1
|
Iqbal N, Brittin DO, Daluwathumullagamage PJ, Alam MS, Senanayake IM, Gafar AT, Siraj Z, Petrilla A, Pugh M, Tonazzi B, Ragunathan S, Poorman ME, Sacolick L, Theis T, Rosen MS, Chekmenev EY, Goodson BM. Toward Next-Generation Molecular Imaging with a Clinical Low-Field (0.064 T) Point-of-Care MRI Scanner. Anal Chem 2024; 96:10348-10355. [PMID: 38857182 DOI: 10.1021/acs.analchem.4c01299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Low-field (LF) MRI promises soft-tissue imaging without the expensive, immobile magnets of clinical scanners but generally suffers from limited detection sensitivity and contrast. The sensitivity boost provided by hyperpolarization can thus be highly synergistic with LF MRI. Initial efforts to integrate a continuous-bubbling SABRE (signal amplification by reversible exchange) hyperpolarization setup with a portable, point-of-care 64 mT clinical MRI scanner are reported. Results from 1H SABRE MRI of pyrazine and nicotinamide are compared with those of benchtop NMR spectroscopy. Comparison with MRI signals from samples with known H2O/D2O ratios allowed quantification of the SABRE enhancements of imaged samples with various substrate concentrations (down to 3 mM). Respective limits of detection and quantification of 3.3 and 10.1 mM were determined with pyrazine 1H polarization (PH) enhancements of ∼1900 (PH ∼0.04%), supporting ongoing and envisioned efforts to realize SABRE-enabled MRI-based molecular imaging.
Collapse
Affiliation(s)
- Nadiya Iqbal
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Drew O Brittin
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | | | - Md Shahabuddin Alam
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Ishani M Senanayake
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - A Tobi Gafar
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Zahid Siraj
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Anthony Petrilla
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Margaret Pugh
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Brockton Tonazzi
- School of Medicine, Southern Illinois University, Carbondale, Illinois 62901, United States
| | | | | | - Laura Sacolick
- Hyperfine Inc., Guilford, Connecticut 06437, United States
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Matthew S Rosen
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Boyd M Goodson
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| |
Collapse
|
2
|
Daley J, Siciliano J, Ferraro V, Sutter E, Lounsbery A, Whiting N. Temperature lowering of liquid nitrogen via injection of helium gas bubbles improves the generation of parahydrogen-enriched gas. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:94-100. [PMID: 38173282 DOI: 10.1002/mrc.5423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
The para spin isomer of hydrogen gas possesses high nuclear spin order that can enhance the NMR signals of a variety of molecular species. Hydrogen is routinely enriched in the para spin state by lowering the gas temperature while flowing through a catalyst. Although parahydrogen enrichments approaching 100% are achievable near the H2 liquefaction temperature of 20 K, many experimentalists operate at liquid nitrogen temperatures (77 K) due to the lower associated costs and overall simplicity of the parahydrogen generator. Parahydrogen that is generated at 77 K provides an enrichment value of ~51% of the para spin isomer; while useful, there are many applications that can benefit from low-cost access to higher parahydrogen enrichments. Here, we introduce a method of improving parahydrogen enrichment values using a liquid nitrogen-cooled generator that operates at temperatures less than 77 K. The boiling temperature of liquid nitrogen is lowered through internal evaporation into helium gas bubbles that are injected into the liquid. Changes to liquid nitrogen temperatures and parahydrogen enrichment values were monitored as a function of helium gas flow rate. The injected helium bubbles lowered the liquid nitrogen temperature to ~65.5 K, and parahydrogen enrichments of up to ~59% were achieved; this represents an ~16% improvement compared with the expected parahydrogen fraction at 77 K. This technique is simple to implement in standard liquid nitrogen-cooled parahydrogen generators and may be of interest to a wide range of scientists that require a cost-effective approach to improving parahydrogen enrichment values.
