed Arenes with Multihelicity. Org Lett 2024; 26:7847-7852. [PMID: 39248644 DOI: 10.1021/acs.orglett.4c02691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
A C1-symmetric hexapole helicene (HH) and a C3-symmetric dodecapole helicene (DH) were prepared, and their three-dimensional structures were verified by X-ray crystallography and density functional theory calculations. The molecular geometries and local helical configurations of their most stable diastereomers were correctly predicted by arranging suitable conformations of the peripheral aryl rings. Importantly, the outermost three [5]helicenes with a consistent configuration in DH were observed to increase the thermostability, enantiomerization barrier (ΔH⧧ = 40.5 kcal/mol), specific rotation ([α]24D = -4228°) and absorption dissymmetry factor (gabs = 1.35 × 10-3 at 453 nm).
Collapse
Affiliation(s)
- Chi-Chen Lin
- Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ming-Lun Pan
- Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pei-Lun Li
- Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wei-Ting Ou
- Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yao-Ting Wu
- Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
8
|
Dong Y, Zhang Z, Hashikawa Y, Meng H, Bai F, Itami K, Chaolumen. A Double Twisted Nanographene with a Contorted Pyrene Core. Angew Chem Int Ed Engl 2024; 63:e202406927. [PMID: 39011764 DOI: 10.1002/anie.202406927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Indexed: 07/17/2024]
Abstract
The mature synthetic methodologies enable us to rationally design and produce chiral nanographenes (NGs), most of which consist of multiple helical motifs. However, inherent chirality originating from twisted geometry has just emerged to be employed in chiral NGs. Herein, we report a red-emissive chiral NG constituted of orthogonally arranged two-fold twisted π-skeletons at a contorted pyrene core which contributes to optical transitions of S0→S1 and vice versa. The thus-obtained NG exhibited a robustness on its redox properties through 2e- uptake/release. The chemical oxidation generated stable radical cation whose absorption covers near-infrared I and II regions. Overall, the contorted pyrene core governs electronic nature of the chiral NG. The twist operation on NGs would be, therefore, a design strategy to alter conventional chirality induction on NGs.
Collapse
Affiliation(s)
- Yanping Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Zhiyu Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - He Meng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Fenghua Bai
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Kenichiro Itami
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Chaolumen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
9
|
Swain A, Radacki K, Braunschweig H, Ravat P. Helically twisted nanoribbons via stereospecific annulative π-extension reaction employing [7]helicene as a molecular wrench. Chem Sci 2024; 15:11737-11747. [PMID: 39092091 PMCID: PMC11290328 DOI: 10.1039/d4sc01814a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/15/2024] [Indexed: 08/04/2024] Open
Abstract
Over the past decade, significant progress has been made in synthesizing atomically precise carbon nanostructures, particularly graphene nanoribbons (NRs), employing advanced synthetic methodologies. Despite these advancements, achieving control over the stereochemistry of twisted NRs has proven to be a formidable challenge. This manuscript presents a strategic approach to achieve absolute control over the single-handed helical conformation in a cove-edged NR. This strategy leverages enantiopure helicenes as a molecular wrench, intricately influencing the overall conformation of the NR. [7]helicenes stitched to the terminal K-regions of a conjugated pyrene NR through a stereospecific annulative π-extension reaction to produce a helically twisted NR with an end-to-end twist of 171°. Furthermore, a detailed investigation of the impact of twisting on the conformational population was studied by quantum chemical calculations.
Collapse
Affiliation(s)
- Asim Swain
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany
| | - Krzysztof Radacki
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie Am Hubland 97074 Würzburg Germany
| | - Prince Ravat
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany
| |
Collapse
|
10
|
Greiner JE, Singh A, Röhr MIS. Functionality optimization for effective singlet fission coupling screening in the full-dimensional molecular and intermolecular coordinate space. Phys Chem Chem Phys 2024; 26:19257-19265. [PMID: 38958634 DOI: 10.1039/d4cp01274g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In computational chemistry, accurately predicting molecular configurations that exhibit specific properties remains a critical challenge. Its intricacies become especially evident in the study of molecular aggregates, where the light-induced functionality is tied to highly structure-dependent electronic couplings between molecules. Here, we present an efficient strategy for the targeted screening of the structural space employing a "functionality optimization" technique, in which a chosen descriptor, constrained by the ground state energy expression, is optimized. The chosen algorithmic differentiation (AD) framework allows one to automatically obtain gradients without its tedious implementation. We demonstrate the effectiveness of the approach by identifying perylene bisimide (PBI) dimer motifs with enhanced effective SF coupling. Our findings reveal that certain structural modifications of the PBI monomer, such as helical twisting and bending as well as slipped-rotated packing arrangements, can significantly increase the effective SF coupling.
Collapse
Affiliation(s)
- Johannes E Greiner
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074 Würzburg, Germany.
- Julius-Maximilians-Universität Würzburg, Institute of Physical and Theoretical Chemistry, Am Hubland, 97074 Würzburg, Germany
| | - Anurag Singh
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074 Würzburg, Germany.
- Julius-Maximilians-Universität Würzburg, Institute of Physical and Theoretical Chemistry, Am Hubland, 97074 Würzburg, Germany
| | - Merle I S Röhr
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074 Würzburg, Germany.
- Julius-Maximilians-Universität Würzburg, Institute of Physical and Theoretical Chemistry, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
11
|
Liu X, Jin Z, Qiu F, Guo Y, Chen Y, Sun Z, Zhang L. Hexabenzoheptacene: A Longitudinally Multihelicene Nanocarbon with Local Aromaticity and Enhanced Stability. Angew Chem Int Ed Engl 2024; 63:e202407547. [PMID: 38725308 DOI: 10.1002/anie.202407547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Indexed: 06/13/2024]
Abstract
We report the synthesis of a longitudinally helical molecular nanocarbon, hexabenzoheptacene (HBH), along with its dimethylated derivative (HBH-Me), which are composed of six benzene rings periodically benzannulated to both zigzag edges of a heptacene core. This benzannulation pattern endows the resulting nanocarbons with a helical heptacene core and local aromaticity, imparting enhanced solubility and stability to the system. The chiral HBH-Me adopts a more highly twisted conformation with an end-to-end twist angle of 95°, enabling the separation of the enantiomers. Both HBH and HBH-Me can be facilely oxidized into their corresponding dications, which exhibit enhanced planarity and aromaticity upon loss of electrons. Notably, both longitudinally helical nanocarbons readily promote solid state packing into two-dimensional (2D) arrangement. Single-crystal microbelts of HBH-Me show hole mobility up to 0.62 cm2 V-1 s-1, illustrating the promising potential of these longitudinally helical molecules for organic electronic devices.
Collapse
Affiliation(s)
- Xinyue Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhengxiong Jin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fei Qiu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yupeng Guo
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformation, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Yan Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformation, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
12
|
Freudenberg J, Bunz UHF. How to Stabilize Large Soluble (Hetero-)Acenes. J Am Chem Soc 2024; 146:16937-16949. [PMID: 38862130 PMCID: PMC11212629 DOI: 10.1021/jacs.4c03484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
The higher acenes and azaacenes (>(aza)heptacenes) are fascinating, yet elusive materials. Their reactivity and sensitivity increases concomitantly with their size. In recent years, confinement techniques, that is isolation of acenes in matrices and on surfaces, has surpassed solution-based chemistry with respect to accessing the larger (hetero)acenes at the price of the accessibility of no more than a couple thousands of molecules. Isolating acenes in bulk quantities and in processable form is vital for applications in organic electronics as well as from a viewpoint from basic research. In this Perspective, we will discuss after a short historical outline their degradation pathways, and then will selectively highlight recent efforts in stabilizing soluble (aza)acenes.
