1
|
Wang J, Wang X, Meng F, Cong L, Shi W, Xu W, Han B, Xu S. Identification of Molecular Profile of Cell Membrane via Magnetic Plasmonic Nanoprobe. Anal Chem 2024; 96:17092-17099. [PMID: 39268845 DOI: 10.1021/acs.analchem.4c01968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cell membranes are primarily composed of lipids, membrane proteins, and carbohydrates, and the related studies of membrane components and structures at different stages of disease development, especially membrane proteins, are of great significance. Here, we investigate the chemical signature profiles of cell membranes as biomarkers for cancer cells via label-free surface-enhanced Raman scattering (SERS). A magnetic plasmonic nanoprobe was proposed by decorating magnetic beads with silver nanoparticles, allowing self-driven cell membrane-targeted accumulation within 5 min. SERS profiles of three types of breast cells were achieved under the plasmon enhancement effect of these nanoprobes. Membrane fingerprint spectra from breast cell lines were further classified with the convolutional neural network model, which perfectly distinguished between two breast cancer subtypes. We further tested various clinical samples using this method and obtained fingerprint spectra from primary cells and frozen slices. This study presents a practical, user-friendly approach for label-free and in situ analysis of cell membranes, which can work for early tumor screening and treatment assessment for tumors reliant on the Molecular profiles of cell membranes. Additionally, this method can be applied universally to explore cell membrane components of other cells, thus assisting Human Cell Atlas.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xin Wang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Fanxiang Meng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Lili Cong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei Shi
- Key Lab for Molecular Enzymology & Engineering of Ministry of Education, Jilin University, Changchun 130012, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute of Theoretical Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bing Han
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute of Theoretical Chemistry, Jilin University, Changchun 130012, P. R. China
- Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
2
|
Verdin A, Malherbe C, Eppe G. Designing SERS nanotags for profiling overexpressed surface markers on single cancer cells: A review. Talanta 2024; 276:126225. [PMID: 38749157 DOI: 10.1016/j.talanta.2024.126225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
This review focuses on the chemical design and the use of Surface-Enhanced Raman Scattering (SERS)-active nanotags for measuring surface markers that can be overexpressed at the surface of single cancer cells. Indeed, providing analytical tools with true single-cell measurements capabilities is capital, especially since cancer research is increasingly leaning toward single-cell analysis, either to guide treatment decisions or to understand complex tumor behaviour including the single-cell heterogeneity and the appearance of treatment resistance. Over the past two decades, SERS nanotags have triggered significant interest in the scientific community owing their advantages over fluorescent tags, mainly because SERS nanotags resist photobleaching and exhibit sharper signal bands, which reduces possible spectral overlap and enables the discrimination between the SERS signals and the autofluorescence background from the sample itself. The extensive efforts invested in harnessing SERS nanotags for biomedical purposes, particularly in cancer research, highlight their potential as the next generation of optical labels for single-cell studies. The review unfolds in two main parts. The first part focuses on the structure of SERS nanotags, detailing their chemical composition and the role of each building block of the tags. The second part explores applications in measuring overexpressed surface markers on single-cells. The latter encompasses studies using single nanotags, multiplexed measurements, quantitative information extraction, monitoring treatment responses, and integrating phenotype measurements with SERS nanotags on single cells isolated from complex biological matrices. This comprehensive review anticipates SERS nanotags to persist as a pivotal technology in advancing single-cell analytical methods, particularly in the context of cancer research and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| |
Collapse
|
3
|
Wen Y, Liu R, Xie Y, Li M. Targeted SERS Imaging and Intraoperative Real-Time Elimination of Microscopic Tumors for Improved Breast-Conserving Surgery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405253. [PMID: 38820719 DOI: 10.1002/adma.202405253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/20/2024] [Indexed: 06/02/2024]
Abstract
Breast-conserving surgery is the favorable option for breast cancer patients owing to its advantages of less aggressiveness and better cosmetic outcomes over mastectomy. However, it often suffers from postsurgical lethal recurrence due to the incomplete removal of microscopic tumors. Here, a surface-enhanced Raman scattering (SERS) surgical strategy is reported for precise delineation of tumor margins and intraoperative real-time elimination of microscopic tumor foci, which is capable of complete surgical removal of breast tumors and significantly improve the outcomes of breast-conserving surgery without local tumor recurrence. The technique is chiefly based on the human epidermal growth factor receptor 2 (HER2)-targeting SERS probes with integrated multifunctionalities of ultrahigh sensitive detection, significant HER2 expression suppression, cell proliferation inhibition, and superior photothermal ablation. In a HER2+ breast tumor mouse model, the remarkable capability of the SERS surgical strategy for complete removal of HER2+ breast tumors through SERS-guided surgical resection and intraoperative real-time photothermal elimination is demonstrated. The results show complete eradiation of HER2+ breast tumors without local recurrence, consequently delivering a 100% tumor-free survival. Expectedly, this SERS surgical strategy holds great promise for clinical treatment of HER2+ breast cancer with improved patients' survival.
