1
|
Dong X, Ran X, Hou C, Zhou Z, Wang Z, Zhang T. Theoretical insights into the linker effects on the turn-on fluorescence behaviors in pyridazinone-containing NO probes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124761. [PMID: 38955069 DOI: 10.1016/j.saa.2024.124761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Fluorescent probes with preferred photophysical properties have attracted considerable attention for their advantages in real-time and accurate detection of signalling molecules in living organisms. Nitric oxide (NO) is a ubiquitous cellular messenger closely associated with many physiological and pathological processes. A NO fluorescent probe, PYSNO, based on the pyridazinone (PY) scaffold with o-phenylenediamine as the receptor and thiophene (S) as the linker has been synthesized. Inspired by the experimental guidance, three other dyes (PYSSNO, PYSONO and PYONO) were theoretically designed by replacing the S linker with thieno[3,2-b]thiophene (SS), thieno[3,2-b]thiophene 1,1-dioxide (SO) and thiophene 1,1-dioxide (O) groups. The photophysical properties were theoretically investigated in aqueous solution, by the combined time-dependent density functional theory, polarizable continuum model and thermal vibration correlation function approaches. Our results indicate that the emission wavelengths of all the designed dyes show red shifts due to either an increase in the conjugation length or electron-accepting ability of the linkers compared to PYSNO. The photoinduced electron transfer (PET) processes are all absent in these systems. PYSSNO and PYSONO are theoretically expected to be promising candidates for novel NO fluorescent probes, but the suitability of PYONO as a NO probe is compromised by the predicted non-luminescent emission before and after reaction with NO. Our study not only offers valuable insights into the detailed structure-property relationships, but also opens a new avenue for the rational design of efficient fluorescent sensors for NO detection.
Collapse
Affiliation(s)
- Xiaoxu Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Xin Ran
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Chengshuo Hou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Ziheng Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Zhiming Wang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, PR China.
| | - Tian Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| |
Collapse
|
2
|
Yu XJ, Wan XY, Shen YT, Zhang DB, Zhou XJ, Han DM, Chen FZ. Photoelectron-transfer-effect grafting: Validation of a generalized strategy for fluorescence and photoelectrochemical dual-mode detection of hydrogen sulfide. Anal Chim Acta 2024; 1329:343232. [PMID: 39396295 DOI: 10.1016/j.aca.2024.343232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/17/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND The progress of modern research is constantly fueled by the convergence of multiple technologies. Despite the enormous potential of both fluorescence (FL) and photoelectrochemical (PEC) technologies, the development of synergistic PEC-FL sensing platforms that combine the advantages of both is still in its early stages due to their relatively recent inception. Hydrogen sulfide (H2S), possessing dual irritant and asphyxiating traits, poses challenges for environmental preservation and human health. The development of the PEC-FL detection methodology for H2S in complex environmental settings is imperative. RESULTS Combining FL and PEC sensing techniques, this work presented a new concept of photoinduced electron-transfer (PET) effect grafting for dual-mode fluorescence and PEC analysis. Briefly, a well-designed fluorescent molecule (BTFM-DNP) featuring the PET effect was synthesized and implemented to modulate the photoelectric response of the indium tin oxide (ITO)/BiOI photocathode electrode. After reacting with H2S, the thiolysis of dinitrophenyl ether eliminated the intramolecular PET effect and recovered the significant fluorescence of the probe. Remarkably, the newly formed 2,4-dinitrobenzenethiol (DBT) with strong electron-withdrawing groups was then grafted to the ITO/BiOI photoelectrode and achieved the successful transfer of the PET process, resulting in a sharp decrease in photocurrent. The as-developed dual-mode protocol exhibited good performance in terms of ultra-sensitivity, high selectivity, fast response, and a wide detection range from 1 pM to 80 μM. SIGNIFICANCE The newly developed PEC-FL sensing platform can be applied to detect H2S levels in both the environment and food. This study demonstrates a promising synergy between fluorescent probes and PEC sensors, offering a novel perspective on the advancement of multi-mode analysis techniques. This approach has the potential to significantly enhance detection accuracy and reliability.
Collapse
Affiliation(s)
- Xiao-Jie Yu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Department of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, China
| | - Xiao-Yan Wan
- Department of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, China
| | - Yu-Ting Shen
- Department of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, China
| | - Deng-Bao Zhang
- Department of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, China
| | - Xian-Jing Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - De-Man Han
- Department of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, China.
| | - Feng-Zao Chen
- Department of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
3
|
Jia R, Jia L, Zhao X, Huang Y, Zhang L, Zhao D, Xu J, Zhao T. High sensitivity distinguishing detection of fluoroquinolones with a cage-based lanthanide metal-organic framework in food. Food Chem 2024; 464:141652. [PMID: 39423545 DOI: 10.1016/j.foodchem.2024.141652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Sensitive and selective detection of fluoroquinolones, especially from different sources, is challenging. This study reported an uncommon three-cage lanthanide metal-organic framework (1-Eu) with a Eu3+ cluster as its structural primitive using a C2-symmetric 5,5-(Pyrazine-2,6-diyl) diisophthalic acid ligand. The 1-Eu probe effectively detected four fluoroquinolones through distinct color changes and spectral emission bands, demonstrating excellent performance with low detection limits: moxifloxacin (LOD: 9.3 nM), danofloxacin (LOD: 33.7 nM), gatifloxacin (LOD: 67.9 nM), and ofloxacin (LOD: 238.6 nM). Mechanistic studies revealed that internal filtration and photoinduced electron transfer (a-PET) effects were key factors. Furthermore, 1-Eu was successfully used to detect fluoroquinolones in food samples. Additionally, portable paper-based sensors were developed to quickly semi-quantify analyte concentrations using a smartphone color recognition app, underscoring the practical potential of this probe. This study introduces a novel methodology for the identification and detection of fluoroquinolones to enhance food safety.
Collapse
Affiliation(s)
- Ruoqin Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China.
| | - Xiaolei Zhao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Yuanyuan Huang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Lina Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Dan Zhao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China
| | - Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, China.
| | - Tongqian Zhao
- Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo, Henan, 454000, China.
| |
Collapse
|
4
|
Tao X, Mao Y, Wang A, Zeng Z, Zheng S, Jiang C, Chen SY, Lu H. A purine fluorescent derived probe assay for glyphosate and mesotrione via Schiff base cleavage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125254. [PMID: 39388940 DOI: 10.1016/j.saa.2024.125254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
A fluorescent probe derived from purine with Schiff base moiety was developed for the recognization of glyphosate and mesotrione. The detected glyphosate and mesotrione can lead to the dissociation of the Schiff base probe to enhance the fluorescence via a turn-off PET process. Mechanism study revealed that the synergistic effect of the phosphoric acid and the secondary amine moieties in glyphosate results in the bond cleavage of the Schiff base probe. Quantitative measurements of glyphosate and mesotrione were achieved with the detection limits of 17.2 nM and 484.32 nM, respectively. Meanwhile, the detection of glyphosate pesticide in real samples and cells was also conducted, demonstrating the good practicality and cytocompatibility of the probe.
Collapse
Affiliation(s)
- Xuanzuo Tao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China
| | - Yanxia Mao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China
| | - Anguan Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China
| | - Zhihong Zeng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China
| | - Shaojun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China.
| | - Shu-Yang Chen
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China.
| |
Collapse
|
5
|
Wu N, Bo C, Guo S. Luminescent Ln-MOFs for Chemical Sensing Application on Biomolecules. ACS Sens 2024; 9:4402-4424. [PMID: 39193912 DOI: 10.1021/acssensors.4c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
At present, the application of rare-earth organic frameworks (Ln-MOFs) in fluorescence sensing has entered rapid development and shown great potential in various analytical fields, such as environmental analysis, food analysis, drug analysis, and biological and clinical analysis by utilizing their internal porosity, tunable structural size, and energy transfer between rare-earth ions, ligands, and photosensitizer molecules. In addition, because the luminescence properties of rare-earth ions are highly dependent on the structural details of the coordination environment surrounding the rare-earth ions, and although their excitation lifetimes are long, they are usually not burst by oxygen and can provide an effective platform for chemical sensing. In order to further promote the development of fluorescence sensing technology based on Ln-MOFs, we summarize and review in detail the latest progress of the construction of Ln-MOF materials for fluorescence sensing applications and related sensor components, including design strategies, preparation methods, and modification considerations and initially propose the future development prospects and prospects.
Collapse
Affiliation(s)
- Ning Wu
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
| | - Shengwei Guo
- International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, Key Laboratory of Polymer Materials and Manufacturing Technology, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
6
|
Niu KK, Bi YS, Liu H, Xing LB. Perylene-Diimide-Based Supramolecular Radical Anion as a Platform for Highly Effective Photoreduction of Inert Sulfoxide to Sulfide. Org Lett 2024; 26:7987-7992. [PMID: 39255467 DOI: 10.1021/acs.orglett.4c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Due to the limitations of common photoredox catalysts, unlocking their applications in photoreduction reactions remains an ongoing challenge. We herein present a supramolecular radical anion, PDI(CB[7])2, that formed by the assembly of perylene diimide derivative (PDI) and cucurbit[7]uril (CB[7]) via a host-guest interaction for an effective photoreduction reaction. Studies revealed that it could effectively accomplish a consecutive excitation process by two-photon excitation, enabling a potent photoreductant PDI(CB[7])2• - * that can even reduce the inert feedstocks, such as sulfoxides to sulfides. Mechanistic investigations indicate that, besides exceptional photophysical properties, supramolecular PDI(CB[7])2 also significantly enhances the lifetime and robustness of the in situ generated higher energy photoreductant PDI(CB[7])2• - * upon second quantum photon excitation, leading to the observed highly active photoreducing behavior.
Collapse
Affiliation(s)
- Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| | - Yu-Song Bi
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| |
Collapse
|
7
|
Hu Z, Yan B. Machine Learning-Assisted Eu(III)-Functionalized HOF-on-HOF Composite-Based Sensor Platform for Precise and Visual Identification of Multiple Pesticides. Anal Chem 2024; 96:14248-14256. [PMID: 39167046 DOI: 10.1021/acs.analchem.4c02913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Precise and rapid identification of pesticides is crucial to ensure a green environment, food safety, and human health. However, complex sample environments often hinder precise identification, especially for simultaneous differentiation of multiple pesticides. Herein, we first synthesize a Eu(III)-functionalized HOF-on-HOF composite (Eu@PFC-1@MA-TPA) and then utilize principal component analysis (PCA) and a machine learning (ML) algorithm to achieve simultaneous identification of the pesticides 2,6-dichloro-4-nitroaniline (DCN) and thiabendazole (TBZ) and their mixtures. Eu@PFC-1@MA-TPA displays high quantitative identification ability, which can distinguish single DCN and TBZ as low as 1 μM and their mixtures at 5 μM through PCA. In addition, the hydrogel film Eu@PFC-1@MA-TPA/AG is fabricated to monitor DCN and TBZ in drinking water, tap water, river water, and apple juice with high sensitivity. Furthermore, based on the obvious fluorescence color variance of pesticides, Eu@PFC-1@MA-TPA/AG achieves visual and in situ imaging detection of single DCN and TBZ and their mixtures. More importantly, we construct an intelligent artificial vision platform integrating Eu@PFC-1@MA-TPA/AG with a DenseNet algorithm, which can identify the concentrations and types of DCN and TBZ and their mixtures within 1 s with over 98% accuracy. This work develops a precise and rapid analysis method for simultaneous identification of multiple pesticides through combining a visualized fluorescence sensor and an ML algorithm.
