1
|
Du Y, Yang HM, Zhang YM, Ma L, Gong XM, Tang JB. Development of a bioluminescent immunoassay based on Fc-specific conjugated antibody-nanoluciferase immunoreagents for determining aflatoxin B 1. Food Chem 2025; 463:141220. [PMID: 39265299 DOI: 10.1016/j.foodchem.2024.141220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Aflatoxin B1 (AFB1) is a potent carcinogen, and is among the most hazardous mycotoxins in agricultural products. Therefore, the development of sensitive and convenient detection methods for AFB1 is significant for food safety against mycotoxins. Herein, a bioluminescent enzyme immunoassay (BLEIA) was developed for ultrasensitive detection of AFB1, based on the novel Fc-specific antibody-nanoluciferase (Ab-Nluc) conjugates which were fabricated using an IgG-binding protein-assisted photo-conjugation strategy. In indirect competitive immunoassay format, the proposed BLEIA exhibited the detection limit of 0.0232 ng mL-1, which was 37.4-fold lower than that obtained using the classical enzyme-linked immunosorbent assay (ELISA) based on Ab-horseradish peroxidase (Ab-HRP) chemical conjugates (0.868 ng mL-1). Meanwhile, the BLEIA exhibited high accuracy and precision. Thus, the proposed Fc-specific Ab-Nluc conjugates-based BLEIA provides an ultrasensitive and reliable method for detecting toxins and has potential for use in food safety monitoring.
Collapse
Affiliation(s)
- Yue Du
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Hong-Ming Yang
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Yu-Min Zhang
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Lan Ma
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Xiao-Ming Gong
- Weifang Customs, Weifang 261031, Shandong Province, China
| | - Jin-Bao Tang
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong Province, China.
| |
Collapse
|
2
|
Pradanas-González F, Cortés MG, Glahn-Martínez B, Del Barrio M, Purohit P, Benito-Peña E, Orellana G. Biosensing strategies using recombinant luminescent proteins and their use for food and environmental analysis. Anal Bioanal Chem 2024; 416:7205-7224. [PMID: 39325139 DOI: 10.1007/s00216-024-05552-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Progress in synthetic biology and nanotechnology plays at present a major role in the fabrication of sophisticated and miniaturized analytical devices that provide the means to tackle the need for new tools and methods for environmental and food safety. Significant research efforts have led to biosensing experiments experiencing a remarkable growth with the development and application of recombinant luminescent proteins (RLPs) being at the core of this boost. Integrating RLPs into biosensors has resulted in highly versatile detection platforms. These platforms include luminescent enzyme-linked immunosorbent assays (ELISAs), bioluminescence resonance energy transfer (BRET)-based sensors, and genetically encoded luminescent biosensors. Increased signal-to-noise ratios, rapid response times, and the ability to monitor dynamic biological processes in live cells are advantages inherent to the approaches mentioned above. Furthermore, novel fusion proteins and optimized expression systems to improve their stability, brightness, and spectral properties have enhanced the performance and pertinence of luminescent biosensors in diverse fields. This review highlights recent progress in RLP-based biosensing, showcasing their implementation for monitoring different contaminants commonly found in food and environmental samples. Future perspectives and potential challenges in these two areas of interest are also addressed, providing a comprehensive overview of the current state and a forecast of the biosensing strategies using recombinant luminescent proteins to come.
Collapse
Affiliation(s)
- Fernando Pradanas-González
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| | - Marta García Cortés
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| | - Bettina Glahn-Martínez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| | - Melisa Del Barrio
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| | - Pablo Purohit
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain.
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain.
| | - Guillermo Orellana
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| |
Collapse
|
3
|
Li X, Li Y, Xie A, Chen F, Wang J, Zhou J, Xu X, Xu Z, Wang Y, Qiu X. A potent and selective anti-glutathione peroxidase 4 nanobody as a ferroptosis inducer. Chem Sci 2024; 15:19420-19431. [PMID: 39568902 PMCID: PMC11575642 DOI: 10.1039/d4sc05448b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Glutathione peroxidase 4 (GPX4) plays a crucial role in the ferroptosis pathway, emerging as a potential drug target in the treatment of refractory tumors. Unfortunately, the development of GPX4-targeted treatment has been very limited due to the poor selectivity and drug-like properties of current GPX4 inhibitors. Here, we report a proof-of-concept study of potent anti-GPX4 nanobodies, successfully identified through immunizing Bactrian camels and constructing a phage library. Utilizing a cell-penetrating peptide fusion strategy, these nanobodies with high affinities to GPX4 efficiently internalized in cells and formed the basis for further applications. In particular, 12E significantly inhibited cellular GPX4 and consequently induced remarkable ferroptosis in cancer cells. Furthermore, 12E could impair zebrafish dorsal organizer formation in vivo, as evidenced by a phenotype comparable to that observed in zebrafish with the gpx4b gene knocked out. The new GPX4-inhibiting nanobody described here exhibits superior proteome-wide selectivity and a vastly improved safety profile compared to existing GPX4 inhibitors. These incredible features of 12E, as an anti-GPX4 nanobody, may not only contribute to ferroptosis-related anticancer treatment but also establish a new paradigm for nanobodies in drug development for traditionally undruggable targets.
Collapse
Affiliation(s)
- Xinyu Li
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Yaru Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China
| | - Aowei Xie
- School of Food Science and Engineering, Ocean University of China Qingdao 266003 China
| | - Fenglin Chen
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Jing Wang
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Ximing Xu
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
- Marine Biomedical Research Institute of Qingdao, School of Medicine and Pharmacy, Ocean University of China Qingdao 266071 Shandong P. R. China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China
| | - Yong Wang
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Xue Qiu
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| |
Collapse
|
4
|
Zhang J, Huang R, Feng Y, Yang T, Sun M, Kuang H, Xu C, Guo L. Development and validation of stable isotope dilution LC-MS/MS method for simultaneous quantification of four Alternaria toxins in 15 food commodities. Food Chem 2024; 457:140122. [PMID: 38908243 DOI: 10.1016/j.foodchem.2024.140122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Alternaria toxins (ATs) are produced from Alternaria species that result in crop losses and harmful impacts on human health. A stable isotope dilution LC-MS/MS method was established to quantify four ATs in 15 food commodities: alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN), and tenuazonic acid (TeA). Based on systematically optimization of detection conditions and pre-processing steps, the limits of detection and limits of quantification of the four ATs ranged from 0.1 to 10 μg/kg and 0.2 to 30 μg/kg, respectively. The results showed that the recoveries of the four ATs were 72.0%-119.1%. The intra-precision and inter-precision ranged from 0.7% to 11.1% and 1.1% to 13.1%, respectively. The method was successfully applied to the determination of four ATs in 35 food samples, suggesting that this method could provide meaningful occurrence data to support the assessment of emerging ATs in food commodities.
Collapse
Affiliation(s)
- Jia Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Renzhi Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yongwei Feng
- Wuxi Food Safety Inspection and Test Center, 35-210 South Changjiang Road, Wuxi, Jiangsu Province 214142, People's Republic of China
| | - Ting Yang
- Wuxi Food Safety Inspection and Test Center, 35-210 South Changjiang Road, Wuxi, Jiangsu Province 214142, People's Republic of China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Lingling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
5
|
Liu X, Li J, Chen R, Xie X, Mao F, Sun Z, He Z, Cao H, Zhang S, Liu X. Colorimetric and chemiluminescent enzyme immunoassays based on the alkaline phosphatase-tagged single-chain variable fragment fusion tracer for detecting zearalenone in agro-products. Food Chem 2024; 443:138569. [PMID: 38306906 DOI: 10.1016/j.foodchem.2024.138569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin and seriously threatens food safety, which requires rapid and sensitive detection methods for monitoring ZEN in agro-products. Herein, an alkaline phosphatase-tagged single-chain variable fragment fusion protein (ALP-scFv) was used as a bifunctional tracer to develop a colorimetric enzyme immunoassay (CEIA) and a chemiluminescent enzyme immunoassay (CLEIA) for ZEN. In addition, the interactions between scFv and ZEN were exploited by computer-assisted simulation, and four key amino acid sites were preliminarily identified. After optimization, the CEIA and CLEIA exhibited a limit of detection of 0.02 and 0.006 ng/mL, respectively. Furthermore, both methods showed favorable accuracy in recovery experiments and good selectivity in cross reactions. Moreover, the detection results of the actual samples from both methods correlated well with those from high-performance liquid chromatography. Overall, the ALP-scFv fusion tracer-based CEIA and CLEIA are demonstrated as reliable tools for ZEN detection in food.