Collapse
Affiliation(s)
- Jan Freudenberg
- Ruprecht-Karls-Universität
Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Uwe H. F. Bunz
- Ruprecht-Karls-Universität
Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Jiang P, Mikherdov AS, Ito H, Jin M. Crystallization-Induced Chirality Transfer in Conformationally Flexible Azahelicene Au(I) Complexes with Circularly Polarized Luminescence Activation. J Am Chem Soc 2024; 146:12463-12472. [PMID: 38626915 DOI: 10.1021/jacs.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Flexible and twisted annulated π-systems exhibit numerous unique and desirable features, owing to their ability to display chirality. However, preventing their racemization due to the dynamic nature of their chirality remains a challenge. One promising approach to stabilize homochirality in such systems is chirality transfer from a chiral auxiliary to a moiety displaying dynamic chirality. Herein, we introduce a new approach for dynamic chirality stabilization in conformationally flexible azahelicene species via crystallization-induced intermolecular chirality transfer in Au(I) complexes featuring azahelicene (dibenzo[c,g]carbazole and benzo[c]carbazole) and enantio-pure chiral N-heterocyclic carbene (NHC) ligands with a complementary tailored shape. Crystallization of these azahelicene Au(I) complexes not only suppresses the dynamic chirality of the dibenzocarbazole species but also stabilizes their homochirality through the intermolecular conjunction between the chiral NHC and dibenzocarbazole ligands. In the Au(I) benzocarbazole complexes, the intermolecular conjunction and chirality transfer in the crystals induce chirality in the initially achiral benzocarbazole ligand. Furthermore, the crystallization of the studied complexes activates their circularly polarized luminescence (CPL) properties, which were suppressed in solution. Importantly, chirality transfer leads to significant CPL enhancement; the complexes that feature chirality transfer within the crystal structure exhibit luminescence dissymmetry factors 5 to 10 times higher than those of the complexes without chirality transfer.
Collapse
Affiliation(s)
- Pingyu Jiang
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Alexander S Mikherdov
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Mingoo Jin
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
14
|
Xie H, Xiao Z, Song Y, Jin K, Liu H, Zhou E, Cao J, Chen J, Ding J, Yi C, Shen X, Zuo C, Ding L. Tethered Helical Ladder-Type Aromatic Lactams. J Am Chem Soc 2024; 146:11978-11990. [PMID: 38626322 DOI: 10.1021/jacs.4c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Tethered nonplanar aromatics (TNAs) make up an important class of nonplanar aromatic compounds showing unique features. However, the knowledge on the synthesis, structures, and properties of TNAs remains insufficient. In this work, a new type of TNAs, the tethered aromatic lactams, is synthesized via Pd-catalyzed consecutive intramolecular direct arylations. These molecules possess a helical ladder-type conjugated system of up to 13 fused rings. The overall yields ranged from 3.4 to 4.3%. The largest of the tethered aromatic lactams, 6L-Bu-C14, demonstrates a guest-adaptive hosting capability of TNAs for the first time. When binding fullerene guests, the cavity of 6L-Bu-C14 became more circular to better accommodate spherical fullerene molecules. The host-guest interaction is thoroughly studied by X-ray crystallography, theoretical calculations, fluorescence titration, and nuclear magnetic resonance (NMR) titration experiments. 6L-Bu-C14 shows stronger binding with C70 than with C60 due to the better convex-concave π-π interaction. P and M enantiomers of all tethered aromatic lactams show distinct and persistent chiroptical properties and demonstrate the potential of chiral TNAs as circularly polarized luminescence (CPL) emitters.
Collapse
Affiliation(s)
- Huidong Xie
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuo Xiao
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixiao Song
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Jin
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxing Liu
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Cao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiangzhao Chen
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Junqiao Ding
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chenyi Yi
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Xingxing Shen
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Chuantian Zuo
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Ding
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Qu C, Xu Y, Wang Y, Nie Y, Ye K, Zhang H, Zhang Z. Bridging of Cove Regions: A Strategy for Realizing Persistently Chiral Double Heterohelicenes with Attractive Luminescent Properties. Angew Chem Int Ed Engl 2024; 63:e202400661. [PMID: 38333930 DOI: 10.1002/anie.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
The racemization of chiral organic compounds is a common chemical phenomenon. However, it often poses configurational-stability issues to the application of this class of compounds. Achieving chiral organic compounds without the risk of racemization is fascinating, but it is challenging due to a lack of strategies. Here, we reveal the cove-regions bridging strategy for achieving persistently chiral multi-helicenes (incapable of racemization), based on the synthesized proof-of-concept double hetero[4]helicenes featuring macrocycle structures with a small 3D cavity. Additionally, we demonstrate that the strategy is also effective in tuning the electronic structures of multi-helicenes, resulting in a conversion from luminescence silence into thermally activated delayed fluorescence (TADF) for the present system. Furthermore, red circularly polarized TADF based on small double [4]helicene systems is achieved for the first time using this strategy. The disclosed cove-regions bridging strategy provides an opportunity to modulate the electronic structures and luminescent properties of multi-helicenes without concern for racemization, thus significantly enhancing the structural and property diversity of multi-helicenes for various applications.
Collapse
Affiliation(s)
- Cheng Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yincai Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Yufang Nie
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zuolun Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
16
|
Ludwig P, Rominger F, Freudenberg J, Bunz UHF. Stabilization of Acenes: "Geländer"-Pentacenes. Angew Chem Int Ed Engl 2024; 63:e202316902. [PMID: 38180106 DOI: 10.1002/anie.202316902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
We report soluble tetrakis-biphenylyl substituted pentacenes comprised of sp2 carbons and synthesized from pentacene-5,7,12,14-tetraone. Intramolecular Yamamoto coupling of two tetrakis(chlorobiphenylyl)pentacenes yields helical, doubly wrapped pentacenes, in which the quaterphenylene units solubilize the pentacenes and shield their central anthracene units to an unprecedented degree. The criss-cross-bridged pentacenes resist (photo)oxidation, Diels-Alder reactions and are much less reactive than TIPS-ethynylated pentacene. Extension of this concept might provide access to the larger acenes.
Collapse
Affiliation(s)
- Philipp Ludwig
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
17
|
Shioukhi I, Batchu H, Schwartz G, Minion L, Deree Y, Bogoslavsky B, Shimon LJW, Wade J, Hoffman R, Fuchter MJ, Markovich G, Gidron O. Helitwistacenes-Combining Lateral and Longitudinal Helicity Results in Solvent-Induced Inversion of Circularly Polarized Light. Angew Chem Int Ed Engl 2024; 63:e202319318. [PMID: 38224528 PMCID: PMC11497310 DOI: 10.1002/anie.202319318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Helicity is expressed differently in ortho- and para-fused acenes-helicenes and twistacenes, respectively. While the extent of helicity is constant in helicenes, it can be tuned in twistacenes, and the handedness of flexible twistacenes is often determined by more rigid helicenes. Here, we combine helicenes with rigid twistacenes consisting of a tunable degree of twisting, forming helitwistacenes. While the X-ray structures reveal that the connection does not affect the helicity of each moiety, their electronic circular dichroism (ECD) and circularly polarized luminescence (CPL) spectra are strongly affected by the helicity of the twistacene unit, resulting in solvent-induced sign inversion. ROESY NMR and TD-DFT calculations support this observation, which is explained by differences in the relative orientation of the helicene and twistacene moieties.
Collapse
Affiliation(s)
- Israa Shioukhi
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemEdmond J. Safra Campus9190401JerusalemIsrael
| | - Harikrishna Batchu
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemEdmond J. Safra Campus9190401JerusalemIsrael
| | - Gal Schwartz
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv University6997801Tel AvivIsrael
| | - Louis Minion
- Molecular Sciences Research HubDepartment of ChemistryImperial College LondonWhite City Campus, 82 Wood LaneW12 0BZLondonU.K.
| | - Yinon Deree
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemEdmond J. Safra Campus9190401JerusalemIsrael
| | - Benny Bogoslavsky
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemEdmond J. Safra Campus9190401JerusalemIsrael
| | - Linda J. W. Shimon
- Chemical Research Support UnitWeizmann Institute of Science76100RehovotIsrael
| | - Jessica Wade
- Molecular Sciences Research HubDepartment of ChemistryImperial College LondonWhite City Campus, 82 Wood LaneW12 0BZLondonU.K.