Collapse
Affiliation(s)
- Zhongqian Hu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
8
|
Zhao X, Du J, Sun W, Fan J, Peng X. Regulating Charge Transfer in Cyanine Dyes: A Universal Methodology for Enhancing Cancer Phototherapeutic Efficacy. Acc Chem Res 2024; 57:2582-2593. [PMID: 39152945 DOI: 10.1021/acs.accounts.4c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
ConspectusDue to the advantages of spatiotemporal selectivity and inherent noninvasiveness, cancer phototherapy, which includes both photodynamic therapy (PDT) and photothermal therapy (PTT), has garnered significant attention in recent years as a promising cancer treatment. Despite the commendable progress in this field, persistent challenges remain. In PDT, limitations in dyes manifest as low intersystem crossing (ISC) efficiency and oxygen-dependent photoactivity, resulting in unsatisfactory performance, particularly under hypoxic conditions. Similarly, PTT encounters consistent insufficiencies in the photothermal conversion efficiency (PCE) of dyes. Additionally, the suboptimal phototherapeutic efficacy often exhibits a limited immune response. These factors collectively impose significant constraints on phototherapy in oncological applications, leading to limited tumor inhibition, tumor recurrence, and even metastasis.Unlike strategies that rely on external assistance with complicated systems, manipulating excited-state deactivation pathways in biocompatible dyes offers a universal way to systematically address these challenges. Our group has devoted considerable effort to achieving this goal. In this Account, we present and discuss our journey in optimizing excited-state energy-release pathways through regulating molecular charge transfer based on cyanine dyes, which are renowned for their exceptional photophysical properties and harmonious biocompatibility. The investigation begins with the introduction of amino groups in the meso position of a heptamethine cyanine dye, where the intramolecular charge transfer (ICT) effect causes a significant enlargement of the Stokes shift. Subsequently, ICT induced by introducing functional electron-deficient groups in cyanines is found to decrease the overlap of electron distribution or narrow the energy gaps of molecular frontier orbitals. Such modifications result in a reduction of the energy gaps between singlet and triplet states or an improvement in internal conversion, ultimately promoting phototherapy efficacy in both primary and distant tumors. Furthermore, with the intensification of the charge transfer effect aided by light, photoinduced intramolecular electron transfer occurs in some cyanines, leading to complete charge separation in the excited state. This process enhances the transition to the ground or triplet states, improving tumor phototherapy and inhibiting metastasis by increasing the PCE or the yield of reactive oxygen species, respectively. Shifting focus from intramolecular to intermolecular interactions, we successfully constructed and explored cyanines based on intermolecular charge transfer. These dyes, with excited-state dynamics mimicking natural photosynthesis, generate radicals and facilitate oxygen-independent hypoxic tumor PDT. Finally, we outlined the existing challenges and future directions for optimizing phototherapeutic efficacy by regulating molecular charge transfer. This Account provides molecular-level insights into improving phototherapeutic performance, offering valuable perspectives, and inspiring the development of functional dyes in other application fields.
Collapse
Affiliation(s)
- Xueze Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, 315016 Ningbo, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
| |
Collapse
|
9
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
10
|
Su Y, Guo Y, Wu Q, Wang L, Wang Y, Yang G, Zhang W, Wang Y. Stable Europium(III) Metal-Organic Framework Fluorescence Probe for Intelligent Visualization Detection of Gossypol and Nitrofuran Antibiotics in Real Samples. Inorg Chem 2024; 63:15134-15143. [PMID: 39074382 DOI: 10.1021/acs.inorgchem.4c02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Gossypol (Gsp) and antibiotics present in water bodies become organic pollutants that are harmful to human health and the ecological environment. Accurate and effective detection of these pollutants has far-reaching significance in many fields. A new three-dimensional metal-organic framework (MOF), {[Eu3(L)2(HCOO-)(H2O)3]·2H2O·2DMF}n (Eu-MOF), was synthesized from 3,5-bis(2,4-dicarboxylphenyl)nitrobenzene (H4L) ligand and Eu3+ via the solvothermal method in this paper. The Eu-MOF demonstrates strong red fluorescence and can remain stable in different pH solutions. The MOF fluorescence probe could detect organic pollutants through the "shut-off" effect, with a fast response speed and a low detection limit [Gsp, nitrofurantoin (NFT), and nitrofurazone (NFZ) for 0.43, 0.38, and 0.41 μM, respectively]. During the testing process, Eu-MOF exhibited good selectivity and recoverability. Furthermore, the mechanism of fluorescence quenching was investigated, and the recoveries were also good in real samples. This paper introduced a deep learning model to recognize the fluorescence images, a portable intelligent logic detector designed for real-time detection of Gsp by logic gate strategy, and an anticounterfeiting mark prepared based on inkjet printing. Importantly, this work provides a new way of thinking for the detection of organic pollutants in water with high sensitivity and practicality by combining the fluorescence probe with machine learning and logical judgment.
Collapse
Affiliation(s)
- Yu Su
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yichen Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Qi Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Linxia Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yifei Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Wenyan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yaoyu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
11
|
Selva Sharma A, Lee NY. Comprehensive review on fluorescent carbon dots and their applications in nucleic acid detection, nucleolus targeted imaging and gene delivery. Analyst 2024; 149:4095-4115. [PMID: 39007289 DOI: 10.1039/d4an00630e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Carbon dots (CDs), including carbon quantum dots, graphene quantum dots, carbon nanodots, and polymer dots, have gained significant attention due to their unique structural and fluorescence characteristics. This review provides a comprehensive overview of the classification, structural characteristics, and fluorescence properties of CDs, followed by an exploration of various fluorescence sensing mechanisms and their applications in gene detection, nucleolus imaging, and gene delivery. Furthermore, the functionalization of CDs with diverse surface ligand molecules, including dye molecules, nucleic acid probes, and metal derivatives, for sensitive nucleic acid detection is systematically examined. Fluorescence imaging of the cell nucleolus plays a vital role in examining intracellular processes and the dynamics of subcellular structures. By analyzing the mechanism of fluorescence and structure-function relationships inherent in CDs, the nucleolus targeting abilities of CDs in various cell lines have been discussed. Additionally, challenges such as the insufficient organelle specificity of CDs and the inconsistent mechanisms underlying nucleolus targeting have also been highlighted. The unique physical and chemical properties of CDs, particularly their strong affinity toward deoxyribonucleic acid (DNA), have spurred interest in gene delivery applications. The use of nuclear-targeting peptides, polymers, and ligands in conjunction with CDs for improved gene delivery applications have been systematically reviewed. Through a comprehensive analysis, the review aims to contribute to a deeper understanding of the potential and challenges associated with CDs in biomedical applications.
Collapse
Affiliation(s)
- Arumugam Selva Sharma
- Department of Nanoscience and Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea.
| |
Collapse
|
12
|
Hu Z, Yan B. A sustainable, eco-friendly Tb/Eu-modified HOFs for ultrasensitive detection and efficient adsorption of carcinogens in complex water environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134742. [PMID: 38810577 DOI: 10.1016/j.jhazmat.2024.134742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Developing a multifunctional material that can detect and remove carcinogens in water environments, simultaneously monitor their toxic metabolites in living organisms is significant for environmental remediation and human health. However, most research only focused on detection or adsorption carcinogens due to the difficulty of integrating multiple functions into one material, let alone monitoring their toxic metabolites. Here, a multifunctional Tb/Eu@TATB-HOF (1) is first developed to monitor two carcinogens, malachite green (MG) and its metabolites leucomalachite green (LMG), and simultaneously remove MG from the contaminated water. 1, as the dual-emission fluorescence sensor, can achieve ultrasensitive and highly visualized sensing for MG and LMG with different response modes. Even in actual samples, 1 still exhibits satisfactory sensing performances. As the adsorbent, 1 displays good recyclability and high adsorption capacity for MG. The sensing and adsorption mechanisms are explored through experiments and theoretical calculations. This work not only provides a novel insight for environmental remediation and human health through detection and removal of carcinogens, simultaneously monitoring their toxic metabolites, but first reveals the enormous potential of HOFs as multifunctional materials simultaneously for fluorescence sensing and adsorption.
Collapse
Affiliation(s)
- Zhongqian Hu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.
| |
Collapse
|
13
|
Chen Y, Yang Y, Zhang F. Noninvasive in vivo microscopy of single neutrophils in the mouse brain via NIR-II fluorescent nanomaterials. Nat Protoc 2024; 19:2386-2407. [PMID: 38605264 DOI: 10.1038/s41596-024-00983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/12/2024] [Indexed: 04/13/2024]
Abstract
In vivo microscopy of single cells enables following pathological changes in tissues, revealing signaling networks and cell interactions critical to disease progression. However, conventional intravital microscopy at visible and near-infrared wavelengths <900 nm (NIR-I) suffers from attenuation and is typically performed following the surgical creation of an imaging window. Such surgical procedures cause the alteration of the local vasculature and induce inflammation in skin, muscle and skull, inevitably altering the microenvironment in the imaging area. Here, we detail the use of near-infrared fluorescence (NIR-II, 1,000-1,700 nm) for in vivo microscopy to circumvent attenuation in living tissues. This approach enables the noninvasive visualization of cell migration in deep tissues by labeling specific cells with NIR-II lanthanide downshifting nanoparticles exhibiting high physicochemical stability and photostability. We further developed a NIR-II fluorescence microscopy setup for in vivo imaging through the intact skull with high spatiotemporal resolution, which we use for the real-time dynamic visualization of single-neutrophil behavior in the deep brain of a mouse model of ischemic stroke. The labeled downshifting nanoparticle synthesis takes 5-6 d, the imaging system setup takes 1-2 h, the in vivo cell labeling takes 1-3 h, the in vivo NIR-II microscopic imaging takes 3-5 h and the data analysis takes 3-8 h. The procedures can be performed by users with standard laboratory training in nanomaterials research and appropriate animal handling.