Collapse
Affiliation(s)
- James Daley
- Department of Physics & Astronomy, Rowan University, Glassboro, New Jersey, USA
| | - Joseph Siciliano
- Department of Physics & Astronomy, Rowan University, Glassboro, New Jersey, USA
| | - Vincent Ferraro
- Department of Physics & Astronomy, Rowan University, Glassboro, New Jersey, USA
| | - Elodie Sutter
- Department of Physics & Astronomy, Rowan University, Glassboro, New Jersey, USA
| | - Adam Lounsbery
- Department of Physics & Astronomy, Rowan University, Glassboro, New Jersey, USA
| | - Nicholas Whiting
- Department of Physics & Astronomy, Rowan University, Glassboro, New Jersey, USA
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, New Jersey, USA
| |
Collapse
|
3
|
Ariyasingha NM, Samoilenko A, Birchall JR, Chowdhury MRH, Salnikov OG, Kovtunova LM, Bukhtiyarov VI, Zhu DC, Qian C, Bradley M, Gelovani JG, Koptyug IV, Goodson BM, Chekmenev EY. Ultra-Low-Cost Disposable Hand-Held Clinical-Scale Propane Gas Hyperpolarizer for Pulmonary Magnetic Resonance Imaging Sensing. ACS Sens 2023; 8:3845-3854. [PMID: 37772716 PMCID: PMC10902876 DOI: 10.1021/acssensors.3c01369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Hyperpolarized magnetic resonance imaging (MRI) contrast agents are revolutionizing the field of biomedical imaging. Hyperpolarized Xe-129 was recently FDA approved as an inhalable MRI contrast agent for functional lung imaging sensing. Despite success in research settings, modern Xe-129 hyperpolarizers are expensive (up to $1M), large, and complex to site and operate. Moreover, Xe-129 sensing requires specialized MRI hardware that is not commonly available on clinical MRI scanners. Here, we demonstrate that proton-hyperpolarized propane gas can be produced on demand using a disposable, hand-held, clinical-scale hyperpolarizer via parahydrogen-induced polarization, which relies on parahydrogen as a source of hyperpolarization. The device consists of a heterogeneous catalytic reactor connected to a gas mixture storage can containing pressurized hyperpolarization precursors: propylene and parahydrogen (10 bar total pressure). Once the built-in flow valve of the storage can is actuated, the precursors are ejected from the can into a reactor, and a stream of hyperpolarized propane gas is ejected from the reactor. Robust operation of the device is demonstrated for producing proton sensing polarization of 1.2% in a wide range of operational pressures and gas flow rates. We demonstrate that the propylene/parahydrogen gas mixture can retain potency for days in the storage can with a monoexponential decay time constant of 6.0 ± 0.5 days, which is limited by the lifetime of the parahydrogen singlet spin state in the storage container. The utility of the produced sensing agent is demonstrated for phantom imaging on a 3 T clinical MRI scanner located 100 miles from the agent/device preparation site and also for ventilation imaging of excised pig lungs using a 0.35 T clinical MRI scanner. The cost of the device components is less than $35, which we envision can be reduced to less than $5 for mass-scale production. The hyperpolarizer device can be reused, recycled, or disposed.