- Department of MaterialsRoyal School of MinesImperial College LondonSW7 2AZLondonU.K.
| | - Roy Hoffman
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemEdmond J. Safra Campus9190401JerusalemIsrael
| | - Matthew J. Fuchter
- Molecular Sciences Research HubDepartment of ChemistryImperial College LondonWhite City Campus, 82 Wood LaneW12 0BZLondonU.K.
| | - Gil Markovich
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv University6997801Tel AvivIsrael
| | - Ori Gidron
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemEdmond J. Safra Campus9190401JerusalemIsrael
| |
Collapse
|
18
|
Agrawal AR, Shiouki I, Deree Y, Bogoslavsky B, Gidron O. Controlling helicene's pitch by molecular tethering. Org Biomol Chem 2024; 22:1365-1368. [PMID: 38258458 DOI: 10.1039/d3ob02075d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We applied post-cyclization annulation to introduce a series of tethered S-shaped double [4]helicenes in which the intramolecular tether imposes a specific helical handedness. Introducing a tether and then shortening the tether length incrementally increase the pitch angle of [4]helicene, thus enabling a quantitative study of the effects of helicene's pitch on its electronic and (chiro)optical properties.
Collapse
Affiliation(s)
- Abhijeet R Agrawal
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| | - Israa Shiouki
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| | - Yinon Deree
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| | - Benny Bogoslavsky
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| | - Ori Gidron
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| |
Collapse
|
19
|
Ludwig P, Mayer J, Ahrens L, Rominger F, Ligorio G, Hermerschmidt F, List-Kratochvil EJW, Freudenberg J, Bunz UHF. Doubly Bridged Anthracenes: Blue Emitters for OLEDs. Chemistry 2024; 30:e202303037. [PMID: 37916673 DOI: 10.1002/chem.202303037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/03/2023]
Abstract
The photooxidative stability of a series of doubly bridged anthracenes was evaluated after their preparation via twofold macrocyclization of a bis(resorcinyl)anthracene. Lightfastness correlates with the energy levels of the highest occupied molecular orbital (HOMO), resulting in superior stability of the tetraesters compared to the tetraethers. The lengths and steric demand of the linker only plays a minor role for the ester-based compounds, which can be prepared in reasonable yields and thus tested in proof-of-concept organic light-emitting diodes. Double ester-bridging allows deep blue electro-luminescence, highlighting the importance of the choice of the functional groups used for macrocyclization.
Collapse
Affiliation(s)
- Philipp Ludwig
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jacob Mayer
- Institut für Physik, Institut für Chemie, IRIS-Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489, Berlin, Germany
| | - Lukas Ahrens
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Giovanni Ligorio
- Institut für Physik, Institut für Chemie, IRIS-Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489, Berlin, Germany
| | - Felix Hermerschmidt
- Institut für Physik, Institut für Chemie, IRIS-Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489, Berlin, Germany
| | - Emil J W List-Kratochvil
- Institut für Physik, Institut für Chemie, IRIS-Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489, Berlin, Germany
- Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
20
|
Khalid MI, Salem MSH, Takizawa S. Synthesis and Structural and Optical Behavior of Dehydrohelicene-Containing Polycyclic Compounds. Molecules 2024; 29:296. [PMID: 38257209 PMCID: PMC10819569 DOI: 10.3390/molecules29020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Dehydrohelicene-based molecules stand out as highly promising scaffolds and captivating chiroptical materials, characterized by their unique chirality. Their quasi-helical π-conjugated molecular architecture, featuring successively ortho-annulated aromatic rings, endows them with remarkable thermal stability and optical properties. Over the past decade, diverse approaches have emerged for synthesizing these scaffolds, reinvigorating this field, with anticipated increased attention in the coming years. This review provides a comprehensive overview of the historical evolution of dehydrohelicene chemistry since the pioneering work of Zander and Franke in 1969 and highlights recent advancements in the synthesis of various molecules incorporating dehydrohelicene motifs. We elucidate the intriguing structural features and optical merits of these molecules, occasionally drawing comparisons with their helicene or circulene analogs to underscore the significance of the bond between the helical termini.
Collapse
Affiliation(s)
- Md. Imrul Khalid
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi 567-0047, Osaka, Japan; (M.I.K.); (M.S.H.S.)
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Mohamed S. H. Salem
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi 567-0047, Osaka, Japan; (M.I.K.); (M.S.H.S.)
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shinobu Takizawa
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi 567-0047, Osaka, Japan; (M.I.K.); (M.S.H.S.)
| |
Collapse
|
21
|
Oró A, Romeo-Gella F, Perles J, Fernández-García JM, Corral I, Martín N. Tetrahedraphene: A Csp 3 -centered 3D Molecular Nanographene Showing Aggregation-Induced Emission. Angew Chem Int Ed Engl 2023; 62:e202312314. [PMID: 37846849 DOI: 10.1002/anie.202312314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
The bottom-up synthesis of 3D tetrakis(hexa-peri-hexabenzocoronenyl)methane, "tetrahedraphene", is reported. This molecular nanographene constituted by four hexa-peri-hexabenzocoronene (HBC) units attached to a central sp3 carbon atom, shows a highly symmetric arrangement of the HBC units disposed in the apex of a tetrahedron. The X-ray crystal structure reveals a tetrahedral symmetry of the molecule and the packing in the crystal is achieved mostly by CH⋅⋅⋅π interactions since the interstitial solvent molecules prevent the π⋅⋅⋅π interactions. In solution, tetrahedraphene shows the same electrochemical and photophysical properties as the hexa-t Bu-substituted HBC (t Bu-HBC) molecule. However, upon water addition, it undergoes a fluorescence change in solution and in the precipitated solid, showing an aggregation induced emission (AIE) process, probably derived from the restriction in the rotation and/or vibration of the HBCs. Time-Dependent Density Functional Theory (TDDFT) calculations reveal that upon aggregation, the high energy region of the emission band decreases in intensity, whereas the intensity of the red edge emission signal increases and presents a smoother decay, compared to the non-aggregated molecule. All in all, the excellent correlation between our simulations and the experimental findings allows explaining the colour change observed in the different solutions upon increasing the water fraction.
Collapse
Affiliation(s)
- Arturo Oró
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avd. Complutense S/N, 28040, Madrid, Spain
| | - Fernando Romeo-Gella
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Josefina Perles
- Laboratorio de Difracción de Rayos X de Monocristal, SIdI, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7. Campus de Cantoblanco, 28049, Madrid, Spain
| | - Jesús M Fernández-García
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avd. Complutense S/N, 28040, Madrid, Spain
| | - Inés Corral
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Nazario Martín
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avd. Complutense S/N, 28040, Madrid, Spain
- IMDEA-Nanociencia, C/Faraday, 9. Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
22
|
Zhao M, Chen S, He C, Zhou Y. Synthesis, Structure, and Properties of a Nitrogen-Boron-Nitrogen-Embedded Polycyclic π-System Containing a Pleiaheptalene Framework. Org Lett 2023. [PMID: 38015797 DOI: 10.1021/acs.orglett.3c03311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
A novel polycyclic π-system (1) featuring both a pleiaheptalene framework (a three-fused heptagon system) and nitrogen-boron-nitrogen (NBN) unit was constructed by electrophilic borylation. A combined experimental and computational study demonstrated that 1 has a highly twisted π-backbone with approximate C2 symmetry, which can undergo conformational isomerization at room temperature in contrast to pleiaheptalene. It was also found that 1 can bind the fluoride ion in the solution, which induces changes in the absorption and emission spectra.