Collapse
Affiliation(s)
- Ying Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Yiwei Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Ullah Z, Roy S, Muhammad S, Yu C, Huang H, Chen D, Long H, Yang X, Du X, Guo B. Fluorescence imaging-guided surgery: current status and future directions. Biomater Sci 2024; 12:3765-3804. [PMID: 38961718 DOI: 10.1039/d4bm00410h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Surgery is one of the most important paradigms for tumor therapy, while fluorescence imaging (FI) offers real-time intraoperative guidance, greatly boosting treatment prognosis. The imaging fidelity heavily relies on not only imaging facilities but also probes for imaging-guided surgery (IGS). So far, a great number of IGS probes with emission in visible (400-700 nm) and near-infrared (NIR 700-1700 nm) windows have been developed for pinpointing disease margins intraoperatively. Herein, the state-of-the-art fluorescent probes for IGS are timely updated, with a special focus on the fluorescent probes under clinical examination. For a better demonstration of the superiority of NIR FI over visible FI, both imaging modalities are critically compared regarding signal-to-background ratio, penetration depth, resolution, tissue autofluorescence, photostability, and biocompatibility. Various types of fluorescence IGS have been summarized to demonstrate its importance in the medical field. Furthermore, the most recent progress of fluorescent probes in NIR-I and NIR-II windows is summarized. Finally, an outlook on multimodal imaging, FI beyond NIR-II, efficient tumor targeting, automated IGS, the use of AI and machine learning for designing fluorescent probes, and the fluorescence-guided da Vinci surgical system is given. We hope this review will stimulate interest among researchers in different areas and expedite the translation of fluorescent probes from bench to bedside.
Collapse
Affiliation(s)
- Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Saz Muhammad
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chen Yu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Dongxiang Chen
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Haodong Long
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Xiulan Yang
- School of Computer Science and Engineering, Yulin Normal University, Yulin, 537000, China.
| | - Xuelian Du
- Department of Gynecology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 1, Fuhua Road, Futian District, Shenzhen, 518033, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
15
|
Rubert-Albiol R, Cerdá J, Calbo J, Cupellini L, Ortí E, Aragó J. Theoretical description of photoinduced electron transfer in donor-acceptor supramolecular complexes based on carbon buckybowls. J Chem Phys 2024; 161:014304. [PMID: 38953447 DOI: 10.1063/5.0215339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Herein, we explore, from a theoretical perspective, the nonradiative photoinduced processes (charge separation and energy transfer) within a family of donor-acceptor supramolecular complexes based on the electron-donor truxene-tetrathiafulvalene (truxTTF) derivative and a series of curved fullerene fragments (buckybowls) of different shapes and sizes (C30H12, C32H12, and C38H14) as electron acceptors that successfully combine with truxTTF via non-covalent interactions. The resulting supramolecular complexes (truxTTF·C30H12, truxTTF·C32H12, and truxTTF·C38H14) undergo charge-separation processes upon photoexcitation through charge-transfer states involving the donor and acceptor units. Despite the not so different size of the buckybowls, they present noticeable differences in the charge-separation efficiency owing to a complex decay post-photoexcitation mechanism involving several low-lying excited states of different natures (local and charge-transfer excitations), all closely spaced in energy. In this intricate scenario, we have adopted a theoretical approach combining electronic structure calculations at (time-dependent) density functional theory, a multistate multifragment diabatization method, the Marcus-Levitch-Jortner semiclassical rate expression, and a kinetic model to estimate the charge separation rate constants of the supramolecular heterodimers. Our outcomes highlight that the efficiency of the photoinduced charge-separation process increases with the extension of the buckybowl backbone. The supramolecular heterodimer with the largest buckybowl (truxTTF·C38H14) displays multiple and efficient electron-transfer pathways, providing a global photoinduced charge separation in the ultrafast time scale in line with the experimental findings. The study reported indicates that modifications in the shape and size of buckybowl systems can give rise to attractive novel acceptors for potential photovoltaic applications.
Collapse
Affiliation(s)
- Raquel Rubert-Albiol
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna 46980, Spain
| | - Jesús Cerdá
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna 46980, Spain
- Laboratory for Chemistry of Novel Materials, Université de Mons, Mons 7000, Belgium
| | - Joaquín Calbo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna 46980, Spain
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Pisa, Italy
| | - Enrique Ortí
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna 46980, Spain
| | - Juan Aragó
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna 46980, Spain
| |
Collapse
|
16
|
Min H, Zhu ZH, Min YJ, Yao B, Cheng P. Highly Specific Sulfadiazine Detection Using a Two-Dimensional Europium-Organic Coordination Polymer. Chempluschem 2024; 89:e202400038. [PMID: 38499465 DOI: 10.1002/cplu.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/20/2024]
Abstract
Sulfadiazine (SFZ) is an inexpensive large-consumption antibiotic used for treat bacterial infections but an excess of residues in food can be harmful. Fast and specific luminescence detection of SFZ is highly challenging because of the interference of structurally similar antibiotics. In this work, we develop a two-dimensional europium-organic coordination polymer with excellent luminescence and water stability for highly specific detection of SFZ in the range of 0-0.2 mM. Structural analysis shows that the high stability of coordination polymer is due to the high coordination number of europium ion and the special chelating coordination structure of ligand. The experiment results revealed that the high selectivity and effectively luminescence quenched behaviour of coordination polymer toward SFZ is caused by highly efficient inner filter effect.
Collapse
Affiliation(s)
- Hui Min
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei province, 435002, P. R. China
| | - Zhuo-Hang Zhu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei province, 435002, P. R. China
| | - Yu-Jiao Min
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei province, 435002, P. R. China
| | - Binling Yao
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei province, 435002, P. R. China
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
17
|
Yin Y, Zhang J, Ji C, Tao H, Yang Y. Rare [Cu 4I 2] 2+ cationic cluster-based metal-organic framework and hierarchical porous composites design for effective detection and removal of roxarsone and antibiotics. J Colloid Interface Sci 2024; 664:551-560. [PMID: 38484524 DOI: 10.1016/j.jcis.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Fluorescence quenching induced by photoinduced electron transfer (PET) stands as an effective strategy for identifying water pollutants. Herein, a novel (4, 8)-connected three-dimensional framework Cu(I)-MOF ([Cu2I(tpt)]n) with unique 8-connected [Cu4I2]2+ cationic clusters is designed by employing the nitrogen-rich ligand (Htpt = 5-[4(1H-1,2,4-triazol-1-yl)]phenyl-2H-tetrazole). Water-stabilized Cu(I)-MOF exhibits outstanding fluorescence properties, facilitating its application in detecting organic pollutants in water. Benefiting from the fact that the Cu(I)-MOF possesses a higher lowest unoccupied molecular orbitals (LUMO) energy level than that of the analyte, the rapid d-PET can occur, entitling Cu(I)-MOF to a sensitive fluorescence quenching response to roxarsone (ROX), nitrofurazone (NFZ) and nitrofurantoin (NFT) (with detection limits as low as 0.13 µM, 0.15 µM, and 0.13 µM, respectively). The nitrogen-containing sites of melamine foam (MF) are utilized to facilitate the anchoring and growth of Cu-MOF crystals, which enables the preparation of hierarchical microporous - macroporous Cu(I)-MOF/MF composites. The ordered porous structure of Cu(I)-MOF/MF provides cavities and open sites for the efficient removal of ROX (qmax = 210.6 mg∙g-1), NFZ (qmax = 111.5 mg∙g-1) and NFT (qmax = 238.9 mg∙g-1) from water. This characteristic endows the Cu(I)-MOF/MF with rapid and recyclable adsorption capacity. Therefore, this work provides valuable insights to address the problem of detection and removal of pollutants in the aquatic environment.
Collapse
Affiliation(s)
- Yuanyuan Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jian Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Chengshan Ji
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - He Tao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
18
|
Mei D, Yan B. A 2D Acridine-Based Covalent Organic Framework for Selective Detection and Efficient Extraction of Gold from Complex Aqueous-Based Matrices. Angew Chem Int Ed Engl 2024; 63:e202402205. [PMID: 38606878 DOI: 10.1002/anie.202402205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/13/2024]
Abstract
Developing candidate materials which possess the ability of both selective detection and efficient capture of precious metal gold is highly desirable for environment and economy. However, most of reported materials only focus on single function, which seriously restricts their practical application as probes or adsorbents. Herein, a two dimensional (2D) acridine-based covalent organic framework (TpDa-COF) is prepared via the linkage of imine bonds for gold detection and adsorption. The synthesized COF can achieve both fluorescence and colorimetric dual sensing for Au3+ in a low concentration range (0.1-1.5 ppm) with the limit of detection (LOD) of 0.036 ppm. Impressively, the selectivity of TpDa-COF for the detection of Au3+ is admirable (Fe3+, Fe2+ and Cu2+ for negligible influence on its fluorescence). In addition, TpDa-COF exhibits ultrahigh adsorption capacity of 982.5 mg ⋅ g-1 for gold at pH=4, which is attributed the synergistic effect of both selective coordination and reductive process of Au(III) to Au(0). Meanwhile, both positive entropy change (ΔS=76.07 J ⋅ mol-1 ⋅ K-1) and high distribution coefficient (Kd=12484.8 mL ⋅ g-1) confirm the good affinity between TpDa-COF framework and gold. This work gives us a new insight to prepare COF with pyridine nitrogen sites for gold detection and adsorption.
Collapse
Affiliation(s)
- Douchao Mei
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| |
Collapse
|
19
|
Liu X, Xiang C, Lv Y, Xiang J, Ma G, Li C, Hu Y, Guo C, Sun H, Cai L, Gong P. Preparation of near-infrared photoacoustic imaging and photothermal treatment agent for cancer using a modifiable acid-triggered molecular platform. Analyst 2024; 149:3064-3072. [PMID: 38712864 DOI: 10.1039/d4an00189c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Ratiometric near-infrared fluorescent pH probes with various pKa values were innovatively designed and synthesized based on cyanine with a diamine moiety. The photochemical properties of these probes were thoroughly evaluated. Among the series, IR-PHA exhibited an optimal pKa value of approximately 6.40, closely matching the pH of cancerous tissues. This feature is particularly valuable for real-time pH monitoring in both living cells and living mice. Moreover, when administered intravenously to tumor-bearing mice, IR-PHA demonstrated rapid and significant enhancement of near-infrared fluorescence and photoacoustic signals within the tumor region. This outcome underscores the probe's exceptional capability for dual-modal cancer imaging utilizing near-infrared fluorescence (NIRF) and photoacoustic (PA) modalities. Concurrently, the application of a continuous-wave near-infrared laser efficiently ablated cancer cells in vivo, attributed to the photothermal effect induced by IR-PHA. The results strongly indicate that IR-PHA is well-suited for NIRF/PA dual-modality imaging and photothermal therapy of tumors. This makes it a promising candidate for theranostic applications involving small molecules.
