1
|
Huo B, Xia L, Hu Y, Li G. Flexible microfluidic co-recognition coupled with magnetic enrichment and silent SERS sensing for simultaneous analysis of bacteria in food. Biosens Bioelectron 2024; 255:116227. [PMID: 38552524 DOI: 10.1016/j.bios.2024.116227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Food safety represents a critical global public health issue, with safety challenges posed by foodborne pathogens garnering extensive attention. Therefore, we introduce a co-recognition, enrichment and sensing (CES) all-in-one strategy for analysis of bacteria with low background and high specificity. This method employs antimicrobial peptide (AMP) functionalized magnetic nanoparticles (MNPs) to enrich bacteria and uses aptamer@Au@PBA (KxMFe(CN)6 (M = Pb and Ni)) NPs as silent SERS tags. When both S. aureus and E. coli O157:H7 are present, the silent SERS probes could specifically label the target bacteria, forming a sandwich-like structure. This binding induces silent Raman shifts (2139 cm-1 and 2197 cm-1), enabling quantification of two bacteria. Coupling with the modular flexible microfluidics and magnetic control slider device, this platform facilitates rapid switching between magnetic loading and elution. The CES SERS method demonstrated linear relationships for both S. aureus and E. coli O157:H7 at 50-1600 cfu mL-1, with detection limits of 14 and 18 cfu mL-1, respectively. The method achieved recovery rates of 85.6-112% and relative standard deviations of 1.5-8.6%. Validation using the ELISA method revealed relative errors between -7.5 and 4.3%. The CES approach has potential applications in food safety, environmental monitoring, and biomedical diagnosis.
Collapse
Affiliation(s)
- Bingyang Huo
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Pankratov D, Hidalgo Martinez S, Karman C, Gerzhik A, Gomila G, Trashin S, Boschker HTS, Geelhoed JS, Mayer D, De Wael K, J R Meysman F. The organo-metal-like nature of long-range conduction in cable bacteria. Bioelectrochemistry 2024; 157:108675. [PMID: 38422765 DOI: 10.1016/j.bioelechem.2024.108675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Cable bacteria are filamentous, multicellular microorganisms that display an exceptional form of biological electron transport across centimeter-scale distances. Currents are guided through a network of nickel-containing protein fibers within the cell envelope. Still, the mechanism of long-range conduction remains unresolved. Here, we characterize the conductance of the fiber network under dry and wet, physiologically relevant, conditions. Our data reveal that the fiber conductivity is high (median value: 27 S cm-1; range: 2 to 564 S cm-1), does not show any redox signature, has a low thermal activation energy (Ea = 69 ± 23 meV), and is not affected by humidity or the presence of ions. These features set the nickel-based conduction mechanism in cable bacteria apart from other known forms of biological electron transport. As such, conduction resembles that of an organic semi-metal with a high charge carrier density. Our observation that biochemistry can synthesize an organo-metal-like structure opens the way for novel bio-based electronic technologies.
Collapse
Affiliation(s)
- Dmitrii Pankratov
- Geobiology Group, Microbial Systems Technology Excellence Centre, Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | - Silvia Hidalgo Martinez
- Geobiology Group, Microbial Systems Technology Excellence Centre, Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Cheryl Karman
- Geobiology Group, Microbial Systems Technology Excellence Centre, Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | - Anastasia Gerzhik
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Gabriel Gomila
- Nanoscale Bioelectric Characterization Group, Institute for Bioengineering of Catalunya (IBEC), The Barcelona Institute of Science and Technology, Baldiri i Reixac 15-21, 08028 Barcelona, Spain; Department of Electronics and Biomedical Engineering, Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain
| | - Stanislav Trashin
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | - Henricus T S Boschker
- Geobiology Group, Microbial Systems Technology Excellence Centre, Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, the Netherlands
| | - Jeanine S Geelhoed
- Geobiology Group, Microbial Systems Technology Excellence Centre, Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Karolien De Wael
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | - Filip J R Meysman
- Geobiology Group, Microbial Systems Technology Excellence Centre, Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, the Netherlands.
