1
|
Teixeira CSS, Carriço-Sá B, Villa C, Costa J, Mafra I, Ferreira IMPLVO, Faria MA, Tavares TG. Uncovering the Potential Somatic Angiotensin-Converting Enzyme (sACE) Inhibitory Capacity of Peptides from Acheta domesticus: Insights from In Vitro Gastrointestinal Digestion. Foods 2024; 13:3462. [PMID: 39517245 PMCID: PMC11544891 DOI: 10.3390/foods13213462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Entomophagy is being proposed as a sustainable and nutritious alternative protein source. Additionally, insect consumption is also associated with some health benefits mediated by bioactive compounds produced during gastrointestinal (GI) digestion. The antihypertensive property resulting from the inhibition of the somatic angiotensin-converting enzyme (sACE) by small peptides is one of the most common bioactivities related to insect consumption. This study aimed to investigate the potential sACE-inhibitory capacity of six peptides (AVQPCF, CAIAW, IIIGW, QIVW, PIVCF, and DVW), previously identified by the in silico GI digestion of Acheta domesticus proteins, validate their formation after in vitro GI digestion of A. domesticus by LC-MS/MS, and assess the bioactivity of the bioaccessible digesta. The results showed that the IC50 values of AVQPCF, PIVCF, and CAIAW on sACE were 3.69 ± 0.25, 4.63 ± 0.16, and 6.55 ± 0.52 μM, respectively. The obtained digesta demonstrated a sACE-inhibitory capacity of 77.1 ± 11.8 µg protein/mL extract (IC50). This is the first report of the sACE-inhibitory capacity attributed to whole A. domesticus subjected to GI digestion without any pre-treatment or protein concentration. This evidence highlights the potential antihypertensive effect of both the digesta and the identified peptides.
Collapse
Affiliation(s)
- Carla S. S. Teixeira
- REQUIMTE-LAQV, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (B.C.-S.); (C.V.); (J.C.); (I.M.); (I.M.P.L.V.O.F.); (M.A.F.)
| | - Bruno Carriço-Sá
- REQUIMTE-LAQV, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (B.C.-S.); (C.V.); (J.C.); (I.M.); (I.M.P.L.V.O.F.); (M.A.F.)
| | - Caterina Villa
- REQUIMTE-LAQV, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (B.C.-S.); (C.V.); (J.C.); (I.M.); (I.M.P.L.V.O.F.); (M.A.F.)
| | - Joana Costa
- REQUIMTE-LAQV, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (B.C.-S.); (C.V.); (J.C.); (I.M.); (I.M.P.L.V.O.F.); (M.A.F.)
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (B.C.-S.); (C.V.); (J.C.); (I.M.); (I.M.P.L.V.O.F.); (M.A.F.)
| | - Isabel M. P. L. V. O. Ferreira
- REQUIMTE-LAQV, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (B.C.-S.); (C.V.); (J.C.); (I.M.); (I.M.P.L.V.O.F.); (M.A.F.)
| | - Miguel A. Faria
- REQUIMTE-LAQV, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (B.C.-S.); (C.V.); (J.C.); (I.M.); (I.M.P.L.V.O.F.); (M.A.F.)
| | - Tânia G. Tavares
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
2
|
Silva Medeiros M, Botelho de Carvalho LA, Alves M, Papoila A, Baptista Carreira Dos Santos HM, Capelo-Martínez JL, Viegas de Campos Pinheiro LM. Low Cubilin/Myeloperoxidase ratio as a promising biomarker for prognosis of high-grade T1 bladder cancer. Int Urol Nephrol 2024; 56:2577-2587. [PMID: 38530585 PMCID: PMC11266244 DOI: 10.1007/s11255-024-03971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/03/2024] [Indexed: 03/28/2024]
Abstract
PURPOSE T1 bladder cancer is known for its high progression and recurrence rates. Identifying aggressive tumours at the non-muscle-invasive stage is crucial to allow early interventions and subsequently increase patient survival. This study aimed to investigate the potential of the cubilin/myeloperoxidase (CUBN/MPO) ratio as a high-grade T1 bladder cancer biomarker. METHODS Urine samples were collected from 30 patients who underwent transurethral resection of the tumour with high-grade T1 bladder cancer (June 2015 to December 2019) before surgery. The urinary proteome was analysed using high-resolution mass spectrometry and the CUBN/MPO ratio was calculated. The primary outcome was the recurrence during the follow-up (around 31.5 months after resection). Univariate Cox regression and Kaplan-Meier curves were used for data analysis. RESULTS Patients with a low CUBN/MPO ratio exhibited upregulated MPO and/or downregulated CUBN. This group of patients had a higher incidence of disease recurrence and progression. Low CUBN/MPO ratio was significantly associated with a higher likelihood of recurrence, progression, and death. It is worth noting that this study was exploratory and conducted on a small sample size, so further research is needed to validate these findings in larger cohorts. CONCLUSION This study highlights the potential of the CUBN/MPO ratio as a prognostic biomarker for high-grade T1 bladder cancer.