Collapse
Affiliation(s)
- Xiaoming Liu
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| | - Chunbai Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| | - Yalin Lv
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| | - Jingjing Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| | - Gongcheng Ma
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| | - Changzhong Li
- Peking University Shenzhen Hospital, Shenzhen, 518053, China
| | - Yan Hu
- Peking University Shenzhen Hospital, Shenzhen, 518053, China
| | - Chunlei Guo
- Peking University Shenzhen Hospital, Shenzhen, 518053, China
| | - Hua Sun
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| |
Collapse
|
20
|
Liu Y, Zhu K, Yan B. Food and environmental safety monitoring platform based on Tb(III) functionalized HOF hybrids for ultrafast detection of thiabendazole and 2-chlorophenol. Talanta 2024; 272:125829. [PMID: 38422907 DOI: 10.1016/j.talanta.2024.125829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Development of efficient and intelligent method for detecting harmful agrochemicals in resource-limited settings remains an urgent need to ensure food and environmental safety. Herein, a novel dual-emitting Tb3+-modified hydrogen-bonded organic framework (Tb@TBTC, TBTC is the ligand of HOF-TBTC.) with visible green fluorescence has been prepared through coordination post-synthetic modification. Tb@TBTC can be designed as a fluorescence sensor for the identification of two harmful carcinogenic pesticides, thiabendazole (TBZ) and 2-chlorophenol (2-CP) with high sensitivity, high efficiency and excellent selectivity. Tb@TBTC can also adsorb 2-CP with high adsorption rate. In realistic fruit juice and river water samples, the detection limits of Tb@TBTC toward TBZ and 2-CP are as low as 2.73 μM and 2.18 μM, respectively, demonstrating the feasibility in practical application. Furthermore, an intelligent real-time and on-site monitoring platform for 2-CP detection is constructed based on Tb@TBTC-agarose hydrogel films with the assistance of back propagation neural network, which can efficiently and accurately determine the concentration of 2-CP from fluorescence images through human-machine interaction. This work presents a facile pathway to prepare Tb@HOF fluorescent sensor for food and ecological environment safety, which is highly promising for preventing human disease and improving global public health.
Collapse
Affiliation(s)
- Yanhong Liu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Kai Zhu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China.
| |
Collapse
|
21
|
Bednarik S, Demuth J, Kernal J, Miletin M, Zimcik P, Novakova V. Tuning Electron-Accepting Properties of Phthalocyanines for Charge Transfer Processes. Inorg Chem 2024; 63:8799-8806. [PMID: 38679903 PMCID: PMC11094797 DOI: 10.1021/acs.inorgchem.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Phthalocyanines play fundamental roles as electron-acceptors in many different fields; thus, the study of structural features affecting electron-accepting properties of these macrocycles is highly desirable. A series of low-symmetry zinc(II) phthalocyanines, in which one, three, or four benzene rings were replaced for pyrazines, was prepared and decorated with electron-neutral (alkylsulfanyl) or strongly electron-withdrawing (alkylsulfonyl) groups to study the role of the macrocyclic core as well as the effect of peripheral substituents. Electrochemical studies revealed that the first reduction potential (Ered1) is directly proportional to the number of pyrazine units in the macrocycle. Introduction of alkylsulfonyl groups had a very strong effect and resulted in a strongly electron-deficient macrocycle with Ered1 = -0.48 V vs SCE (in THF). The efficiency of intramolecular-charge transfer (ICT) from the peripheral bis(2-methoxyethyl)amine group to the macrocycle was monitored as a decrease in the sum of ΦΔ + ΦF and correlated well with the determined Ered1 values. The strongest quenching by ICT was observed for the most electron-deficient macrocycle. Importantly, an obvious threshold at -1.0 V vs SCE was observed over which no ICT occurs. Disclosed results may substantially help to improve the design of electron-donor systems based on phthalocyanines.
Collapse
Affiliation(s)
- Stefan Bednarik
- Faculty of Pharmacy in Hradec
Kralove, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove, 500 05 Czech Republic
| | - Jiri Demuth
- Faculty of Pharmacy in Hradec
Kralove, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove, 500 05 Czech Republic
| | - Jakub Kernal
- Faculty of Pharmacy in Hradec
Kralove, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove, 500 05 Czech Republic
| | - Miroslav Miletin
- Faculty of Pharmacy in Hradec
Kralove, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove, 500 05 Czech Republic
| | - Petr Zimcik
- Faculty of Pharmacy in Hradec
Kralove, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove, 500 05 Czech Republic
| | - Veronika Novakova
- Faculty of Pharmacy in Hradec
Kralove, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove, 500 05 Czech Republic
| |
Collapse
|
22
|
Li L, Zhang Z, Zhou L, Ge H, Zhao Y, Gong Y, Mao GJ, Liu H. NIR Fluorescent/Photoacoustic Bimodal Imaging of Ferroptosis in Pancreatic Cancer Using Biothiols-Activable Probes. Anal Chem 2024; 96:7248-7256. [PMID: 38655839 DOI: 10.1021/acs.analchem.4c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ferroptosis modulation is a powerful therapeutic option for pancreatic ductal adenocarcinoma (PDAC) with a low 5-year survival rate and lack of effective treatment methods. However, due to the dual role of ferroptosis in promoting and inhibiting pancreatic tumorigenesis, regulating the degree of ferroptosis is very important to obtain the best therapeutic effect of PDAC. Biothiols are suitable as biomarkers of imaging ferroptosis due to the dramatic decreases of biothiol levels in ferroptosis caused by the inhibited synthesis pathway of glutathione (GSH) and the depletion of biothiol by reactive oxygen species. Moreover, a very recent study reported that cysteine (Cys) depletion can lead to pancreatic tumor ferroptosis in mice and may be employed as an effective therapeutic strategy for PDAC. Therefore, visualization of biothiols in ferroptosis of PDAC will be helpful for regulating the degree of ferroptosis, understanding the mechanism of Cys depletion-induced pancreatic tumor ferroptosis, and further promoting the study and treatment of PDAC. Herein, two biothiol-activable near-infrared (NIR) fluorescent/photoacoustic bimodal imaging probes (HYD-BX and HYD-DX) for imaging of pancreatic tumor ferroptosis were reported. These two probes show excellent bimodal response performances for biothiols in solution, cells, and tumors. Subsequently, they have been employed successfully for real-time visualization of changes in concentration levels of biothiols during the ferroptosis process in PDAC cells and HepG2 cells. Most importantly, they have been further applied for bimodal imaging of ferroptosis in pancreatic cancer in mice, with satisfactory results. The development of these two probes provides new tools for monitoring changes in concentration levels of biothiols in ferroptosis and will have a positive impact on understanding the mechanism of Cys depletion-induced pancreatic tumor ferroptosis and further promoting the study and treatment of PDAC.
Collapse
Affiliation(s)
- Lingyun Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhipengjun Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Hunan Normal University, Changsha 410005, P. R. China
| | - Haifeng Ge
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Yixing Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Yijun Gong
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guo-Jiang Mao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Hunan Normal University, Changsha 410005, P. R. China
| |
Collapse
|
23
|
Wen SL, Lang W, Li X, Cao QY. PEGylated AIEgens for dual sensing of ATP and H 2S and cancer cells photodynamic therapy. Talanta 2024; 271:125739. [PMID: 38309115 DOI: 10.1016/j.talanta.2024.125739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Fluorescent sensors have been widely applied for biosensing, but probes for both multiple analytes sensing and photodynamic therapy (PDT) effect are less reported. In this article, we reported three AIE-based probes anchored with different mass-weight polyethylene glycol (PEG) tails, i.e., TPE-PEG160, TPE-PEG350, and TPE-PEG750, for both adenosine-5'-triphosphate (ATP) and hydrogen sulfide (H2S) detection and also cancer cells photodynamic therapy. TPE-PEGns (n = 160, 350 and 750) contain the tetraphenylethylene-based fluorophore core, the pyridinium and amide anion binding sites, the H2S cleavable disulfide bond, and the hydrophilic PEG chain. They exhibit a good amphiphilic property and can self-assemble nona-aggregation with a moderated red emission in an aqueous solution. Importantly, the size of aggregation, photophysical property, sensing ability and photosensitivity of these amphiphilic probes can be controlled by tuning the PEG chain length. Moreover, the selected probe TPE-PEG160 has been successfully used to detect environmental H2S and image ATP levels in living cells, and TPE-PEG750 has been used for photodynamic therapy of tumor cells under light irradiation.
Collapse
Affiliation(s)
- Shi-Lian Wen
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Wei Lang
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Xue Li
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Qian-Yong Cao
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China.
| |
Collapse
|
24
|
Yang J, Xu Z, Yu L, Wang B, Hu R, Tang J, Lv J, Xiao H, Tan X, Wang G, Li JX, Liu Y, Shao PL, Zhang B. Organic Fluorophores with Large Stokes Shift for the Visualization of Rapid Protein and Nucleic Acid Assays. Angew Chem Int Ed Engl 2024; 63:e202318800. [PMID: 38443316 DOI: 10.1002/anie.202318800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
Organic small-molecule fluorophores, characterized by flexible chemical structure and adjustable optical performance, have shown tremendous potential in biosensing. However, classical organic fluorophore motifs feature large overlap between excitation and emission spectra, leading to the requirement of advanced optical set up to filter desired signal, which limits their application in scenarios with simple settings. Here, a series of wavelength-tunable small-molecule fluorescent dyes (PTs) bearing simple organic moieties have been developed, which exhibit Stokes shift up to 262 nm, molar extinction coefficients ranged 30,000-100,000 M-1 cm-1, with quantum yields up to 54.8 %. Furthermore, these dyes were formulated into fluorescent nanoparticles (PT-NPs), and applied in lateral flow assay (LFA). Consequently, limit of detection for SARS-CoV-2 nucleocapsid protein reached 20 fM with naked eye, a 100-fold improvement in sensitivity compared to the pM detection level for colloidal gold-based LFA. Besides, combined with loop-mediated isothermal amplification (LAMP), the LFA system achieved the visualization of single copy level nucleic acid detection for monkeypox (Mpox).
Collapse
Affiliation(s)
- Jingkai Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Ziyi Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Le Yu
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University. Xi'an, Xi An Shi, 710127, China
| | - Bingyun Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Ruibin Hu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Jiahu Tang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Jiahui Lv
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Hongjun Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Xuan Tan
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Guanghui Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Jia-Xin Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Pan-Lin Shao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Bo Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| |
Collapse
|
25
|
Guan M, Li H, Tu M, Fu C, Yang X, Wang F. A novel fluorescent "Off-On" probe based on phenanthro[9,10-d]imidazole conjugated polymers (PIPF) for Cr 3+ detection with high selectivity and sensitivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123988. [PMID: 38324948 DOI: 10.1016/j.saa.2024.123988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Trivalent chromium (Cr3+) causes serious environmental pollution, degradation of the quality of edible agricultural products and human diseases. A novel phenanthro[9,10-d]imidazole-derived conjugated polymers (PIPF) was obtained from 4-(5,10-dibromo-1H-phenanthro[9,10-d]imidazol-2-yl)phenol and diethyl 4,4'-(2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-fluorene-9,9-diyl)dibutyrate by Suzuki polymerization reaction, which was reasonably demonstrated by 1H NMR spectroscopy, infrared spectroscopy and quantum chemical calculations. The PIPF exhibits a "turn-on" fluorescence response to Cr3+ in DMSO/H2O (98:2, v/v) with naked-eye detection. The limit of detection for Cr3+ was calculated to be 0.073 μM with a linear range of 3-9 μM. The possible mechanism of the PIPF-based Cr3+ fluorescence "turn-on" sensor is due to the inhibition of the PET process by the coordination of Cr3+ to the hexaalkyl ester carbon chain of PIPF (RCOO-). The high sensitivity, good selectivity, and utility of this sensor indicated that PIPF-based "turn-on" fluorescence sensor is a potential fluorescence application for measuring Cr3+ in environmental samples.