Collapse
Affiliation(s)
- Nuwandi M Ariyasingha
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Anna Samoilenko
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Jonathan R Birchall
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Md Raduanul H Chowdhury
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Larisa M Kovtunova
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - David C Zhu
- Department of Radiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Michael Bradley
- Division of Laboratory Animal Resources, Wayne State University, Detroit, Michigan 48202, United States
| | - Juri G Gelovani
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Siriraj Hospital Mahidol University, 10700, Bangkok, Thailand
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Boyd M Goodson
- School of Chemical & Biomolecular Sciences, Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
4
|
Wang W, Wang Q, Xu J, Deng F. Understanding Heterogeneous Catalytic Hydrogenation by Parahydrogen-Induced Polarization NMR Spectroscopy. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Weiyu Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Qiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Feng Deng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
5
|
Chimenti RV, Daley J, Sack J, Necsutu J, Whiting N. Reconversion of Parahydrogen Gas in Surfactant-Coated Glass NMR Tubes. Molecules 2023; 28:2329. [PMID: 36903572 PMCID: PMC10004819 DOI: 10.3390/molecules28052329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The application of parahydrogen gas to enhance the magnetic resonance signals of a diversity of chemical species has increased substantially in the last decade. Parahydrogen is prepared by lowering the temperature of hydrogen gas in the presence of a catalyst; this enriches the para spin isomer beyond its normal abundance of 25% at thermal equilibrium. Indeed, parahydrogen fractions that approach unity can be attained at sufficiently low temperatures. Once enriched, the gas will revert to its normal isomeric ratio over the course of hours or days, depending on the surface chemistry of the storage container. Although parahydrogen enjoys long lifetimes when stored in aluminum cylinders, the reconversion rate is significantly faster in glass containers due to the prevalence of paramagnetic impurities that are present within the glass. This accelerated reconversion is especially relevant for nuclear magnetic resonance (NMR) applications due to the use of glass sample tubes. The work presented here investigates how the parahydrogen reconversion rate is affected by surfactant coatings on the inside surface of valved borosilicate glass NMR sample tubes. Raman spectroscopy was used to monitor changes to the ratio of the (J: 0 → 2) vs. (J: 1 → 3) transitions that are indicative of the para and ortho spin isomers, respectively. Nine different silane and siloxane-based surfactants of varying size and branching structures were examined, and most increased the parahydrogen reconversion time by 1.5×-2× compared with equivalent sample tubes that were not treated with surfactant. This includes expanding the pH2 reconversion time from 280 min in a control sample to 625 min when the same tube is coated with (3-Glycidoxypropyl)trimethoxysilane.
Collapse
Affiliation(s)
- Robert V. Chimenti
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, USA
- Advanced Materials & Manufacturing Institute, Rowan University, Glassboro, NJ 08028, USA
| | - James Daley
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, USA
| | - James Sack
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, USA
| | - Jennifer Necsutu
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Nicholas Whiting
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, USA
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
6
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
7
|
Duchowny A, Denninger J, Lohmann L, Theis T, Lehmkuhl S, Adams A. SABRE Hyperpolarization with up to 200 bar Parahydrogen in Standard and Quickly Removable Solvents. Int J Mol Sci 2023; 24:2465. [PMID: 36768786 PMCID: PMC9917027 DOI: 10.3390/ijms24032465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Parahydrogen (p-H2)-based techniques are known to drastically enhance NMR signals but are usually limited by p-H2 supply. This work reports p-H2-based SABRE hyperpolarization at p-H2 pressures of hundreds of bar, far beyond the typical ten bar currently reported in the literature. A recently designed high-pressure setup was utilized to compress p-H2 gas up to 200 bar. The measurements were conducted using a sapphire high-pressure NMR tube and a 43 MHz benchtop NMR spectrometer. In standard methanol solutions, it could be shown that the signal intensities increased with pressure until they eventually reached a plateau. A polarization of about 2%, equal to a molar polarization of 1.2 mmol L-1, could be achieved for the sample with the highest substrate concentration. While the signal plateaued, the H2 solubility increased linearly with pressure from 1 to 200 bar, indicating that p-H2 availability is not the limiting factor in signal enhancement beyond a certain pressure, depending on sample composition. Furthermore, the possibility of using liquefied ethane and compressed CO2 as removable solvents for hyperpolarization was demonstrated. The use of high pressures together with quickly removable organic/non-organic solvents represents an important breakthrough in the field of hyperpolarization, advancing SABRE as a promising tool for materials science, biophysics, and molecular imaging.