Collapse
Affiliation(s)
| | | | - Marta Alves
- Epidemiology and Statistics Unit, Research Centre, Central Lisbon University Hospital Centre, Lisbon, Portugal
| | - Ana Papoila
- Epidemiology and Statistics Unit, Research Centre, Central Lisbon University Hospital Centre, Lisbon, Portugal
| | | | | | | |
Collapse
|
3
|
Tanca A, Deledda MA, De Diego L, Abbondio M, Uzzau S. Benchmarking low- and high-throughput protein cleanup and digestion methods for human fecal metaproteomics. mSystems 2024; 9:e0066124. [PMID: 38934547 PMCID: PMC11265449 DOI: 10.1128/msystems.00661-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The application of fecal metaproteomics to large-scale studies of the gut microbiota requires high-throughput analysis and standardized experimental protocols. Although high-throughput protein cleanup and digestion methods are increasingly used in shotgun proteomics, no studies have yet critically compared such protocols using human fecal samples. In this study, human fecal protein extracts were processed using several different protocols based on three main approaches: filter-aided sample preparation (FASP), solid-phase-enhanced sample preparation (SP3), and suspension trapping (S-Trap). These protocols were applied in both low-throughput (i.e., microtube-based) and high-throughput (i.e., microplate-based) formats, and the final peptide mixtures were analyzed by liquid chromatography coupled to high-resolution tandem mass spectrometry. The FASP-based methods and the combination of SP3 with in-StageTips (iST) yielded the best results in terms of the number of peptides identified through a database search against gut microbiome and human sequences. The efficiency of protein digestion, the ability to preserve hydrophobic peptides and high molecular weight proteins, and the reproducibility of the methods were also evaluated for the different protocols. Other relevant variables, including interindividual variability of stool, duration of protocols, and total costs, were considered and discussed. In conclusion, the data presented here can significantly contribute to the optimization and standardization of sample preparation protocols in human fecal metaproteomics. Furthermore, the promising results obtained with the high-throughput methods are expected to encourage the development of automated workflows and their application to large-scale gut microbiome studies.IMPORTANCEFecal metaproteomics is an experimental approach that allows the investigation of gut microbial functions, which are involved in many different physiological and pathological processes. Standardization and automation of sample preparation protocols in fecal metaproteomics are essential for its application in large-scale studies. Here, we comparatively evaluated different methods, available also in a high-throughput format, enabling two key steps of the metaproteomics analytical workflow (namely, protein cleanup and digestion). The results of our study provide critical information that may be useful for the optimization of metaproteomics experimental pipelines and their implementation in laboratory automation systems.