Collapse
Affiliation(s)
- Xinmiao Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiao Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Runmin Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaoxia Xie
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Fujing Mao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhichang Sun
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhenyun He
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hongmei Cao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Sihang Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
6
|
Wu S, Xu J, Chen W, Wang F, Tan X, Zou X, Zhou W, Huang W, Zheng Y, Wang S, Yan S. Protein nanoscaffold enables programmable nanobody-luciferase immunoassembly for sensitive and simultaneous detection of aflatoxin B1 and ochratoxin A. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132701. [PMID: 37839380 DOI: 10.1016/j.jhazmat.2023.132701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Mycotoxins produced by fungi can contaminate various foods and pose significant health risks. Ensuring food safety demands rapid, highly sensitive analytical techniques. One-step Bioluminescent Enzyme Immunoassays (BLEIAs) employing nanobody-nanoluciferase fusion proteins have recently garnered attention for operational simplicity and heightened sensitivity. Nevertheless, fixed nanobody:nanoluciferase ratios in fusion proteins restrict the customization and sensitivity of traditional BLEIAs. In this study, we present a Scaffold Assembly-based BLEIA (SA-BLEIA) that overcomes these limitations through the programmable conjugation of nanobodies and luciferases onto 60-meric protein nanoscaffolds using SpyTag/SpyCatcher linkages. These nanoscaffolds facilitate the adjustable coupling of anti-aflatoxin B1 and anti-ochratoxin A nanobodies with luciferases, optimizing nanobody/luciferase ratios and diversifying specificities. Compared to conventional methods, SA-BLEIA demonstrates considerably elevated sensitivity for detecting both toxins. The elevated local concentration of luciferase significantly amplifies bioluminescence intensity, permitting reduced substrate consumption and cost-effective detection. The usage of dual-nanobody conjugates facilitates the quantification or simultaneous detection of both mycotoxins in a single test with shared reagents. The assay exhibits exceptional recovery rates in spiked cereal samples, strongly correlating with outcomes from commercial ELISA kits. Overall, this adaptable, highly sensitive, cost-effective, and multiplexed immunoassay underscores the potential of tunable scaffold assembly as a promising avenue for advancing bioanalytical diagnostic tools.
Collapse
Affiliation(s)
- Shaowen Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jintao Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenxing Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Fenghua Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaoliang Tan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xinlu Zou
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Weijie Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wenjie Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yixiong Zheng
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijuan Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
7
|
Hou S, Ma J, Cheng Y, Wang Z, Yan Y. Overview-gold nanoparticles-based sensitive nanosensors in mycotoxins detection. Crit Rev Food Sci Nutr 2023; 63:11734-11749. [PMID: 35916760 DOI: 10.1080/10408398.2022.2095973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food-borne mycotoxins is one of the food safety concerns in the world. At present, nanosensors are widely used in the detection and analysis of mycotoxins due to their high specificity and sensitivity. In nanosensor-based mycotoxindetections, the sensitivity is mainly improved from two aspects. On the one hand, based on the principle of immune response, antigens and antibodies can be modified and developed. Such as single-domain heavy chain antibodies, aptamers, peptides, and antigen mimotopes. On the other hand, improvements and innovations have been made on signal amplification materials, including gold nanoparticles (AuNPs), quantum dots, and graphene, etc. Among them, gold nanoparticles can not only be used as a signal amplification material, but also can be used as carriers for identification elements, which can be used for signal amplification in detection. In this article, we systematically summarized the emerging strategies for enhancing the detection sensitivity of traditional gold nanoparticles-based nanosensors, in terms of recognition elements and signal amplification. Representative examples were selected to illustrate the potential mechanism of each strategy in enhancing the colorimetric signal intensity of AuNP and its potential application in biosensing. Finally, our review suggested the challenges and future prospects of gold particles in detection of mycotoxins.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Li Z, Zhang W, Zhang Q, Li P, Tang X. Self-Assembly Multivalent Fluorescence-Nanobody Coupled Multifunctional Nanomaterial with Colorimetric Fluorescence and Photothermal to Enhance Immunochromatographic Assay. ACS NANO 2023; 17:19359-19371. [PMID: 37782130 DOI: 10.1021/acsnano.3c06930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The multimodal lateral flow immunoassay (LFIA) has provided accurate and reliable results for fast and immediate detection. Nonetheless, multimodal LFIA remains challenging to develop biosensors with high sensitivity and tolerance to matrix interference in agro-food. In this study, we developed a self-assembled multivalent fluorescence-nanobody (Nb26-EGFP-H6) with 16.5-fold and 30-fold higher affinity and sensitivity than a monovalent nanobody (Nb26). Based on the Nb26-EGFP-H6, we synthesized enhanced immune-probes Zn-CN@Nb26-EGFP-H6 by pyrolyzing and oxidizing an imidazolating zeolite framework-8 (ZIF-8) to obtain photothermal metal-carbon nanomaterials (Zn-CN) for immobilizing Nb26-EGFP-H6. The rough and porous structure of Zn-CN with a large surface area facilitates the enrichment and immobilization of antibodies. A trimodal lateral flow immunoassay (tLFIA) with colorimetric, fluorescent, and photothermal triple signal outputs was constructed for the detection of aflatoxin B1 (AFB1) in maize. Attractively, the Zn-CN-based tLFIA's multiplex guarantees accurate and sensitive detection of AFB1, with triple signal detection limits of 0.0012 ng/mL (colorimetric signals), 0.0094 ng/mL (fluorescent signals), and 0.252 ng/mL (photothermal signals). The sensitivity of the trimode immunosensor was 628-fold and 42-fold higher than that of the original Nb26-based ELISA (IC50) and the unimodal LFIA (LOD). This work provides an idea for constructing a sensitive, tolerant matrix and efficient and accurate analytical platform for rapidly detecting AFB1 in food.
Collapse
Affiliation(s)
- Zhiqiang Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Wen Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Food Safety Research Institute, HuBei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Food Safety Research Institute, HuBei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Xiaoqian Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Food Safety Research Institute, HuBei University, Wuhan 430062, China
| |
Collapse
|
9
|
Li JD, Wu GP, Li LH, Wang LT, Liang YF, Fang RY, Zhang QL, Xie LL, Shen X, Shen YD, Xu ZL, Wang H, Hammock BD. Structural Insights into the Stability and Recognition Mechanism of the Antiquinalphos Nanobody for the Detection of Quinalphos in Foods. Anal Chem 2023; 95:11306-11315. [PMID: 37428097 PMCID: PMC10829938 DOI: 10.1021/acs.analchem.3c01370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Nanobodies (Nbs) have great potential in immunoassays due to their exceptional physicochemical properties. With the immortal nature of Nbs and the ability to manipulate their structures using protein engineering, it will become increasingly valuable to understand what structural features of Nbs drive high stability, affinity, and selectivity. Here, we employed an anti-quinalphos Nb as a model to illustrate the structural basis of Nbs' distinctive physicochemical properties and the recognition mechanism. The results indicated that the Nb-11A-ligand complexes exhibit a "tunnel" binding mode formed by CDR1, CDR2, and FR3. The orientation and hydrophobicity of small ligands are the primary determinants of their diverse affinities to Nb-11A. In addition, the primary factors contributing to Nb-11A's limited stability at high temperatures and in organic solvents are the rearrangement of the hydrogen bonding network and the enlargement of the binding cavity. Importantly, Ala 97 and Ala 34 at the active cavity's bottom and Arg 29 and Leu 73 at its entrance play vital roles in hapten recognition, which were further confirmed by mutant Nb-F3. Thus, our findings contribute to a deeper understanding of the recognition and stability mechanisms of anti-hapten Nbs and shed new light on the rational design of novel haptens and directed evolution to produce high-performance antibodies.