Collapse
Affiliation(s)
- Anton Duchowny
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, 52074 Aachen, Germany
| | - Johannes Denninger
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, 52074 Aachen, Germany
| | - Lars Lohmann
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, 52074 Aachen, Germany
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Sören Lehmkuhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Alina Adams
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
8
|
Mhaske Y, Sutter E, Daley J, Mahoney C, Whiting N. 65% Parahydrogen from a liquid nitrogen cooled generator. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 341:107249. [PMID: 35717743 DOI: 10.1016/j.jmr.2022.107249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
The isomeric enrichment of parahydrogen (pH2) gas is readily accomplished by lowering the gas temperature in the presence of a catalyst. This enrichment is often pursued at two distinct temperatures: ∼51% pH2 is generated at liquid nitrogen temperatures (77 K), while nearly 100% pH2 can be produced at 20 K. While the liquid nitrogen cooled generator is attractive due to the low cost of entry, there are benefits to having access to greater than 51% pH2 for enhanced NMR applications. In this work, we introduce a low-cost modification to an existing laboratory-constructed liquid nitrogen cooled pH2 generator that provides ∼ 65% pH2. This modification takes advantage of vacuum-mediated boiling point suppression of liquid nitrogen, allowing the temperature of the liquid to be lowered from 77 K to nitrogen's triple point of 63 K. The reduced temperature allowed for the generation of parahydrogen fractions of 63-67% at gas flow rates from 20 to 1000 standard cubic centimeters per minute. We compare this to equivalent experiments that did not utilize the temperature-lowering effects of pressure reduction; these controls generally maintained pH2 fractions of ∼ 50%. All results (experimental and control) agree with the theoretically expected parahydrogen generation at these temperatures. This straightforward modification to an existing pH2 generator may be of interest to a broad range of scientists involved with parahydrogen research by introducing a simple and low-cost entryway to increased pH2 fractions using a conventional liquid nitrogen cooled generator.
Collapse
Affiliation(s)
- Yash Mhaske
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, United States
| | - Elodie Sutter
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, United States
| | - James Daley
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, United States
| | - Christopher Mahoney
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, United States
| | - Nicholas Whiting
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, United States; Department of Molecular & Cellular Biosciences, Rowan University. Glassboro, NJ 08028, United States.
| |
Collapse
|
9
|
Tickner BJ, Zhivonitko VV. Advancing homogeneous catalysis for parahydrogen-derived hyperpolarisation and its NMR applications. Chem Sci 2022; 13:4670-4696. [PMID: 35655870 PMCID: PMC9067625 DOI: 10.1039/d2sc00737a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
Parahydrogen-induced polarisation (PHIP) is a nuclear spin hyperpolarisation technique employed to enhance NMR signals for a wide range of molecules. This is achieved by exploiting the chemical reactions of parahydrogen (para-H2), the spin-0 isomer of H2. These reactions break the molecular symmetry of para-H2 in a way that can produce dramatically enhanced NMR signals for reaction products, and are usually catalysed by a transition metal complex. In this review, we discuss recent advances in novel homogeneous catalysts that can produce hyperpolarised products upon reaction with para-H2. We also discuss hyperpolarisation attained in reversible reactions (termed signal amplification by reversible exchange, SABRE) and focus on catalyst developments in recent years that have allowed hyperpolarisation of a wider range of target molecules. In particular, recent examples of novel ruthenium catalysts for trans and geminal hydrogenation, metal-free catalysts, iridium sulfoxide-containing SABRE systems, and cobalt complexes for PHIP and SABRE are reviewed. Advances in this catalysis have expanded the types of molecules amenable to hyperpolarisation using PHIP and SABRE, and their applications in NMR reaction monitoring, mechanistic elucidation, biomedical imaging, and many other areas, are increasing.
Collapse
Affiliation(s)
- Ben J Tickner
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Vladimir V Zhivonitko
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
| |
Collapse
|
10
|
Schmidt AB, Bowers CR, Buckenmaier K, Chekmenev EY, de Maissin H, Eills J, Ellermann F, Glöggler S, Gordon JW, Knecht S, Koptyug IV, Kuhn J, Pravdivtsev AN, Reineri F, Theis T, Them K, Hövener JB. Instrumentation for Hydrogenative Parahydrogen-Based Hyperpolarization Techniques. Anal Chem 2022; 94:479-502. [PMID: 34974698 PMCID: PMC8784962 DOI: 10.1021/acs.analchem.1c04863] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Andreas B. Schmidt
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - C. Russell Bowers
- Department of Chemistry, University of Florida, 2001 Museum Road, Gainesville, Florida 32611, USA
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076, Tübingen, Germany
| | - Eduard Y. Chekmenev
- Intergrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
- Russian Academy of Sciences (RAS), Leninskiy Prospect, 14, 119991 Moscow, Russia
| | - Henri de Maissin
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max Planck Institutefor Biophysical Chemistry Am Fassberg 11, 37077 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A, 37075 Göttingen, Germany
| | - Jeremy W. Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry St., San Francisco, CA, 94158, USA
| | | | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Jule Kuhn
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Francesca Reineri
- Dept. Molecular Biotechnology and Health Sciences, Via Nizza 52, University of Torino, Italy
| | - Thomas Theis
- Departments of Chemistry, Physics and Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|
11
|
Norcott PL. Selective NMR detection of individual reaction components hyperpolarised by reversible exchange with para-hydrogen. Phys Chem Chem Phys 2022; 24:13527-13533. [DOI: 10.1039/d2cp01657e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR spectroscopy can sometimes be hampered by two inherent weaknesses: low sensitivity and overlap of signals in complex mixtures. Hyperpolarisation techniques using para-hydrogen (including the method known as SABRE) can...