Collapse
Affiliation(s)
- Alessandro Tanca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Unit of Microbiology and Virology, University Hospital of Sassari, Sassari, Italy
| | | | - Laura De Diego
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Unit of Microbiology and Virology, University Hospital of Sassari, Sassari, Italy
| | - Sergio Uzzau
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Unit of Microbiology and Virology, University Hospital of Sassari, Sassari, Italy
| |
Collapse
|
4
|
Fan K, Wang J, Zhu W, Zhang X, Deng F, Zhang Y, Zou S, Kong L, Shi H, Li Z, Shen G, Wang D, Wu Z, Li H, Xu Z. Urinary proteomics for noninvasive monitoring of biomarkers of chronic mountain sickness in a young adult population using data-independent acquisition (DIA)-based mass spectrometry. J Proteomics 2024; 302:105195. [PMID: 38734407 DOI: 10.1016/j.jprot.2024.105195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Different populations exhibit varying pathophysiological responses to plateau environments. Therefore, it is crucial to identify molecular markers in body fluids with high specificity and sensitivity to aid in determination. Proteomics offers a fresh perspective for investigating protein changes linked to diseases. We utilize urine as a specific biomarker for early chronic mountain sickness (CMS) detection, as it is a simple-to-collect biological fluid. We collected urine samples from three groups: plains health, plateau health and CMS. Using DIA's proteomic approach, we found differentially expressed proteins between these groups, which will be used as a basis for future studies to identify protein markers. Compared with the healthy plain population, 660 altering proteins were identified in plateau health, which performed the resistance to altitude response function by boosting substance metabolism and reducing immune stress function. Compared to the healthy plateau population, the CMS group had 140 different proteins identified, out of which 8 were potential biomarkers for CMS. Our study has suggested that CMS may be closely related to increased thyroid hormone levels, oxidative damage to the mitochondria, impaired cell detoxification function and inhibited hydrolase activity. SIGNIFICANCE: Our team has compiled a comprehensive dataset of urine proteomics for AMS disease. We successfully identified differentially expressed proteins between healthy and AMS groups using the DIA proteomic approach. We discovered that 660 proteins were altered in plateau health compared to the healthy plain population, resulting in a heightened resistance to altitude response function by boosting substance metabolism and reducing immune stress function. Additionally, we pinpointed 140 different proteins in the AMS group compared to the healthy plateau population, with 8 showing potential as biomarkers for AMS. Our findings suggest that the onset of AMS may be closely linked to increased thyroid hormone levels, oxidative damage to the mitochondria, impaired cell detoxification function and inhibited hydrolase activity.
Collapse
Affiliation(s)
- Kaiyuan Fan
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China
| | - Jin Wang
- Department of Clinical Laboratory, Tianjin Third Central Hospital, Tianjin 300170, PR China
| | - Wenqing Zhu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China
| | - Xinan Zhang
- Xizang Corps Hospital of Chinese People's Armed Police Force, Lasa 850000, PR China
| | - Feng Deng
- Xizang Corps Hospital of Chinese People's Armed Police Force, Lasa 850000, PR China
| | - Yan Zhang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China
| | - Shuang Zou
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China
| | - Lingjia Kong
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China
| | - He Shi
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China
| | - Ziling Li
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China
| | - Guozheng Shen
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China
| | - Dong Wang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China
| | - Zhidong Wu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China.
| | - Heng Li
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China.
| | - Zhongwei Xu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, PR China; Tianjin key laboratory for prevention and control of occupational and environmental hazards, Tianjin 300309, PR China.
| |
Collapse
|
5
|
Mansuri MS, Bathla S, Lam TT, Nairn AC, Williams KR. Optimal conditions for carrying out trypsin digestions on complex proteomes: From bulk samples to single cells. J Proteomics 2024; 297:105109. [PMID: 38325732 PMCID: PMC10939724 DOI: 10.1016/j.jprot.2024.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
To identify proteins by the bottom-up mass spectrometry workflow, enzymatic digestion is essential to break down proteins into smaller peptides amenable to both chromatographic separation and mass spectrometric analysis. Trypsin is the most extensively used protease due to its high cleavage specificity and generation of peptides with desirable positively charged N- and C-terminal amino acid residues that are amenable to reverse phase HPLC separation and MS/MS analyses. However, trypsin can yield variable digestion profiles and its protein cleavage activity is interdependent on trypsin source and quality, digestion time and temperature, pH, denaturant, trypsin and substrate concentrations, composition/complexity of the sample matrix, and other factors. There is therefore a need for a more standardized, general-purpose trypsin digestion protocol. Based on a review of the literature we delineate optimal conditions for carrying out trypsin digestions of complex proteomes from bulk samples to limiting amounts of protein extracts. Furthermore, we highlight recent developments and technological advances used in digestion protocols to quantify complex proteomes from single cells. SIGNIFICANCE: Currently, bottom-up MS-based proteomics is the method of choice for global proteome analysis. Since trypsin is the most utilized protease in bottom-up MS proteomics, delineating optimal conditions for carrying out trypsin digestions of complex proteomes in samples ranging from tissues to single cells should positively impact a broad range of biomedical research.