Collapse
Affiliation(s)
- Yu Wen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
- Furong Laboratory, Central South University, Changsha, Hunan, 410008, China
| | - Ruoxuan Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yangcenzi Xie
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
4
|
Zhang Y, Liu X, Xu Y, Wang Q, Hou J, Hou C, Huo D. A Clinically Feasible Diagnostic Electrochemical Micronano Motors Biosensor Built on Miniature Swimmer for Multiplex Detection and Grading of Breast Cancer Biomarkers. Anal Chem 2024. [PMID: 39028987 DOI: 10.1021/acs.analchem.4c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER2), and Ki67 are four crucial biomarkers used in the clinical diagnosis of breast cancer. Accurate detection of these biomarkers is essential for an effective diagnosis and treatment. MOF-based micronano motors (MOFtors) are promising for various applications, including environmental remediation, targeted nanosurgery, and biomarker detection. This paper presents a clinically feasible diagnostic electrochemical micronano motor biosensor, built on a miniature swimmer, for the multiplex detection and grading of breast cancer biomarkers. We designed a biosensor, named MOFtor-MSEM, incorporating aptamers and antibodies functionalized on SiO2@Co-Fe-MOF, which acts as a miniature swimmer in solution. The SiO2@Co-Fe-MOF serves as the body, while complementary double-chain-linked antibodies function as paddles. In a homogeneous solution, when a positive voltage is applied to the working electrode, the electrostatic interaction between the neutral SiO2@Co-Fe-MOF and the negatively charged complementary double-linked antibody causes the antibody to move toward the electrode and then regress due to water resistance. This back-and-forth motion propels the miniature swimmer, enabling it to move the target analyte through the solution. The sensor features an automatic "sample-amplifying signal-output" process, achieving simultaneous signal amplification and output of four electrochemical signals on a single nanomaterial, a significant challenge in electrochemical sensing. The biosensor boasts a short detection time of 40 min, compared to approximately 1 week for current clinical tissue testing. Additionally, the bioplatform selectively detects HER2, ER, Ki67, and PR in the range of 0-1500 pg/mL, with detection limits of 0.01420, 0.03201, 0.01430, and 0.01229 pg/mL, respectively.
Collapse
Affiliation(s)
- Ya Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Chongqing University, Chongqing 400044, PR China
| | - Xiaofang Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Chongqing University, Chongqing 400044, PR China
| | - Ying Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Chongqing University, Chongqing 400044, PR China
| | - Qun Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Chongqing University, Chongqing 400044, PR China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Chongqing University, Chongqing 400044, PR China
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Chongqing University, Chongqing 400044, PR China
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 401331, PR China
| |
Collapse
|
5
|
Liu X, Jia Y, Zheng C. Recent progress in Surface-Enhanced Raman Spectroscopy detection of biomarkers in liquid biopsy for breast cancer. Front Oncol 2024; 14:1400498. [PMID: 39040452 PMCID: PMC11260621 DOI: 10.3389/fonc.2024.1400498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women globally and a leading cause of cancer-related mortality. However, current detection methods, such as X-rays, ultrasound, CT scans, MRI, and mammography, have their limitations. Recently, with the advancements in precision medicine and technologies like artificial intelligence, liquid biopsy, specifically utilizing Surface-Enhanced Raman Spectroscopy (SERS), has emerged as a promising approach to detect breast cancer. Liquid biopsy, as a minimally invasive technique, can provide a temporal reflection of breast cancer occurrence and progression, along with a spatial representation of overall tumor information. SERS has been extensively employed for biomarker detection, owing to its numerous advantages such as high sensitivity, minimal sample requirements, strong multi-detection ability, and controllable background interference. This paper presents a comprehensive review of the latest research on the application of SERS in the detection of breast cancer biomarkers, including exosomes, circulating tumor cells (CTCs), miRNA, proteins and others. The aim of this review is to provide valuable insights into the potential of SERS technology for early breast cancer diagnosis.
