1
|
Leclercq E, Chevet L, David N, Durandetti M, Chausset-Boissarie L. Synthesis of N-heterocyclic amides from imidazoheterocycles through convergent paired electrolysis. Org Biomol Chem 2024; 22:8730-8736. [PMID: 39390973 DOI: 10.1039/d4ob01115e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
An efficient ring opening of imidazoheterocycles induced by a direct C-H azidation resulting in an unusual formation of N-heterocyclic amides has been successfully developed through convergent paired electrolysis. A broad scope of pyridylbenzamides could be obtained in moderate to excellent yields under exogenous-oxidant, electrolyte- and metal-free electrochemical conditions. The methodology was transferred to continuous flow conditions resulting in notable improvements particularly in terms of cost-efficiency over traditional batch versions.
Collapse
Affiliation(s)
- Elise Leclercq
- Univ. Lille, CNRS, USR 3290, MSAP, F-59000 Lille, France
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| | - Laura Chevet
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| | - Nicolas David
- Univ. Lille, CNRS, USR 3290, MSAP, F-59000 Lille, France
| | - Muriel Durandetti
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| | - Laëtitia Chausset-Boissarie
- Univ. Lille, CNRS, USR 3290, MSAP, F-59000 Lille, France
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| |
Collapse
|
2
|
Kolb S, Werz DB. Correspondence on "Organo-Mediator Enabled Electrochemical Deuteration of Styrenes". Angew Chem Int Ed Engl 2024; 63:e202316037. [PMID: 38695672 DOI: 10.1002/anie.202316037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 11/05/2024]
Abstract
The recently reported electrochemical, organo-mediator enabled deuteration of styrenes, a reaction referred to as "electrochemical deuterium atom transfer", differs mechanistically from reported direct electrochemical hydrogenations/deuterations only by a mediated, homogeneous SET to the substrates. By comparing direct vs. mediated processes in general and for styrene reduction, we display that Qiu's work does not change the concept of this chemistry. Experiments with mediators and the direct reduction of examples from the reported scope show that even electron-rich substrates can be reduced when our direct protocol, published six months before Qiu's work, is applied.
Collapse
Affiliation(s)
- Simon Kolb
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstr. 21, 79104, Freiburg im Breisgau, Germany
| | - Daniel B Werz
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstr. 21, 79104, Freiburg im Breisgau, Germany
| |
Collapse
|
3
|
Mou MJ, Guo MZ, Li QX, Ni SF, Lv J, Guo W, Wen LR, Zhang LB. Electrochemically Driven α,β-Dehydrogenation of Flavanones, Azaflavanones, and Thioflavanones. Org Lett 2024; 26:9547-9552. [PMID: 39451023 DOI: 10.1021/acs.orglett.4c03574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
α,β-Dehydrogenation of flavanones represents an ideal strategy to synthesize various flavones but remains challenging because of the requirements for rigorous conditions. Herein, a straightforward and efficient route for the synthesis of flavones via electrocatalysis is disclosed. This electro-oxidative approach shows a broad substrate scope, including azaflavanones and thioflavanones, which could be performed in an undivided cell without the removal of air or water and in the absence of metal catalysts, ligands, or external oxidants. Moreover, the combination of cyclic voltammetry, square wave voltammetry experiments, and density functional theory (DFT) calculations revealed the plausible mechanism.
Collapse
Affiliation(s)
- Mei-Jin Mou
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Ming-Zhong Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Quan-Xin Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Jian Lv
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Weisi Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
4
|
Regnier M, Vega C, Ioannou DI, Noël T. Enhancing electrochemical reactions in organic synthesis: the impact of flow chemistry. Chem Soc Rev 2024; 53:10741-10760. [PMID: 39297689 DOI: 10.1039/d4cs00539b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Utilizing electrons directly offers significant potential for advancing organic synthesis by facilitating novel reactivity and enhancing selectivity under mild conditions. As a result, an increasing number of organic chemists are exploring electrosynthesis. However, the efficacy of electrochemical transformations depends critically on the design of the electrochemical cell. Batch cells often suffer from limitations such as large inter-electrode distances and poor mass transfer, making flow cells a promising alternative. Implementing flow cells, however, requires a foundational understanding of microreactor technology. In this review, we briefly outline the applications of flow electrosynthesis before providing a comprehensive examination of existing flow reactor technologies. Our goal is to equip organic chemists with the insights needed to tailor their electrochemical flow cells to meet specific reactivity requirements effectively. We also highlight the application of reactor designs in scaling up electrochemical processes and integrating high-throughput experimentation and automation. These advancements not only enhance the potential of flow electrosynthesis for the synthetic community but also hold promise for both academia and industry.
Collapse
Affiliation(s)
- Morgan Regnier
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Clara Vega
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Dimitris I Ioannou
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Ewing TEH, Kurig N, Yamaki YR, Sun J, Knowles TR, Gollapudi A, Kawamata Y, Baran PS. Pyrolytic Carbon: An Inexpensive, Robust, and Versatile Electrode for Synthetic Organic Electrochemistry. Angew Chem Int Ed Engl 2024:e202417122. [PMID: 39449542 DOI: 10.1002/anie.202417122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Synthetic organic electrochemistry is recognized as one of the most sustainable forms of redox chemistry that can enable a wide variety of useful transformations. In this study, readily prepared pyrolytic carbon electrodes are explored in several powerful rAP transformations as well as C-C and C-N bond forming reactions. Pyrolytic carbon provides an alternative to classic amorphous carbon-based materials that are either expensive or ill-suited to large-scale flow reactions.
Collapse
Affiliation(s)
- Tamara El-Hayek Ewing
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nils Kurig
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Jiawei Sun
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Timothy R Knowles
- KULR Technology Corp., 4863 Shawline St., Suite B, San Diego, CA, 92111, USA
| | - Asha Gollapudi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
6
|
Maashi H, Husayni AH, M K, Reid ME, Harnedy J, Herneman EC, Pera-Titus M, Morrill LC. Electrochemical Synthesis of C(sp 3)-Rich Heterocycles via Mesolytic Cleavage of Anodically Generated Aromatic Radical Cations. Org Lett 2024; 26:9051-9055. [PMID: 39432540 PMCID: PMC11519923 DOI: 10.1021/acs.orglett.4c03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Herein we report an electrochemical deconstructive functionalization approach for the synthesis of C(sp3)-rich heterocycles. The reaction proceeds via the mesolytic cleavage of anodically generated aromatic radical cations and the trapping of formed carbocation intermediates with internal nucleophiles. The method has been demonstrated across various arylalcohol substrates to access a diverse range of C(sp3)-rich heterocycles including tetrahydrofuran, tetrahydropyran, and pyrrolidine scaffolds (26 examples). The electrochemical method was demonstrated on a 5 mmol scale via single pass continuous flow, which utilized lower supporting electrolyte concentration and exhibited increased productivity in relation to the batch process.
Collapse
Affiliation(s)
- Hussain
A. Maashi
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
- Department
of Chemistry, College of Science, University
of Bisha, Bisha 61922, Saudi Arabia
| | - Abdulrahman H. Husayni
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
- Department
of Chemistry, College of Science, Jazan
University, Jizan 45142, Saudi Arabia
| | - Kharou M
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Michael E. Reid
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
| | - James Harnedy
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Ethan C. Herneman
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Marc Pera-Titus
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Louis C. Morrill
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
7
|
Thondur JR, Sharada DS, Satyanarayana G. Electrochemical stereoselective borylation of Morita-Baylis-Hillman adducts to functionalized allylic boronates. Chem Commun (Camb) 2024; 60:12553-12556. [PMID: 39380465 DOI: 10.1039/d4cc04187a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Herein, we disclose a highly efficient and facile electrochemical borylation of Morita-Baylis-Hillman adducts without using any metal catalyst. This methodology demonstrates excellent regio- and stereo-selectivity, leading to a wide range of functionalized E-allylic boronates, including derivatives of ibuprofen and menthol. Under mild and straightforward conditions, this redox-neutral reaction, combined with the scalability and synthetic applications of the allylic boronate esters, underscores its potential for a wide range of applications in organic synthesis.
Collapse
Affiliation(s)
- Jagadeesh Reddy Thondur
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Kandi - 502 284, Telangana, India.
| | - Duddu S Sharada
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Kandi - 502 284, Telangana, India.
- Department of Green Energy Technology, Pondicherry University, Pondicherry 605014, India.
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Kandi - 502 284, Telangana, India.
| |
Collapse
|
8
|
Zhu H, Powell JN, Geldchen VA, Drumheller AS, Driver TG. Harnessing the Reactivity of Nitroarene Radical Anions to Create Quinoline N-Oxides by Electrochemical Reductive Cyclization. Angew Chem Int Ed Engl 2024:e202416126. [PMID: 39428355 DOI: 10.1002/anie.202416126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Electrochemical reduction of 2-allyl-substituted nitroarenes using a simple, undivided electrochemical cell with non-precious electrodes to generate nitroarene radical anions was developed. The nitroarene radical anion intermediates participate in 1,5-hydrogen atom transfer reactions to construct quinoline N-oxides bearing aryl-, heteroaryl-, alkenyl-, benzyl-, sulfonyl-, or carboxyl groups.