Collapse
Affiliation(s)
- Mingyi Guan
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Hui Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Man Tu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China; Jing Brand Research Institute, Jing Brand Co.Ltd, Huangshi 435100, PR China
| | - Chenchen Fu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Xiyu Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Feng Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| |
Collapse
|
26
|
Fujita K, Urano Y. Activity-Based Fluorescence Diagnostics for Cancer. Chem Rev 2024; 124:4021-4078. [PMID: 38518254 DOI: 10.1021/acs.chemrev.3c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Fluorescence imaging is one of the most promising approaches to achieve intraoperative assessment of the tumor/normal tissue margins during cancer surgery. This is critical to improve the patients' prognosis, and therefore various molecular fluorescence imaging probes have been developed for the identification of cancer lesions during surgery. Among them, "activatable" fluorescence probes that react with cancer-specific biomarker enzymes to generate fluorescence signals have great potential for high-contrast cancer imaging due to their low background fluorescence and high signal amplification by enzymatic turnover. Over the past two decades, activatable fluorescence probes employing various fluorescence control mechanisms have been developed worldwide for this purpose. Furthermore, new biomarker enzymatic activities for specific types of cancers have been identified, enabling visualization of various types of cancers with high sensitivity and specificity. This Review focuses on recent advances in the design, function and characteristics of activatable fluorescence probes that target cancer-specific enzymatic activities for cancer imaging and also discusses future prospects in the field of activity-based diagnostics for cancer.
Collapse
|
27
|
Kuzmina NS, Fedotova EA, Jankovic P, Gribova GP, Nyuchev AV, Fedorov AY, Otvagin VF. Enhancing Precision in Photodynamic Therapy: Innovations in Light-Driven and Bioorthogonal Activation. Pharmaceutics 2024; 16:479. [PMID: 38675140 PMCID: PMC11053670 DOI: 10.3390/pharmaceutics16040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Over the past few decades, photodynamic therapy (PDT) has evolved as a minimally invasive treatment modality offering precise control over cancer and various other diseases. To address inherent challenges associated with PDT, researchers have been exploring two promising avenues: the development of intelligent photosensitizers activated through light-induced energy transfers, charges, or electron transfers, and the disruption of photosensitive bonds. Moreover, there is a growing emphasis on the bioorthogonal delivery or activation of photosensitizers within tumors, enabling targeted deployment and activation of these intelligent photosensitive systems in specific tissues, thus achieving highly precise PDT. This concise review highlights advancements made over the last decade in the realm of light-activated or bioorthogonal photosensitizers, comparing their efficacy and shaping future directions in the advancement of photodynamic therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexey Yu. Fedorov
- Department of Organic Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia; (N.S.K.); (E.A.F.); (P.J.); (G.P.G.); (A.V.N.)
| | - Vasilii F. Otvagin
- Department of Organic Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia; (N.S.K.); (E.A.F.); (P.J.); (G.P.G.); (A.V.N.)
| |
Collapse
|
28
|
Ma YF, Liu XL, Lu XY, Zhang ML, Ren YX, Yang XG. Zn-coordination polymers for fluorescence sensing various contaminants in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123803. [PMID: 38159382 DOI: 10.1016/j.saa.2023.123803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Luminescent coordination polymers (LCPs) have garnered significant attention from researchers as promising materials for detecting contaminants. In this paper, three new LCPs ([Zn(tib)(opda)]n⋅H2O (1), [Zn3(tib)2(mpda)3]n⋅5H2O (2), [Zn (tib)(ppda)]n⋅H2O (3)) with different structures (LCP 1-3: 1D, 2D, 1D) using phenylenediacetic acid isomers and 1,3,5-tris (1-imidazolyl) benzene (tib) are synthesized. The specific surface areas (BET) of LCP 1-3 are 4 m2/g, 19 m2/g, and 13 m2/g respectively. LCP 1-3 exhibit excellent fluorescence properties and can serve as fluorescent probe for the detection of inorganic contaminants and organic contaminants. Due to the large BET of LCP 2, the detection limits for trace analytes surpass those of LCP 1 and 3. The detection limits of LCP 2 for Fe3+, nitrobenzene (NB), chloramphenicol (CAP), and pyrimethanil (PTH) are 8.3 nM, 0.016 μM, 0.19 μM, and 0.032 μM, respectively, and the fluorescence quenching rates are 98.6 %, 98.8 %, 92.3 %, and 98.8 %, respectively. These values outperform most reported in the literature. The quantum yields of LCP 1-3 are 11.84 %, 25.22 %, 22.00 % respectively. Real sample testing of LCP 1-3 reveals favorable performance, where spiked recoveries of LCP 2 for the detection of pyrimethanil in grape skins ranged from 99.62 % to 119.3 % with a relative standard deviation (RSD) of 0.627 % to 4.56 % (n = 3). The fluorescence quenching mechanism was attributed to a combination of photoelectron transfer (PET), resonance energy transfer (RET), and competitive absorption (CA). This study advances the application of LCPs in luminescence sensing and contributes to the expansion of novel materials for detecting environmental pollutants.
Collapse
Affiliation(s)
- Ya-Fei Ma
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Xiao-Li Liu
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Xue-Ying Lu
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Mei-Li Zhang
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China.
| | - Yi-Xia Ren
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Xiao-Gang Yang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| |
Collapse
|
29
|
Iqbal H, Ilyas K, Akash MSH, Rehman K, Hussain A, Iqbal J. Real-time fluorescent monitoring of phase I xenobiotic-metabolizing enzymes. RSC Adv 2024; 14:8837-8870. [PMID: 38495994 PMCID: PMC10941266 DOI: 10.1039/d4ra00127c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
This article explores the intricate landscape of advanced fluorescent probes crafted for the detection and real-time monitoring of phase I xenobiotic-metabolizing enzymes. Employing state-of-the-art technologies, such as fluorescence resonance energy transfer, intramolecular charge transfer, and solid-state luminescence enhancement, this article unfolds a multifaceted approach to unraveling the dynamics of enzymatic processes within living systems. This encompassing study involves the development and application of a diverse range of fluorescent probes, each intricately designed with tailored mechanisms to heighten sensitivity, providing dynamic insights into phase I xenobiotic-metabolizing enzymes. Understanding the role of phase I xenobiotic-metabolizing enzymes in these pathophysiological processes, is essential for both medical research and clinical practice. This knowledge can guide the development of approaches to prevent, diagnose, and treat a broad spectrum of diseases and conditions. This adaptability underscores their potential clinical applications in cancer diagnosis and personalized medicine. Noteworthy are the trifunctional fluorogenic probes, uniquely designed not only for fluorescence-based cellular imaging but also for the isolation of cellular glycosidases. This innovative feature opens novel avenues for comprehensive studies in enzyme biology, paving the way for potential therapeutic interventions. The research accentuates the selectivity and specificity of the probes, showcasing their proficiency in distinguishing various enzymes and their isoforms. The sophisticated design and successful deployment of these fluorescent probes mark significant advancements in enzymology, providing powerful tools for both researchers and clinicians. Beyond their immediate applications, these probes offer illuminating insights into disease mechanisms, facilitating early detection, and catalyzing the development of targeted therapeutic interventions. This work represents a substantial leap forward in the field, promising transformative implications for understanding and addressing complex biological processes. In essence, this research heralds a new era in the development of fluorescent probes, presenting a comprehensive and innovative approach that not only expands the understanding of cellular enzyme activities but also holds great promise for practical applications in clinical settings and therapeutic endeavors.
Collapse
Affiliation(s)
- Hajra Iqbal
- Department of Pharmaceutical Chemistry, Government College University Faisalabad Pakistan
| | - Kainat Ilyas
- Department of Pharmaceutical Chemistry, Government College University Faisalabad Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, The Women University Multan Pakistan
| | - Amjad Hussain
- Institute of Chemistry, University of Okara Okara Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus Abbottabad 22044 Pakistan
| |
Collapse
|
30
|
Ji X, Wang N, Wang J, Wang T, Huang X, Hao H. Non-destructive real-time monitoring and investigation of the self-assembly process using fluorescent probes. Chem Sci 2024; 15:3800-3830. [PMID: 38487216 PMCID: PMC10935763 DOI: 10.1039/d3sc06527h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 03/17/2024] Open
Abstract
Self-assembly has been considered as a strategy to construct superstructures with specific functions, which has been widely used in many different fields, such as bionics, catalysis, and pharmacology. A detailed and in-depth analysis of the self-assembly mechanism is beneficial for directionally and accurately regulating the self-assembly process of substances. Fluorescent probes exhibit unique advantages of sensitivity, non-destructiveness, and real-time self-assembly tracking, compared with traditional methods. In this work, the design principle of fluorescent probes with different functions and their applications for the detection of thermodynamic and kinetic parameters during the self-assembly process were systematically reviewed. Their efficiency, limitations and advantages are also discussed. Furthermore, the promising perspectives of fluorescent probes for investigating the self-assembly process are also discussed and suggested.
Collapse
Affiliation(s)
- Xiongtao Ji
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China +86-22-27374971 +86-22-27405754
| |
Collapse
|
31
|
Li WZ, Li J, Ma WL, Zhang XS, Liu Y, Luan J. Fabrication of nanofibrous membranes decorated with metal-organic frameworks for detection of pollutants in water. Talanta 2024; 269:125496. [PMID: 38043341 DOI: 10.1016/j.talanta.2023.125496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
The environmental pollution caused by antibiotics, Fe3+ and MnO4- pollutants is becoming increasingly serious. Polyacrylonitrile (PAN) and polymethyl methacrylate (PMMA) were used and decorated with metal-organic frameworks (MOFs) to fabricated three kinds of nanofibrous membranes (NFMs) with different shapes and sizes were prepared by electrospinning technology using in situ growth method and mixed spinning method. The structures and properties of the above three kinds of NFMs were characterized. Among them, PAN@Co/Mn-MOF-74 NFM prepared by in-situ growth method based on PAN was a kind of nano-fluorescent NFM sensor with uniform structure and good fluorescence performance. It showed unique specificity and excellent sensitivity in the detection of ORN, Fe3+ and MnO4-. Compared with previously reported functionalized MOFs, PAN@Co/Mn-MOF-74 NFM has a lower limit of detection (LOD). This study provides a feasible technical route for the preparation of nano-fluorescent NFMs and the targeted detection of trace metal ions and antibiotics.