Collapse
Affiliation(s)
- M Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Shveta Bathla
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - TuKiet T Lam
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA; Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Kenneth R Williams
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA; Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
6
|
Mayr AL, Hummel K, Leitsch D, Razzazi-Fazeli E. A Comparison of Bottom-Up Proteomic Sample Preparation Methods for the Human Parasite Trichomonas vaginalis. ACS OMEGA 2024; 9:9782-9791. [PMID: 38434803 PMCID: PMC10905575 DOI: 10.1021/acsomega.3c10040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Bottom-up proteomic approaches depend on the efficient digestion of proteins into peptides for mass spectrometric analysis. Sample preparation strategies, based on magnetic beads, filter-aided systems, or in-solution digests, are commonly used for proteomic analysis. Time-intensive methods like filter-aided sample preparation (FASP) have led to the development of new, more time-efficient filter-based strategies like suspension trappings (S-Traps) or magnetic bead-based strategies like SP3. S-Traps have been reported as an alternative proteomic sample preparation method as they allow for high sodium dodecyl sulfate (SDS) concentrations to be present in the sample. In this study, we compare the efficiency of different protocols for FASP, SP3, and S-Trap-based digestion of proteins after extraction from Trichomonas vaginalis. Overall, we found a high number of protein IDs for all tested methods and a high degree of reproducibility within each method type. However, FASP with a 3 kDa cutoff filter unit outperformed the other methods analyzed, referring to the number of protein IDs. This is the first work providing the direct comparison of four different bottom-up proteomic approaches regarding the most efficient proteomic sample preparation protocol for the human parasite T. vaginalis.
Collapse
Affiliation(s)
- Anna-Lena Mayr
- VetCore
Facility, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Karin Hummel
- VetCore
Facility, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - David Leitsch
- ISPTM, Medical
University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Ebrahim Razzazi-Fazeli
- VetCore
Facility, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
7
|
Messner CB, Demichev V, Wang Z, Hartl J, Kustatscher G, Mülleder M, Ralser M. Mass spectrometry-based high-throughput proteomics and its role in biomedical studies and systems biology. Proteomics 2023; 23:e2200013. [PMID: 36349817 DOI: 10.1002/pmic.202200013] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
There are multiple reasons why the next generation of biological and medical studies require increasing numbers of samples. Biological systems are dynamic, and the effect of a perturbation depends on the genetic background and environment. As a consequence, many conditions need to be considered to reach generalizable conclusions. Moreover, human population and clinical studies only reach sufficient statistical power if conducted at scale and with precise measurement methods. Finally, many proteins remain without sufficient functional annotations, because they have not been systematically studied under a broad range of conditions. In this review, we discuss the latest technical developments in mass spectrometry (MS)-based proteomics that facilitate large-scale studies by fast and efficient chromatography, fast scanning mass spectrometers, data-independent acquisition (DIA), and new software. We further highlight recent studies which demonstrate how high-throughput (HT) proteomics can be applied to capture biological diversity, to annotate gene functions or to generate predictive and prognostic models for human diseases.
Collapse
Affiliation(s)
- Christoph B Messner
- Precision Proteomics Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Vadim Demichev
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ziyue Wang
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Hartl
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Kustatscher
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh, Scotland, UK
| | - Michael Mülleder
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Ralser
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Pathway-guided monitoring of the disease course in bladder cancer with longitudinal urine proteomics. COMMUNICATIONS MEDICINE 2023; 3:8. [PMID: 36646893 PMCID: PMC9842762 DOI: 10.1038/s43856-023-00238-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Monitoring bladder cancer over time requires invasive and costly procedures. Less invasive approaches are required using readily available biological samples such as urine. In this study, we demonstrate a method for longitudinal analysis of the urine proteome to monitor the disease course in patients with bladder cancer. METHODS We compared the urine proteomes of patients who experienced recurrence and/or progression (n = 13) with those who did not (n = 17). We identified differentially expressed proteins within various pathways related to the hallmarks of cancer. The variation of such pathways during the disease course was determined using our differential personal pathway index (dPPi) calculation, which could indicate disease progression and the need for medical intervention. RESULTS Seven hallmark pathways are used to develop the dPPi. We demonstrate that we can successfully longitudinally monitor the disease course in bladder cancer patients through a combination of urine proteomic analysis and the dPPi calculation, over a period of 62 months. CONCLUSIONS Using the information contained in the patient's urinary proteome, the dPPi reflects the individual's course of bladder cancer, and helps to optimise the use of more invasive procedures such as cystoscopy.