Collapse
Affiliation(s)
- Mengna Zhao
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Shuaishuai Chen
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Chun He
- Apeloa Pharmaceutical Co., Ltd., Dongyang, Zhejiang 322118, China
| | - Yifeng Zhou
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
23
|
Wu MX, Li Y, Liu P, Shi X, Kang H, Zhao XL, Xu L, Li X, Fang J, Fang Z, Cheng Y, Yu H, Shi X, Yang HB. Functionalization of Pentacene: A Facile and Versatile Approach to Contorted Polycyclic Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2023; 62:e202309619. [PMID: 37610742 DOI: 10.1002/anie.202309619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/24/2023]
Abstract
In this work, a facile and versatile strategy for the synthesis of contorted polycyclic aromatic hydrocarbons (PAHs) starting from the functionalized pentacene was established. A series of novel PAHs 1-4 and their derivatives were synthesized through a simple two-step synthesis procedure involving an intramolecular reductive Friedel-Crafts cyclization of four newly synthesized pentacene aldehydes 5-8 as a key step. All the molecules were confirmed by single-crystal X-ray diffraction and their photophysical and electrochemical properties were studied in detail. Interestingly, the most striking feature of 1-4 is their highly contorted carbon structures and the accompanying helical chirality. In particular, the optical resolution of 2 was successfully achieved by chiral-phase HPLC, and the enantiomers were characterized by circular dichroism and circularly polarized luminescence spectroscopy. Despite the highly nonplanar conformations, these contorted PAHs exhibited emissive properties with moderate-to-good fluorescence quantum yields, implying the potential utility of this series PAHs as high-quality organic laser dyes. By using a self-assembly method with the help of epoxy resin, a bottle microlaser based on 3 a was successfully illustrated with a lasing wavelength of 567.8 nm at a threshold of 0.3 mJ/cm2 . We believe that this work will shed light on the chemical versatility of pentacene and its derivatives in the construction of novel functionalized PAHs.
Collapse
Affiliation(s)
- Meng-Xiang Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Yantong Li
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Peipei Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Xusheng Shi
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Hao Kang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Xiaodong Li
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200241, P. R. China
| | - Junfeng Fang
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200241, P. R. China
| | - Zhiwei Fang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Ya Cheng
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Huakang Yu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
24
|
Li P, Jia Y, Chen P. Design and Synthesis of New Type of Macrocyclic Architectures Used for Optoelectronic Materials and Supramolecular Chemistry. Chemistry 2023; 29:e202300300. [PMID: 37439485 DOI: 10.1002/chem.202300300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
Supramolecular chemistry has received much attention for decades. Macrocyclic architectures as representative receptors play a vital role in supramolecular chemistry and are applied in many fields such as supramolecular assembly and host-guest recognition. However, the classical macrocycles generally lack functional groups in the scaffolds, which limit their further applications, especially in optoelectronic materials. Therefore, developing a new design principle is not only essential to better understand macrocyclic chemistry and the supramolecular behaviors, but also further expand their applications in many research fields. In recent years, the doping compounds with main-group heteroatoms (B, N, S, O, P) into the carbon-based π-conjugated macrocycles offered a new strategy to build macrocyclic architectures with unique optoelectronic properties. In particular, the energy gaps and redox behavior can be effectively tuned by incorporating heteroatoms into the macrocyclic scaffolds. In this Minireview, we briefly summarize the design and synthesis of new macrocycles, and further discuss the related applications in optoelectronic materials and supramolecular chemistry.
Collapse
Affiliation(s)
- Pengfei Li
- School of Chemistry and Material Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan Province, P. R. China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
25
|
Mateos-Martín J, Dhbaibi K, Melle-Franco M, Mateo-Alonso A. Modulating Strain in Twisted Pyrene-Fused Azaacenes. Chemistry 2023:e202302002. [PMID: 37682106 DOI: 10.1002/chem.202302002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
The design and synthesis of strained aromatics provide an additional insight into the relationship between structure and properties. In the last years, several approaches to twist pyrene-fused azaacenes have been developed that allow to introduce twists of different sizes. Herein, we describe the synthesis of a new set of twisted dibenzotetraazahexacenes constituted by fused pyrene and quinoxaline residues that have been distorted by introducing increasingly larger substituents on the quinoxaline residues. Their twisted structure has been demonstrated by single-crystal X-ray diffraction. Furthermore, absorption, fluorescence, electrochemical and theoretical studies shine light on the effects of the substituents and twists on the optoelectronic and redox properties.
Collapse
Affiliation(s)
- Javier Mateos-Martín
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018, Donostia-San Sebastián, Spain
| | - Kais Dhbaibi
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018, Donostia-San Sebastián, Spain
| | - Manuel Melle-Franco
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
26
|
Li R, Ma B, Li S, Lu C, An P. Chalcogen-doped, ( seco)-hexabenzocoronene-based nanographenes: synthesis, properties, and chalcogen extrusion conversion. Chem Sci 2023; 14:8905-8913. [PMID: 37621425 PMCID: PMC10445433 DOI: 10.1039/d3sc02595k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/16/2023] [Indexed: 08/26/2023] Open
Abstract
A series of chalcogen-doped nanographenes (NGs) and their oxides are described. Their molecular design is conceptually based on the insertion of different chalcogens into the hexa-peri-hexabenzocoronene (HBC) backbone. All the NGs adopt nonplanar conformations, which would show better solubility compared to planar HBC. Except for the oxygen-doped, saddle-shaped NG, the insertion of large chalcogens like sulfur and selenium leads to a seco-HBC-based, helical geometry. All the three-dimensional structures are unambiguously confirmed by single-crystal X-ray diffractometry. Their photophysical properties including UV-vis absorption, fluorescence, chiroptical, charge distribution, and orbital gaps are investigated experimentally or theoretically. The properties of each structure are significantly affected by the doped chalcogen and its related oxidative state. Notably, upon heating or adding an acid, the selenium-doped NG or its oxide undergoes a selenium extrusion reaction to afford seco-HBC or HBC quantitatively, which can be treated as precursors of hydrocarbon HBCs.
Collapse
Affiliation(s)
- Ranran Li
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Bin Ma
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Shengtao Li
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Chongdao Lu
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Peng An
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University Kunming 650091 P. R. China
| |
Collapse
|
27
|
Gu Y, Torchon HS, Zhu Y, Wei Z, Schollmeyer D, Wagner M, Ni Y, Wu Z, Wu H, Zhou Y, Qiu Z, Petrukhina MA, Müllen K. Twisted Diindeno-Fused Dibenzo[a,h]anthracene Derivatives and their Dianions. Angew Chem Int Ed Engl 2023; 62:e202307750. [PMID: 37365137 DOI: 10.1002/anie.202307750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
We report a facile synthesis of diindeno-fused dibenzo[a,h]anthracene derivatives (DIDBA-2Cl, DIDBA-2Ph, and DIDBA-2H) with different degrees of non-planarity using three substituents (chloro, phenyl, and hydrogen) of various sizes. The planarization of their cores, as evidenced by the decreased end-to-end torsional angles, was confirmed by X-ray crystallography. Their enhanced energy gaps with twisting were investigated by a combination of spectroscopic and electrochemical methods with density functional theory, which showed a transition from singlet open-shell to closed-shell configuration. Moreover, their doubly reduced states, DIDBA-2Ph2- and DIDBA-2H2- , were achieved by chemical reduction. The structures of dianions were identified by X-ray crystallographic analysis, which elucidated that the electron charging further distorted the backbones. The electronic structure of the dianions was demonstrated by experimental and theoretical approaches, suggesting decreased energy gaps with larger non-planarity, different from the neutral species.