| |
Collapse
|
3
|
Jamal RB, Bay Gosewinkel U, Ferapontova EE. Electrocatalytic aptasensor for bacterial detection exploiting ferricyanide reduction by methylene blue on mixed PEG/aptamer monolayers. Bioelectrochemistry 2024; 156:108620. [PMID: 38006817 DOI: 10.1016/j.bioelechem.2023.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Pathogen-triggered infections are the most severe global threat to human health, and to provide their timely treatment and prevention, robust methods for rapid and reliable identification of pathogenic microorganisms are required. Here, we have developed a fast and inexpensive electrocatalytic aptamer assay enabling specific and ultrasensitive detection of E. coli. E. coli, a biomarker of environmental contamination and infections, was captured on the mixed aptamer/thiolated PEG self-assembled monolayers formed on electrochemically pre-treated gold screen-printed electrodes (SPE). Signals from aptamer - E. coli binding were amplified by electrocatalytic reduction of ferricyanide mediated by methylene blue (MB) adsorbed on bacterial and aptamer surfaces. PEG operated as an antifouling agent and inhibited direct (not MB-mediated) discharge of ferricyanide. The assay allowed from 10 to 1000 CFU mL-1E. coli detection in 30 min, with no interference from B. subtilis, in buffer and artificial urine samples. This electrocatalytic approach is fast, specific, sensitive, and can be used directly in in-field and point-of-care applications for analysis of bacteria in human environment.
Collapse
Affiliation(s)
- Rimsha B Jamal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Ulrich Bay Gosewinkel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
4
|
Liu Y, Xu Y, Wen Q. Carbon dots for staining bacterial dead cells and distinguishing dead/alive bacteria. Anal Biochem 2024; 687:115432. [PMID: 38113980 DOI: 10.1016/j.ab.2023.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
The small molecular dyes such as propidium iodide (PI) always suffer from photo-bleaching and potential toxicity. To tackle the problems, a type of nontoxic carbon dots (CDs) was obtained for dead/alive bacterial distinguishing. This kind of carbon dots has an average size of 1.91 nm and owns carboxyl groups, emerging as excellent candidates for imaging bacterial cells. The negative charges of carboxyl groups lead their avoidance of alive cells while their small size facilitates penetration of dead cells. This kind of nontoxic CDs has effectively differentiated between and alive ones, presenting a highly promising green dye comparing with traditional small molecular dyes.
Collapse
Affiliation(s)
- Yuting Liu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Qin Wen
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
5
|
Jia X, Liu J, Zhang Y, Jiang X, Zhang J, Wu J. D-tartaric acid doping improves the performance of whole-cell bacteria imprinted polymer for sensing Vibrio parahaemolyticus. Anal Chim Acta 2023; 1275:341567. [PMID: 37524461 DOI: 10.1016/j.aca.2023.341567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 08/02/2023]
Abstract
Whole-cell bacteria imprinted polymer-based sensors still face challenges in the form of the difficulty of removing the template entirely, low affinity, and poor sensitivity. To further improve their performance, it is pivotal to modulate the morphology and chemical properties of imprintied polymer by taking advantage of doping engineering. Here we introduced D-tartaric acid (D-TA) as a dopant and employed pyrrole as a functional monomer to construct D-TA/polypyrrole (PPy)-based bacteria imprinted polymer (DPBIP) sensor for Vibrio parahaemolyticus (VP) detection. It is demonstrated that D-TA doping can synergistically accelerate the removal of template bacteria from imprinted polymers (1.5 h), improve bacteria affinity of imprinted sites (the recognition time of 30 min), and enhance the sensitivity of DPBIP sensor (a detection limit of 19 CFU mL-1). The DPBIP sensor had a linear range of 102∼106 CFU mL-1 and exhibited high selectivity and good repeatability. Moreover, a recovery of 94.8%-105.3% was achieved in drinking water and oyster samples. Therefore, small functional molecules doping opens a new avenue to engineering BIP-based sensors with high performance, holding potential applications in securing food safety.