Collapse
|
9
|
The mechanisms underlying montelukast's neuropsychiatric effects - new insights from a combined metabolic and multiomics approach. Life Sci 2022; 310:121056. [DOI: 10.1016/j.lfs.2022.121056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
10
|
Santos HM, Carvalho LB, Lodeiro C, Martins G, Gomes IL, D. T. Antunes W, Correia V, Almeida-Santos MM, Rebelo-de-Andrade H, Matos AP, Capelo J. “How to dissect viral infections and their interplay with the host-proteome by immunoaffinity and mass spectrometry: A tutorial.”. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Marques CF, Pinheiro PF, Justino GC. Optimized protocol for obtaining and characterizing primary neuron-enriched cultures from embryonic chicken brains. STAR Protoc 2022; 3:101753. [PMID: 36209426 PMCID: PMC9558106 DOI: 10.1016/j.xpro.2022.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022] Open
Abstract
We present here an optimized protocol to obtain primary neuron-enriched cultures from embryonic chicken brains with no need for an animal facility. The protocol details the steps to isolate a neuron-enriched cell fraction from chicken embryos, followed by characterization of the chicken neurons with mass spectrometry proteomics and cell staining. Because of the high homology between chicken and human amyloid precursor protein processing machinery, these chicken neurons can be used as an alternative to rodent models for studying Alzheimer disease.
Collapse
Affiliation(s)
- Cátia F. Marques
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal,Corresponding author
| | - Pedro F. Pinheiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal,Corresponding author
| | - Gonçalo C. Justino
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal,Corresponding author
| |
Collapse
|
12
|
Ai Y, Xu J, Gunawardena HP, Zare RN, Chen H. Investigation of Tryptic Protein Digestion in Microdroplets and in Bulk Solution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1238-1249. [PMID: 35647885 PMCID: PMC10512443 DOI: 10.1021/jasms.2c00072] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent studies have shown that ultrafast enzymatic digestion of proteins can be achieved in microdroplet within 250 μs. Further investigation of peptides resulting from microdroplet digestion (MD) would be necessary to evaluate it as an alternative to the conventional bulk digestion for bottom-up and biotherapeutic protein characterization. Herein we examined and compared protein tryptic digestion in both MD and bulk solution. In the case of MD of β-lactoglobulin B, the preservation of long peptides was observed due to the short digestion time. In addition, MD is applicable to digest both high- and low-abundance proteins in mixture. In the case of digesting NIST 8671 mAb antibody containing a low level of commonly encountered host cell protein (HCP) PLBL2 (mAb:PLBL2 = 100:1 by weight), MD produced lower levels of digestion-induced chemical modifications of asparagine/glutamine deamidation, compared with overnight digestion. No significant difference between MD and bulk digestion was observed in terms of trypsin digestion specificity based on examination of semi- and unspecific-cleaved peptides. Our study suggests that MD, a fast digestion approach, could be adopted for bottom-up proteomics research and for peptide mapping of mAbs to characterize site-specific deamidation and glycosylation, for the purpose of development of biopharmaceuticals.
Collapse
Affiliation(s)
- Yongling Ai
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Jeffrey Xu
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Harsha P. Gunawardena
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, USA
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| |
Collapse
|
13
|
Gong S, Hu X, Chen S, Sun B, Wu JL, Li N. Dual roles of drug or its metabolite-protein conjugate: Cutting-edge strategy of drug discovery using shotgun proteomics. Med Res Rev 2022; 42:1704-1734. [PMID: 35638460 DOI: 10.1002/med.21889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 11/11/2022]
Abstract
Many drugs can bind directly to proteins or be bioactivated by metabolizing enzymes to form reactive metabolites (RMs) that rapidly bind to proteins to form drug-protein conjugates or metabolite-protein conjugates (DMPCs). The close relationship between DMPCs and idiosyncratic adverse drug reactions (IADRs) has been recognized; drug discovery teams tend to avoid covalent interactions in drug discovery projects. Covalent interactions in DMPCs can provide high potency and long action duration and conquer the intractable targets, inspiring drug design, and development. This forms the dual role feature of DMPCs. Understanding the functional implications of DMPCs in IADR control and therapeutic applications requires precise identification of these conjugates from complex biological samples. While classical biochemical methods have contributed significantly to DMPC detection in the past decades, the low abundance and low coverage of DMPCs have become a bottleneck in this field. An emerging transformation toward shotgun proteomics is on the rise. The evolving shotgun proteomics techniques offer improved reproducibility, throughput, specificity, operability, and standardization. Here, we review recent progress in the systematic discovery of DMPCs using shotgun proteomics. Furthermore, the applications of shotgun proteomics supporting drug development, toxicity mechanism investigation, and drug repurposing processes are also reviewed and prospected.