Collapse
Affiliation(s)
- Haoran Zhu
- Department of Chemistry, University of Illinois Chicago 845 West Taylor Street, Chicago, 60607, Illinois, USA
| | - Jair N Powell
- Department of Chemistry, University of Illinois Chicago 845 West Taylor Street, Chicago, 60607, Illinois, USA
| | - Victoria A Geldchen
- Department of Chemistry, University of Illinois Chicago 845 West Taylor Street, Chicago, 60607, Illinois, USA
| | - Adam S Drumheller
- Department of Chemistry, University of Illinois Chicago 845 West Taylor Street, Chicago, 60607, Illinois, USA
| | - Tom G Driver
- Department of Chemistry, University of Illinois Chicago 845 West Taylor Street, Chicago, 60607, Illinois, USA
| |
Collapse
|
9
|
Cano M, Otálvaro F. Total Synthesis of (±)-Anigorootin. Org Lett 2024; 26:8752-8755. [PMID: 39382959 DOI: 10.1021/acs.orglett.4c03090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
An 11-step synthesis of the octacyclic-fused dimeric phenylphenalenone anigorootin (phytoalexin in banana plants) is reported. The synthetic strategy uses an electrochemical dimerization as the key step, which stereospecifically installs the four asymmetric centers. Mechanistic aspects of the dimerization process are discussed.
Collapse
Affiliation(s)
- Marisol Cano
- Instituto de Química, Síntesis y Biosíntesis de Metabolitos Naturales, Universidad de Antioquia, AA 1226 Medellín, Colombia
| | - Felipe Otálvaro
- Instituto de Química, Síntesis y Biosíntesis de Metabolitos Naturales, Universidad de Antioquia, AA 1226 Medellín, Colombia
| |
Collapse
|
10
|
Marquez JD, Gitter SR, Gilchrist GC, Hughes RW, Sumerlin BS, Evans AM. Electrochemical Postpolymerization Modification and Deconstruction of Macromolecules. ACS Macro Lett 2024; 13:1345-1354. [PMID: 39319830 DOI: 10.1021/acsmacrolett.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Electrolysis is an emerging approach to polymer postpolymerization modification, deconstruction, and depolymerization. Electrochemical reactions are particularly appealing for macromolecular transformations because of their high selectivity, ability to be externally monitored, and intrinsic scalability. Despite these desirable features and the recent resurgent use of small-molecule electrochemical reactions, the development of macromolecular electrolysis has been limited. Herein, we highlight recent examples of polymer transformations driven by heterogeneous redox chemistry. Throughout our exploration of macromolecular electrolysis, we provide our perspective on opportunities for continued investigation in this nascent field. Specifically, we highlight how targeted reaction development through deeper mechanistic insight will expand the scope of materials that can be (de)constructed with electrochemical methods. As this insight is developed, we expect macromolecular electrolysis to emerge as a high-functioning and complementary tool for macromolecular functionalization and deconstruction.
Collapse
Affiliation(s)
- Joshua D Marquez
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Sean R Gitter
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Graham C Gilchrist
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Rhys W Hughes
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S Sumerlin
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Austin M Evans
- George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
11
|
Leong SX, Pablo-García S, Zhang Z, Aspuru-Guzik A. Automated electrosynthesis reaction mining with multimodal large language models (MLLMs). Chem Sci 2024; 15:d4sc04630g. [PMID: 39397816 PMCID: PMC11462585 DOI: 10.1039/d4sc04630g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Leveraging the chemical data available in legacy formats such as publications and patents is a significant challenge for the community. Automated reaction mining offers a promising solution to unleash this knowledge into a learnable digital form and therefore help expedite materials and reaction discovery. However, existing reaction mining toolkits are limited to single input modalities (text or images) and cannot effectively integrate heterogeneous data that is scattered across text, tables, and figures. In this work, we go beyond single input modalities and explore multimodal large language models (MLLMs) for the analysis of diverse data inputs for automated electrosynthesis reaction mining. We compiled a test dataset of 65 articles (MERMES-T24 set) and employed it to benchmark five prominent MLLMs against two critical tasks: (i) reaction diagram parsing and (ii) resolving cross-modality data interdependencies. The frontrunner MLLM achieved ≥96% accuracy in both tasks, with the strategic integration of single-shot visual prompts and image pre-processing techniques. We integrate this capability into a toolkit named MERMES (multimodal reaction mining pipeline for electrosynthesis). Our toolkit functions as an end-to-end MLLM-powered pipeline that integrates article retrieval, information extraction and multimodal analysis for streamlining and automating knowledge extraction. This work lays the groundwork for the increased utilization of MLLMs to accelerate the digitization of chemistry knowledge for data-driven research.
Collapse
Affiliation(s)
- Shi Xuan Leong
- Department of Chemistry, University of Toronto, Lash Miller Chemical Laboratories 80 St. George Street ON M5S 3H6 Toronto Canada
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link Singapore 637371
| | - Sergio Pablo-García
- Department of Chemistry, University of Toronto, Lash Miller Chemical Laboratories 80 St. George Street ON M5S 3H6 Toronto Canada
- Department of Computer Science, University of Toronto Sandford Fleming Building, 10 King's College Road ON M5S 3G4 Toronto Canada
- Vector Institute for Artificial Intelligence 661 University Ave. Suite 710 ON M5G 1M1 Toronto Canada
| | - Zijian Zhang
- Department of Computer Science, University of Toronto Sandford Fleming Building, 10 King's College Road ON M5S 3G4 Toronto Canada
- Vector Institute for Artificial Intelligence 661 University Ave. Suite 710 ON M5G 1M1 Toronto Canada
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto, Lash Miller Chemical Laboratories 80 St. George Street ON M5S 3H6 Toronto Canada
- Department of Computer Science, University of Toronto Sandford Fleming Building, 10 King's College Road ON M5S 3G4 Toronto Canada
- Vector Institute for Artificial Intelligence 661 University Ave. Suite 710 ON M5G 1M1 Toronto Canada
- Acceleration Consortium 80 St. George St. M5S 3H6 Toronto Canada
- Department of Materials Science & Engineering, University of Toronto 184 College St. M5S 3E4 Toronto Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto 200 College St. ON M5S 3E5 Toronto Canada
- Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR) 661 University Ave. M5G 1M1 Toronto Canada
| |
Collapse
|
12
|
Morvan J, Kuijpers KPL, Fanfair D, Tang B, Bartkowiak K, van Eynde L, Renders E, Alcazar J, Buijnsters PJJA, Carvalho MA, Jones AX. Electrochemical C-O and C-N Arylation using Alternating Polarity in flow for Compound Libraries. Angew Chem Int Ed Engl 2024:e202413383. [PMID: 39383014 DOI: 10.1002/anie.202413383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024]
Abstract
Etherification and amination of aryl halide scaffolds are commonly used reactions in parallel medicinal chemistry to rapidly scan structure-activity relationships with abundant building blocks. Electrochemical methods for aryl etherification and amination demonstrate broad functional group tolerance and extended nucleophile scope compared to traditional methods. Nevertheless, there is a need for robust and scale-transferable workflows for electrochemical compound library synthesis. Herein we describe a platform for automated electrochemical synthesis of C-X arylation (X=NH, OH) in flow to access compound libraries. A comprehensive Design of Experiment (DoE) study identifies an optimal protocol which generates high yields across>30 aryl halide scaffolds, diverse amines (including electron-deficient sulfonamides, sulfoximines, amides, and anilines) and alcohols (including serine residues within peptides). Reaction sequences are automated on commercially available equipment to generate libraries of anilines and aryl ethers. The unprecedented application of potentiostatic alternating polarity in flow is essential to avoid accumulating electrode passivation. Moreover, it enables reactions to be performed in air, without supporting electrolyte and with high reproducibility over consecutive runs. Our method represents a powerful means to rapidly generate nucleophile independent C-X arylation compound libraries using flow electrochemistry.
Collapse
Affiliation(s)
- Jennifer Morvan
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Koen P L Kuijpers
- API SM Technology, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Dayne Fanfair
- API SM Technology, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Bingqing Tang
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Karolina Bartkowiak
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Lars van Eynde
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Evelien Renders
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Jesus Alcazar
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen-Cilag, S.A., C/Jarama 75, 45007, Toledo, Spain
| | - Peter J J A Buijnsters
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Mary-Ambre Carvalho
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Alexander X Jones
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
13
|
Xie H, Gao X, Dong B, Wang H, Spokoyny AM, Mu X. Electrochemical deconstruction of alkyl substituted boron clusters to produce alkyl boronate esters. Chem Commun (Camb) 2024; 60:11548-11551. [PMID: 39311548 DOI: 10.1039/d4cc04232h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Closo-Hexaborate (closo-B6H62-) can engage in nucleophilic substitution reactions with a wide variety of alkyl electrophiles. The resulting functionalized boron clusters undergo oxidative electrochemical deconstruction, selectively cleaving B-B bonds while preserving B-C bonds in these species. This approach allows the conversion of multinuclear boron clusters into single boron site organoboranes. Trapped boron-based fragments were isolated from the electrochemical cluster deconstruction process, providing further mechanistic insights into the developed reaction.