Collapse
Affiliation(s)
- Xiaoyan Jia
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai, 201306, China
| | - Jie Liu
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanan Zhang
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuyan Jiang
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai, 201306, China
| | - Junling Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Collaborative Innovation Center for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jikui Wu
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
6
|
Xu X, Lin X, Wang L, Ma Y, Sun T, Bian X. A Novel Dual Bacteria-Imprinted Polymer Sensor for Highly Selective and Rapid Detection of Pathogenic Bacteria. BIOSENSORS 2023; 13:868. [PMID: 37754102 PMCID: PMC10526176 DOI: 10.3390/bios13090868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
The rapid, sensitive, and selective detection of pathogenic bacteria is of utmost importance in ensuring food safety and preventing the spread of infectious diseases. Here, we present a novel, reusable, and cost-effective impedimetric sensor based on a dual bacteria-imprinted polymer (DBIP) for the specific detection of Escherichia coli O157:H7 and Staphylococcus aureus. The DBIP sensor stands out with its remarkably short fabrication time of just 20 min, achieved through the efficient electro-polymerization of o-phenylenediamine monomer in the presence of dual bacterial templates, followed by in-situ template removal. The key structural feature of the DBIP sensor lies in the cavity-free imprinting sites, indicative of a thin layer of bacterial surface imprinting. This facilitates rapid rebinding of the target bacteria within a mere 15 min, while the sensing interface regenerates in just 10 min, enhancing the sensor's overall efficiency. A notable advantage of the DBIP sensor is its exceptional selectivity, capable of distinguishing the target bacteria from closely related bacterial strains, including different serotypes. Moreover, the sensor exhibits high sensitivity, showcasing a low detection limit of approximately 9 CFU mL-1. The sensor's reusability further enhances its cost-effectiveness, reducing the need for frequent sensor replacements. The practicality of the DBIP sensor was demonstrated in the analysis of real apple juice samples, yielding good recoveries. The integration of quick fabrication, high selectivity, rapid response, sensitivity, and reusability makes the DBIP sensor a promising solution for monitoring pathogenic bacteria, playing a crucial role in ensuring food safety and safeguarding public health.
Collapse
Affiliation(s)
- Xiaoli Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaohui Lin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lingling Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yixin Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Tao Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaojun Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|
7
|
Liang J, Huang Z, Wang K, Zhang L, Wan Y, Yang T, Zeng H. Ultrasensitive visual detection of the food-borne pathogen via MOF encapsulated enzyme. Talanta 2023; 259:124503. [PMID: 37027932 DOI: 10.1016/j.talanta.2023.124503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Various methods have been made to achieve sensitive detection (10 CFU/mL) of Escherichia coli O157:H7 (E. coli) in real samples, however, they are complex, time-consuming, or instrument-dependent. Enzyme-catalyzed reactions are one of the most efficient methods to amplify signals for sensitive detection. ZIF-8 owning stability, porosity, and high specific area are suitable for embedding enzymes which can effectively protect enzyme activity and thus improve detection sensitivity. Herein, a simple visual assay of E. coli with the limits of detection of 1 CFU/mL was developed based on this stable enzyme-catalyzed amplified system. A microbial safety test of milk, orange juice, seawater, cosmetic, and hydrolyzed yeast protein, was successfully performed with the limits of detection of 10 CFU/mL by the naked eye. And this bioassay possessed high selectivity and stability making the developed detection method practically promising.
Collapse
|
8
|
Lin X, Liu PP, Yan J, Luan D, Sun T, Bian X. Dual Synthetic Receptor-Based Sandwich Electrochemical Sensor for Highly Selective and Ultrasensitive Detection of Pathogenic Bacteria at the Single-Cell Level. Anal Chem 2023; 95:5561-5567. [PMID: 36961921 DOI: 10.1021/acs.analchem.2c04657] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Sensitive and rapid detection of pathogenic bacteria is essential for effective source control and prevention of microbial infectious diseases. However, it remains a substantial challenge to rapidly detect bacteria at the single-cell level. Herein, we present an electrochemical sandwich sensor for highly selective and ultrasensitive detection of a single bacterial cell based on dual recognition by the bacteria-imprinted polymer film (BIF) and aptamer. The BIF was used as the capture probe, which was in situ fabricated on the electrode surface within 15 min via electropolymerization. The aptamer and electroactive 6-(Ferrocenyl)hexanethiol cofunctionalized gold nanoparticles (Au@Fc-Apt) were employed as the signal probe. Once the target bacteria were anchored on the BIF-modified electrode, the Au@Fc-Apt was further specifically bound to the bacteria, generating enhanced current signals for ultrasensitive detection of Staphylococcus aureus down to a single cell in phosphate buffer solution. Even in the complex milk samples, the sensor could detect as low as 10 CFU mL-1 of S. aureus without any complicated pretreatment except for 10-fold dilution. Moreover, the current response to the target bacteria was hardly affected by the coexisting multiple interfering bacteria, whose number is 30 times higher than the target, demonstrating the excellent selectivity of the sensor. Compared with most reported sandwich-type electrochemical sensors, this assay is more sensitive and more rapid, requiring less time (1.5 h) for the sensing interface construction. By virtue of its sensitivity, rapidity, selectivity, and cost-effectiveness, the sensor can serve as a universal detection platform for monitoring pathogenic bacteria in fields of food/public safety.