Collapse
Affiliation(s)
- Jia-Dong Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Guang-Pei Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Li-Hua Li
- Future Technology Institute, South China Normal University, 510631, China
| | - Lan-Teng Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yi-Fan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Ru-Yu Fang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qiu-Ling Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Ling-Ling Xie
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California-Davis, California 95616, United States
| |
Collapse
|
10
|
Gold nanoclusters-manganese dioxide composite-based fluorescence immunoassay for sensitive monitoring of fenitrothion degradation in Chinese cabbage. Food Chem 2023; 412:135551. [PMID: 36738532 DOI: 10.1016/j.foodchem.2023.135551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Understanding the residues and degradation of organophosphorus pesticides (OPs) in crops has attracted increasing attention. Herein, we designed a sensitive fluorescence immunoassay (FIA) by employing nanobody-linked alkaline phosphatase (Nb-ALP) and gold nanoclusters anchored manganese dioxide (AuNCs-MnO2) composite. In immunoassay protocol, Nb-ALP is used to competitively recognize the coating antigen and pesticide. After competitive immunoreaction, alkaline phosphatase catalyzes l-ascorbic acid-2-phosphate to produce ascorbic acid that can trigger the decomposition of the AuNCs-MnO2 composite, regulating the fluorescence response. As a proof-of-concept, fenitrothion (FNT) is chosen as the target analyte. As a result, the developed FIA exhibits high detection sensitivity (IC10 = 5.78 pg/mL), which is about 56-times higher than that of the conventional enzyme-linked immunosorbent assay. The developed FIA has been successfully applied for precisely monitoring the degradation of FNT in Chinese cabbage with excellent anti-interference ability and reproducibility, paving the way for the determination of pesticide residues in real food samples.
Collapse
|
11
|
Bai M, Wang Y, Zhang C, Wang Y, Wei J, Liao X, Wang J, Anfossi L, Wang Y. Nanobody-based immunomagnetic separation platform for rapid isolation and detection of Salmonella enteritidis in food samples. Food Chem 2023; 424:136416. [PMID: 37247600 DOI: 10.1016/j.foodchem.2023.136416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Rapid separation and identification of Salmonella enteritidis (S. enteritidis) in food is of great importance to prevent outbreaks of foodborne diseases. Herein, by using O and H antigens as targets, an epitope-based bio-panning strategy was applied to isolate specific nanobodies towards S. enteritidis. This method constitutes an efficient way to obtain specific antibody fragments and test pairwise nanobodies. On this basis, a double nanobody-based sandwich enzyme-linked immunosorbent assay (ELISA) coupled with immunomagnetic separation (IMS) was developed to rapid enrich and detect S. enteritidis in food. The detection limit of the IMS-ELISA was 3.2 × 103 CFU/mL. In addition, 1 CFU of S. enteritidis in food samples can be detected after 4-h cultivation, which was shortened by 2 h after IMS. The IMS-ELISA strategy could avoid matrix interference and shorten the enrichment culture time, which has great potential for application in monitoring bacterial contamination in food.
Collapse
Affiliation(s)
- Mengfan Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yueqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ye Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Juan Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xingrui Liao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10137 Turin, TO, Italy
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
12
|
Yan Q, Zhao G, Wang B, Wang N, Duolihong B, Xia X. Construction of an electrochemical immunosensor based on the OER signal of Au@CoFe-(oxy)hydroxide for ultrasensitive detection of CEA. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
13
|
Isolation of atrazine nanobodies enhanced by depletion of anti-carrier protein phages and performance comparison between the nanobody and monoclonal antibody derived from the same immunogen. Anal Chim Acta 2023; 1244:340848. [PMID: 36737149 DOI: 10.1016/j.aca.2023.340848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Nanobody, a single domain antibody, has been shown a great promise for immunoassay (IA) applications. To improve the panning efficiency so as to obtain a valuable nanobody, anti-carrier protein phages in a phage display library were depleted to enhance the selection of nanobodies against the herbicide atrazine by using immunomagnetic beads conjugated with bovine serum albumin (IMB-BSA). The depletion of anti-carrier protein phages from the atrazine phage display library tripled the number of atrazine positive phage clones after four rounds of panning. One of the most sensitive phage clones Nb3 selected from the IMB-BSA depleted library was used to compare the performance with the monoclonal antibody (mAb 5D9) developed from the same immunogen. The Nb3-based IA exhibited similar specificity with the mAb 5D9-based IA, but greater thermostability and organic solvent tolerance. The half-maximum inhibition concentration (IC50) of the former was 3.5-fold greater than that of the latter (36.7 ng/mL versus 10.2 ng/mL). Because the Nb3-based IA was more robust than the mAb 5D9-based IA, the method detection limit of the two assays was 7.8 ng/mL of atrazine in river samples. The depletion strategy can increase the chance to acquire high quality nanobody and can be applicable for effective development of nanobodies against other small molecules.
Collapse
|
14
|
Wu W, Huang X, Liang R, Guo T, Xiao Q, Xia B, Wan Y, Zhou Y. Determination of 63 mycotoxins in grain products by ultrahigh-performance liquid chromatography coupled with quadrupole-Orbitrap mass spectrometry. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
15
|
Wang X, Liu W, Zuo H, Shen W, Zhang Y, Liu R, Geng L, Wang W, Shao C, Sun T. Development of a magnetic separation immunoassay with high sensitivity and time-saving for detecting aflatoxin B1 in agricultural crops using nanobody. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Bacha SAS, Li Y, Nie J, Xu G, Han L, Farooq S. Comprehensive review on patulin and Alternaria toxins in fruit and derived products. FRONTIERS IN PLANT SCIENCE 2023; 14:1139757. [PMID: 37077634 PMCID: PMC10108681 DOI: 10.3389/fpls.2023.1139757] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Mycotoxins are toxic secondary metabolites produced by certain fungi, which can contaminate various food commodities, including fruits and their derived products. Patulin and Alternaria toxins are among the most commonly encountered mycotoxins in fruit and their derived products. In this review, the sources, toxicity, and regulations related to these mycotoxins, as well as their detection and mitigation strategies are widely discussed. Patulin is a mycotoxin produced mainly by the fungal genera Penicillium, Aspergillus, and Byssochlamys. Alternaria toxins, produced by fungi in the Alternaria genus, are another common group of mycotoxins found in fruits and fruit products. The most prevalent Alternaria toxins are alternariol (AOH) and alternariol monomethyl ether (AME). These mycotoxins are of concern due to their potential negative effects on human health. Ingesting fruits contaminated with these mycotoxins can cause acute and chronic health problems. Detection of patulin and Alternaria toxins in fruit and their derived products can be challenging due to their low concentrations and the complexity of the food matrices. Common analytical methods, good agricultural practices, and contamination monitoring of these mycotoxins are important for safe consumption of fruits and derived products. And Future research will continue to explore new methods for detecting and managing these mycotoxins, with the ultimate goal of ensuring the safety and quality of fruits and derived product supply.