Collapse
|
12
|
Pravdivtsev AN, Buntkowsky G, Duckett SB, Koptyug IV, Hövener J. Parahydrogen-Induced Polarization of Amino Acids. Angew Chem Int Ed Engl 2021; 60:23496-23507. [PMID: 33635601 PMCID: PMC8596608 DOI: 10.1002/anie.202100109] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Indexed: 12/13/2022]
Abstract
Nuclear magnetic resonance (NMR) has become a universal method for biochemical and biomedical studies, including metabolomics, proteomics, and magnetic resonance imaging (MRI). By increasing the signal of selected molecules, the hyperpolarization of nuclear spin has expanded the reach of NMR and MRI even further (e.g. hyperpolarized solid-state NMR and metabolic imaging in vivo). Parahydrogen (pH2 ) offers a fast and cost-efficient way to achieve hyperpolarization, and the last decade has seen extensive advances, including the synthesis of new tracers, catalysts, and transfer methods. The portfolio of hyperpolarized molecules now includes amino acids, which are of great interest for many applications. Here, we provide an overview of the current literature and developments in the hyperpolarization of amino acids and peptides.
Collapse
Affiliation(s)
- Andrey N. Pravdivtsev
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center Schleswig-Holstein (UKSH)Kiel UniversityAm Botanischen Garten 1424118KielGermany
| | - Gerd Buntkowsky
- Technical University DarmstadtEduard-Zintl-Institute for Inorganic and Physical ChemistryAlarich-Weiss-Strasse 864287DarmstadtGermany
| | - Simon B. Duckett
- Department Center for Hyperpolarization in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York, HeslingtonYorkYO10 5NYUK
| | - Igor V. Koptyug
- International Tomography CenterSB RAS3A Institutskaya st.630090NovosibirskRussia
- Novosibirsk State University2 Pirogova st.630090NovosibirskRussia
| | - Jan‐Bernd Hövener
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center Schleswig-Holstein (UKSH)Kiel UniversityAm Botanischen Garten 1424118KielGermany
| |
Collapse
|
13
|
Pravdivtsev AN, Buntkowsky G, Duckett SB, Koptyug IV, Hövener J. Parawasserstoff‐induzierte Polarisation von Aminosäuren. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andrey N. Pravdivtsev
- Section Biomedical Imaging Molecular Imaging North Competence Center (MOIN CC) Department of Radiology and Neuroradiology University Medical Center Schleswig-Holstein (UKSH) Kiel University Am Botanischen Garten 14 24118 Kiel Deutschland
| | - Gerd Buntkowsky
- Technical University Darmstadt Eduard-Zintl-Institute for Inorganic and Physical Chemistry Alarich-Weiss-Straße 8 64287 Darmstadt Deutschland
| | - Simon B. Duckett
- Department Center for Hyperpolarization in Magnetic Resonance (CHyM) Department of Chemistry University of York, Heslington York YO10 5NY Vereinigtes Königreich
| | - Igor V. Koptyug
- International Tomography Center SB RAS 3A Institutskaya st. 630090 Novosibirsk Russland
- Novosibirsk State University 2 Pirogova st. 630090 Novosibirsk Russland
| | - Jan‐Bernd Hövener
- Section Biomedical Imaging Molecular Imaging North Competence Center (MOIN CC) Department of Radiology and Neuroradiology University Medical Center Schleswig-Holstein (UKSH) Kiel University Am Botanischen Garten 14 24118 Kiel Deutschland
| |
Collapse
|
14
|