Collapse
Affiliation(s)
- Yanwei Gu
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Herdya S Torchon
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Yikun Zhu
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Zheng Wei
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Dieter Schollmeyer
- Department of chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Manfred Wagner
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yong Ni
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Zehua Wu
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hao Wu
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yazhou Zhou
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Zijie Qiu
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Marina A Petrukhina
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Klaus Müllen
- Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute for Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
28
|
Medina-Lopez D, Liu T, Osella S, Levy-Falk H, Rolland N, Elias C, Huber G, Ticku P, Rondin L, Jousselme B, Beljonne D, Lauret JS, Campidelli S. Interplay of structure and photophysics of individualized rod-shaped graphene quantum dots with up to 132 sp² carbon atoms. Nat Commun 2023; 14:4728. [PMID: 37550308 PMCID: PMC10406913 DOI: 10.1038/s41467-023-40376-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
Nanographene materials are promising building blocks for the growing field of low-dimensional materials for optics, electronics and biophotonics applications. In particular, bottom-up synthesized 0D graphene quantum dots show great potential as single quantum emitters. To fully exploit their exciting properties, the graphene quantum dots must be of high purity; the key parameter for efficient purification being the solubility of the starting materials. Here, we report the synthesis of a family of highly soluble and easily processable rod-shaped graphene quantum dots with fluorescence quantum yields up to 94%. This is uncommon for a red emission. The high solubility is directly related to the design of the structure, allowing for an accurate description of the photophysical properties of the graphene quantum dots both in solution and at the single molecule level. These photophysical properties were fully predicted by quantum-chemical calculations.
Collapse
Affiliation(s)
- Daniel Medina-Lopez
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France
| | - Thomas Liu
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91400, Orsay, France
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
| | - Hugo Levy-Falk
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91400, Orsay, France
| | - Nicolas Rolland
- Laboratory for Chemistry of Novel Materials, University of Mons, 7000, Mons, Belgium
| | - Christine Elias
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91400, Orsay, France
| | - Gaspard Huber
- Université Paris-Saclay, CEA, CNRS, NIMBE, LSDRM, 91191, Gif-sur-Yvette, France
| | - Pranav Ticku
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91400, Orsay, France
| | - Loïc Rondin
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91400, Orsay, France
| | - Bruno Jousselme
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, 7000, Mons, Belgium
| | - Jean-Sébastien Lauret
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91400, Orsay, France.
| | - Stephane Campidelli
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
29
|
Sun Z, Fan W, Han Y, Yuan W, Ni Y, Wang J, Wei H, Zhao Y, Sun Z, Wu J. Helical fused 1,2:8,9-dibenzozethrene oligomers with up to 201° end-to-end twist: "one-pot" synthesis and chiral resolution. Chem Sci 2023; 14:7922-7927. [PMID: 37502331 PMCID: PMC10370577 DOI: 10.1039/d3sc02285d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
Twisted polyarenes with persistent chirality are desirable but their synthesis has remained a challenge. In this study, we present a "one-pot" synthesis of 1,2:8,9-dibenzozethrene (DBZ) and its vertically fused dimers and trimers using nickel-catalyzed cyclo-oligomerization reactions. X-ray crystallographic analysis confirmed highly twisted helical structures that consist of equal parts left- and right-handed enantiomers. Notably, the end-to-end twist between the terminal anthracene units measured 66°, 130°, and 201° for the DBZ monomer, dimer, and trimer, respectively, setting a new record among twisted polyarenes. Furthermore, the chiral resolution by HPLC yielded two enantiomers for the fused DBZ dimer and trimer, both of which maintained stable configurations and showed absorption dissymmetry factors of around 0.008-0.009. Additionally, their optical and electrochemical properties were investigated, which exhibited a chain-length dependence.
Collapse
Affiliation(s)
- Zhitao Sun
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350507 China
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Wei Fan
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Wei Yuan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637371 Singapore
| | - Yong Ni
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Jinyi Wang
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Haipeng Wei
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637371 Singapore
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University Tianjin 300072 China
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350507 China
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| |
Collapse
|
30
|
Metzger T, Batchu H, Kumar A, Fedotov DA, Goren N, Bhowmick DK, Shioukhi I, Yochelis S, Schapiro I, Naaman R, Gidron O, Paltiel Y. Optical Activity and Spin Polarization: The Surface Effect. J Am Chem Soc 2023; 145:3972-3977. [PMID: 36765468 PMCID: PMC11139380 DOI: 10.1021/jacs.2c10456] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Indexed: 02/12/2023]
Abstract
Chirality ('handedness') is a property that underlies a broad variety of phenomena in nature. Chiral molecules appear in two forms, and each is a mirror image of the other, the two enantiomers. The chirality of molecules is associated with their optical activity, and circular dichroism is commonly applied to identify the handedness of chiral molecules. Recently, the chiral induced spin selectivity (CISS) effect was established, according to which transfer of electrons within chiral molecules depends on the electron's spin. Which spin is preferred depends on the handedness of the chiral molecule and the direction of motion of the electron. Several experiments in the past indicated that there may be a relation between the optical activity of the molecules and their spin selectivity. Here, we show that for a molecule containing several stereogenic axes, when adsorbed on a metal substrate, the peaks in the CD spectra have the same signs for the two enantiomers. This is not the case when the molecules are adsorbed on a nonmetallic substrate or dissolved in solution. Quantum chemical simulations are able to explain the change in the CD spectra upon adsorption of the molecules on conductive and nonconductive surfaces. Surprisingly, the CISS properties are similar for the two enantiomers when adsorbed on the metal substrate, while when the molecules are adsorbed on nonmetallic surface, the preferred spin depends on the molecule handedness. This correlation between the optical activity and the CISS effect indicates that the CISS effect relates to the global polarizability of the molecule.
Collapse
Affiliation(s)
- Tzuriel
S. Metzger
- Department
of Applied Physics and Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Harikrishna Batchu
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew
University, Jerusalem 9190401, Israel
| | - Anil Kumar
- Department
of Chemical and Biological Physics, Weizmann
Institute, Rehovot 76100, Israel
| | - Daniil A. Fedotov
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew
University, Jerusalem 9190401, Israel
| | - Naama Goren
- Department
of Applied Physics and Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Deb Kumar Bhowmick
- Department
of Chemical and Biological Physics, Weizmann
Institute, Rehovot 76100, Israel
| | - Israa Shioukhi
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew
University, Jerusalem 9190401, Israel
| | - Shira Yochelis
- Department
of Applied Physics and Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Igor Schapiro
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew
University, Jerusalem 9190401, Israel
| | - Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute, Rehovot 76100, Israel
| | - Ori Gidron
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew
University, Jerusalem 9190401, Israel
| | - Yossi Paltiel
- Department
of Applied Physics and Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
31
|
Bedi A, Schwartz G, Hananel U, Manor Armon A, Shioukhi I, Markovich G, Gidron O. The effect of axial and helical chirality on circularly polarized luminescence: lessons learned from tethered twistacenes. Chem Commun (Camb) 2023; 59:2011-2014. [PMID: 36723083 DOI: 10.1039/d2cc07074j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of axial and helical twisting on the circularly polarized luminescence of acenes was studied both experimentally and computationally, using four series of tethered twisted acenes. We find that the combination of axial and helical chirality yields the highest anisotropy factors, and that the ratio between the absorption and emission anisotropy factors is an intrinsic property for twistacenes.
Collapse
Affiliation(s)
- Anjan Bedi
- Institute of Chemistry, Center for Nanoscience and Nanotechnology and the Cazalli Institute, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Gal Schwartz
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Uri Hananel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amit Manor Armon
- Institute of Chemistry, Center for Nanoscience and Nanotechnology and the Cazalli Institute, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Israa Shioukhi
- Institute of Chemistry, Center for Nanoscience and Nanotechnology and the Cazalli Institute, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Gil Markovich
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ori Gidron
- Institute of Chemistry, Center for Nanoscience and Nanotechnology and the Cazalli Institute, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
32
|
Zhang B, Ruan L, Zhang YK, Zhang H, Li R, An P. Azepine-Embedded Seco-Hexabenzocoronene-Based Helix Nanographenes: Access to Modification of the Core by N-H Functionalization. Org Lett 2023; 25:732-737. [PMID: 36700631 DOI: 10.1021/acs.orglett.2c04097] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Contorted polycyclic aromatic hydrocarbons (PAHs) or nanographenes (NGs) have received increasing attention and are mostly prepared by "bottom-up" strategies. Apparently, systematically tuning the properties of NGs for application is important but challenging. Here, a new type of helix, azepine-embedded NGs, were designed and synthesized by the introduction of NH into the hexa-peri-hexabenzocoronene (HBC) core. We demonstrate that this nitrogen-doped NG can be functionalized via N-H derivatization. Through modifications to the NH site with a chiral auxiliary reagent, optical resolution of the chiral NG was achieved. Meanwhile, it was found that by introducing various aryl groups with electron-donating or electron-withdrawing substituents, the emission intensity and the fluorescence mechanism can be modulated. Compared to the original NH-containing NG, the modified derivative exhibited improved fluorescence efficiency and tunable emission wavelength. A functionalized structure of benzoic acid with considerably improved fluorescence efficiency, hydrophilicity, and membrane permeability to stain the live cells was proved.