Collapse
Affiliation(s)
- Syed Asim Shah Bacha
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yinping Li
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Guofeng Xu
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Saqib Farooq
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
17
|
Nanobody@Biomimetic mineralized MOF as a sensing immunoprobe in detection of aflatoxin B1. Biosens Bioelectron 2022; 220:114906. [DOI: 10.1016/j.bios.2022.114906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
18
|
Yu C, Wei Y, Zhang H, Liu J, Feng L, Liu C, Huang L. Rapid detection of porcine circovirus type 2 by a red latex microsphere immunochromatographic strip. Appl Microbiol Biotechnol 2022; 106:5757-5769. [PMID: 35945364 PMCID: PMC9363268 DOI: 10.1007/s00253-022-12074-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022]
Abstract
To establish a rapid and specific antigen detection method for porcine circovirus type 2 (PCV2), monoclonal antibodies (mAbs) were produced against the PCV2 epidemic strains and a red latex microsphere immunochromatographic strip was established. A total of eight anti-PCV2b and four anti-PCV2d mAbs were produced, and seven mAbs were confirmed to react with PCV2a, PCV2b, and PCV2d strains using an immunoperoxidase monolayer assay. The results of micro-neutralization tests showed that the mAbs 2C8, 9H4, 10G7, 7B9, and 7C7 had good neutralizing activity, whereas the neutralizing activity of the mAbs 4B3, 4C9, 6H9, and 7E2 was lower than 50%. Three mAbs, 4B3, 7C7, and 9H4, and PCV2 pAb were selected for the establishment of a red latex microsphere immunochromatographic strip, and the combination of mAb 7C7 labeled with red latex microspheres and mAb 9H4 exhibited the greatest detection ability. The immunochromatographic strip had minimum detection limits of 102.5 TCID50/0.1 ml, 100.7 TCID50/0.1 ml, and 101.5 TCID50/0.1 ml for PCV2a/CL, PCV2b/MDJ, and PCV2d/LNHC, respectively. Furthermore, no cross-reactivity was found for African swine fever virus, classical swine fever virus, porcine respiratory and reproductive syndrome virus, porcine parvovirus, porcine pseudorabies virus, porcine circovirus type 1, transmissible gastroenteritis virus, porcine epidemic diarrhea virus, porcine rotavirus, or porcine deltacoronavirus using the immunochromatographic strip. Using PCR as a reference standard, the detection sensitivity, specificity, and overall coincidence rate of the immunochromatographic strip were 81.13%, 100%, and 90.00%. Additionally, the detection ability of the immunochromatographic strip was correlated with that of virus titration. The immunochromatographic strip was used to detect 183 clinical disease samples, and the average positive detection rate was 22.95%. In summary, this method has good sensitivity and specificity and is simple, convenient, and quick to operate. It has high application value for on-site diagnosis of PCV2 and virus quantification. KEY POINTS: • A red latex microsphere immunochromatographic strip for PCV2 detection was developed. • The method was not only simple to operate, but also takes less time. • The method had good sensitivity and specificity.
Collapse
Affiliation(s)
- Chong Yu
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Street, Xiangfang District, Harbin, 150069, China
| | - Yanwu Wei
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Street, Xiangfang District, Harbin, 150069, China
| | - Hao Zhang
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Street, Xiangfang District, Harbin, 150069, China
| | - Jianhang Liu
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Street, Xiangfang District, Harbin, 150069, China
| | - Li Feng
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Street, Xiangfang District, Harbin, 150069, China.
| | - Changming Liu
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Street, Xiangfang District, Harbin, 150069, China.
| | - Liping Huang
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Street, Xiangfang District, Harbin, 150069, China.
| |
Collapse
|
19
|
He Q, Yang L, Lin M, Yang H, Cui X, McCoy MR, Hammock BD, Fang Y, Zhao S. Generation of bioluminescent enzyme immunoassay for ferritin by single-chain variable fragment and its NanoLuc luciferase fusion. Anal Bioanal Chem 2022; 414:6939-6946. [PMID: 35945290 PMCID: PMC9531656 DOI: 10.1007/s00216-022-04261-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/01/2022]
Abstract
Ferritin, widely present in liver and spleen tissue, is considered as a serological biomarker for liver diseases and cancers. The detection of ferritin may be an important tool in health diagnosis. In this study, 14 non-immunized chicken spleens were utilized to construct a single-chain fragment (scFv) phage library. After 4 rounds of panning, 7 unique clones were obtained. The optimal clone was further screened and combined with NanoLuc luciferase (Nluc) as a dual functional immunoprobe to bioluminescent enzyme immunoassay (BLEIA), which was twice as sensitive as its parental scFv-based double-sandwich enzyme-linked immunoassay (ds-ELISA). The cross-reactivity analysis revealed that the proposed methods were highly selective and suitable for clinical detection. To further verify the performance of the immunoassays, serum samples were tested by the proposed methods and a commercial ELISA kit, and there was a good correlation between the results. These results suggested that scFv fused with Nluc might be a powerful dual functional tool for rapid, practically reliable, and highly sensitive ferritin detection.
Collapse
Affiliation(s)
- Qiyi He
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Li Yang
- Biotherapy Center, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Mingxia Lin
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Huiyi Yang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xiping Cui
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Mark R McCoy
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Yanxiong Fang
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
20
|
Rainbow latex microspheres lateral flow immunoassay with smartphone-based device for simultaneous detection of three mycotoxins in cereals. Anal Chim Acta 2022; 1221:340138. [DOI: 10.1016/j.aca.2022.340138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/15/2022]
|
21
|
Liang Y, Zeng Y, Luo L, Xu Z, Shen Y, Wang H, Hammock BD. Detection of Acrylamide in Foodstuffs by Nanobody-Based Immunoassays. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9179-9186. [PMID: 35819336 PMCID: PMC10111249 DOI: 10.1021/acs.jafc.2c01872] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Acrylamide is toxic aliphatic amide formed via the Maillard reaction between asparagine and reducing sugars during thermal processing of food. Herein, a specific nanobody termed Nb-7E against the acrylamide derivative xanthyl acrylamide (XAA) was isolated from an immunized phage display library and confirmed to be able to detect acrylamide. First, an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was established for acrylamide with a limit of detection (LOD) of 0.089 μg/mL and working range from 0.23 to 5.6 μg/mL. Furthermore, an enhanced electrochemical immunoassay (ECIA) was developed based on the optimized reaction conditions. The LOD was as low as 0.033 μg/mL, threefold improved compared to that of ic-ELISA, and a wider linear detection range from 0.39 to 50.0 μg/mL was achieved. The average recoveries ranged from 88.29 to 111.76% in spiked baked biscuits and potato crisps. Finally, the analytical performance of the ECIA was validated by standard ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS).
Collapse
Affiliation(s)
- Yifan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuyao Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yudong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Bruce D Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, Davis, California 95616, USA
| |
Collapse
|
22
|
Wang F, Yang YY, Wan DB, Li JD, Liang YF, Li ZF, Shen YD, Xu ZL, Yang JY, Wang H, Gettemans J, Hammock BD, Sun YM. Nanobodies for accurate recognition of iso-tenuazonic acid and development of sensitive immunoassay for contaminant detection in foods. Food Control 2022; 136. [DOI: 10.1016/j.foodcont.2022.108835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
23
|
Wang Y, Xianyu Y. Nanobody and Nanozyme-Enabled Immunoassays with Enhanced Specificity and Sensitivity. SMALL METHODS 2022; 6:e2101576. [PMID: 35266636 DOI: 10.1002/smtd.202101576] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Immunoassay as a rapid and convenient method for detecting a variety of targets has attracted tremendous interest with its high specificity and sensitivity. Among the commonly used immunoassays, enzyme-linked immunosorbent assay has been widely used as a gold standard method in various fields that consists of two main components including a recognition element and an enzyme label. With the rapid advances in nanotechnology, nanobodies and nanozymes enable immunoassays with enhanced specificity and sensitivity compared with conventional antibodies and natural enzymes. This review is focused on the applications of nanobodies and nanozymes in immunoassays. Nanobodies advantage lies in their small size, high specificity, mass expression, and high stability. Nanozymes with peroxidase, phosphatase, and oxidase activities and their applications in immunoassays are highlighted and discussed in detail. In addition, the challenges and outlooks in terms of the use of nanobodies and the development of novel nanozymes in practical applications are discussed.