Salnikov OG, Chukanov NV, Kovtunova LM, Bukhtiyarov VI, Kovtunov KV, Shchepin RV, Koptyug IV, Chekmenev EY. Heterogeneous 1 H and 13 C Parahydrogen-Induced Polarization of Acetate and Pyruvate Esters. Chemphyschem 2021; 22:1389-1396. [PMID: 33929077 PMCID: PMC8249325 DOI: 10.1002/cphc.202100156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Magnetic resonance imaging of [1-13 C]hyperpolarized carboxylates (most notably, [1-13 C]pyruvate) allows one to visualize abnormal metabolism in tumors and other pathologies. Herein, we investigate the efficiency of 1 H and 13 C hyperpolarization of acetate and pyruvate esters with ethyl, propyl and allyl alcoholic moieties using heterogeneous hydrogenation of corresponding vinyl, allyl and propargyl precursors in isotopically unlabeled and 1-13 C-enriched forms with parahydrogen over Rh/TiO2 catalysts in methanol-d4 and in D2 O. The maximum obtained 1 H polarization was 0.6±0.2 % (for propyl acetate in CD3 OD), while the highest 13 C polarization was 0.10±0.03 % (for ethyl acetate in CD3 OD). Hyperpolarization of acetate esters surpassed that of pyruvates, while esters with a triple carbon-carbon bond in unsaturated alcoholic moiety were less efficient as parahydrogen-induced polarization precursors than esters with a double bond. Among the compounds studied, the maximum 1 H and 13 C NMR signal intensities were observed for propyl acetate. Ethyl acetate yielded slightly less intense NMR signals which were dramatically greater than those of other esters under study.
Collapse
Affiliation(s)
- Oleg G Salnikov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Larisa M Kovtunova
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Roman V Shchepin
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines & Technology, 57701, Rapid City, South Dakota, United States
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, Michigan, United States
- Russian Academy of Sciences, 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
15
|
Chapman B, Joalland B, Meersman C, Ettedgui J, Swenson RE, Krishna MC, Nikolaou P, Kovtunov KV, Salnikov OG, Koptyug IV, Gemeinhardt ME, Goodson BM, Shchepin RV, Chekmenev EY. Low-Cost High-Pressure Clinical-Scale 50% Parahydrogen Generator Using Liquid Nitrogen at 77 K. Anal Chem 2021; 93:8476-8483. [PMID: 34102835 PMCID: PMC8262381 DOI: 10.1021/acs.analchem.1c00716] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report on a robust and low-cost parahydrogen generator design employing liquid nitrogen as a coolant. The core of the generator consists of catalyst-filled spiral copper tubing, which can be pressurized to 35 atm. Parahydrogen fraction >48% was obtained at 77 K with three nearly identical generators using paramagnetic hydrated iron oxide catalysts. Parahydrogen quantification was performed on the fly via benchtop NMR spectroscopy to monitor the signal from residual orthohydrogen-parahydrogen is NMR silent. This real-time quantification approach was also used to evaluate catalyst activation at up to 1.0 standard liter per minute flow rate. The reported inexpensive device can be employed for a wide range of studies employing parahydrogen as a source of nuclear spin hyperpolarization. To this end, we demonstrate the utility of this parahydrogen generator for hyperpolarization of concentrated sodium [1-13C]pyruvate, a metabolic contrast agent under investigation in numerous clinical trials. The reported pilot optimization of SABRE-SHEATH (signal amplification by reversible exchange-shield enables alignment transfer to heteronuclei) hyperpolarization yielded 13C signal enhancement of over 14,000-fold at a clinically relevant magnetic field of 1 T corresponding to approximately 1.2% 13C polarization-if near 100% parahydrogen would have been employed, the reported value would be tripled to 13C polarization of 3.5%.