Collapse
Affiliation(s)
- Huanhuan Xie
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| | - Xinying Gao
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| | - Beibei Dong
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| | - Haoyang Wang
- Laboratory of Mass Spectrometry Analysis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Xin Mu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| |
Collapse
|
14
|
Xie H, Duan J, Cao Y, Fu K, Yu Y, Kong W, Li T. Mn-Catalyzed Electrooxidative Radical Cascade Cyclization for the Synthesis of 6-Phosphorylated Quinoxalino[2,1- b]quinazolin-12-ones. J Org Chem 2024; 89:14418-14427. [PMID: 39265979 DOI: 10.1021/acs.joc.4c01834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Due to their important potential medicinal value, chemists are pursuing mild and efficient methods to synthesize structurally diverse quinazolinone derivatives. In this paper, a series of isocyano-tethered N-aryl quinazolinones were designed and synthesized to conduct electrocatalytic radical cascade cyclization reactions with phosphine oxides by utilizing inexpensive MnII salt as the catalyst. The desired 6-phosphorylated quinoxalino[2,1-b]quinazolin-12-ones were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Huanping Xie
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
| | - Jiongjiong Duan
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
| | - Yi Cao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
| | - Kaifang Fu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
| | - Yongqi Yu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
| | - Weiguang Kong
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
| |
Collapse
|
15
|
Maashi HA, Husayni AH, Harnedy J, Morrill LC. Electrochemical deconstructive functionalization of arylcycloalkanes via fragmentation of anodically generated aromatic radical cations. Chem Commun (Camb) 2024; 60:11190-11201. [PMID: 39268719 DOI: 10.1039/d4cc03279a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
This highlight summarises electrochemical approaches for the deconstructive functionalization of arylcycloalkanes via the fragmentation of anodically generated aromatic radical cations. A diverse range of deconstructive functionalization processes is described, including discussion on the electrochemical reaction conditions employed, scope and limitations, and reaction mechanisms, in addition to highlighting future opportunities in this burgeoning area of sustainable synthesis.
Collapse
Affiliation(s)
- Hussain A Maashi
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdulrahman H Husayni
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - James Harnedy
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Louis C Morrill
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
16
|
Niu C, Yang J, Yan K, Su Z, Li B, Wen J. A General Radical Functionalization of Quinoxalin-2(1 H)-ones via a Donor-Acceptor Inversion Strategy. J Org Chem 2024; 89:13284-13295. [PMID: 39196991 DOI: 10.1021/acs.joc.4c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The radical donor-acceptor inversion strategy represents a highly promising approach in the field of radical chemistry. The present study initially describes a metal-free, versatile, and modular approach for the radical functionalization of quinoxalin-2(1H)-ones via a strategy of radical donor-acceptor inversion under simple reaction conditions. More than 66 examples were provided in moderate yields. The mechanistic study has confirmed that the driving force behind this radical reaction is the in situ formation of a salt through the interaction between quinoxalin-2(1H)-ones and acid/HFIP, which exhibits potent oxidation properties. Additionally, it has been observed that the evident hydrogen bonding between quinoxalin-2(1H)-ones and HFIP can effectively mitigate the oxidation potential.
Collapse
Affiliation(s)
- Cong Niu
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jianjing Yang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Kelu Yan
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Zhenda Su
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Bingwen Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong 253023, P. R. China
| | - Jiangwei Wen
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| |
Collapse
|
17
|
Chen L, Thompson JDF, Jamieson C. An Electrosynthesis of 1,3,4-Oxadiazoles from N-Acyl Hydrazones. Chemistry 2024:e202403128. [PMID: 39291449 DOI: 10.1002/chem.202403128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/19/2024]
Abstract
The 1,3,4-oxadiazole is a widely encountered motif in the areas of pharmaceuticals, materials, and agrochemicals. This work has established a mediated electrochemical synthesis of 2,5-disubstituted 1,3,4-oxadiazoles from N-acyl hydrazones. Using DABCO as the optimal redox mediator has enabled a mild oxidative cyclisation, without recourse to stoichiometric oxidants. In contrast to previous methods, this indirect electrochemical oxidation has enabled a broad range of substrates to be accessed, with yields of up to 83 %, and on gram scale. The simplicity of the method has been further demonstrated by the development of a one-pot procedure, directly transforming readily available aldehydes and hydrazides into valuable heterocycles.
Collapse
Affiliation(s)
- Luke Chen
- Medicinal Chemistry, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
- Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, United Kingdom
| | - James D F Thompson
- Medicinal Chemistry, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| | - Craig Jamieson
- Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, United Kingdom
| |
Collapse
|
18
|
Maashi HA, Lewis-Atwell T, Harnedy J, Grayson MN, Morrill LC. Electrochemical Deconstructive Methoxylation of Arylalcohols-A Synthetic and Mechanistic Investigation. Chemistry 2024:e202403413. [PMID: 39287365 DOI: 10.1002/chem.202403413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Herein, we report a mechanistic investigation of a recently developed electrochemical method for the deconstructive methoxylation of arylalcohols. A combination of synthetic, electroanalytical, and computational experiments have been performed to gain a deeper understanding of the reaction mechanism and the structural requirements for fragmentation to occur. It was found that 2-arylalcohols undergo anodic oxidation to form the corresponding aromatic radical cations, which fragment to form oxocarbenium ions and benzylic radical intermediates via mesolytic cleavage, with further anodic oxidation and trapping of the benzylic carbocation with methanol to generate the observed methyl ether products. It was also found that the electrochemical fragmentation of 2-arylalkanols is promoted by structural features that stabilize the oxocarbenium ions and/or benzylic radical intermediates formed upon mesolytic cleavage of the aromatic radical cations. With an enhanced understanding of the reaction mechanism and the structural features that promote fragmentation, it is anticipated that alternative electrosynthetic transformations will be developed that utilize this powerful, yet underdeveloped, mode of substrate activation.
Collapse
Affiliation(s)
- Hussain A Maashi
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
- Department of Chemistry, College of Science, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Toby Lewis-Atwell
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom E-mails
- Department of Computer Science, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - James Harnedy
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Matthew N Grayson
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom E-mails
| | - Louis C Morrill
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom E-mails
| |
Collapse
|
19
|
Doktor K, Vantourout JC, Michaudel Q. A Unified Synthesis of Diazenes from Primary Amines Using a SuFEx/Electrochemistry Strategy. Org Lett 2024; 26:7501-7506. [PMID: 39225700 PMCID: PMC11406575 DOI: 10.1021/acs.orglett.4c02218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The electrochemical synthesis of 1,2-disubsituted diazenes via anodic oxidation of bench stable symmetrical and unsymmetrical sulfamides is reported. This work capitalizes on the streamlined preparation of diverse N,N'-disubstituted sulfamides using Sulfur(VI) Fluoride Exchange (SuFEx) click chemistry that were subsequently subjected to electrochemical oxidation to afford the desired diazenes. The electrochemical nature of the reaction conditions obviated the need for chlorinating reagents, which considerably improved the sustainability of the overall process. Noteworthy, in addition to the synthesis of alkyl diazenes, these milder conditions were shown to be competent for the formation of azobenzenes, albeit in lower yields. Mechanistic experiments were conducted to delineate the reaction pathway and to rationalize the formation of side products observed during the electro-oxidation of N,N'-diarylsulfamides.
Collapse
Affiliation(s)
- Katarzyna Doktor
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | | - Quentin Michaudel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
20
|
Hourtoule M, Trienes S, Ackermann L. Anodic Commodity Polymer Recycling: The Merger of Iron-Electrocatalysis with Scalable Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2024:e202412689. [PMID: 39254508 DOI: 10.1002/anie.202412689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Plastics are omnipresent in our everyday life, and accumulation of post-consumer plastic waste in our environment represents a major societal challenge. Hence, methods for plastic waste recycling are in high demand for a future circular economy. Specifically, the degradation of post-consumer polymers towards value-added small molecules constitutes a sustainable strategy for a carbon circular economy. Despite of recent advances, chemical polymer degradation continues to be largely limited to chemical redox agents or low energy efficiency in photochemical processes. We herein report a powerful iron-catalyzed degradation of high molecular weight polystyrenes through electrochemistry to efficiently deliver monomeric benzoyl products. The robustness of the ferraelectrocatalysis was mirrored by the degradation of various real-life post-consumer plastics, also on gram scale. The cathodic half reaction was largely represented by the hydrogen evolution reaction (HER). The scalable electro-polymer degradation could be solely fueled by solar energy through a commercially available solar panel, indicating an outstanding potential for a decentralized green hydrogen economy.
Collapse
Affiliation(s)
- Maxime Hourtoule
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Sven Trienes
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
21
|
Brunetti A, Garbini M, Autuori G, Zanardi C, Bertuzzi G, Bandini M. Electrochemical Synthesis of Itaconic Acid Derivatives via Chemodivergent Single and Double Carboxylation of Allenes with CO 2. Chemistry 2024; 30:e202401754. [PMID: 38923037 DOI: 10.1002/chem.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Leveraging electrochemistry, a new synthesis of non-natural derivatives of itaconic acid is proposed by utilizing carbon dioxide (CO2) as a valuable C1 synthon. An electrochemical cross-electrophile coupling between allenoates and CO2 was targeted, allowing for the synthesis of both mono- and di-carboxylation products in a catalyst- and additive-free environment (yields up to 87 %, 30 examples). Elaboration of the model mono-carboxylation product, and detailed cyclovoltammetric, as well as mechanistic analyses complete the present investigation.