Collapse
Affiliation(s)
- Yidan Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, 315100, China
| |
Collapse
|
24
|
Su B, Bei Z, Pei H, Xie X, Sun Z, Chen Q, Cao H, Liu X. Generation of a nanobody-alkaline phosphatase heptamer fusion for ratiometric fluorescence immunodetection of trace alpha fetoprotein in serum. Int J Biol Macromol 2022; 201:507-515. [PMID: 35063488 DOI: 10.1016/j.ijbiomac.2022.01.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022]
Abstract
Alpha fetoprotein (AFP) is an important biomarker for diagnosis of hepatocellular carcinoma (HCC). Whereas, it is always a challenge to detect trace AFP in serum. In this work, a ratiometric fluorescence enzyme immunoassay (RFEIA) was developed using nanobody-alkaline phosphatase (Nb-AP) heptamer and MnFe layered double hydroxides nanoflakes (MnFe LDH) for ultrasensitive detection of AFP. The Nb-AP heptamer (Nb-C4bpα-AP) was constructed by fusion expression of Nb, AP, and α-chain of C4 binding protein (C4bpα), where the C4bpα contributed to multimerization through self-assembly. The dual functional Nb-C4bpα-AP can recognize AFP, dephosphorylate ascorbic acid-2-phosphate (AAP) into ascorbic acid (AA), and thus tune the MnFe LDH-mediated ratiometric fluorescence, which was generated from the oxidization of MnFe LDH on o-phenylenediamine (OPD) and the catalyzation of MnFe LDH on the cyclization reaction between AA and OPD. By integration of Nb-C4bpα-AP, MnFe LDH, AAP, and OPD, the RFEIA showed a limit of detection of 0.013 ng/mL with good selectivity, accuracy and precision. Furthermore, results of clinical serum samples tested by the RFEIA were well confirmed by the automated chemiluminescence immunoassay analyzer. Thus, this work demonstrated that the Nb-C4bpα-AP is a robust immunoreagent and the developed RFEIA could be a very promising tool for diagnosis of HCC.
Collapse
Affiliation(s)
- Benchao Su
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zheng Bei
- Cadre Sanatorium of Hainan, Haikou 571100, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Xiaoxia Xie
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhichang Sun
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qi Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hongmei Cao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
25
|
Lu D, Wang X, Su R, Cheng Y, Wang H, Luo L, Xiao Z. Preparation of an Immunoaffinity Column Based on Bispecific Monoclonal Antibody for Aflatoxin B 1 and Ochratoxin A Detection Combined with ic-ELISA. Foods 2022; 11:foods11030335. [PMID: 35159486 PMCID: PMC8833996 DOI: 10.3390/foods11030335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 01/02/2023] Open
Abstract
A novel and efficient immunoaffinity column (IAC) based on bispecific monoclonal antibody (BsMAb) recognizing aflatoxin B1 (AFB1) and ochratoxin A (OTA) was prepared and applied in simultaneous extraction of AFB1 and OTA from food samples and detection of AFB1/OTA combined with ic-ELISA (indirect competitive ELISA). Two deficient cell lines, hypoxanthine guanine phosphoribosyl-transferase (HGPRT) deficient anti-AFB1 hybridoma cell line and thymidine kinase (TK) deficient anti-OTA hybridoma cell line, were fused to generate a hybrid-hybridoma producing BsMAb against AFB1 and OTA. The subtype of the BsMAb was IgG1 via mouse antibody isotyping kit test. The purity and molecular weight of BsMAb were confirmed by SDS-PAGE method. The cross-reaction rate with AFB2 was 37%, with AFG1 15%, with AFM1 48%, with AFM2 10%, and with OTB 36%. Negligible cross-reaction was observed with other tested compounds. The affinity constant (Ka) was determined by ELISA. The Ka (AFB1) and Ka (OTA) was 2.43 × 108 L/mol and 1.57 × 108 L/mol, respectively. Then the anti-AFB1/OTA BsMAb was coupled with CNBr-Sepharose, and an AFB1/OTA IAC was prepared. The coupling time and elution conditions of IAC were optimized. The coupling time was 1 h with 90% coupling rate, the eluent was methanol–water (60:40, v:v, pH 2.3) containing 1 mol/L NaCl, and the eluent volume was 4 mL. The column capacities of AFB1 and OTA were 165.0 ng and 171.3 ng, respectively. After seven times of repeated use, the preservation rates of column capacity for AFB1 and OTA were 69.3% and 68.0%, respectively. The ic-ELISA for AFB1 and OTA were applied combined with IAC. The IC50 (50% inhibiting concentration) of AFB1 was 0.027 ng/mL, the limit of detection (LOD) was 0.004 ng/mL (0.032 µg/kg), and the linear range was 0.006 ng/mL~0.119 ng/mL. The IC50 of OTA was 0.878 ng/mL, the LOD was 0.126 ng/mL (1.008 µg/kg), and the linear range was 0.259 ng/mL~6.178 ng/mL. Under optimum conditions, corn and wheat samples were pretreated with AFB1-OTA IAC. The recovery rates of AFB1 and OTA were 95.4%~105.0% with ic-ELISA, and the correlations between the detection results and LC-MS were above 0.9. The developed IAC combined with ic-ELISA is reliable and could be applied to the detection of AFB1 and OTA in grains.
Collapse
|
26
|
Wang Y, Zhang C, Wang J, Knopp D. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins (Basel) 2022; 14:73. [PMID: 35202100 PMCID: PMC8874725 DOI: 10.3390/toxins14020073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.
Collapse
Affiliation(s)
- Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universitat München, Elisabeth-Winterhalter-Weg 6, D-81377 München, Germany
| |
Collapse
|
27
|
Wang J, Kang G, Yuan H, Cao X, Huang H, de Marco A. Research Progress and Applications of Multivalent, Multispecific and Modified Nanobodies for Disease Treatment. Front Immunol 2022; 12:838082. [PMID: 35116045 PMCID: PMC8804282 DOI: 10.3389/fimmu.2021.838082] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
Recombinant antibodies such as nanobodies are progressively demonstrating to be a valid alternative to conventional monoclonal antibodies also for clinical applications. Furthermore, they do not solely represent a substitute for monoclonal antibodies but their unique features allow expanding the applications of biotherapeutics and changes the pattern of disease treatment. Nanobodies possess the double advantage of being small and simple to engineer. This combination has promoted extremely diversified approaches to design nanobody-based constructs suitable for particular applications. Both the format geometry possibilities and the functionalization strategies have been widely explored to provide macromolecules with better efficacy with respect to single nanobodies or their combination. Nanobody multimers and nanobody-derived reagents were developed to image and contrast several cancer diseases and have shown their effectiveness in animal models. Their capacity to block more independent signaling pathways simultaneously is considered a critical advantage to avoid tumor resistance, whereas the mass of these multimeric compounds still remains significantly smaller than that of an IgG, enabling deeper penetration in solid tumors. When applied to CAR-T cell therapy, nanobodies can effectively improve the specificity by targeting multiple epitopes and consequently reduce the side effects. This represents a great potential in treating malignant lymphomas, acute myeloid leukemia, acute lymphoblastic leukemia, multiple myeloma and solid tumors. Apart from cancer treatment, multispecific drugs and imaging reagents built with nanobody blocks have demonstrated their value also for detecting and tackling neurodegenerative, autoimmune, metabolic, and infectious diseases and as antidotes for toxins. In particular, multi-paratopic nanobody-based constructs have been developed recently as drugs for passive immunization against SARS-CoV-2 with the goal of impairing variant survival due to resistance to antibodies targeting single epitopes. Given the enormous research activity in the field, it can be expected that more and more multimeric nanobody molecules will undergo late clinical trials in the next future. Systematic Review Registration.