Collapse
Affiliation(s)
- Xiaohui Lin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ping Ping Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Juan Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Donglei Luan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Tao Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaojun Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|
9
|
Chai Z, Bi H. Capture and identification of bacteria from fish muscle based on immunomagnetic beads and MALDI-TOF MS. Food Chem X 2022; 13:100225. [PMID: 35498980 PMCID: PMC9039919 DOI: 10.1016/j.fochx.2022.100225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/02/2022] [Accepted: 01/20/2022] [Indexed: 11/12/2022] Open
Abstract
A protocol for the bacterial analysis in fish muscle was developed. Anti-bacterial antibodies modified magnetic beads (MBs) were used to capture bacteria. The bacterial identification accuracy from different complex food matrices was good. The presence of 10 CFU/mL E. coli is still detectable. It is promising to be applied in bacterial analysis to ensure muscle food safety.
In the present study, E. coli was taken as a model bacterium, anti-E. coli functionalized magnetic beads were constructed and used to capture E. coli from aqueous extracts of fish sarcoplasmic protein (FSP) and fish muscle protein of sablefish. The excellency of the reproducibility of the present protocol was demonstrated by capturing E. coli from sablefish FSP extracts. The presence of 10 CFU/mL E. coli is still detectable. A microbial safety test on the surface of fish muscle was successfully performed. The bacterial identification accuracy from samples with different matrices was found to be excellent with RSD = 3%. High specific detection of target bacteria in complex biological samples was testified by spiking Staphylococcus aureus and Klebsiella pneumoniae in samples as interference. Ten biomarker ions were discovered for E. coli’s recognition. It is promising to apply the present protocol in bacterial analysis in muscle food samples to ensure their safety.
Collapse
|
10
|
Li N, Zhang W, Lin J, Xing G, Li H, Lin JM. A Specific Mass-Tag Approach for Detection of Foodborne Pathogens Using MALDI-TOF Mass Spectrometry. Anal Chem 2022; 94:3963-3969. [PMID: 35195984 DOI: 10.1021/acs.analchem.1c05069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pathogen infections present a considerable threat to global health owing to the high morbidity and mortality, and usually multiple pathogens coexist in food and the environment. Consequently, it is in urgent need to develop some multiplexed and sensitive approaches for pathogen detection. Here, we presented a novel strategy using mass tag-mediated surface engineering for simultaneous detection of multiple bacteria by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Following aptamer binding, primer amplification, and DNA hybridization, bacteria were specifically labeled by their corresponding mass tags, which could be released and ionized after laser irradiation. This strategy converted the detection of bacteria to the analysis of mass tags, allowing simultaneous detection of multiple bacteria and avoiding the dependence of microbial mass spectra databases. In addition, this approach applied two rolling circle amplification (RCA) reactions to improve both the capture efficiency and detection sensitivity of the target bacteria. The specificity and the real sample detection were evaluated, and the results demonstrated a potential application of this approach in milk safety monitoring.