Collapse
Affiliation(s)
- Andrea Brunetti
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis, C3, Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
| | - Mauro Garbini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis, C3, Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
| | - Giuseppe Autuori
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
| | - Chiara Zanardi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, via Torino, 155, 30170, Venezia (Mestre), Italy
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), via P. Gobetti 101, 40129, Bologna, Italy
| | - Giulio Bertuzzi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis, C3, Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
| | - Marco Bandini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis, C3, Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
| |
Collapse
|
22
|
Ghosh M, Mandal T, Lepori M, Barham JP, Rehbein J, Reiser O. Electrochemical Homo- and Crossannulation of Alkynes and Nitriles for the Regio- and Chemoselective Synthesis of 3,6-Diarylpyridines. Angew Chem Int Ed Engl 2024:e202411930. [PMID: 39185589 DOI: 10.1002/anie.202411930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
We disclose a mediated electrochemical [2+2+2] annulation of alkynes with nitriles, forming substituted pyridines in a single step from low-cost, readily available starting materials. The combination of electrochemistry and a triarylamine redox mediator obviates the requirements of transition metals and additional oxidants. Besides the formation of diarylpyridine moieties via the homocoupling of two identical alkynes, the heterocoupling of two different alkynes depending on their electronic nature is possible, highlighting the unprecedented control of chemoselectivity in this catalytic [2+2+2] process. Mechanistic investigations like cyclic voltammetry and crossover experiments combined with DFT calculations indicate the initial oxidation of an alkyne as the key step leading to the formation of a vinyl radical cation intermediate. The utilization of continuous flow technology proved instrumental for an efficient process scale-up. The utility of the products is exemplified by the synthesis of π-extended molecules, being relevant for material or drug synthesis.
Collapse
Affiliation(s)
- Mangish Ghosh
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Tirtha Mandal
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Mattia Lepori
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Joshua P Barham
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Julia Rehbein
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Oliver Reiser
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| |
Collapse
|
23
|
Schoetz MD, Deckers K, Singh G, Ahrweiler E, Hoeppner A, Schoenebeck F. Electrochemistry-Enabled C-Heteroatom Bond Formation of Alkyl Germanes. J Am Chem Soc 2024; 146:21257-21263. [PMID: 39058901 DOI: 10.1021/jacs.4c08008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Because of their robustness and orthogonal reactivity features, alkyl germanes bear significant potential as functional handles for the construction of C(sp3)-rich scaffolds, especially in the context of modular synthetic approaches. However, to date, only radical-based reactivity has been accessible from these functional handles, which limits the types of possible decorations. Here, we describe the first general C(sp3)-heteroatom bond formation of alkyl germanes (-GeEt3) by leveraging electrochemistry to unlock polar reactivity. This approach allowed us to couple C(sp3)-GeEt3 with a variety of nucleophiles to construct ethers, esters, amines, amides, sulfonamides, sulfides, as well as C-P, C-F, and C-C bonds. The compatibility of the electrochemical approach with a modular synthetic strategy of a C1 motif was also showcased, involving the sequential functionalization of Cl, Bpin, and ultimately GeEt3 via electrochemistry.
Collapse
Affiliation(s)
- Markus D Schoetz
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Kristina Deckers
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Gurdeep Singh
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Eric Ahrweiler
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Annika Hoeppner
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | | |
Collapse
|
24
|
Gao T, An Q, Tang X, Yue Q, Zhang Y, Li B, Li P, Jin Z. Recent progress in energy-saving electrocatalytic hydrogen production via regulating the anodic oxidation reaction. Phys Chem Chem Phys 2024; 26:19606-19624. [PMID: 39011574 DOI: 10.1039/d4cp01680g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Hydrogen energy with its advantages of high calorific value, renewable nature, and zero carbon emissions is considered an ideal candidate for clean energy in the future. The electrochemical decomposition of water, powered by renewable and clean energy sources, presents a sustainable and environmentally friendly approach to hydrogen production. However, the traditional electrochemical overall water-splitting reaction (OWSR) is limited by the anodic oxygen evolution reaction (OER) with sluggish kinetics. Although important advances have been made in efficient OER catalysts, the theoretical thermodynamic difficulty predetermines the inevitable large potential (1.23 V vs. RHE for the OER) and high energy consumption for the conventional water electrolysis to obtain H2. Besides, the generation of reactive oxygen species at high oxidation potentials can lead to equipment degradation and increase maintenance costs. Therefore, to address these challenges, thermodynamically favorable anodic oxidation reactions with lower oxidation potentials than the OER are used to couple with the cathodic hydrogen evolution reaction (HER) to construct new coupling hydrogen production systems. Meanwhile, a series of robust catalysts applied in these new coupled systems are exploited to improve the energy conversion efficiency of hydrogen production. Besides, the electrochemical neutralization energy (ENE) of the asymmetric electrolytes with a pH gradient can further promote the decrease in application voltage and energy consumption for hydrogen production. In this review, we aim to provide an overview of the advancements in electrochemical hydrogen production strategies with low energy consumption, including (1) the traditional electrochemical overall water splitting reaction (OWSR, HER-OER); (2) the small molecule sacrificial agent oxidation reaction (SAOR) and (3) the electrochemical oxidation synthesis reaction (EOSR) coupling with the HER (HER-SAOR, HER-EOSR), respectively; (4) regulating the pH gradient of the cathodic and anodic electrolytes. The operating principle, advantages, and the latest progress of these hydrogen production systems are analyzed in detail. In particular, the recent progress in the catalytic materials applied to these coupled systems and the corresponding catalytic mechanism are further discussed. Furthermore, we also provide a perspective on the potential challenges and future directions to foster advancements in electrocatalytic green sustainable hydrogen production.
Collapse
Affiliation(s)
- Taotao Gao
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Qi An
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Xiangmin Tang
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Qu Yue
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Yang Zhang
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Bing Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, P. R. China
| | - Panpan Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.
| |
Collapse
|
25
|
Li X, Zhou J, Deng W, Wang Z, Wen Y, Li Z, Qiu Y, Huang Y. Electroreductive deuteroarylation of alkenes enabled by an organo-mediator. Chem Sci 2024; 15:11418-11427. [PMID: 39054999 PMCID: PMC11268466 DOI: 10.1039/d4sc03049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Electroreduction mediated by organo-mediators has emerged as a concise and effective strategy, holding significant potential in the site-specific introduction of deuterium. In this study, we present an environmentally friendly electroreduction approach for anti-Markovnikov selective deuteroarylation of alkenes and aryl iodides with D2O as the deuterium source. The key to the protocol lies in the employment of a catalytic amount of 2,2'-bipyiridine as an efficient organo-mediator, which facilitates the generation of aryl radicals by assisting in the cleavage of the C-X (X = I or Br) bonds in aryl halides. Because its reduction potential matches that of aryl iodides, the organo-mediator can control the chemoselectivity of the reaction and avoid the side reactions of competitive substrate deuteration. These phenomena are theoretically supported by CV experiments and DFT calculations. Our protocol provides a series of mono-deuterated alkylarenes with excellent deuterium incorporation through two single-electron reductions (SER), without requiring metal catalysts, external reductants, and sacrificial anodes.
Collapse
Affiliation(s)
- Xinling Li
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Jianfeng Zhou
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Weijie Deng
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Ziliang Wang
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Yating Wen
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Zhenjie Li
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University 94 Weijin Road Tianjin 300071 People's Republic of China
| | - Yubing Huang
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| |
Collapse
|
26
|
Derat E, Masson G, Claraz A. Electrochemically-Driven 1,4-Aryl Migration via Radical Fluoromethylation of N-Allylbenzamides: a Straightforward Access to Functionalized β-Arylethylamines. Angew Chem Int Ed Engl 2024; 63:e202406017. [PMID: 38687085 DOI: 10.1002/anie.202406017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
An electrochemical radical Truce Smiles rearrangement of N-allylbenzamides is documented herein. The selective 1,4-aryl migration was triggered by the radical fluoromethylation of the alkene providing a direct route to fluoro derivatives of the highly privileged β-arylethylamine pharmacophore. This practical transformation utilizes readily available starting materials and employs an electrical current to drive the oxidative process under mild reaction conditions. It accommodates a variety of migratory aryl groups with different electronic properties and substitution patterns. Careful selection of the protecting group on the nitrogen atom of the N-allylbenzamide is crucial to outcompete the undesired 6-endo cyclization and achieve high level of selectivity towards the 1,4-aryl migration. DFT calculations support the reaction mechanism and unveil the origin of selectivity between the two competitive pathways.