Collapse
Affiliation(s)
- Jiewen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
| | - Haibin Yuan
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| |
Collapse
|
28
|
Su B, Zhang Z, Sun Z, Tang Z, Xie X, Chen Q, Cao H, Yu X, Xu Y, Liu X, Hammock BD. Fluonanobody-based nanosensor via fluorescence resonance energy transfer for ultrasensitive detection of ochratoxin A. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126838. [PMID: 34411960 PMCID: PMC8889937 DOI: 10.1016/j.jhazmat.2021.126838] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Ochratoxin A (OTA) contamination in food is a serious threat to public health. There is an urgent need for development of rapid and sensitive methods for OTA detection, to minimize consumer exposure to OTA. In this study, we constructed two OTA-specific fluonanobodies (FluoNbs), with a nanobody fused at the carboxyl-terminal (SGFP-Nb) or the amino-terminal (Nb-SGFP) of superfolder green fluorescence protein. SGFP-Nb, which displayed better fluorescence performance, was selected as the tracer for OTA, to develop a FluoNb-based nanosensor (FN-Nanosens) via the fluorescence resonance energy transfer, where the SGFP-Nb served as the donor and the chemical conjugates of OTA-quantum dots served as the acceptor. After optimization, FN-Nanosens showed a limit of detection of 5 pg/mL, with a linear detection range of 5-5000 pg/mL. FN-Nanosens was found to be highly selective for OTA and showed good accuracy and repeatability in recovery experiments using cereals with various complex matrix environments. Moreover, the contents of OTA in real samples measured using FN-Nanosens correlated well with those from the liquid chromatography with tandem mass spectrometry. Therefore, this work illustrated that the FluoNb is an ideal immunosensing tool and that FN-Nanosens is reliable for rapid detection of OTA in cereals with ultrahigh sensitivity.
Collapse
Affiliation(s)
- Benchao Su
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhong Zhang
- Engineering Research Center of High Value Utilization of Western Fruit Resources and College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shanxi 710119, China
| | - Zhichang Sun
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zongwen Tang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaoxia Xie
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qi Chen
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hongmei Cao
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Yang Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
29
|
Zhou H, Pan S, Tan H, Yang Y, Guo T, Zhang Y, Ma L. A novel high-sensitive indirect competitive chemiluminescence enzyme immunoassay based on monoclonal antibody for tenuazonic acid (TeA) detection. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03905-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Peltomaa R, Barderas R, Benito-Peña E, Moreno-Bondi MC. Recombinant antibodies and their use for food immunoanalysis. Anal Bioanal Chem 2022; 414:193-217. [PMID: 34417836 PMCID: PMC8380008 DOI: 10.1007/s00216-021-03619-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022]
Abstract
Antibodies are widely employed as biorecognition elements for the detection of a plethora of compounds including food and environmental contaminants, biomarkers, or illicit drugs. They are also applied in therapeutics for the treatment of several disorders. Recent recommendations from the EU on animal protection and the replacement of animal-derived antibodies by non-animal-derived ones have raised a great controversy in the scientific community. The application of recombinant antibodies is expected to achieve a high growth rate in the years to come thanks to their versatility and beneficial characteristics in comparison to monoclonal and polyclonal antibodies, such as stability in harsh conditions, small size, relatively low production costs, and batch-to-batch reproducibility. This review describes the characteristics, advantages, and disadvantages of recombinant antibodies including antigen-binding fragments (Fab), single-chain fragment variable (scFv), and single-domain antibodies (VHH) and their application in food analysis with especial emphasis on the analysis of biotoxins, antibiotics, pesticides, and foodborne pathogens. Although the wide application of recombinant antibodies has been hampered by a number of challenges, this review demonstrates their potential for the sensitive, selective, and rapid detection of food contaminants.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Life Sciences, University of Turku, 20014, Turku, Finland
- Turku Collegium for Science and Medicine, University of Turku, 20014, Turku, Finland
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Madrid, Spain
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
31
|
Wang F, Wang H. Nanobody-Based Assays for the Detection of Environmental and Agricultural Contaminants. Methods Mol Biol 2022; 2446:547-554. [PMID: 35157293 DOI: 10.1007/978-1-0716-2075-5_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Compared with traditional polyclonal and monoclonal antibodies, nanobodies derived from camelid heavy-chain antibodies have several advantages including small size, unique structure and binding geometry, high stability, and robust expression yields in numerous systems. Nanobody-based assays can also exhibit superior performance for immunodetection. Here, we describe protocols for three nanobody-based immunoassays for the detection of small chemical contaminants in environmental or agricultural samples: enzyme-linked immunosorbent assay (ELISA), fluorescence enzyme immunoassay (FEIA), and bioluminescent enzyme immunoassay (BLEIA). These methods are based on hapten-specific nanobodies, nanobody-alkaline phosphatase fusion proteins, and nanobody-nanoluciferase fusion proteins, respectively.
Collapse
Affiliation(s)
- Feng Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hong Wang
- College of Food Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
32
|
Yang J, Si R, Wu G, Wang Y, Fang R, Liu F, Wang F, Lei H, Shen Y, Zhang Q, Wang H. Preparation of Specific Nanobodies and Their Application in the Rapid Detection of Nodularin-R in Water Samples. Foods 2021; 10:2758. [PMID: 34829042 PMCID: PMC8622565 DOI: 10.3390/foods10112758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022] Open
Abstract
Nanobodies have several advantages, including great stability, sensibility, and ease of production; therefore, they have become important tools in immunoassays for chemical contaminants. In this manuscript, nanobodies for the detection of the toxin Nodularin-r (NOD-R), a secondary metabolite of cyanobacteria that could cause a safety risk for drinks and food for its strong hepatotoxicity, were for the first time selected from an immunized Bactrian camel VHH phage display library. Then, a sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) for NOD-R, based on the nanobody N56 with great thermostability and organic solvent tolerance, was established under optimized conditions. The results showed that the limit of detection for NOD-R was 0.67 µg/L, and the average spike recovery rate was between 84.0 and 118.3%. Moreover, the ic-ELISA method was validated with spiked water sample and confirmed by UPLC-MS/MS, which indicated that the ic-ELISA established in this work is a reproducible detection assay for nodularin residues in water samples.
Collapse
Affiliation(s)
- Jinyi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (R.S.); (G.W.); (R.F.); (F.L.); (F.W.); (H.L.); (Y.S.)
| | - Rui Si
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (R.S.); (G.W.); (R.F.); (F.L.); (F.W.); (H.L.); (Y.S.)
| | - Guangpei Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (R.S.); (G.W.); (R.F.); (F.L.); (F.W.); (H.L.); (Y.S.)
| | - Yu Wang
- Guangzhou Institute of Food Inspection, Guangzhou 510080, China;
| | - Ruyu Fang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (R.S.); (G.W.); (R.F.); (F.L.); (F.W.); (H.L.); (Y.S.)
| | - Fei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (R.S.); (G.W.); (R.F.); (F.L.); (F.W.); (H.L.); (Y.S.)
| | - Feng Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (R.S.); (G.W.); (R.F.); (F.L.); (F.W.); (H.L.); (Y.S.)
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (R.S.); (G.W.); (R.F.); (F.L.); (F.W.); (H.L.); (Y.S.)
| | - Yudong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (R.S.); (G.W.); (R.F.); (F.L.); (F.W.); (H.L.); (Y.S.)