Collapse
Affiliation(s)
- Shilin Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Xiaolan Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Shengshuang Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Respiratory Medical Center, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| |
Collapse
|
14
|
Sato H, Nakajima D, Ishikawa M, Konno R, Nakamura R, Ohara O, Kawashima Y. Evaluation of the Suitability of Dried Saliva Spots for In-Depth Proteome Analyses for Clinical Applications. J Proteome Res 2022; 21:1340-1348. [PMID: 35446574 DOI: 10.1021/acs.jproteome.2c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previously, we performed nontargeted proteome analysis using dried blood spots (DBSs) that are widely used in newborn screening for the clinical diagnosis of congenital genetic diseases and immunodeficiency. We have developed an efficient and simple pretreatment method for DBSs that can detect more than 1000 proteins. To complement proteins that are difficult to detect via DBS analysis with less invasive alternative body fluids, we conducted this study to investigate the proteins detected from dried saliva spots (DSSs) using single-shot LC-MS/MS, which is practical in clinical settings. We also clarified whether DSSs have the same advantages as DBSs, and we investigated the influence of saliva collection conditions and the storage environment on their protein profile. As a result, we detected approximately 5000 proteins in DSSs and whole saliva, and we concluded that they were sufficient to complement the proteins lacking in the blood analysis. DSSs could be used as an alternative tool to DBSs for detecting the presence of causative proteins.
Collapse
Affiliation(s)
- Hironori Sato
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan.,Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-8677, Japan
| | - Daisuke Nakajima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Masaki Ishikawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Ryo Konno
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Ren Nakamura
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
15
|
Loroch S, Kopczynski D, Schneider AC, Schumbrutzki C, Feldmann I, Panagiotidis E, Reinders Y, Sakson R, Solari FA, Vening A, Swieringa F, Heemskerk JWM, Grandoch M, Dandekar T, Sickmann A. Toward Zero Variance in Proteomics Sample Preparation: Positive-Pressure FASP in 96-Well Format (PF96) Enables Highly Reproducible, Time- and Cost-Efficient Analysis of Sample Cohorts. J Proteome Res 2022; 21:1181-1188. [PMID: 35316605 PMCID: PMC8981309 DOI: 10.1021/acs.jproteome.1c00706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
As novel liquid chromatography–mass
spectrometry (LC-MS)
technologies for proteomics offer a substantial increase in LC-MS
runs per day, robust and reproducible sample preparation emerges as
a new bottleneck for throughput. We introduce a novel strategy for
positive-pressure 96-well filter-aided sample preparation (PF96) on
a commercial positive-pressure solid-phase extraction device. PF96
allows for a five-fold increase in throughput in conjunction with
extraordinary reproducibility with Pearson product-moment correlations
on the protein level of r = 0.9993, as demonstrated
for mouse heart tissue lysate in 40 technical replicates. The targeted
quantification of 16 peptides in the presence of stable-isotope-labeled
reference peptides confirms that PF96 variance is barely assessable
against technical variation from nanoLC-MS instrumentation. We further
demonstrate that protein loads of 36–60 μg result in
optimal peptide recovery, but lower amounts ≥3 μg can
also be processed reproducibly. In summary, the reproducibility, simplicity,
and economy of time provide PF96 a promising future in biomedical
and clinical research.