Collapse
Affiliation(s)
- Bin Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Lan Ruan
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Yi-Kang Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Haifan Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Ranran Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Peng An
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
33
|
Liang K, Chen H, Wang X, Lu T, Duan Z, Sessler JL, Lei C. Di-2,7-pyrenidecaphyrin(1.1.0.0.0.1.1.0.0.0) and Its Bis-Organopalladium Complexes: Synthesis and Chiroptical Properties. Angew Chem Int Ed Engl 2023; 62:e202212770. [PMID: 36401592 DOI: 10.1002/anie.202212770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
A non-aromatic expanded carbaporphyrinoid, incorporating two built-in 2,7-pyrenylene moieties was synthesized. The intrinsically labile structure was demonstrated by proton-triggered conformational changes between the figure-of-eight and quasi-Möbius conformers. Upon treatment with Pd(OAc)2 , the reaction produces two bis-PdII complexes with distinct coordination modes. Metal coordination serves to fix the macrocyclic frameworks with the net result that both bis-PdII complexes could be resolved by high performance liquid chromatography (HPLC) on a chiral stationary phase. The isolated enantiomers showed persistent chiroptical properties as evidenced by the intense response in the circular dichroism (CD) spectra and the record high absorption dissymmetry factors (gabs of up to 0.038) seen in the near-infrared spectral region. Moreover, the mutual interconversion of these two PdII complexes was found to be stereospecific and to favor the more stable isomers under weakly acidic conditions.
Collapse
Affiliation(s)
- Kejiang Liang
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| | - Hao Chen
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| | - Xue Wang
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| | - Tian Lu
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhiming Duan
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, TX 78712-1224, USA
| | - Chuanhu Lei
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
34
|
Suzuki K, Fukuda H, Toda H, Imai Y, Nojima Y, Hasegawa M, Tsurumaki E, Toyota S. Substituent effects on helical structures and chiroptical properties of fused anthracenes with bulky phenyl groups. Tetrahedron 2023. [DOI: 10.1016/j.tet.2022.133243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Wiesner T, Pardon M, Maier S, Rominger F, Freudenberg J, Bunz UHF. N-Acenoacenes: Synthesis and Solid-State Properties. Chemistry 2022; 28:e202201916. [PMID: 35947374 PMCID: PMC10091707 DOI: 10.1002/chem.202201916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 12/14/2022]
Abstract
Four N-acenoacenes were synthesized and analyzed for their optoelectronic properties and solid-state packings. Two of the regioisomeric acridinoacridines are TIPS-ethynylated, whereas the other pair are Boc- and triflate substituted derivatives. The two TIPS-ethynyldiazaacenoacenes were processed into organic thin-film transistors with saturation hole mobilities reaching 2.9×10-2 cm2 (Vs)-1 .
Collapse
Affiliation(s)
- Thomas Wiesner
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Marcel Pardon
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Steffen Maier
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Centre for Advanced Materials (CAM), Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| |
Collapse
|
36
|
Palomo L, Favereau L, Senthilkumar K, Stępień M, Casado J, Ramírez FJ. Simultaneous Detection of Circularly Polarized Luminescence and Raman Optical Activity in an Organic Molecular Lemniscate. Angew Chem Int Ed Engl 2022; 61:e202206976. [PMID: 35785514 PMCID: PMC9544083 DOI: 10.1002/anie.202206976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 11/07/2022]
Abstract
Circularly polarized luminescence (CPL) and Raman optical activity (ROA) were observed in a single spectroscopic experiment for a purely organic molecule, an event that had so far been limited to lanthanide‐based complexes. The present observation was achieved for [16]cycloparaphenylene lemniscate, a double macrocycle constrained by a rigid 9,9′‐bicarbazole subunit, which introduces a chirality source and allows the molecule to be resolved into two configurationally stable enantiomers. Distortion of oligophenylene loops in this lemniscular structure produces a large magnetic transition dipole moment while maintaining the π‐conjugation‐induced enhancement of the Raman signal, causing the appearance of the CPL/ROA couple. A two‐photon mechanism is proposed to explain the population of the lowest‐energy excited electronic state prior to the simultaneous emission‐scattering event.
Collapse
Affiliation(s)
- Luis Palomo
- Department of Physical Chemistry Faculty of Sciences University of Málaga Campus de Teatinos 29071 Málaga Spain
| | | | - Kabali Senthilkumar
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Marcin Stępień
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Juan Casado
- Department of Physical Chemistry Faculty of Sciences University of Málaga Campus de Teatinos 29071 Málaga Spain
| | - Francisco J. Ramírez
- Department of Physical Chemistry Faculty of Sciences University of Málaga Campus de Teatinos 29071 Málaga Spain
| |
Collapse
|
37
|
Hong J, Xiao X, Liu H, Dmitrieva E, Popov AA, Yu Z, Li M, Ohto T, Liu J, Narita A, Liu P, Tada H, Cao X, Wang X, Zou Y, Müllen K, Hu Y. Controlling the Emissive, Chiroptical, and Electrochemical Properties of Double [7] Helicenes through Embedded Aromatic Rings. Chemistry 2022; 28:e202202243. [DOI: 10.1002/chem.202202243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Juan Hong
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| | - Xuxian Xiao
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| | - Haoliang Liu
- Department of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Evgenia Dmitrieva
- Center of Spectroelectrochemistry Leibniz Institute for Solid State and Materials Research Helmholtzstrasse 20 01069 Dresden Germany
| | - Alexey A. Popov
- Center of Spectroelectrochemistry Leibniz Institute for Solid State and Materials Research Helmholtzstrasse 20 01069 Dresden Germany
| | - Zidong Yu
- College of Science Shantou University Shantou 515063 P. R. China
| | - Ming‐De Li
- College of Science Shantou University Shantou 515063 P. R. China
| | - Tatsuhiko Ohto
- Graduate School of Engineering Science Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
- Center for Quantum Information and Quantum Biology Institute for Open and Transdisciplinary Research Initiatives Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Jun Liu
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| | - Akimitsu Narita
- Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son, Kunigami-gun Okinawa 904-0495 Japan
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Pengcai Liu
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Weijin Road 94 Tianjin 300071 P. R. China
| | - Hirokazu Tada
- Graduate School of Engineering Science Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Xiao‐Yu Cao
- Department of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Xiao‐Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Weijin Road 94 Tianjin 300071 P. R. China
| | - Yingping Zou
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| | - Klaus Müllen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Yunbin Hu
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| |
Collapse
|
38
|
Imai T, Akasaka R, Yoshida N, Amaya T, Iwasawa T. Electrochemical and spectroscopic properties of twisted dibenzo[ g, p]chrysene derivatives. Beilstein J Org Chem 2022; 18:963-971. [PMID: 35965854 PMCID: PMC9359188 DOI: 10.3762/bjoc.18.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Dibenzo[g,p]chrysene (DBC), which consists of a twisted naphthalene core with four fused benzene rings, is a promising framework for organic electronic materials. Therefore, the research for structure–property relationships is important for the design of DBC-based materials. Here, the electrochemical and spectroscopic properties of DBC derivatives were investigated, and the effects of substituents and torsion of the naphthalene moiety were examined based on density functional theory (DFT) calculations. All the substituted DBC derivatives showed higher oxidation potentials than that for DBC-H, even for compounds that contained an electron-donating group such as DBC-Me and DBC-SMe. DFT calculations clearly indicate that these higher oxidation potentials are due to the ineffective conjugation of the MeO group, which is oriented perpendicular to the benzene ring because of the steric repulsion of substituents on both sides. More specifically, the inductive effect of the MeO group is dominant rather than the mesomeric effect when the substituent is located at both sides of the MeO group. Concerning the torsion of the naphthalene moiety, the twisting results in a slight increase in the HOMO and a slight lowering of the LUMO. The twisting effect is much smaller than the conjugation effect of the MeO group. Absorption spectra of all the substituted DBC derivatives also showed a red-shift as compared to that for DBC-H. Concerning the luminescence, a strong photoluminescence was observed for DBC-H and DBC-Si.