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Xudong 2nd Road No. 2, Wuchang District, Wuhan 430062, China;
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (R.S.); (G.W.); (R.F.); (F.L.); (F.W.); (H.L.); (Y.S.)
| |
Collapse
|
33
|
Pillay TS, Muyldermans S. Application of Single-Domain Antibodies ("Nanobodies") to Laboratory Diagnosis. Ann Lab Med 2021; 41:549-558. [PMID: 34108282 PMCID: PMC8203438 DOI: 10.3343/alm.2021.41.6.549] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Antibodies have proven to be central in the development of diagnostic methods over decades, moving from polyclonal antibodies to the milestone development of monoclonal antibodies. Although monoclonal antibodies play a valuable role in diagnosis, their production is technically demanding and can be expensive. The large size of monoclonal antibodies (150 kDa) makes their re-engineering using recombinant methods a challenge. Single-domain antibodies, such as “nanobodies,” are a relatively new class of diagnostic probes that originated serendipitously during the assay of camel serum. The immune system of the camelid family (camels, llamas, and alpacas) has evolved uniquely to produce heavy-chain antibodies that contain a single monomeric variable antibody domain in a smaller functional unit of 12–15 kDa. Interestingly, the same biological phenomenon is observed in sharks. Since a single-domain antibody molecule is smaller than a conventional mammalian antibody, recombinant engineering and protein expression in vitro using bacterial production systems are much simpler. The entire gene encoding such an antibody can be cloned and expressed in vitro. Single-domain antibodies are very stable and heat-resistant, and hence do not require cold storage, especially when incorporated into a diagnostic kit. Their simple genetic structure allows easy re-engineering of the protein to introduce new antigen-binding characteristics or attach labels. Here, we review the applications of single-domain antibodies in laboratory diagnosis and discuss the future potential in this area.
Collapse
Affiliation(s)
- Tahir S Pillay
- Department of Chemical Pathology and NHLS- Tshwane Academic Division, University of Pretoria, Pretoria, South Africa.,Division of Chemical Pathology, University of Cape Town, Cape Town, South Africa.,Department of Chemical Pathology, University of Pretoria, Prinshof Campus, Pretoria, South Africa
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
34
|
Bacterial bioluminescence assay for bioanalysis and bioimaging. Anal Bioanal Chem 2021; 414:75-83. [PMID: 34693470 DOI: 10.1007/s00216-021-03695-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Bioluminescence occurs through a chemical reaction in organisms that spontaneously produce light. Luminescent bacteria are unique among bioluminescent organisms. Their bioluminescence intensity is an indicator of their metabolic activity, which can directly reflect the influence of environmental factors on cell viability. Moreover, the whole bioluminescence process is totally gene encoded without the addition of extra substrates. As a result, bacterial bioluminescence has been a powerful tool for whole-cell biosensors and bio-reporters in bioanalysis and bioimaging. This review aims to cover the applications of wild-type and recombinant luminescent bacteria to detect the toxicity of environmental pollutants and biological molecules. The bacterial bioluminescence analytical assay has characteristics such as high sensitivity, short-term detection, and easy operation. Meanwhile, due to the development of gene engineering and optical technology, bacterial luciferase as a reporter protein has been successfully expressed in prokaryotic and eukaryotic cells, tissues, and organs of animals. The major applications for bacterial luciferase-based bioluminescence imaging, such as infectious diseases, cancer therapy, and stem cell tracing, are discussed in this review.
Collapse
|
35
|
Development of a Double Nanobody-Based Sandwich Immunoassay for the Detecting Staphylococcal Enterotoxin C in Dairy Products. Foods 2021; 10:foods10102426. [PMID: 34681475 PMCID: PMC8535553 DOI: 10.3390/foods10102426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Staphylococcal enterotoxins (SEs) represent the leading reason for staphylococcal food poisoning (SFP) and various other diseases. Reports often indicate Staphylococcal enterotoxin C (SEC) as the most frequently found enterotoxin in dairy products. To minimize consumer exposure to SEC, this paper aimed to create a sandwich enzyme-linked immunosorbent assay (ELISA) based on nanobodies (sandwich Nbs-ELISA) to accurately detect SEC in dairy products without the influence of staphylococcal protein A (SpA). Therefore, after inoculating a Bactrian camel with SEC, a phage display Nb library was created. Eleven Nbs against SEC were identified in three biopanning steps. Based on their affinity and pairing level, a sandwich Nbs-ELISA was developed using the C6 anti-SEC Nb as the capture antibody, while the detection antibody was represented by the C11 phage display anti-SEC Nb. In optimal conditions, the quantitative range of the present sandwich ELISA was 4-250 ng/mL with a detection limit (LOD) of 2.47 ng/mL, obtained according to the blank value plus three standard deviations. The developed technique was subjected to specific measurements, revealing minimal cross-reactivity with Staphylococcus aureus (S. aureus), Staphylococcal enterotoxin A (SEA), Staphylococcal enterotoxin B (SEB), and SpA. The proposed method exhibited high specificity and an excellent recovery rate of 84.52~108.06% in dairy products. Therefore, the sandwich Nbs-ELISA showed significant potential for developing a specific, sensitive technique for SEC detection in dairy products.
Collapse
|
36
|
Ding Y, Chen H, Li J, Huang L, Song G, Li Z, Hua X, Gonzalez-Sapienza G, Hammock BD, Wang M. Sortase-Mediated Phage Decoration for Analytical Applications. Anal Chem 2021; 93:11800-11808. [PMID: 34415158 DOI: 10.1021/acs.analchem.1c02322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phage-borne peptides and antibody fragments isolated from phage display libraries have proven to be versatile and valuable reagents for immunoassay development. Due to the lack of convenient and mild-condition methods for the labeling of the phage particles, isolated peptide/protein affinity ligands are commonly removed from the viral particles and conjugated to protein tracers or nanoparticles for analytical use. This abolishes the advantage of isolating ready-to-use affinity binders and creates the risk of affecting the polypeptide activity. To circumvent this problem, we optimized the phage display system to produce phage particles that express the affinity binder on pIII and a polyglycine short peptide fused to pVIII that allows the covalent attachment of tracer molecules employing sortase A. Using a llama heavy chain only variable domain (VHH) against the herbicide 2,4-D on pIII as the model, we showed that the phage can be extensively decorated with a rhodamine-LPETGG peptide conjugate or the protein nanoluciferase (Nluc) equipped with a C-terminal LPETGG peptide. The maximum labeling amounts of rhodamine-LPETGG and Nluc-LPETGG were 1238 ± 63 and 102 ± 16 per phage, respectively. The Nluc-labeled dual display phage was employed to develop a phage bioluminescent immunoassay (P-BLEIA) for the detection of 2,4-D. The limit of detection and 50% inhibition concentration of P-BLEIA were 0.491 and 2.15 ng mL-1, respectively, which represent 16-fold and 8-fold improvement compared to the phage enzyme-linked immunosorbent assay. In addition, the P-BLEIA showed good accuracy for the detection of 2,4-D in spiked samples.
Collapse
Affiliation(s)
- Yuan Ding
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - He Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Jiao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Lianrun Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Guangyue Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zhenfeng Li
- Department of Entomology and UCD Cancer Center, University of California, Davis, California 95616, United States
| | - Xiude Hua
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Gualberto Gonzalez-Sapienza
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo 11600, Uruguay
| | - Bruce D Hammock
- Department of Entomology and UCD Cancer Center, University of California, Davis, California 95616, United States
| | - Minghua Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| |
Collapse
|
37
|
Zhang J, Sun H, Pei W, Jiang H, Chen J. Nanobody-based immunosensing methods for safeguarding public health. J Biomed Res 2021; 35:318-326. [PMID: 34421007 PMCID: PMC8383166 DOI: 10.7555/jbr.35.20210108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Immunosensing methods are biosensing techniques based on specific recognition of an antigen-antibody immunocomplex, which have become commonly used in safeguarding public health. Taking advantage of antibody-related biotechnological advances, the utilization of an antigen-binding fragment of a heavy-chain-only antibody termed as 'nanobody' holds significant biomedical potential. Compared with the conventional full-length antibody, a single-domain nanobody retaining cognate antigen specificity possesses remarkable physicochemical stability and structural adaptability, which enables a flexible and efficient molecular design of the immunosensing strategy. This minireview aims to summarize the recent progress in immunosensing methods using nanobody targeting tumor markers, environmental pollutants, and foodborne microbes.