Collapse
Affiliation(s)
- Stefan Loroch
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Dominik Kopczynski
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Adriana C Schneider
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany.,Faculty of Biochemical and Chemical Engineering, Technical University of Dortmund, 44227 Dortmund, Germany
| | - Cornelia Schumbrutzki
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Ingo Feldmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | | | - Yvonne Reinders
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Roman Sakson
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany
| | - Alicia Vening
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Maria Grandoch
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139 Dortmund, Germany.,Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, AB24 3FX Aberdeen, United Kingdom
| |
Collapse
|
16
|
A systematic evaluation of yeast sample preparation protocols for spectral identifications, proteome coverage and post-isolation modifications. J Proteomics 2022; 261:104576. [DOI: 10.1016/j.jprot.2022.104576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/20/2022]
|
17
|
Xm S, Cc L, C L, Yf L, L C, Yz Z, Sj Y. TLR4 inhibition ameliorated glucolipotoxicity-induced differentiation suppression in osteoblasts via RIAM regulation of NF-κB nuclear translocation. Mol Cell Endocrinol 2022; 543:111539. [PMID: 34929310 DOI: 10.1016/j.mce.2021.111539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022]
Abstract
TLR4 is a key innate immune signal that mediates glucolipid toxicity through yet unclear mechanisms. Here, TLR4 truncation ameliorated bone metabolism disorders in diabetic rats, and the underlying mechanisms were explored by proteomics. Our study showed that TLR4 truncation inhibited bone loss induced by diabetes in rats. In addition, a proteomic analysis screen exposed the differential proteins associated with immune reactivity and T cell activation (RIAM and Class II histocompatibility antigen, M β1 chain). Further cellular experiments showed that TLR4 mediated the inhibition of osteoblast differentiation induced by glucolipotoxicity and promoted an increase in the nuclear level of RIAM-NF-κB. Mechanistic studies showed that TLR4 mediated glucolipotoxicity induced damage in bone metabolism primarily by regulating RIAM-NF-κB interactions, which promoted RIAM-NF-κB nuclear translocation. In conclusion, we confirmed that TLR4 inhibition could delay bone metabolism disorders induced by glycolipid toxicity via RIAM regulation of NF-κB nuclear translocation.
Collapse
Affiliation(s)
- Shen Xm
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Diabetes Research Institute of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Metabolic Diseases Research Institute, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China
| | - Li Cc
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Department of Cardiology, Affiliated Fuzhou First Hospital of Fujian Medical University, 190 Da Dao Road, Fuzhou, Fujian, 350009, China
| | - Lan C
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China
| | - Lin Yf
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China
| | - Cheng L
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China
| | - Zhang Yz
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Diabetes Research Institute of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Metabolic Diseases Research Institute, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China
| | - Yan Sj
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Diabetes Research Institute of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Metabolic Diseases Research Institute, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China; Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian, 350005, China.
| |
Collapse
|
18
|
Lewandowska AE, Fel A, Thiel M, Czaplewska P, Łukaszuk K, Wiśniewski JR, Ołdziej S. Compatibility of Distinct Label-Free Proteomic Workflows in Absolute Quantification of Proteins Linked to the Oocyte Quality in Human Follicular Fluid. Int J Mol Sci 2021; 22:7415. [PMID: 34299044 PMCID: PMC8304916 DOI: 10.3390/ijms22147415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/02/2023] Open
Abstract
We present two separate label-free quantitative workflows based on different high-resolution mass spectrometers and LC setups, which are termed after the utilized instrument: Quad-Orbitrap (nano-LC) and Triple Quad-TOF (micro-LC) and their directed adaptation toward the analysis of human follicular fluid proteome. We identified about 1000 proteins in each distinct workflow using various sample preparation methods. With assistance of the Total Protein Approach, we were able to obtain absolute protein concentrations for each workflow. In a pilot study of twenty samples linked to diverse oocyte quality status from four donors, 455 and 215 proteins were quantified by the Quad-Orbitrap and Triple Quad-TOF workflows, respectively. The concentration values obtained from both workflows correlated to a significant degree. We found reasonable agreement of both workflows in protein fold changes between tested groups, resulting in unified lists of 20 and 22 proteins linked to oocyte maturity and blastocyst development, respectively. The Quad-Orbitrap workflow was best suited for an in-depth analysis without the need of extensive fractionation, especially of low abundant proteome, whereas the Triple Quad-TOF workflow allowed a more robust approach with a greater potential to increase in effectiveness with the growing number of analyzed samples after the initial effort of building a comprehensive spectral library.
Collapse
Affiliation(s)
- Aleksandra E. Lewandowska
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland; (A.F.); (M.T.); (P.C.)
| | - Anna Fel
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland; (A.F.); (M.T.); (P.C.)
| | - Marcel Thiel
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland; (A.F.); (M.T.); (P.C.)