Collapse
Affiliation(s)
- Wen-Ze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Jing Li
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Wan-Lin Ma
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Xiao-Sa Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Yu Liu
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
32
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
33
|
Shi TM, Chen XF, Ti H. Ferroptosis-Based Therapeutic Strategies toward Precision Medicine for Cancer. J Med Chem 2024; 67:2238-2263. [PMID: 38306267 DOI: 10.1021/acs.jmedchem.3c01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Ferroptosis is a type of iron-dependent programmed cell death characterized by the dysregulation of iron metabolism and the accumulation of lipid peroxides. This nonapoptotic mode of cell death is implicated in various physiological and pathological processes. Recent findings have underscored its potential as an innovative strategy for cancer treatment, particularly against recalcitrant malignancies that are resistant to conventional therapies. This article focuses on ferroptosis-based therapeutic strategies for precision cancer treatment, covering the molecular mechanisms of ferroptosis, four major types of ferroptosis inducers and their inhibitory effects on diverse carcinomas, the detection of ferroptosis by fluorescent probes, and their implementation in image-guided therapy. These state-of-the-art tactics have manifested enhanced selectivity and efficacy against malignant carcinomas. Given that the administration of ferroptosis in cancer therapy is still at a burgeoning stage, some major challenges and future perspectives are discussed for the clinical translation of ferroptosis into precision cancer treatment.
Collapse
Affiliation(s)
- Tong-Mei Shi
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences, China National Analytical Center, Guangzhou, Guangzhou 510070, P. R. China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| |
Collapse
|
34
|
Sakamoto DM, Tamura I, Yi B, Hasegawa S, Saito Y, Yamada N, Takakusagi Y, Kubota SI, Kobayashi M, Harada H, Hanaoka K, Taki M, Nangaku M, Tainaka K, Sando S. Whole-Body and Whole-Organ 3D Imaging of Hypoxia Using an Activatable Covalent Fluorescent Probe Compatible with Tissue Clearing. ACS NANO 2024; 18:5167-5179. [PMID: 38301048 DOI: 10.1021/acsnano.3c12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Elucidation of biological phenomena requires imaging of microenvironments in vivo. Although the seamless visualization of in vivo hypoxia from the level of whole-body to single-cell has great potential to discover unknown phenomena in biological and medical fields, no methodology for achieving it has been established thus far. Here, we report the whole-body and whole-organ imaging of hypoxia, an important microenvironment, at single-cell resolution using activatable covalent fluorescent probes compatible with tissue clearing. We initially focused on overcoming the incompatibility of fluorescent dyes and refractive index matching solutions (RIMSs), which has greatly hindered the development of fluorescent molecular probes in the field of tissue clearing. The fluorescent dyes compatible with RIMS were then incorporated into the development of activatable covalent fluorescent probes for hypoxia. We combined the probes with tissue clearing, achieving comprehensive single-cell-resolution imaging of hypoxia in a whole mouse body and whole organs.
Collapse
Affiliation(s)
- Daichi M Sakamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Iori Tamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Bo Yi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sho Hasegawa
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Yutaro Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoki Yamada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoichi Takakusagi
- Quantum Hyperpolarized MRI Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city 263-8555, Japan
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city 263-8555, Japan
| | - Shimpei I Kubota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenjiro Hanaoka
- Division of Analytical Chemistry for Drug Discovery, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Masayasu Taki
- Institute of Transformative Bio-Molecules, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
- Gftd DeSci, Gftd DAO, Nishikawa Building, 20 Kikuicho, Shinjuku-ku, Tokyo 162-0044, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
35
|
Synoradzki KJ, Paduszyńska N, Solnik M, Toro MD, Bilmin K, Bylina E, Rutkowski P, Yousef YA, Bucolo C, Zweifel SA, Reibaldi M, Fiedorowicz M, Czarnecka AM. From Molecular Biology to Novel Immunotherapies and Nanomedicine in Uveal Melanoma. Curr Oncol 2024; 31:778-800. [PMID: 38392052 PMCID: PMC10887618 DOI: 10.3390/curroncol31020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 02/24/2024] Open
Abstract
Molecular biology studies of uveal melanoma have resulted in the development of novel immunotherapy approaches including tebentafusp-a T cell-redirecting bispecific fusion protein. More biomarkers are currently being studied. As a result, combined immunotherapy is being developed as well as immunotherapy with bifunctional checkpoint inhibitory T cell engagers and natural killer cells. Current trials cover tumor-infiltrating lymphocytes (TIL), vaccination with IKKb-matured dendritic cells, or autologous dendritic cells loaded with autologous tumor RNA. Another potential approach to treat UM could be based on T cell receptor engineering rather than antibody modification. Immune-mobilizing monoclonal T cell receptors (TCR) against cancer, called ImmTAC TM molecules, represent such an approach. Moreover, nanomedicine, especially miRNA approaches, are promising for future trials. Finally, theranostic radiopharmaceuticals enabling diagnosis and therapy with the same molecule bring hope to this research.
Collapse
Affiliation(s)
- Kamil J. Synoradzki
- Environmental Laboratory of Pharmacological and Toxicological Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland;
| | - Natalia Paduszyńska
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (N.P.); (M.S.)
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
| | - Malgorzata Solnik
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (N.P.); (M.S.)
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
| | - Mario Damiano Toro
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 1 Chmielna Str., 20-079 Lublin, Poland;
- Eye Clinic, Public Health Department, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Krzysztof Bilmin
- Research and Development Centre Novasome Sp. z o.o., 51-423 Wrocław, Poland;
| | - Elżbieta Bylina
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
- Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
| | - Yacoub A. Yousef
- Department of Surgery (Ophthalmology), King Hussein Cancer Centre, Amman 11941, Jordan;
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy;
| | - Sandrine Anne Zweifel
- Department of Ophthalmology, University Hospital Zurich, 8091 Zurich, Switzerland;
- Faculty of Human Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Michele Reibaldi
- Department of Surgical Sciences, Eye Clinic Section, Citta della Salute e della Scienza, Turin University, 10122 Turin, Italy;
| | - Michal Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| |
Collapse
|
36
|
Hu H, Cui H, Yin X, Fan Q, Shuai H, Zhang J, Liao F, Xiong W, Jiang H, Fan H, Liu W, Wei G. Dual-mode fluorescence and electrochemiluminescence sensors based on Ru-MOF nanosheets for sensitive detection of apoE genes. J Mater Chem B 2024; 12:701-709. [PMID: 38131524 DOI: 10.1039/d3tb01934a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A fluorescence-electrochemiluminescence (FL-ECL) dual-mode sensor for apoE gene detection has been developed, leveraging the unique properties of ruthenium metal organic framework nanosheets (RuMOFNSs). The system utilizes the quenching effect of the Ru(bpy)32+ ECL signal by ferrocene, leading to the synthesis of a multi-electron electrical signal marker, bisferrocene. By immobilizing the P-DNA on RuMOFNSs, bisferrocene quenches both FL and ECL signals. The addition of T-DNA and the consequent formation of double-stranded DNA enable the ExoIII enzyme to excise the bisferrocene fragment, restoring the signals. The sensor demonstrates wide detection linear ranges (1 fM to 1 nM for FL and 0.01 fM to 10 pM for ECL) and remarkable sensitivity (0.048 fM for FL and 0.016 fM for ECL). The dual-mode design offers enhanced reliability through a self-correction feature, reducing false positives. Compared to single-mode sensors, the dual-mode sensor shows significant advantages. Real-world testing confirms the sensor's capacity for robust detection in actual samples, underscoring its promising application in early disease diagnosis. This innovative approach opens up avenues for multi-signal response sensors, offering significant potential for diagnostic technologies.
Collapse
Affiliation(s)
- Huiting Hu
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Hanfeng Cui
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Xia Yin
- JiangXi Province Hospital of Integrated Chinese and Western Medicine, Nan Chang, JiangXi 330004, China
| | - Qiqi Fan
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Hai Shuai
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Jing Zhang
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Fusheng Liao
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Wei Xiong
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Hedong Jiang
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Hao Fan
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Wenming Liu
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Guobing Wei
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| |
Collapse
|
37
|
Li R, Zhu L, Yang M, Liu A, Xu W, He P. Silver nanocluster-based aptasensor for the label-free and enzyme-free detection of ochratoxin A. Food Chem 2024; 431:137126. [PMID: 37579613 DOI: 10.1016/j.foodchem.2023.137126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/03/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Mycotoxin contamination in cereal is a global concern, threatening food safety and human health, necessitating the development of rapid on-site methods. Here, a label- and enzyme-free biosensor was developed based on aptamer-regulated DNA-silver nanoclusters (AgNCs) for rapid detection of ochratoxin A (OTA). A novel DNA-templated AgNCs emitting strong red fluorescence was designed and synthesized in this study. The partial sequence of the DNA template was selected from the complementary OTA aptamer (Apt-OTA) sequence, which can quench fluorescence from the AgNCs via hybridization in the absence of OTA. In the presence of OTA, the high OTA-Aptamer affinity prevented the Apt-OTA from quenching the AgNCs, resulting in "turn on" of the fluorescence. This biosensor eliminated the use of costly reagents, complex pretreatments, and sophisticated equipment, which could realize the point-of-care testing (POCT) of OTA with a limit of detection (LOD) of 1.3 nM and a detection time of 45 min.
Collapse
Affiliation(s)
- Runxian Li
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Min Yang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Anguo Liu
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
38
|
Ding H, Yue L, Ai Y, Zhu Z, Fan C, Liu G, Pu S. A dual-responsive fluorescent probe based on cyanine and naphthalimide units for detecting HClO and H 2S in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123348. [PMID: 37690401 DOI: 10.1016/j.saa.2023.123348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Hypochlorous acid (HClO) and hydrogen sulfide (H2S) play very important roles in both physiological and pathological processes, however, the methods for simultaneously detecting HClO and H2S were rarely reported. Here, a dual-responsive fluorescent probe (CyNa-N3) based on cyanine and naphthalimide dyes was synthesized and investigated. The fluorescence probe showed better sensitivity, high selectivity response to HClO and H2S by red emission and green emission bands, and the limits of detection were 0.17 µM and 0.15 µM respectively. MS (Mass Spectrum) and 1H NMR (Nuclear Magnetic Resonance) confirmed the sensing mechanism of CyNa-N3 detected HClO and H2S, the calculation of density functional theory (DFT) further explained the internal mechanism of spectral change of CyNa-N3. Moreover, CyNa-N3 was successfully applied to image HClO and H2S in living cells, which is beneficial for more efficient application in biological imaging.