Collapse
Affiliation(s)
- Benjamin Chapman
- Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, 501 E St. Joseph Street Rapid City, South Dakota 57701, United States
| | - Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Collier Meersman
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines and Technology, 501 E St. Joseph Street Rapid City, South Dakota 57701, United States
| | - Jessica Ettedgui
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Murali C. Krishna
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 31 Center Drive Maryland 20814, United States
| | - Panayiotis Nikolaou
- XeUS Technologies LTD, Georgiou Karaiskaki 2A, Lakatamia 2312, Nicosia, Cyprus
| | - Kirill V. Kovtunov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Oleg G. Salnikov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Max E. Gemeinhardt
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
- Materials Technology Center, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Roman V. Shchepin
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines and Technology, 501 E St. Joseph Street Rapid City, South Dakota 57701, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Ave, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
16
|
Nantogma S, Joalland B, Wilkens K, Chekmenev EY. Clinical-Scale Production of Nearly Pure (>98.5%) Parahydrogen and Quantification by Benchtop NMR Spectroscopy. Anal Chem 2021; 93:3594-3601. [PMID: 33539068 PMCID: PMC8011325 DOI: 10.1021/acs.analchem.0c05129] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Because of the extensive chemical, physical, and biomedical applications of parahydrogen, the need exists for the development of highly enriched parahydrogen in a robust and efficient manner. Herein, we present a parahydrogen enrichment equipment which substantially improves upon the previous generators with its ability to enrich parahydrogen to >98.5% and a production rate of up to 4 standard liters per minute with the added advantage of real-time quantification. Our generator employs a pulsed injection system with a 3/16 in. outside diameter copper spiral tubing filled with iron-oxide catalyst. This tubing is mated to a custom-made copper attachment to provide efficient thermal coupling to the cold head. This device allows for robust operation at high pressures up to 34 atm. Real-time quantification by benchtop NMR spectroscopy is made possible by direct coupling of the p-H2 outlet from the generator to a 1.4 T NMR spectrometer using a regular 5 mm NMR tube that is continuously refilled with the exiting parahydrogen gas at ∼8 atm pressure. The use of high hydrogen gas pressure offers two critical NMR signal detection benefits: increased concentration and line narrowing. Our work presents a comprehensive description of the apparatus for a convenient and robust parahydrogen production, distribution, and quantification system, especially for parahydrogen-based hyperpolarization NMR research.
Collapse
Affiliation(s)
- Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Detroit, Michigan, 48202, United States
| | - Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Detroit, Michigan, 48202, United States
| | - Ken Wilkens
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, Tennessee 37232-2310, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Detroit, Michigan, 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
17
|
Ellermann F, Pravdivtsev A, Hövener JB. Open-source, partially 3D-printed, high-pressure (50-bar) liquid-nitrogen-cooled parahydrogen generator. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:49-62. [PMID: 37904754 PMCID: PMC10539807 DOI: 10.5194/mr-2-49-2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/15/2020] [Indexed: 11/01/2023]
Abstract
The signal of magnetic resonance imaging (MRI) can be enhanced by several orders of magnitude using hyperpolarization. In comparison to a broadly used dynamic nuclear polarization (DNP) technique that is already used in clinical trials, the parahydrogen (p H2 ) -based hyperpolarization approaches are less cost-intensive, are scalable, and offer high throughput. However, a p H2 generator is necessary. Available commercial p H2 generators are relatively expensive (EUR 10 000-150 000). To facilitate the spread of p H2 -based hyperpolarization studies, here we provide the blueprints and 3D models as open-source for a low-cost (EUR < 3000 ) 50-bar liquid-nitrogen-cooled p H2 generator.
Collapse
Affiliation(s)
- Frowin Ellermann
- Section for Biomedical Imaging, Molecular Imaging North Competence
Center (MOIN CC), Department of Radiology and Neuroradiology, University
Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel 24118, Germany
| | - Andrey Pravdivtsev
- Section for Biomedical Imaging, Molecular Imaging North Competence
Center (MOIN CC), Department of Radiology and Neuroradiology, University
Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel 24118, Germany
| | - Jan-Bernd Hövener
- Section for Biomedical Imaging, Molecular Imaging North Competence
Center (MOIN CC), Department of Radiology and Neuroradiology, University
Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel 24118, Germany
| |
Collapse
|