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland; (A.F.); (M.T.); (P.C.)
| | - Krzysztof Łukaszuk
- INVICTA Fertility and Reproductive Center, Polna 64, 81-740 Sopot, Poland;
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| | - Jacek R. Wiśniewski
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany;
| | - Stanisław Ołdziej
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland; (A.F.); (M.T.); (P.C.)
| |
Collapse
|
19
|
Zhao P, Gunawardena HP, Zhong X, Zare RN, Chen H. Microdroplet Ultrafast Reactions Speed Antibody Characterization. Anal Chem 2021; 93:3997-4005. [PMID: 33590747 DOI: 10.1021/acs.analchem.0c04974] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recently, microdroplet reactions have aroused much interest because the microdroplet provides a unique medium where organic reactions could be accelerated by a factor of 103 or more. However, microdroplet reactions of proteins have been rarely studied. We report the occurrence of multiple-step reactions of a large protein, specifically, the digestion, reduction, and deglycosylation of an intact antibody, which can take place in microseconds with high reaction yields in aqueous microdroplets at room temperature. As a result, fast structural characterization of a monoclonal antibody, essential for assessing its quality as a therapeutic drug, can be enabled. We found that the IgG1 antibody can be digested completely by the IdeS protease in aqueous microdroplets in 250 microseconds, a 7.5 million-fold improvement in speed in comparison to traditional digestion in bulk solution (>30 min). Strikingly, inclusion of the reductant tris(2-carboxyethyl)phosphine in the spray solution caused simultaneous antibody digestion and disulfide bond reduction. Digested and reduced antibody fragments were either collected or analyzed online by mass spectrometry. Further addition of PNGase F glycosylase into the spray solution led to antibody deglycosylation, thereby producing reduced and deglycosylated fragments of analytical importance. In addition, glycated fragments of IgG1 derived from glucose modification were identified rapidly with this ultrafast digestion/reduction technique. We suggest that microdroplets can serve as powerful microreactors for both exploring large-molecule reactions and speeding their structural analyses.
Collapse
Affiliation(s)
- Pengyi Zhao
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Harsha P Gunawardena
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Xiaoqin Zhong
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
20
|
Shen F, Xiong Y, Zhang L, Li H, Zhao H, Liu X, Yang P. Rapid Sample Preparation Workflow for Serum Sample Analysis with Different Mass Spectrometry Acquisition Strategies. Anal Chem 2020; 93:1578-1585. [PMID: 33372771 DOI: 10.1021/acs.analchem.0c03985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fast, robust, and high-throughput mass spectrometry-based serum proteomic pipelines have great potential to yield information for biomarker discovery and daily clinical practice. Here, we developed a simple and rapid sample preparation (RSP) workflow by reducing the classical pretreatment time from overnight to less than 1.5 h in an ordinary system. In HeLa cell lysates and serum samples, the number of proteins and tryptic peptides generated using the RSP was comparable to that generated using conventional methods. For fast scanning of the serum proteome, the RSP-supported pipeline could complete a test in less than 2 h with 30 min of LC-MS/MS analysis. Nearly 390 proteins spanning 8 magnitudes of abundance range were identified with high reproducibility, containing over 90 cancer-associated proteins and over 50 FDA-approved biomarkers. For fast assay development, eight candidate biomarker peptides for cardiovascular disease (CVD) were quantified by MRM with high accuracy (CV% <10). After a simple highly abundant protein removal, a deep serum proteome of over 1400 proteins was reached. By analyzing the depleted serum in DIA acquisition mode, over 700 proteins were quantified. The differentially expressed proteins could help us unambiguously distinguish the serum samples from healthy people and patients with pancreatic cancer (PC). Potential biomarkers for PC were also found. The new RSP method, which is rapid and simple, meets the demands of both deep mining and fast analysis of serum proteins. We believe that it will be widely used in serum protein studies and accelerate the transformation from biomarker discovery to clinical application.
Collapse
Affiliation(s)
- Fenglin Shen
- The Fifth People Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.,Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, 200433, China
| | - Yueting Xiong
- The Fifth People Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Lei Zhang
- The Fifth People Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Hengchao Li
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Huanhuan Zhao
- The Fifth People Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiaohui Liu
- The Fifth People Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.,Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, 200433, China
| | - Pengyuan Yang
- The Fifth People Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.,Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai, 200433, China
| |
Collapse
|