Collapse
Affiliation(s)
- Etienne Derat
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, CC 229, 75252, Paris Cedex 05, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN), CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| | - Aurélie Claraz
- Institut de Chimie des Substances Naturelles (ICSN), CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| |
Collapse
|
27
|
Chen YX, Wu S, Shen X, Xu DF, Wang Q, Ji SH, Zhu H, Wu G, Sheng C, Cai YR. Two-Phase Electrosynthesis of Dihydroxycoumestans: Discovery of a New Scaffold for Topoisomerase I Poison. Chemistry 2024; 30:e202401400. [PMID: 38736421 DOI: 10.1002/chem.202401400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
Coumestan represents a biologically relevant structural motif distributed in a number of natural products, and the rapid construction of related derivatives as well as the characterization of targets would accelerate lead compound discovery in medicinal chemistry. In this work, a general and scalable approach to 8,9-dihydroxycoumestans via two-electrode constant current electrolysis was developed. The application of a two-phase (aqueous/organic) system plays a crucial role for success, protecting the sensitive o-benzoquinone intermediates from over-oxidation. Based on the structurally diverse products, a primary SAR study on coumestan scaffold was completed, and compound 3 r exhibited potent antiproliferative activities and a robust topoisomerase I (Top1) inhibitory activity. Further mechanism studies demonstrates that compound 3 r was a novel Top1 poison, which might open an avenue for the development of Top1-targeted antitumor agent.
Collapse
Affiliation(s)
- Yue-Xi Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Shanchao Wu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
| | - Xiang Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Dong-Fang Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Qian Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Su-Hui Ji
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Huajian Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China
| | - Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
| | - Yun-Rui Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| |
Collapse
|
28
|
Zhang Z, Lv Y, Ji L, Chen P, Han S, Zhu Y, Li L, Jia Z, Loh TP. Triaryl Carbenium Ion Pair Mediated Electrocatalytic Benzylic C-H Oxygenation in Air. Angew Chem Int Ed Engl 2024; 63:e202406588. [PMID: 38664822 DOI: 10.1002/anie.202406588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 06/05/2024]
Abstract
The selective oxidation of benzylic C-H bonds is a pivotal transformation in organic synthesis. Undoubtedly, achieving efficient and highly selective aerobic oxidation of methylarenes to benzaldehydes has been highly challenging due to the propensity of benzaldehyde to undergo overoxidation under typical aerobic conditions. Herein, we propose an innovative approach to address this issue by leveraging electrocatalytic processes, facilitated by ion-pair mediators [Ph3C]+[B(C6F5)4]-. By harnessing the power of electrochemistry, we successfully demonstrated the effectiveness of our strategy, which enables the selective oxidation of benzylic C-H bonds in benzylic molecules and toluene derivatives. Notably, our approach exhibited high efficiency, excellent selectivity, and compatibility with various functional groups, underscoring the broad applicability of our methodology.
Collapse
Affiliation(s)
- Zhenguo Zhang
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
| | - Yongheng Lv
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Liang Ji
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Peng Chen
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
| | - Shuyan Han
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
| | - Yufei Zhu
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
| | - Lanyang Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhenhua Jia
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Teck-Peng Loh
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
29
|
Wu R, Xu H, Zhou H, Yu P, Wen Z, Chen W. Electrochemically promoted thio-Michael addition of N-substituted maleimides to thiols in an aqueous medium. Org Biomol Chem 2024; 22:5401-5405. [PMID: 38874577 DOI: 10.1039/d4ob00734d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
A stable and practical electrochemical method was developed to promote the thio-Michael addition of N-substituted maleimides to various thiols in an aqueous medium. This protocol was found to be excellent in terms of facile scale-up, oxidant- and catalyst-free conditions, broad substrate scopes, good functional group tolerance, and easily available substrates. Notably, a plausible reaction mechanism was derived from the results of a series of control experiments and CV studies, which indicated that a radical pathway might speed up the thio-Michael addition under constant current.
Collapse
Affiliation(s)
- Run Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University Chengdu, Sichuan, 610031, China.
| | - Haojian Xu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University Chengdu, Sichuan, 610031, China.
| | - Haiping Zhou
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University Chengdu, Sichuan, 610031, China.
| | - Pingbing Yu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University Chengdu, Sichuan, 610031, China.
| | - Zhaoyue Wen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University Chengdu, Sichuan, 610031, China.
| | - Wei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University Chengdu, Sichuan, 610031, China.
| |
Collapse
|
30
|
Wang XY, Pan YZ, Yang J, Li WH, Gan T, Pan YM, Tang HT, Wang D. Single-Atom Iron Catalyst as an Advanced Redox Mediator for Anodic Oxidation of Organic Electrosynthesis. Angew Chem Int Ed Engl 2024; 63:e202404295. [PMID: 38649323 DOI: 10.1002/anie.202404295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Homogeneous electrocatalysts can indirect oxidate the high overpotential substrates through single-electron transfer on the electrode surface, enabling efficient operation of organic electrosynthesis catalytic cycles. However, the problems of this chemistry still exist such as high dosage, difficult recovery, and low catalytic efficiency. Single-atom catalysts (SACs) exhibit high atom utilization and excellent catalytic activity, hold great promise in addressing the limitations of homogeneous catalysts. In view of this, we have employed Fe-SA@NC as an advanced redox mediator to try to change this situation. Fe-SA@NC was synthesized using an encapsulation-pyrolysis method, and it demonstrated remarkable performance as a redox mediator in a range of reported organic electrosynthesis reactions, and enabling the construction of various C-C/C-X bonds. Moreover, Fe-SA@NC demonstrated a great potential in exploring new synthetic method for organic electrosynthesis. We employed it to develop a new electro-oxidative ring-opening transformation of cyclopropyl amides. In this new reaction system, Fe-SA@NC showed good tolerance to drug molecules with complex structures, as well as enabling flow electrochemical syntheses and gram-scale transformations. This work highlights the great potential of SACs in organic electrosynthesis, thereby opening a new avenue in synthetic chemistry.
Collapse
Affiliation(s)
- Xin-Yu Wang
- Department of Chemistry, Northeastern University, Shenyang, 110004, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yong-Zhou Pan
- Department of Chemistry, Northeastern University, Shenyang, 110004, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wen-Hao Li
- Department of Chemistry, Northeastern University, Shenyang, 110004, China
| | - Tao Gan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
31
|
Liu ZR, Zhu XY, Guo JF, Ma C, Zuo Z, Mei TS. Synergistic use of photocatalysis and convergent paired electrolysis for nickel-catalyzed arylation of cyclic alcohols. Sci Bull (Beijing) 2024; 69:1866-1874. [PMID: 38670850 DOI: 10.1016/j.scib.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
The merging of transition metal catalysis with electrochemistry has become a powerful tool for organic synthesis because catalysts can govern the reactivity and selectivity. However, coupling catalysts with alkyl radical species generated by anodic oxidation remains challenging because of electrode passivation, dimerization, and overoxidation. In this study, we developed convergent paired electrolysis for the coupling of nickel catalysts with alkyl radicals derived from photoinduced ligand-to-metal charge-transfer of cyclic alcohols and iron catalysts, providing a practical method for site-specific and remote arylation of ketones. The synergistic use of photocatalysis with convergent paired electrolysis can provide alternative avenues for metal-catalyzed radical coupling reactions.
Collapse
Affiliation(s)
- Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Yu Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian-Feng Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
32
|
Avanthay M, Goodrich OH, Tiemessen D, Alder CM, George MW, Lennox AJJ. Bromide-Mediated Silane Oxidation: A Practical Counter-Electrode Process for Nonaqueous Deep Reductive Electrosynthesis. JACS AU 2024; 4:2220-2227. [PMID: 38938809 PMCID: PMC11200245 DOI: 10.1021/jacsau.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024]
Abstract
The counter-electrode process of an organic electrochemical reaction is integral for the success and sustainability of the process. Unlike for oxidation reactions, counter-electrode processes for reduction reactions remain limited, especially for deep reductions that apply very negative potentials. Herein, we report the development of a bromide-mediated silane oxidation counter-electrode process for nonaqueous electrochemical reduction reactions in undivided cells. The system is found to be suitable for replacing either sacrificial anodes or a divided cell in several reported reactions. The conditions are metal-free, use inexpensive reagents and a graphite anode, are scalable, and the byproducts are reductively stable and readily removed. We showcase the translation of a previously reported divided cell reaction to a >100 g scale in continuous flow.
Collapse
Affiliation(s)
- Mickaël
E. Avanthay
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Oliver H. Goodrich
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - David Tiemessen
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Catherine M. Alder
- Modalities
Platform Technologies, Molecular Modalities Discovery, GSK Medicines Research Centre, Stevenage SG1 2NY, U.K.
| | - Michael W. George
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | | |
Collapse
|
33
|
Liu T, Carneiro-Neto EB, Pereira E, Taylor JE, Fletcher PJ, Marken F. Paired Electrosynthesis at Interdigitated Microband Electrodes: Exploring Diffusion and Reaction Zones in the Absence of a Supporting Electrolyte. ACS MEASUREMENT SCIENCE AU 2024; 4:294-306. [PMID: 38910865 PMCID: PMC11191726 DOI: 10.1021/acsmeasuresciau.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 06/25/2024]
Abstract
Electrosynthesis traditionally requires dedicated reactor systems and an added electrolyte, although some paired electrosynthesis processes are possible at interdigitated microband electrodes simply immersed in solution and without an intentionally added electrolyte. Here, 1,1'-ferrocenedimethanol oxidation and activated olefin electro-hydrogenation reactions are investigated as model processes at a Pt-Pt interdigitated microband array electrode with 5 μm width and with 5 μm interelectrode gap. Voltammetric responses for electro-hydrogenation are discussed, and product yields are determined in methanol (MeOH) in the presence/absence of an added electrolyte (LiClO4). An isotope effect is observed in CH3OD solvent, leading to olefin monodeuteration linked to a fast EC-type process close to the cathode surface (in the cathode reaction zone) rather than to charge annihilation in the interelectrode zone. A finite element simulation is employed to visualize/discuss reaction zones and to contrast the rate of charge annihilation processes with/without a supporting electrolyte.