Collapse
Affiliation(s)
- Haichang Ding
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Lisha Yue
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Yin Ai
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Zifan Zhu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, PR China.
| |
Collapse
|
39
|
Kan B, Li L, Hou J, Liu S, Tian Z, Sun Q. Eu-doped carbon quantum dot as a selective probe for visualizing and monitoring sulfite in biological systems. Front Bioeng Biotechnol 2023; 11:1292136. [PMID: 38144538 PMCID: PMC10748433 DOI: 10.3389/fbioe.2023.1292136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
The detection of SO3 2- in complex environments and its visualization at the cellular level are critical for understanding its role in biological processes. In this study, we developed an Eu-doped long-wavelength fluorescent carbon quantum dot (CD2) and investigated the detection mechanism, interference effects and cellular imaging applications of the fluorescent probe CD2. The results show that the addition of SO3 2- induces an electronic rearrangement that restores CD2 to its original structure, leading to a rapid increase in fluorescence intensity. Selectivity experiments showed that CD2 has excellent selectivity to SO3 2-, with minimal interference from common anions. In addition, CD2 shows good biocompatibility for cellular imaging applications, as evidenced by the high cell viability observed in HeLa cells. Using confocal microscopy, we detected a significant enhancement of red fluorescence in HeLa cells after addition of exogenous SO3 2-, demonstrating the potential of CD2 as a probe for monitoring cellular SO3 2- levels. These findings highlight the promise of CD2 as a selective SO3 2- detection probe in complex environments and its utility in cellular imaging studies. Further studies are necessary to fully exploit the potential of CD2 in various biological and biomedical applications.
Collapse
Affiliation(s)
- Bo Kan
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Li Li
- College of Chemistry, Jilin University, Changchun, Jilin, China
| | - Jiaoyu Hou
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shuyan Liu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhenwei Tian
- Department of Emergency and Critical Care, The Second Hospital of Jilin University, Changchun, China
| | - Qianchuang Sun
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
40
|
Wu G, Liu F, Li N, Fu Q, Wang C, Yang S, Xiao H, Tang L, Wang F, Zhou W, Wang W, Kang Q, Li Z, Lin N, Wu Y, Chen G, Tan X, Yang Q. Trisulfide Bond-Mediated Molecular Phototheranostic Platform for "Activatable" NIR-II Imaging-Guided Enhanced Gas/Chemo-Hypothermal Photothermal Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304104. [PMID: 37983599 PMCID: PMC10754146 DOI: 10.1002/advs.202304104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/27/2023] [Indexed: 11/22/2023]
Abstract
Tumor microenvironment (TME)-triggered phototheranostic platform offers a feasible strategy to improve cancer diagnosis accuracy and minimize treatment side effects. Developing a stable and biocompatible molecular phototheranostic platform for TME-activated second near-infrared (NIR-II) fluorescence imaging-guided multimodal cascade therapy is a promising strategy for creating desirable anticancer agents. Herein, a new NIR-II fluorescence imaging-guided activatable molecular phototheranostic platform (IR-FEP-RGD-S-S-S-Fc) is presented for actively targeted tumor imaging and hydrogen sulfide (H2 S) gas-enhanced chemodynamic-hypothermal photothermal combined therapy (CDT/HPTT). It is revealed for the first time that the coupling distance between IR-FE and ferrocene is proportional to the photoinduced electron transfer (PET), and the aqueous environment is favorable for PET generation. The part of Cyclic-RGDfK (cRGDfk) peptides can target the tumor and benefit the endocytosis of nanoparticles. The high-concentration glutathione (GSH) in the TME will separate the fluorescence molecule and ferrocene by the GSH-sensitive trisulfide bond, realizing light-up NIR-II fluorescence imaging and a cascade of trimodal synergistic CDT/HPTT/gas therapy (GT). In addition, the accumulation of hydroxyl radicals (•OH) and down-regulation of glutathione peroxidase 4 (GPX4) can produce excessive harmful lipid hydroperoxides, ultimately leading to ferroptosis.
Collapse
Affiliation(s)
- Gui‐long Wu
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Fen Liu
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Na Li
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Qian Fu
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Cheng‐kun Wang
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Sha Yang
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Hao Xiao
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Li Tang
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of EducationCollege of Chemistry and Chemical EngineeringHainan Normal UniversityHaikouHainan571158China
| | - Feirong Wang
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Wei Zhou
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Wenjie Wang
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Qiang Kang
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Zelong Li
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Nanyun Lin
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Yinyin Wu
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Guodong Chen
- Department of Hepatopancreatobiliary SurgeryThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Xiaofeng Tan
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
- National Health Commission Key Laboratory of Birth Defect Research and PreventionHunan Provincial Maternal and Child Health Care HospitalChangshaHunan410008China
- MOE Key Lab of Rare Pediatric DiseasesHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Qinglai Yang
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
- Department of Hepatopancreatobiliary SurgeryThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
- National Health Commission Key Laboratory of Birth Defect Research and PreventionHunan Provincial Maternal and Child Health Care HospitalChangshaHunan410008China
- MOE Key Lab of Rare Pediatric DiseasesHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| |
Collapse
|
41
|
Chen Y, Pang S, Li J, Lu Y, Gao C, Xiao Y, Chen M, Wang M, Ren X. Genetically encoded protein sensors for metal ion detection in biological systems: a review and bibliometric analysis. Analyst 2023; 148:5564-5581. [PMID: 37872814 DOI: 10.1039/d3an01412f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Metal ions are indispensable elements in living organisms and are associated with regulating various biological processes. An imbalance in metal ion content can lead to disorders in normal physiological functions of the human body and cause various diseases. Genetically encoded fluorescent protein sensors have the advantages of low biotoxicity, high specificity, and a long imaging time in vivo and have become a powerful tool to visualize or quantify the concentration level of biomolecules in vivo and in vitro, temporal and spatial distribution, and life activity process. This review analyzes the development status and current research hotspots in the field of genetically encoded fluorescent protein sensors by bibliometric analysis. Based on the results of bibliometric analysis, the research progress of genetically encoded fluorescent protein sensors for metal ion detection is reviewed, and the construction strategies, physicochemical properties, and applications of such sensors in biological imaging are summarized.
Collapse
Affiliation(s)
- Yuxueyuan Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - ShuChao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Jingya Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yun Lu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chenxia Gao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanyu Xiao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meiling Chen
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Meng Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, China
| | - Xiaoliang Ren
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
42
|
Wen H, Liu Z, Su Z, Kowah JAH, Hao E, Liu X. Development of a novel hypochlorite ratio probe based on coumarin and its application in living cells. RSC Adv 2023; 13:32518-32522. [PMID: 37928861 PMCID: PMC10624156 DOI: 10.1039/d3ra04729f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
Hypochlorous acid is a reactive oxygen species that is widely present in the body and has been found to exhibit an elevated concentration in tumors. As a result, fluorescent probes for tumor detection have recently gained significant attention. In this study, we designed and synthesized a novel ratiometric fluorescent probe, LW-1, using coumarin as a scaffold, and characterized its spectral properties. LW-1 displayed indigo blue fluorescence at low concentrations of hypochlorous acid. As the concentration of hypochlorous acid increased, the probe underwent a reaction, resulting in a red shift in its fluorescence peak and exhibiting green fluorescence. The fluorescence intensity ratio (green/blue) was a susceptible detection signal for HClO. LW-1 exhibited favorable characteristics, including a low detection limit, high sensitivity, good stability, and low background interference. The detection limit has reached 2.4642 nM. Moreover, we successfully employed LW-1 to image normal human liver and colon cancer cells in vitro, demonstrating its potential as a promising tool for tumor detection. Overall, our findings suggest that LW-1 could serve as a valuable addition to the current arsenal of fluorescent probes for tumor detection, with potential applications in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Hao Wen
- Department of Chemical Engineering and Technology, College of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 China
| | - Zifan Liu
- Department of Pharmacy, College of Medicine, Guangxi University Nanning 530004 China
| | - Zixia Su
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine Nanning 530200 Guangxi China
| | - Jamal A H Kowah
- Department of Chemical Engineering and Technology, College of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine Nanning 530200 Guangxi China
| | - Xu Liu
- Department of Pharmacy, College of Medicine, Guangxi University Nanning 530004 China
| |
Collapse
|
43
|
Niranjan R, Prasad GD, Achankunju S, Arockiaraj M, Velumani K, Nachimuthu K, Sundramoorthy AK, Neogi I, Nallasivam JL, Rajeshkumar V, Mahadevegowda SH. Multicomponent Reaction Based Tolyl-substituted and Pyrene-Pyridine Conjugated Isomeric Ratiometric Fluorescent Probes: A Comparative Investigation of Photophysical and Hg(II)-Sensing Behaviors. J Fluoresc 2023:10.1007/s10895-023-03467-x. [PMID: 37864613 DOI: 10.1007/s10895-023-03467-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023]
Abstract
Herein, the synthesis of pyrene conjugated 2,6-di-ortho-tolylpyridine and 2,6-di-para-tolylpyridine structural isomers were achieved efficiently through multicomponent Chichibabin pyridine synthesis reaction. The DFT, TD-DFT and experimental investigations were carried out to investigate the photophysical behaviors of the synthesized novel pyrene-pyridine based isomeric probes. Our studies revealed that, due to the continuous conjugation of the pyrene, pyridine and tolyl moieties, the dihedral angles of the trisubstituents on the central pyridine moiety significantly influences the photophysical properties of the synthesized novel pyrene based fluorescent probes. Further, we have comparatively investigated the sensing behaviors of the synthesized tolyl-substituted isomeric ratiometric fluorescent probes with metal ions, our studies reveals that both the ortho and para tolyl ratiometric fluorescent probes have distinct photoemissive properties in selectively sensing of Hg2+ ions. Our studies indicates that, the para-tolyl substituted isomer displays more red-shift in wavelength of emission band compared to its ortho isomer analogue during ratiometric fluorescent specific detection of Hg2+ ions.