Collapse
Affiliation(s)
- Tomoya Imai
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, 1, Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| | - Ryuhei Akasaka
- Department of Materials Chemistry, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| | - Naruhiro Yoshida
- Department of Materials Chemistry, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| | - Toru Amaya
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, 1, Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| | - Tetsuo Iwasawa
- Department of Materials Chemistry, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| |
Collapse
|
39
|
Palomo L, Favereau L, Senthilkumar K, Stępień M, Casado J, Ramirez FJ. Simultaneous Detection of Circularly Polarized Luminescence and Raman Optical Activity in an Organic Molecular Lemniscate. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Luis Palomo
- Universidad de Malaga Physical Chemistry SPAIN
| | - Ludovic Favereau
- Universite de Rennes 1 Institut des Sciences Chimiques de Rennes FRANCE
| | | | - Marcin Stępień
- Uniwersytet Wroclawski Wydzial Chemii Wydzial Chemii POLAND
| | - Juan Casado
- Universidad de Malaga Physical Chemistry SPAIN
| | | |
Collapse
|
40
|
Chen F, Melle-Franco M, Mateo-Alonso A. Planar and Helical Dinaphthophenazines. J Org Chem 2022; 87:7635-7642. [PMID: 35616330 PMCID: PMC9207929 DOI: 10.1021/acs.joc.2c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we report the synthesis of a series of planar and helical dinaphthophenazines by cyclocondensation reactions between the newly developed 9,10-bis((triisopropylsilyl)ethynyl)anthracene-1,2-dione and different diamines. Their optoelectronic and electrochemical properties are studied by ultraviolet-visible (UV-vis) spectroscopy, fluorescence spectroscopy, cyclic voltammetry, and density functional theory calculations.
Collapse
Affiliation(s)
- Fengkun Chen
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Manuel Melle-Franco
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
41
|
Tsuchiya M, Inoue R, Tanaka K, Morisaki Y. Synthesis of Twisted Anthracenes: Induction of Twist Chirality by the Planar Chiral [2.2]Paracyclophane. Chem Asian J 2022; 17:e202200418. [PMID: 35603977 DOI: 10.1002/asia.202200418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/19/2022] [Indexed: 11/10/2022]
Abstract
Planar chiral [2.2]paracyclophane was employed as chiral scaffolds to twist an anthracene ring by tethering at its 1- and 8positions; thus, twist chirality was induced in the anthracene moiety. The chiroptical properties of the resulting molecule, including circular dichroism (CD) and circularly polarized luminescence (CPL), were found to be derived from the twist chirality. An analogous molecule bearing long alkyl chains was a viscous liquid, and its liquid film exhibited good CD and CPL profiles. The theoretical studies are carried out to determine the origin of these properties in the ground and excited states, which reproduced well the experimental results.
Collapse
Affiliation(s)
- Motoki Tsuchiya
- Kwansei Gakuin University - Kobe Sanda Campus: Kansei Gakuin Daigaku - Kobe Sanda Campus, School of Biological and Environmental Sciences, JAPAN
| | - Ryo Inoue
- Kwansei Gakuin University - Kobe Sanda Campus: Kansei Gakuin Daigaku - Kobe Sanda Campus, School of Biological and Environmental Sciences, JAPAN
| | - Kentaro Tanaka
- Kwansei Gakuin University - Kobe Sanda Campus: Kansei Gakuin Daigaku - Kobe Sanda Campus, School of Biological and Environmental Sciences, JAPAN
| | - Yasuhiro Morisaki
- Kwansei Gakuin University - Kobe Sanda Campus: Kansei Gakuin Daigaku - Kobe Sanda Campus, Department of Applied Chemistry for Environment, 1 Gakuen Uegahara, 669-1330, Sanda, JAPAN
| |
Collapse
|
42
|
Hisada M, Shimizu D, Matsuda K. π-Expansion of 2,3,6,7-Tetraazanaphthalene with Two Embedded Heptagons: Highly Twisted Structure and Lone-Pair/π* Interaction in the Crystal. Org Lett 2022; 24:3707-3711. [PMID: 35561030 DOI: 10.1021/acs.orglett.2c01345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synthesis and characterization of doubly diphenylene-fused 2,3,6,7-tetraazanaphthalene 1 are described. Single-crystal X-ray diffraction analysis showed the highly twisted structure of 1 with a degree of twisting of 13.0°/Å, which is one of the largest values for a π-system. In the crystal, molecules of 1 formed an orthogonal one-dimensional column with π-stacking of diphenylene moieties and a short intermolecular C···N distance due to lone-pair/π* interaction, which is a rare example of lone-pair/π* interaction in a supramolecular assembly.
Collapse
Affiliation(s)
- Masato Hisada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Daiki Shimizu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Matsuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
43
|
Weber JA, Clennan E, Arulsamy N. A Computational Physical Organic Study of a Torque, Lock, and Propagate Approach and Validation with the Synthesis of Configurationally Stable First‐Generation Heli‐Twisted Acenes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Edward Clennan
- University of Wyoming Dept. of Chemistry Room 403 Physical Building . 82071-3838 Laramie UNITED STATES
| | | |
Collapse
|
44
|
Wu C, Corrigan N, Lim CH, Liu W, Miyake G, Boyer C. Rational Design of Photocatalysts for Controlled Polymerization: Effect of Structures on Photocatalytic Activities. Chem Rev 2022; 122:5476-5518. [PMID: 34982536 PMCID: PMC9815102 DOI: 10.1021/acs.chemrev.1c00409] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the past decade, the use of photocatalysts (PCs) in controlled polymerization has brought new opportunities in sophisticated macromolecular synthesis. However, the selection of PCs in these systems has been typically based on laborious trial-and-error strategies. To tackle this limitation, computer-guided rational design of PCs based on knowledge of structure-property-performance relationships has emerged. These rational strategies provide rapid and economic methodologies for tuning the performance and functionality of a polymerization system, thus providing further opportunities for polymer science. This review provides an overview of PCs employed in photocontrolled polymerization systems and summarizes their progression from early systems to the current state-of-the-art. Background theories on electronic transitions are also introduced to establish the structure-property-performance relationships from a perspective of quantum chemistry. Typical examples for each type of structure-property relationships are then presented to enlighten future design of PCs for photocontrolled polymerization.
Collapse
Affiliation(s)
- Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | | | - Chern-Hooi Lim
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- New Iridium Incorporated, Boulder, Colorado 80303, United States
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Garret Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | |
Collapse
|
45
|
Sadowski B, Mierzwa D, Kang S, Grzybowski M, Poronik YM, Sobolewski AL, Kim D, Gryko DT. Tuning the aromatic backbone twist in dipyrrolonaphthyridinediones. Chem Commun (Camb) 2022; 58:3697-3700. [PMID: 35225999 DOI: 10.1039/d1cc06863f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This communication describes the photophysical behavior of three analogs of cyclophane bearing the dipyrrolonaphthyridinedione (DPND) core. In these molecules, intersystem crossing (ISC) can be successfully induced by distinct changes in the deviation from planarity within the DPND core, allowing at the same time the emission maximum to shift from the green to red region of the visible spectrum without any synthetic modifications of the chromophore structure. This finding may build the foundation for a new paradigm for inducing ISC-type transitions within other centrosymmetric and planar cross-conjugated chromophores.