Collapse
Affiliation(s)
- Tingran Liu
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Evaldo Batista Carneiro-Neto
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
- Department
of Chemistry, Federal University of São
Carlos, Rod. Washington Luiz, Km 235, CEP 13565-905 São Carlos, SP, Brazil
| | - Ernesto Pereira
- Department
of Chemistry, Federal University of São
Carlos, Rod. Washington Luiz, Km 235, CEP 13565-905 São Carlos, SP, Brazil
| | - James E. Taylor
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Philip J. Fletcher
- Materials
& Chemical Characterisation Facility, MC, University of Bath, Bath BA2 7AY, U.K.
| | - Frank Marken
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| |
Collapse
|
34
|
Alzaidi O, Wirth T. Continuous Flow Electroselenocyclization of Allylamides and Unsaturated Oximes to Selenofunctionalized Oxazolines and Isoxazolines. ACS ORGANIC & INORGANIC AU 2024; 4:350-355. [PMID: 38855333 PMCID: PMC11157512 DOI: 10.1021/acsorginorgau.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 06/11/2024]
Abstract
The synthesis of selenofunctionalized oxazolines and isoxazolines from N-allyl benzamides and unsaturated oximes with diselenides was studied by utilizing a continuous flow electrochemical approach. At mild reaction conditions and short reaction times of 10 min product yields of up to 90% were achieved including a scale-up reaction. A broad substrate scope was studied and the reaction was shown to have a wide functional group tolerance.
Collapse
Affiliation(s)
- Ohud Alzaidi
- School
of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, U.K.
- Department
of Chemistry, College of Science –
Al Khurma, Taif University, P.O. Box
11099, Taif 21944, Saudi Arabia
| | - Thomas Wirth
- School
of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, U.K.
| |
Collapse
|
35
|
Sun L, Pan X, Xie YN, Zheng J, Xu S, Li L, Zhao G. Accelerated Dynamic Reconstruction in Metal-Organic Frameworks with Ligand Defects for Selective Electrooxidation of Amines to Azos Coupling with Hydrogen Production. Angew Chem Int Ed Engl 2024; 63:e202402176. [PMID: 38470010 DOI: 10.1002/anie.202402176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/13/2024]
Abstract
Electrosynthesis coupled hydrogen production (ESHP) mostly involves catalyst reconstruction in aqueous phase, but accurately identifying and controlling the process is still a challenge. Herein, we modulated the electronic structure and exposed unsaturated sites of metal-organic frameworks (MOFs) via ligand defect to promote the reconstruction of catalyst for azo electrosynthesis (ESA) coupled with hydrogen production overall reaction. The monolayer Ni-MOFs achieved 89.8 % Faraday efficiency and 90.8 % selectivity for the electrooxidation of 1-methyl-1H-pyrazol-3-amine (Pyr-NH2) to azo, and an 18.5-fold increase in H2 production compared to overall water splitting. Operando X-ray absorption fine spectroscopy (XAFS) and various in situ spectroscopy confirm that the ligand defect promotes the potential dependent dynamic reconstruction of Ni(OH)2 and NiOOH, and the reabsorption of ligand significantly lowers the energy barrier of rate-determining step (*Pyr-NH to *Pyr-N). This work provides theoretical guidance for modulation of electrocatalyst reconstruction to achieve highly selective ESHP.
Collapse
Affiliation(s)
- Lingzhi Sun
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Xun Pan
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Ya-Nan Xie
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Jingui Zheng
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Shaohan Xu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, 201800, P. R. China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
36
|
Du C, Zhang Y, Li T, Zha Z, Wang Z. Electrochemical dual oxidative C(sp 3)-H amination: switchable synthesis of imidazo-fused quinazolinones. Chem Commun (Camb) 2024; 60:5274-5277. [PMID: 38591991 DOI: 10.1039/d4cc00994k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
An efficient electrochemical dual C(sp3)-H amination was developed under metal-free and chemical oxidant-free conditions. A series of imidazo[1,5-a]quinazolin-5(4H)-ones and 5-oxo-4,5-dihydroimidazo[1,5-a]quinazoline-3-carbonitriles can be obtained in high yields and the product distribution can be modulated by virtue of this method. The reaction mechanism was investigated and the corresponding intermediates were studied. The reaction features a broad substrate scope, regulation of the product distribution, mild conditions and scalable preparation.
Collapse
Affiliation(s)
- Chengbin Du
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Yan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Tong Li
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhenggen Zha
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
37
|
Guo Q, Jiang Y, Zhu R, Yang W, Hu P. Electrochemical Azo-free Mitsunobu-type Reaction. Angew Chem Int Ed Engl 2024; 63:e202402878. [PMID: 38466140 DOI: 10.1002/anie.202402878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
The classic chemical Mitsunobu reaction suffers from the need of excess alcohol activation reagents and the generation of significant by-products. Efforts to overcome these limitations have resulted in numerous creative solutions, but the substrate scope of these catalytic processes remains limited. Here we report an electrochemical Mitsunobu-type reaction, which features azo-free alcohol activation and broad substrate scope. This user-friendly technology allows a vast collection of heterocycles as the nucleophile, which can couple with a series of chiral cyclic and acyclic alcohols in moderate to high yields and excellent ee's. This practical reaction is scalable, chemoselective, uses simple Electrasyn setup with inexpensive electrodes and requires no precaution to exclude air and moisture. The synthetic utility is further demonstrated on the structural modification of diverse bioactive natural products and pharmaceutical derivatives and its straightforward application in a multiple-step synthesis of a drug candidate.
Collapse
Affiliation(s)
- Quanping Guo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Yangye Jiang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Rongjin Zhu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Wenhui Yang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Pengfei Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences Westlake Institute for Advanced Study, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
38
|
Garg A, Rendina D, Bendale H, Akiyama T, Ojima I. Recent advances in catalytic asymmetric synthesis. Front Chem 2024; 12:1398397. [PMID: 38783896 PMCID: PMC11112575 DOI: 10.3389/fchem.2024.1398397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Asymmetric catalysis stands at the forefront of modern chemistry, serving as a cornerstone for the efficient creation of enantiopure chiral molecules characterized by their high selectivity. In this review, we delve into the realm of asymmetric catalytic reactions, which spans various methodologies, each contributing to the broader landscape of the enantioselective synthesis of chiral molecules. Transition metals play a central role as catalysts for a wide range of transformations with chiral ligands such as phosphines, N-heterocyclic carbenes (NHCs), etc., facilitating the formation of chiral C-C and C-X bonds, enabling precise control over stereochemistry. Enantioselective photocatalytic reactions leverage the power of light as a driving force for the synthesis of chiral molecules. Asymmetric electrocatalysis has emerged as a sustainable approach, being both atom-efficient and environmentally friendly, while offering a versatile toolkit for enantioselective reductions and oxidations. Biocatalysis relies on nature's most efficient catalysts, i.e., enzymes, to provide exquisite selectivity, as well as a high tolerance for diverse functional groups under mild conditions. Thus, enzymatic optical resolution, kinetic resolution and dynamic kinetic resolution have revolutionized the production of enantiopure compounds. Enantioselective organocatalysis uses metal-free organocatalysts, consisting of modular chiral phosphorus, sulfur and nitrogen components, facilitating remarkably efficient and diverse enantioselective transformations. Additionally, unlocking traditionally unreactive C-H bonds through selective functionalization has expanded the arsenal of catalytic asymmetric synthesis, enabling the efficient and atom-economical construction of enantiopure chiral molecules. Incorporating flow chemistry into asymmetric catalysis has been transformative, as continuous flow systems provide precise control over reaction conditions, enhancing the efficiency and facilitating optimization. Researchers are increasingly adopting hybrid approaches that combine multiple strategies synergistically to tackle complex synthetic challenges. This convergence holds great promise, propelling the field of asymmetric catalysis forward and facilitating the efficient construction of complex molecules in enantiopure form. As these methodologies evolve and complement one another, they push the boundaries of what can be accomplished in catalytic asymmetric synthesis, leading to the discovery of novel, highly selective transformations which may lead to groundbreaking applications across various industries.