Collapse
Affiliation(s)
- Raghvendra Niranjan
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India
| | - G Durga Prasad
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India
| | - Simi Achankunju
- Chemical Sciences and Technology Division, CSIR-NIIST, Thiruvananthapuram, 695019, Kerala, India
| | - Mariyaraj Arockiaraj
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda, 506004, Telangana, India
| | - Kotteswaran Velumani
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
| | - Kiruthika Nachimuthu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
| | - Ishita Neogi
- Chemical Sciences and Technology Division, CSIR-NIIST, Thiruvananthapuram, 695019, Kerala, India
| | - Jothi L Nallasivam
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Venkatachalam Rajeshkumar
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda, 506004, Telangana, India
| | - Surendra H Mahadevegowda
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India.
| |
Collapse
|
44
|
Liu XL, Yang X, Li L, Xie T, Zhang X, Yang T, Jiang D, Chen J, Chen Y, Cai L, Wang Y, Zhang P. An analyte-replacement near-infrared fluorogenic probe for ultrafast detection of hypochlorite in rheumatoid arthritis. Bioorg Chem 2023; 139:106757. [PMID: 37543016 DOI: 10.1016/j.bioorg.2023.106757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Affiliation(s)
- Xue-Liang Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Xue Yang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Lu Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Tingfei Xie
- Department of Nephrology, The People's Hospital of Baoan Shenzhen, The Second School of Clinical Medicine, Southern Medical University, China
| | - Xiuwen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Daoyong Jiang
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China; Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jihong Chen
- Department of Nephrology, The People's Hospital of Baoan Shenzhen, The Second School of Clinical Medicine, Southern Medical University, China
| | - Yizhao Chen
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China; Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Wang
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
45
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
46
|
Yan J, Wang K, Gui L, Liu X, Ji Y, Lin J, Luo M, Xu H, Lv J, Tan F, Lin L, Yuan Z. Diagnosing Orthotopic Lung Tumor Using a NTR-Activatable Near-Infrared Fluorescent Probe by Tracheal Inhalation. Anal Chem 2023; 95:14402-14412. [PMID: 37698361 DOI: 10.1021/acs.analchem.3c02760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Nitroreductase (NTR) is an enzyme that is upregulated under tumor-depleted oxygen conditions. The majority of studies have been conducted on NTR, but many existing fluorescent imaging tools for monitoring NTR inevitably suffer from weak targeting, low sensitivity, and simple tumor models. Research on diagnosing lung tumors has been very popular in recent years, but targeting assays in orthotopic lung tumors is still of great research value, as such models better mimic the reality of cancer in the organism. Here, we developed a novel near-infrared (NIR) fluorescent probe IR-ABS that jointly targets NTR and carbonic anhydrase IX (CAIX). IR-ABS has excellent sensitivity and selectivity and shows exceptional NTR response in spectroscopic tests. The measurements ensured that this probe has good biosafety in both cells and mice. A better NTR response was found in hypoxic tumor cells at the cellular level, distinguishing tumor cells from normal cells. In vivo experiments demonstrated that IR-ABS achieves a hypoxic response at the zebrafish level and enables rapid and accurate tumor margin distinguishment in different mouse tumor models. More importantly, we successfully applied IR-ABS for NTR detection in orthotopic lung tumor models, further combined with tracheal inhalation drug delivery to improve targeting. To the best of our knowledge, we present for the first time a near-infrared imaging method for targeting lung cancerous tumor in situ via tracheal inhalation drug delivery, in contrast to the reported literature. This NIR fluorescence diagnostic strategy for targeting orthotopic lung cancer holds exciting potential for clinical aid in cancer diagnosis.
Collapse
Affiliation(s)
- Jun Yan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Kaizhen Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Lijuan Gui
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Xian Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, 999077 Hong Kong, China
| | - Yingying Ji
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Jingjing Lin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Man Luo
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Hong Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Jingxuan Lv
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Fang Tan
- Third Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, 650000 Kunming, Yunnan Province, China
| | - Liangting Lin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, 999077 Hong Kong, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| |
Collapse
|
47
|
Munan S, Yadav R, Pareek N, Samanta A. Ratiometric fluorescent probes for pH mapping in cellular organelles. Analyst 2023; 148:4242-4262. [PMID: 37581493 DOI: 10.1039/d3an00960b] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The intracellular pH (pHi) in organelles, including mitochondria, endoplasmic reticulum, lysosomes, and nuclei, differs from the cytoplasmic pH, and thus maintaining the pH of these organelles is crucial for cellular homeostasis. Alterations in the intracellular pH (ΔpHi) in organelles lead to the disruption of cell proliferation, ion transportation, cellular homeostasis, and even cell death. Hence, accurately mapping the pH of organelles is crucial. Accordingly, the development of fluorescence imaging probes for targeting specific organelles and monitoring their dynamics at the molecular level has become the forefront of research in the last three decades. Among them, ratiometric fluorescent probes minimize the interference from the excitation wavelength of light, auto-fluorescence from probe concentration, environmental fluctuations, and instrument sensitivity through self-correction compared to monochromatic fluorescent probes, which are known as turn-on/off fluorescent probes. Small-molecular ratiometric fluorescent probes for detecting ΔpHi are challenging yet demanding. To date, sixty-two ratiometric pH probes have been reported for monitoring internal pH alterations in cellular organelles. However, a critical review on organelle-specific ratiometric probes for pH mapping is still lacking. Thus, in the present review, we report the most recent advances in ratiometric pH probes and the previous data on the role of mapping the ΔpHi of cellular organelles. The development strategy, including ratiometric fluorescence with one reference signal (RFRS) and ratiometric fluorescence with two reversible signals (RFRvS), is systematically illustrated. Finally, we emphasize the major challenges in developing ratiometric probes that merit further research in the future.
Collapse
Affiliation(s)
- Subrata Munan
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, NH 91, Tehsil Dadri, Uttar Pradesh, India 201314.
| | - Rashmi Yadav
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, NH 91, Tehsil Dadri, Uttar Pradesh, India 201314.
| | - Niharika Pareek
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, NH 91, Tehsil Dadri, Uttar Pradesh, India 201314.
| | - Animesh Samanta
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, NH 91, Tehsil Dadri, Uttar Pradesh, India 201314.
| |
Collapse
|
48
|
Bajad NG, Kumar A, Singh SK. Recent Advances in the Development of Near-Infrared Fluorescent Probes for the in Vivo Brain Imaging of Amyloid-β Species in Alzheimer's Disease. ACS Chem Neurosci 2023; 14:2955-2967. [PMID: 37574911 DOI: 10.1021/acschemneuro.3c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
The deposition of β-amyloid (Aβ) plaques in the parenchymal and cortical regions of the brain of Alzheimer's disease (AD) patients is considered the foremost pathological hallmark of the disease. The early diagnosis of AD is paramount in order to effective management and treatment of the disease. Developing near-infrared fluorescence (NIRF) probes targeting Aβ species is a potential and attractive approach suitable for the early and timely diagnosis of AD. The advantages of the NIRF probes over other tools include real-time detection, higher sensitivity, resolution, comparatively inexpensive experimental setup, and noninvasive nature. Currently, enormous progress is being observed in the development of NIRF probes for the in vivo imaging of Aβ species. Several strategies, i.e., the classical push-pull approach, "turn-on" effect, aggregation-induced emission (AIE), and resonance energy transfer (RET), have been exploited for development. We have outlined and discussed the recently emerged NIRF probes with different design strategies targeting Aβ species for ex vivo and in vivo imaging. We believe that understanding the recent development enables the prospect of the rational design of probes and will pave the way for developing future novel probes for early diagnosis of AD.
Collapse
Affiliation(s)
- Nilesh Gajanan Bajad
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| |
Collapse
|
49
|
Li L, Zou JY, You SY, Zhang L. Ratiometric Fluorescence Thermometry, Quantitative Gossypol Detection, and CO 2 Chemical Fixation by a Multipurpose Europium (III) Metal-Organic Framework. Inorg Chem 2023; 62:14168-14179. [PMID: 37606309 DOI: 10.1021/acs.inorgchem.3c00739] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
A lanthanide-based molecular crystalline material endows metal-organic frameworks (MOFs) with many fascinating applications such as fluorescence detection and CO2 chemical fixation. Herein, we describe and study a multipurpose europium(III) MOF with the formula of {[Eu2(TATAB)2]·2.5H2O·2DMF}n (Eu-MOF) (where H3TATAB is 4,4',4″-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tribenzoic acid ligand) for photoluminescence sensor matrix and CO2 chemical fixation. This Eu-MOF features 1D square channels along the c direction with a pore size of ca.14.07 Å × 14.07 Å, occupied by lattice water and DMF molecules. The obtained Eu-MOF can achieve simultaneous luminescence of the H3TATAB ligand and Eu3+ ions, which can be developed as the sensor matrix for ratiometric fluorescence thermometry. The luminescence of the Eu-MOF demonstrates an obvious color change from red to yellow as temperature rises from 303 to 373 K and the Eu-MOF has a satisfying relative sensitivity of 3.21% K-1 and a small temperature uncertainty of 0.0093 K at 333 K. Moreover, sensitive detection of gossypol was achieved with a quenching constant Ksv of 1.18 × 105 M-1 and a detection limit of 4.61 μM. A combination of the competitive absorption and photoinduced electron transfer caused by host-guest interactions and strengthened π-π packing effect synergistically between gossypol molecules and the Eu-MOF skeleton realizes the "turn-off" sensing of gossypol. Importantly, the nature of the Eu-MOF allows showing CO2 chemical fixation under mild conditions. Thus, the Eu-MOF can be utilized as a multipurpose material for ratiometric fluorescence thermometry, quantitative gossypol detection, and CO2 chemical fixation.
Collapse
Affiliation(s)
- Ling Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Ji-Yong Zou
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Sheng-Yong You
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Li Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| |
Collapse
|
50
|
Yu X, Ryadun AA, Pavlov DI, Guselnikova TY, Potapov AS, Fedin VP. Highly Luminescent Lanthanide Metal-Organic Frameworks with Tunable Color for Nanomolar Detection of Iron(III), Ofloxacin and Gossypol and Anti-counterfeiting Applications. Angew Chem Int Ed Engl 2023; 62:e202306680. [PMID: 37414736 DOI: 10.1002/anie.202306680] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
Solvothermal reaction of 5,5'-(pyridine-2,6-diylbis(oxy))diisophthalic acid (H4 L) with europium(III) or terbium(III) nitrates in acetonitrile-water (1 : 1) at 120 °C gave rise to isostructural 2D coordination polymers, [Ln(HL)(H2 O)3 ]∞ (NIIC-1-Eu and NIIC-1-Tb), the layers of which are composed by eight-coordinated lanthanide(III) ions interconnected by triply deprotonated ligands HL3- . The layers are packed in the crystal without any specific intermolecular interactions between them, allowing the facile preparation of stable water suspensions, in which NIIC-1-Tb exhibited top-performing sensing properties through luminescence quenching effect with exceptionally low detection limits towards Fe3+ (LOD 8.62 nM), ofloxacin (OFX) antibiotic (LOD 3.91 nM) and cotton phytotoxicant gossypol (LOD 2.27 nM). In addition to low detection limit and high selectivity, NIIC-1-Tb features fast sensing response (within 60-90 seconds), making it superior to other MOF-based sensors for metal cations and organic toxicants. The photoluminescence quantum yield of NIIC-1-Tb was 93 %, one of the highest among lanthanide MOFs. Mixed-metal coordination polymers NIIC-1-Eux Tb1-x demonstrated efficient photoluminescence, the color of which could be modulated by the excitation wavelength and time delay for emission monitoring (within 1 millisecond). Furthermore, an original 2D QR-coding scheme was designed for anti-counterfeiting labeling of goods based on unique and tunable emission spectra of NIIC-1-Ln coordination polymers.
Collapse
Affiliation(s)
- Xiaolin Yu
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Alexey A Ryadun
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Dmitry I Pavlov
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Tatiana Y Guselnikova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Andrei S Potapov
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Vladimir P Fedin
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090, Novosibirsk, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090, Novosibirsk, Russia
| |
Collapse
|