Collapse
Affiliation(s)
- Jiarong Zhang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hui Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China
| | - Wei Pei
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jin Chen
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
38
|
Wang F, Li ZF, Wan DB, Vasylieva N, Shen YD, Xu ZL, Yang JY, Gettemans J, Wang H, Hammock BD, Sun YM. Enhanced Non-Toxic Immunodetection of Alternaria Mycotoxin Tenuazonic Acid Based on Ferritin-Displayed Anti-Idiotypic Nanobody-Nanoluciferase Multimers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4911-4917. [PMID: 33870684 DOI: 10.1021/acs.jafc.1c01128] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The non-toxic immunoassay for mycotoxins is being paid more attention due to its advantages of higher safety and cost savings by using anti-idiotype antibodies to substitute toxins. In this study, with tenuazonic acid (TeA), a kind of highly toxic Alternaria mycotoxin as the target, an enhanced non-toxic immunoassay was developed based on the ferritin-displayed anti-idiotypic nanobody-nanoluciferase multimers. First, three specific β-type anti-idiotype nanobodies (AId-Nbs) bearing the internal image of TeA mycotoxin were selected from an immune phage display library. Then, the AId-Nb 2D with the best performance was exploited to generate a nanoluciferase (Nluc)-functionalized fusion monomer, by which a one-step non-toxic immunodetection format for TeA was established and proven to be effective. To further improve the affinity of the monomer, a ferritin display strategy was used to prepare 2D-Nluc fusion multimers. Finally, an enhanced bioluminescent enzyme immunoassay (BLEIA) was established in which the half maximal inhibitory concentration (IC50) for TeA was 6.5 ng/mL with a 10.5-fold improvement of the 2D-based enzyme-linked immunosorbent assay (ELISA). The proposed assay exhibited high selectivities and good recoveries of 80.0-95.2%. The generated AId-Nb and ferritin-displayed AId-Nb-Nluc multimers were successfully extended to the application of TeA in food samples. This study brings a new strategy for production of multivalent AId-Nbs and non-toxic immunoassays for trace toxic contaminants.
Collapse
Affiliation(s)
- Feng Wang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Zhen-Feng Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
- Guangzhou Nabo Antibody Technology Co. Ltd., Guangzhou 510530, P. R. China
| | - De-Bin Wan
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Yu-Dong Shen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Zhen-Lin Xu
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Jin-Yi Yang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent B-9000, Belgium
| | - Hong Wang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Yuan-Ming Sun
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
39
|
Wang F, Wan DB, Shen YD, Tian YX, Xiao ZL, Xu ZL, Yang JY, Sun YM, Hammock BD, Wang H. Development of a chemiluminescence immunoassay for detection of tenuazonic acid mycotoxin in fruit juices with a specific camel polyclonal antibody. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1795-1802. [PMID: 33885655 DOI: 10.1039/d1ay00200g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The natural mycotoxin tenuazonic acid (TeA) in foods is identified as the most toxic mycotoxin among the over 70 kinds of secondary toxic metabolites produced by Alternaria alternata. Some hapten-antibody-mediated immunoassays have been developed for TeA detection in food samples, but these methods show unsatisfactory sensitivity and specificity. In this study, a rationally designed hapten for TeA mycotoxin generated with computer-assisted modeling was prepared to produce a highly specific camel polyclonal antibody, and an indirect competitive chemiluminescence enzyme immunoassay (icCLEIA) was established with a limit of detection of 0.2 ng mL-1 under optimized conditions. The cross-reactivity results showed that several analogs and some common mycotoxins had negligible recognition by the anti-TeA polyclonal antibody. The average recoveries spiked in fruit juices were determined to be 92.7% with an acceptable coefficient of variation, and good correlations between icCLEIA and liquid chromatography tandem mass spectrometry (LC-MS/MS) results were obtained in spiked samples. This developed icCLEIA for TeA detection with significantly improved sensitivity and satisfactory specificity is a promising alternative for environmental monitoring and food safety.
Collapse
Affiliation(s)
- Feng Wang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, P. R. China.
| | - De-Bin Wan
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, Davis, California 95616, USA
| | - Yu-Dong Shen
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, P. R. China.
| | - Yuan-Xin Tian
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Zhi-Li Xiao
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, P. R. China.
| | - Zhen-Lin Xu
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, P. R. China.
| | - Jin-Yi Yang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, P. R. China.
| | - Yuan-Ming Sun
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, P. R. China.
| | - Bruce D Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, Davis, California 95616, USA
| | - Hong Wang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, P. R. China.
| |
Collapse
|
40
|
Yang YY, Wang Y, Zhang YF, Wang F, Liang YF, Yang JY, Xu ZL, Shen YD, Wang H. Nanobody-Based Indirect Competitive ELISA for Sensitive Detection of 19-Nortestosterone in Animal Urine. Biomolecules 2021; 11:biom11020167. [PMID: 33513883 PMCID: PMC7912623 DOI: 10.3390/biom11020167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 01/20/2023] Open
Abstract
Nanobody (Nb), a new type of biorecognition element generally from Camelidae, has the characteristics of small molecular weight, high stability, great solubility and high expression level in E. coli. In this study, with 19-nortestosterone (19-NT), an anabolic androgenic steroid as target drug, three specific Nbs against 19-NT were selected from camel immune library by phage display technology. The obtained Nbs showed excellent thermostability and organic solvent tolerance. The nanobody Nb2F7 with the best performance was used to develop a sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) for 19-NT detection. Under optimized conditions, the standard curve of ic-ELISA was fitted with a half-maximal inhibitory concentration (IC50) of 1.03 ng/mL and a detection limit (LOD) of 0.10 ng/mL for 19-NT. Meanwhile, the developed assay had low cross- reactivity with analogs and the recoveries of 19-NT ranged from 82.61% to 99.24% in spiked samples. The correlation coefficient between ic-ELISA and the ultra-performance liquid chromatography/mass spectrometry (UPLC-MS/MS) method was 0.9975, which indicated that the nanobody-based ic-ELISA could be a useful tool for a rapid analysis of 19-NT in animal urine samples.
Collapse
Affiliation(s)
- Yuan-yuan Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research, Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.-y.Y.); (Y.-f.Z.); (F.W.); (Y.-f.L.); (J.-y.Y.); (Z.-l.X.)
| | - Yu Wang
- Guangzhou Institute of Food Inspection, Guangzhou 510080, China;
| | - Yi-feng Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research, Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.-y.Y.); (Y.-f.Z.); (F.W.); (Y.-f.L.); (J.-y.Y.); (Z.-l.X.)
| | - Feng Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research, Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.-y.Y.); (Y.-f.Z.); (F.W.); (Y.-f.L.); (J.-y.Y.); (Z.-l.X.)
| | - Yi-fan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research, Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.-y.Y.); (Y.-f.Z.); (F.W.); (Y.-f.L.); (J.-y.Y.); (Z.-l.X.)
| | - Jin-yi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research, Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.-y.Y.); (Y.-f.Z.); (F.W.); (Y.-f.L.); (J.-y.Y.); (Z.-l.X.)
| | - Zhen-lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research, Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.-y.Y.); (Y.-f.Z.); (F.W.); (Y.-f.L.); (J.-y.Y.); (Z.-l.X.)
| | - Yu-dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research, Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.-y.Y.); (Y.-f.Z.); (F.W.); (Y.-f.L.); (J.-y.Y.); (Z.-l.X.)
- Correspondence: (Y.-d.S.); (H.W.); Tel.: +86-20-85283448 (H.W.); Fax: +86-20-85280270 (H.W.)
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research, Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.-y.Y.); (Y.-f.Z.); (F.W.); (Y.-f.L.); (J.-y.Y.); (Z.-l.X.)
- Correspondence: (Y.-d.S.); (H.W.); Tel.: +86-20-85283448 (H.W.); Fax: +86-20-85280270 (H.W.)
| |
Collapse
|