Collapse
Affiliation(s)
- Ashna Garg
- Stony Brook University, Department of Chemistry, Stony Brook, NY, United States
| | - Dominick Rendina
- Stony Brook University, Department of Chemistry, Stony Brook, NY, United States
| | - Hersh Bendale
- Stony Brook University, Department of Chemistry, Stony Brook, NY, United States
| | | | - Iwao Ojima
- Stony Brook University, Department of Chemistry, Stony Brook, NY, United States
- Stony Brook University, Institute of Chemical Biology and Drug Discovery, Stony Brook, NY, United States
| |
Collapse
|
39
|
Zhao Z, Zhang R, Liu Y, Zhu Z, Wang Q, Qiu Y. Electrochemical C-H deuteration of pyridine derivatives with D 2O. Nat Commun 2024; 15:3832. [PMID: 38714720 PMCID: PMC11076510 DOI: 10.1038/s41467-024-48262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/25/2024] [Indexed: 05/10/2024] Open
Abstract
Herein, we develop a straightforward, metal-free, and acid-/base-free electrochemical C4-selective C - H deuteration of pyridine derivatives with economic and convenient D2O at room temperature. This strategy features an efficient and environmentally friendly approach with high chemo- and regioselectivity, affording a wide range of D-compounds, such as pyridines, quinolones, N-ligands and biorelevant compounds. Notably, the mechanistic experiments and cyclic voltammetry (CV) studies demonstrate that N-butyl-2-phenylpyridinium iodide is a crucial intermediate during the electrochemical transformation, which provides a general and efficient way for deuteration of pyridine derivatives.
Collapse
Affiliation(s)
- Zhiwei Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Ranran Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Yaowen Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Zile Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Qiuyan Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China.
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China.
| |
Collapse
|
40
|
Carneiro SN, Laffoon JD, Luo L, Sanford MS. Benchmarking Trisaminocyclopropeniums as Mediators for Anodic Oxidation Reactions. J Org Chem 2024; 89:6389-6394. [PMID: 38607957 DOI: 10.1021/acs.joc.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
This report benchmarks a tris(amino)cyclopropenium (TAC) salt as an electron-transfer mediator for anodic oxidation reactions in comparison to two known mediators: a triarylamine and a triarylimidazole derivative. The three mediators have redox potentials, diffusion coefficients, and heterogeneous electron transfer rates similar to those of glassy carbon electrodes in acetonitrile/KPF6. However, they differ significantly in their performance in two electro-organic reactions: anodic fluorination of a dithiane and anodic oxidation of 4-methoxybenzyl alcohol. These differences are rationalized based on variable stability in the presence of reaction components (e.g., NEt3·3HF, lutidine, and Cs2CO3) as well as very different rates of electron transfer with the organic substrate. Overall, this work highlights the advantages and disadvantages of each mediator and provides a foundation for expanding the applications of TACs in electro-organic synthesis moving forward.
Collapse
Affiliation(s)
- Sabrina N Carneiro
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joshua D Laffoon
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
41
|
Li X, Deng W, Wen Y, Wang Z, Zhou J, Li Z, Li Y, Hu J, Huang Y. Electrochemically Driven para-Selective C(sp 2)-H Alkylation Enabled by Activation of Alkyl Halides without Sacrificial Anodes. Chemistry 2024; 30:e202400010. [PMID: 38389032 DOI: 10.1002/chem.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
With alkyl halides (I, Br, Cl) as a coupling partner, an electrochemically driven strategy for para-selective C(sp2)-H alkylation of electron-deficient arenes (aryl esters, aldehydes, nitriles, and ketones) has been achieved to access diverse alkylated arenes in one step. The reaction enables the activation of alkyl halides in the absence of sacrificial anodes, achieving the formation of C(sp2)-C(sp3) bonds under mild electrolytic conditions. The utility of this protocol is reflected in high site selectivity, broad substrate scope, and scalable.
Collapse
Affiliation(s)
- Xinling Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Weijie Deng
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Yating Wen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Ziliang Wang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Jianfeng Zhou
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Zhenjie Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Yibiao Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Jinhui Hu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Yubing Huang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| |
Collapse
|
42
|
Shaw WJ, Kidder MK, Bare SR, Delferro M, Morris JR, Toma FM, Senanayake SD, Autrey T, Biddinger EJ, Boettcher S, Bowden ME, Britt PF, Brown RC, Bullock RM, Chen JG, Daniel C, Dorhout PK, Efroymson RA, Gaffney KJ, Gagliardi L, Harper AS, Heldebrant DJ, Luca OR, Lyubovsky M, Male JL, Miller DJ, Prozorov T, Rallo R, Rana R, Rioux RM, Sadow AD, Schaidle JA, Schulte LA, Tarpeh WA, Vlachos DG, Vogt BD, Weber RS, Yang JY, Arenholz E, Helms BA, Huang W, Jordahl JL, Karakaya C, Kian KC, Kothandaraman J, Lercher J, Liu P, Malhotra D, Mueller KT, O'Brien CP, Palomino RM, Qi L, Rodriguez JA, Rousseau R, Russell JC, Sarazen ML, Sholl DS, Smith EA, Stevens MB, Surendranath Y, Tassone CJ, Tran B, Tumas W, Walton KS. A US perspective on closing the carbon cycle to defossilize difficult-to-electrify segments of our economy. Nat Rev Chem 2024; 8:376-400. [PMID: 38693313 DOI: 10.1038/s41570-024-00587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 05/03/2024]
Abstract
Electrification to reduce or eliminate greenhouse gas emissions is essential to mitigate climate change. However, a substantial portion of our manufacturing and transportation infrastructure will be difficult to electrify and/or will continue to use carbon as a key component, including areas in aviation, heavy-duty and marine transportation, and the chemical industry. In this Roadmap, we explore how multidisciplinary approaches will enable us to close the carbon cycle and create a circular economy by defossilizing these difficult-to-electrify areas and those that will continue to need carbon. We discuss two approaches for this: developing carbon alternatives and improving our ability to reuse carbon, enabled by separations. Furthermore, we posit that co-design and use-driven fundamental science are essential to reach aggressive greenhouse gas reduction targets.
Collapse
Affiliation(s)
- Wendy J Shaw
- Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | - Simon R Bare
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | | | | | - Francesca M Toma
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Institute of Functional Materials for Sustainability, Helmholtz Zentrum Hereon, Teltow, Brandenburg, Germany.
| | | | - Tom Autrey
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Shannon Boettcher
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical & Biomolecular Engineering and Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Mark E Bowden
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Robert C Brown
- Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | | | - Jingguang G Chen
- Brookhaven National Laboratory, Upton, NY, USA
- Department of Chemical Engineering, Columbia University, New York, NY, USA
| | | | - Peter K Dorhout
- Vice President for Research, Iowa State University, Ames, IA, USA
| | | | | | - Laura Gagliardi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Aaron S Harper
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - David J Heldebrant
- Pacific Northwest National Laboratory, Richland, WA, USA
- Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Oana R Luca
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | | | - Jonathan L Male
- Pacific Northwest National Laboratory, Richland, WA, USA
- Biological Systems Engineering Department, Washington State University, Pullman, WA, USA
| | | | | | - Robert Rallo
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Rachita Rana
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Robert M Rioux
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Aaron D Sadow
- Ames National Laboratory, Ames, IA, USA
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | | | - Lisa A Schulte
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Bryan D Vogt
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Robert S Weber
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jenny Y Yang
- Department of Chemistry, University of California Irvine, Irvine, CA, USA
| | - Elke Arenholz
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brett A Helms
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Wenyu Huang
- Ames National Laboratory, Ames, IA, USA
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | - James L Jordahl
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
| | | | - Kourosh Cyrus Kian
- Independent consultant, Washington DC, USA
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | - Johannes Lercher
- Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Ping Liu
- Brookhaven National Laboratory, Upton, NY, USA
| | | | - Karl T Mueller
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Casey P O'Brien
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | | | - Long Qi
- Ames National Laboratory, Ames, IA, USA
| | | | | | - Jake C Russell
- Advanced Research Projects Agency - Energy, Department of Energy, Washington DC, USA
| | - Michele L Sarazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Emily A Smith
- Ames National Laboratory, Ames, IA, USA
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | | | - Yogesh Surendranath
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ba Tran
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - William Tumas
- National Renewable Energy Laboratory, Golden, CO, USA
| | - Krista S Walton
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
43
|
Ware SD, Zhang W, Guan W, Lin S, See KA. A guide to troubleshooting metal sacrificial anodes for organic electrosynthesis. Chem Sci 2024; 15:5814-5831. [PMID: 38665512 PMCID: PMC11041367 DOI: 10.1039/d3sc06885d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 04/28/2024] Open
Abstract
The development of reductive electrosynthetic reactions is often enabled by the oxidation of a sacrificial metal anode, which charge-balances the reductive reaction of interest occurring at the cathode. The metal oxidation is frequently assumed to be straightforward and innocent relative to the chemistry of interest, but several processes can interfere with ideal sacrificial anode behavior, thereby limiting the success of reductive electrosynthetic reactions. These issues are compounded by a lack of reported observations and characterization of the anodes themselves, even when a failure at the anode is observed. Here, we weave lessons from electrochemistry, interfacial characterization, and organic synthesis to share strategies for overcoming issues related to sacrificial anodes in electrosynthesis. We highlight common but underexplored challenges with sacrificial anodes that cause reactions to fail, including detrimental side reactions between the anode or its cations and the components of the organic reaction, passivation of the anode surface by an insulating native surface film, accumulation of insulating byproducts at the anode surface during the reaction, and competitive reduction of sacrificial metal cations at the cathode. For each case, we propose experiments to diagnose and characterize the anode and explore troubleshooting strategies to overcome the challenge. We conclude by highlighting open questions in the field of sacrificial-anode-driven electrosynthesis and by indicating alternatives to traditional sacrificial anodes that could streamline reaction optimization.