Collapse
Affiliation(s)
- Nan Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Weifei Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Jing Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Gaowa Xing
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Haifang Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Gopal A, Yan L, Kashif S, Munshi T, Roy VAL, Voelcker NH, Chen X. Biosensors and Point-of-Care Devices for Bacterial Detection: Rapid Diagnostics Informing Antibiotic Therapy. Adv Healthc Mater 2022; 11:e2101546. [PMID: 34850601 DOI: 10.1002/adhm.202101546] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/20/2021] [Indexed: 02/06/2023]
Abstract
With an exponential rise in antimicrobial resistance and stagnant antibiotic development pipeline, there is, more than ever, a crucial need to optimize current infection therapy approaches. One of the most important stages in this process requires rapid and effective identification of pathogenic bacteria responsible for diseases. Current gold standard techniques of bacterial detection include culture methods, polymerase chain reactions, and immunoassays. However, their use is fraught with downsides with high turnaround time and low accuracy being the most prominent. This imposes great limitations on their eventual application as point-of-care devices. Over time, innovative detection techniques have been proposed and developed to curb these drawbacks. In this review, a systematic summary of a range of biosensing platforms is provided with a strong focus on technologies conferring high detection sensitivity and specificity. A thorough analysis is performed and the benefits and drawbacks of each type of biosensor are highlighted, the factors influencing their potential as point-of-care devices are discussed, and the authors' insights for their translation from proof-of-concept systems into commercial medical devices are provided.
Collapse
Affiliation(s)
- Ashna Gopal
- School of Engineering Institute for Bioengineering The University of Edinburgh Edinburgh EH9 3JL UK
| | - Li Yan
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen 518118 China
| | - Saima Kashif
- School of Engineering Institute for Bioengineering The University of Edinburgh Edinburgh EH9 3JL UK
| | - Tasnim Munshi
- School of Chemistry University of Lincoln, Brayford Pool Lincoln Lincolnshire LN6 7TS UK
| | | | - Nicolas H. Voelcker
- Drug Delivery Disposition and Dynamics Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility Clayton Victoria 3168 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton Victoria 3168 Australia
| | - Xianfeng Chen
- School of Engineering Institute for Bioengineering The University of Edinburgh Edinburgh EH9 3JL UK
| |
Collapse
|
12
|
Morris C, Lee YS, Yoon S. Adventitious agent detection methods in bio-pharmaceutical applications with a focus on viruses, bacteria, and mycoplasma. Curr Opin Biotechnol 2021; 71:105-114. [PMID: 34325176 DOI: 10.1016/j.copbio.2021.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Adventitious agents present significant complications to biopharmaceutical manufacturing. Adventitious agents include numerous lifeforms such as bacteria, fungi, viruses, mycoplasma, and others that are inadvertently introduced into biological systems. They present significant problems to the stability of cell cultures and the sterility of manufacturing products. In this review, detection methods for bacteria, viruses, and mycoplasma are comprehensively addressed. Detection methods for viruses include traditional culture-based methods, electron microscopy studies, in vitro molecular and antibody assays, sequencing methods (massive parallel or next generation sequencing), and degenerate PCR (polymerase chain reaction). Bacteria, on the other hand, can be detected with culture-based approaches, PCR, and biosensor-based methods. Mycoplasma can be detected via PCR (including specific kits), microbiological culture methods, and enzyme-linked immunosorbent assays (ELISA). This review highlights the advantages and weaknesses of current detection methods while exploring potential avenues for further development and improvement of novel detection methods. Additionally, a brief evaluation of the transition of these methods into the gene therapy production realm with a focus on viral titer monitoring will be presented.
Collapse
Affiliation(s)
- Caitlin Morris
- Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Yong Suk Lee
- Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Seongkyu Yoon
- Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| |
Collapse
|
13
|
Jamal RB, Shipovskov S, Ferapontova EE. Electrochemical Immuno- and Aptamer-Based Assays for Bacteria: Pros and Cons over Traditional Detection Schemes. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5561. [PMID: 32998409 PMCID: PMC7582323 DOI: 10.3390/s20195561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 01/20/2023]
Abstract
Microbiological safety of the human environment and health needs advanced monitoring tools both for the specific detection of bacteria in complex biological matrices, often in the presence of excessive amounts of other bacterial species, and for bacteria quantification at a single cell level. Here, we discuss the existing electrochemical approaches for bacterial analysis that are based on the biospecific recognition of whole bacterial cells. Perspectives of such assays applications as emergency-use biosensors for quick analysis of trace levels of bacteria by minimally trained personnel are argued.
Collapse
Affiliation(s)
| | | | - Elena E. Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Gustav Wieds Vej 14, DK-8000 Aarhus, Denmark; (R.B.J.); (S.S.)
| |
Collapse
|