Collapse
Affiliation(s)
- Bartłomiej Sadowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Dominik Mierzwa
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Seongsoo Kang
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea.
| | - Marek Grzybowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Yevgen M Poronik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | | | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea.
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
46
|
González Miera G, Matsubara S, Kono H, Murakami K, Itami K. Synthesis of octagon-containing molecular nanocarbons. Chem Sci 2022; 13:1848-1868. [PMID: 35308842 PMCID: PMC8848939 DOI: 10.1039/d1sc05586k] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/12/2021] [Indexed: 12/16/2022] Open
Abstract
Nanocarbons, such as fullerenes, carbon nanotubes, and graphenes, have long inspired the scientific community. In order to synthesize nanocarbon molecules in an atomically precise fashion, many synthetic reactions have been developed. The ultimate challenge for synthetic chemists in nanocarbon science is the creation of periodic three-dimensional (3D) carbon crystals. In 1991, Mackay and Terrones proposed periodic 3D carbon crystals with negative Gaussian curvatures that consist of six- and eight-membered rings (the so-called Mackay-Terrones crystals). The existence of the eight-membered rings causes a warped nanocarbon structure. The Mackay-Terrones crystals are considered a "dream material", and have been predicted to exhibit extraordinary mechanical, magnetic, and optoelectronic properties (harder than diamond, for example). To turn the dream of having this wonder material into reality, the development of methods enabling the creation of octagon-embedding polycyclic structures (or nanographenes) is of fundamental and practical importance. This review describes the most vibrant synthetic achievements that the scientific community has performed to obtain curved polycyclic nanocarbons with eight-membered rings, building blocks that could potentially give access as templates to larger nanographenes, and eventually to Mackay-Terrones crystals, by structural expansion strategies.
Collapse
Affiliation(s)
- Greco González Miera
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University Chikusa Nagoya 464-8602 Japan
| | - Satoshi Matsubara
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University Chikusa Nagoya 464-8602 Japan
| | - Hideya Kono
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University Chikusa Nagoya 464-8602 Japan
| | - Kei Murakami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University Chikusa Nagoya 464-8602 Japan .,Department of Chemistry, School of Science, Kwansei Gakuin University Sanda Hyogo 669-1337 Japan .,JST-PRESTO 7 Gobancho, Chiyoda Tokyo 102-0076 Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University Chikusa Nagoya 464-8602 Japan .,Institute of Chemistry, Academia Sinica Nankang Taipei 115 Taiwan Republic of China
| |
Collapse
|
47
|
Malakar P, Borin V, Bedi A, Schapiro I, Gidron O, Ruhman S. The impact of twisting on the intersystem crossing in acenes: an experimental and computational study. Phys Chem Chem Phys 2022; 24:2357-2362. [PMID: 35018908 DOI: 10.1039/d1cp05728f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to their unique excited state dynamics, acenes play a dominant role in optoelectronic and light-harvesting applications. Their optical and electronic properties are typically tailored by side-group engineering, which often result in distortion of the acene core from planarity. However, the effect of such distortion on their excited state dynamics is not clear. In this work, we investigate the effect of twisting on the photophysics of acenes, which are helically locked to a defined twist angle by tethers of different lengths. Ultrafast transient absorption and time resolved fluorescence show a clear dependence of the rate of intersystem crossing with twisting. This trend is explained using quantum chemical calculations, showing an increase of spin-orbit coupling (SOC). At much earlier times, structural reorganization in S1, including coherent vibrational wave packet motions, is reflected in transient spectral changes. As predicted by theory, decreasing the length of diagonal tether induces enhanced activity and frequency blue-shifting of a normal vibration consisting of anthracene twisting against restraint of the tethering chain. Overall, these results serve as design principles for tuning photophysical properties of acenes via controlled twisting of their aromatic core.
Collapse
Affiliation(s)
- Partha Malakar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Veniamin Borin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Anjan Bedi
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Ori Gidron
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Sanford Ruhman
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
48
|
Controlling the helicity of π-conjugated oligomers by tuning the aromatic backbone twist. Nat Commun 2022; 13:451. [PMID: 35064118 PMCID: PMC8782941 DOI: 10.1038/s41467-022-28072-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/30/2021] [Indexed: 01/01/2023] Open
Abstract
The properties of π-conjugated oligomers and polymers are commonly controlled by side group engineering, main chain engineering, or conformational engineering. The last approach is typically limited to controlling the dihedral angle around the interring single bonds to prevent loss of π-conjugation. Here we propose a different approach to conformational engineering that involves controlling the twist of the aromatic units comprising the backbone by using a tether of varying lengths. We demonstrate this approach by synthesizing an inherently twisted building unit comprised of helically locked tethered acenes, bearing acetylene end-groups to enable backbone extension, which was applied in a series of nine helical oligomers with varying backbone length and twist. We find that the optical and electronic properties of π-conjugated systems may be determined by the additive, antagonistic, or independent effects of backbone length and twist angle. The twisted oligomers display chiral amplification, arising from the formation of secondary helical structures. One approach to altering the properties of π-conjugated oligomers is conformational engineering, in which the degree of rotation around the bonds linking monomers is restricted. Here the authors apply the conformational engineering approach on individual monomers using tethers of varying lengths to twist the aromatic units, and study the effects of varying the angles.
Collapse
|
49
|
Yao B, Liu X, Guo T, Sun H, Wang W. Molecular Möbius Strips: Twist for A Bright Future. Org Chem Front 2022. [DOI: 10.1039/d2qo00829g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attributed to their unique structural features and associated intriguing properties, molecular Möbius strips have attracted considerable attention. However, the precise synthesis of such attractive molecules remains a great challenge. Recently,...
Collapse
|
50
|
Schaack C, Evans AM, Ng F, Steigerwald ML, Nuckolls C. High-Performance Organic Electronic Materials by Contorting Perylene Diimides. J Am Chem Soc 2021; 144:42-51. [PMID: 34937338 DOI: 10.1021/jacs.1c11544] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Perylene diimide (PDI) is a workhorse of the organic electronics community. However, the vast majority of designs that include PDI substitute the core with various functional groups to encourage intimate cofacial contacts between largely planar PDIs. Over the past several years, we have observed the counterintuitive result that contorting the planar aromatic core of PDI leads to higher performing photovoltaics, photodetectors, batteries, and other organic electronic devices. In this Perspective, we describe how different modes of contortion can be reliably installed into PDI-based molecules, oligomers, and polymers. We also describe how these different contortions modify the observed optical and electronic properties of PDI. For instance, contorting PDIs into bowls leads to high-efficiency singlet fission materials, while contorting PDIs into helicene-like structures leads to nonlinear amplification of Cotton effects, culminating in the highest g-factors so far observed for organic compounds. Finally, we show how these unique optoelectronic properties give rise to higher performance organic electronic devices. We specifically note how the three-dimensional structure of these contorted aromatic molecules is responsible for the enhancements in performance we observe. Throughout this Perspective, we highlight opportunities for continued study in this rapidly developing organic materials frontier.
Collapse
Affiliation(s)
- Cedric Schaack
- Department of Chemistry, Columbia University, Havemeyer Mail Code 3130, 3000 Broadway, New York, New York 10027, United States
| | - Austin M Evans
- Department of Chemistry, Columbia University, Havemeyer Mail Code 3130, 3000 Broadway, New York, New York 10027, United States
| | - Fay Ng
- Department of Chemistry, Columbia University, Havemeyer Mail Code 3130, 3000 Broadway, New York, New York 10027, United States
| | - Michael L Steigerwald
- Department of Chemistry, Columbia University, Havemeyer Mail Code 3130, 3000 Broadway, New York, New York 10027, United States
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, Havemeyer Mail Code 3130, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|