Collapse
Affiliation(s)
- Skyler D Ware
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Wendy Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Weiyang Guan
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Kimberly A See
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| |
Collapse
|
44
|
Shanker GS, Ghatak A, Binyamin S, Balilty R, Shimoni R, Liberman I, Hod I. Regulation of Catalyst Immediate Environment Enables Acidic Electrochemical Benzyl Alcohol Oxidation to Benzaldehyde. ACS Catal 2024; 14:5654-5661. [PMID: 38660611 PMCID: PMC11036388 DOI: 10.1021/acscatal.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Electrocatalytic alcohol oxidation in acid offers a promising alternative to the kinetically sluggish water oxidation reaction toward low-energy H2 generation. However, electrocatalysts driving active and selective acidic alcohol electrochemical transformation are still scarce. In this work, we demonstrate efficient alcohol-to-aldehyde conversion achieved by reticular chemistry-based modification of the catalyst's immediate environment. Specifically, coating a Bi-based electrocatalyst with a thin layer of metal-organic framework (MOF) substantially improves its performance toward benzyl alcohol electro-oxidation to benzaldehyde in a 0.1 M H2SO4 electrolyte. Detailed analysis reveals that the MOF adlayer influences catalysis by increasing the reactivity of surface hydroxides as well as weakening the catalyst-benzaldehyde binding strength. In turn, low-potential (0.65 V) cathodic H2 evolution was obtained through coupling it with anodic benzyl alcohol electro-oxidation. Consequently, the presented approach could be implemented in a wide range of electrocatalytic oxidation reactions for energy-conversion application.
Collapse
Affiliation(s)
- G. Shiva Shanker
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Arnab Ghatak
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Shahar Binyamin
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Rotem Balilty
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ran Shimoni
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Itamar Liberman
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Idan Hod
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
45
|
Zhuang W, Xiao F, Chen Y, Zhang X, Huang Q. Cascade Electrochemical Aerobic Oxygenation of 2-Substituted Indoles and Electrochemical [5 + 3] Annulation with Amidines: Access to Eight-Membered Benzo[1,3,5]triazocin-6(5 H)-ones. J Org Chem 2024; 89:4673-4683. [PMID: 38478890 DOI: 10.1021/acs.joc.3c02931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The cascade electrochemical C3-selective aerobic oxygenation of 2-substituted indoles and electrochemical [5 + 3] annulation with amidines through an undivided cell galvanostatic method employing molecular oxygen and "electricity" as green oxidants was developed. This protocol provides an efficient and direct approach to eight-membered benzo[1,3,5]triazocin-6(5H)-ones. Mechanistic studies suggested that two subsequent electrochemical processes both proceeded through radical pathways.
Collapse
Affiliation(s)
- Weihui Zhuang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Fengyi Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Yumei Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Xiaofeng Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Qiufeng Huang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| |
Collapse
|
46
|
Li CY, Tian ZQ. Sixty years of electrochemical optical spectroscopy: a retrospective. Chem Soc Rev 2024; 53:3579-3605. [PMID: 38421335 DOI: 10.1039/d3cs00734k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Sixty years ago, Reddy, Devanatan, and Bockris performed the first in situ electrochemical ellipsometry experiment, which ushered in a new era in the study of electrochemistry, using optical spectroscopy. After six decades of development, electrochemical optical spectroscopy, particularly electrochemical vibrational spectroscopy, has advanced from a phase of immaturity with few methods and limited applications to a phase of maturity with excellent substrate generality and significantly improved resolutions. Here, we divide the development of electrochemical optical spectroscopy into four phases, focusing on the proof-of-concept of different electrochemical optical spectroscopy studies, the emergence of plasmonic enhancement-based electrochemical optical spectroscopic (in particular vibrational spectroscopic) methods, the realization of electrochemical vibrational spectroscopy on well-defined surfaces, and the efforts to achieve operando spectroelectrochemical applications. Finally, we discuss the future development trend of electrochemical optical spectroscopy, as well as examples of new methodology and research paradigms for operando spectroelectrochemistry.
Collapse
Affiliation(s)
- Chao-Yu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
47
|
Schrader ML, Schäfer FR, Schäfers F, Glorius F. Bridging the information gap in organic chemical reactions. Nat Chem 2024; 16:491-498. [PMID: 38548884 DOI: 10.1038/s41557-024-01470-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/02/2024] [Indexed: 04/07/2024]
Abstract
The varying quality of scientific reports is a well-recognized problem and often results from a lack of standardization and transparency in scientific publications. This situation ultimately leads to prominent complications such as reproducibility issues and the slow uptake of newly developed synthetic methods for pharmaceutical and agrochemical applications. In recent years, various impactful approaches have been advocated to bridge information gaps and to improve the quality of experimental protocols in synthetic organic publications. Here we provide a critical overview of these strategies and present the reader with a versatile set of tools to augment their standard procedures. We formulate eight principles to improve data management in scientific publications relating to data standardization, reproducibility and evaluation, and encourage scientists to go beyond current publication standards. We are aware that this is a substantial effort, but we are convinced that the resulting improved data situation will greatly benefit the progress of chemistry.
Collapse
Affiliation(s)
- Malte L Schrader
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Felix R Schäfer
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Felix Schäfers
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany.
| |
Collapse
|
48
|
Ding CL, Xu Q, Wu S, Zhong Y, He X, Lin Y, Li Y, Ye KY. Current-Controlled Electrochemical Approach Toward Mono- and Trifluorinated Isoindolin-1-one Derivatives. Org Lett 2024; 26:1645-1651. [PMID: 38363882 DOI: 10.1021/acs.orglett.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
An electrochemical intramolecular 5-exo-dig aza-cyclization of 2-alkynylbenzamides and subsequent nucleophilic fluorination have been developed to afford the highly selective synthesis of mono- and trifluorinated isoindolin-1-one derivatives. This work demonstrates the unique capability of synthetic electrochemistry in controlling reaction selectivity through the applied electrolytic parameters. In addition, the obtained monofluorinated 3-methyleneisoindolin-1-one (19) displays interesting photophysical properties that are not observed in its nonfluorinated analog.
Collapse
Affiliation(s)
- Cheng-Lin Ding
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qiaohong Xu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shuai Wu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi Zhong
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xinglei He
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yuqi Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yuanming Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
49
|
Shi Z, Dong S, Liu T, Wang WZ, Li N, Yuan Y, Zhu J, Ye KY. Electrochemical cascade migratory versus ortho-cyclization of 2-alkynylbenzenesulfonamides. Chem Sci 2024; 15:2827-2832. [PMID: 38404399 PMCID: PMC10882495 DOI: 10.1039/d3sc05229j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024] Open
Abstract
Efficient control over several possible reaction pathways of free radicals is the chemical basis of their highly selective transformations. Among various competing reaction pathways, sulfonimidyl radicals generated from the electrolysis of 2-alkynylbenzenesulfonamides undergo cascade migratory or ortho-cyclization cyclization selectively. It is found that the incorporation of an extra 2-methyl substituent biases the selective migration of the acyl- over vinyl-linker of the key spirocyclic cation intermediate and thus serves as an enabling handle to achieve the synthetically interesting yet under-investigated cascade migratory cyclization of spirocyclic cations.
Collapse
Affiliation(s)
- Zhaojiang Shi
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ting Liu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Wei-Zhen Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Nan Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Yaofeng Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Jun Zhu
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University Fuzhou 350108 China
| |
Collapse
|
50
|
Gao Y, Jiang B, Friede NC, Hunter AC, Boucher DG, Minteer SD, Sigman MS, Reisman SE, Baran PS. Electrocatalytic Asymmetric Nozaki-Hiyama-Kishi Decarboxylative Coupling: Scope, Applications, and Mechanism. J Am Chem Soc 2024; 146:4872-4882. [PMID: 38324710 PMCID: PMC11456316 DOI: 10.1021/jacs.3c13442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The first general enantioselective alkyl-Nozaki-Hiyama-Kishi (NHK) coupling reactions are disclosed herein by employing a Cr-electrocatalytic decarboxylative approach. Using easily accessible aliphatic carboxylic acids (via redox-active esters) as alkyl nucleophile synthons, in combination with aldehydes and enabling additives, chiral secondary alcohols are produced in a good yield with high enantioselectivity under mild reductive electrolysis. This reaction, which cannot be mimicked using stoichiometric metal or organic reductants, tolerates a broad range of functional groups and is successfully applied to dramatically simplify the synthesis of multiple medicinally relevant structures and natural products. Mechanistic studies revealed that this asymmetric alkyl e-NHK reaction was enabled by using catalytic tetrakis(dimethylamino)ethylene, which acts as a key reductive mediator to mediate the electroreduction of the CrIII/chiral ligand complex.
Collapse
Affiliation(s)
- Yang Gao
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Baiyang Jiang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Nathan C. Friede
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Arianne C. Hunter
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Dylan G. Boucher
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Kummer Institute Center for Resource Sustainability, Department of Chemistry, Missouri University of Science and Technology, 400 W 11th Street, Rolla, MO 65409, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Sarah E. Reisman
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| |
Collapse
|