Collapse
Affiliation(s)
- Xiaobei Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yining Jia
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| | - Chao Zheng
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| |
Collapse
|
6
|
Ai QY, Xu BF, Xu F, Wang AJ, Mei LP, Wu L, Song P, Feng JJ. Dual amplification for PEC ultrasensitive aptasensing of biomarker HER-2 based on Z-scheme UiO-66/CdIn 2S 4 heterojunction and flower-like PtPdCu nanozyme. Talanta 2024; 274:126034. [PMID: 38604040 DOI: 10.1016/j.talanta.2024.126034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
As an important prognostic indicator in breast cancer, human epithelial growth factor receptor-2 (HER-2) is of importance for assessing prognosis of breast cancer patients, whose accurate and facile analysis are imperative in clinical diagnosis and treatment. Herein, photoactive Z-scheme UiO-66/CdIn2S4 heterojunction was constructed by a hydrothermal method, whose optical property and photoactivity were critically investigated by a range of techniques, combined by elucidating the interfacial charge transfer mechanism. Meanwhile, PtPdCu nanoflowers (NFs) were fabricated by a simple aqueous wet-chemical method, whose peroxidase (POD)-mimicking catalytic activity was scrutinized by representative tetramethylbenzidine (TMB) oxidation in H2O2 system. Taken together, the UiO-66/CdIn2S4 based photoelectrochemical (PEC) aptasensor was established for quantitative analysis of HER-2, where the detection signals were further magnified through catalytic precipitation reaction towards 4-chloro-1-naphthol (4-CN) oxidation (assisted by the PtPdCu NFs nanozyme). The PEC aptasensor presented a broader linear range within 0.1 pg mL-1-0.1 μg mL-1 and a lower limit of detection of 0.07 pg mL-1. This work developed a new PEC aptasensor for ultrasensitive determination of HER-2, holding substantial promise for clinical diagnostics.
Collapse
Affiliation(s)
- Qing-Ying Ai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ben-Fang Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Fan Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Li-Ping Mei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liang Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Pei Song
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
7
|
Lyu N, Hassanzadeh-Barforoushi A, Rey Gomez LM, Zhang W, Wang Y. SERS biosensors for liquid biopsy towards cancer diagnosis by detection of various circulating biomarkers: current progress and perspectives. NANO CONVERGENCE 2024; 11:22. [PMID: 38811455 PMCID: PMC11136937 DOI: 10.1186/s40580-024-00428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
Liquid biopsy has emerged as a promising non-invasive strategy for cancer diagnosis, enabling the detection of various circulating biomarkers, including circulating tumor cells (CTCs), circulating tumor nucleic acids (ctNAs), circulating tumor-derived small extracellular vesicles (sEVs), and circulating proteins. Surface-enhanced Raman scattering (SERS) biosensors have revolutionized liquid biopsy by offering sensitive and specific detection methodologies for these biomarkers. This review comprehensively examines the application of SERS-based biosensors for identification and analysis of various circulating biomarkers including CTCs, ctNAs, sEVs and proteins in liquid biopsy for cancer diagnosis. The discussion encompasses a diverse range of SERS biosensor platforms, including label-free SERS assay, magnetic bead-based SERS assay, microfluidic device-based SERS system, and paper-based SERS assay, each demonstrating unique capabilities in enhancing the sensitivity and specificity for detection of liquid biopsy cancer biomarkers. This review critically assesses the strengths, limitations, and future directions of SERS biosensors in liquid biopsy for cancer diagnosis.
Collapse
Affiliation(s)
- Nana Lyu
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Laura M Rey Gomez
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Wei Zhang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yuling Wang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
8
|
Chen Z, Xiong M, Tian J, Song D, Duan S, Zhang L. Encapsulation and assessment of therapeutic cargo in engineered exosomes: a systematic review. J Nanobiotechnology 2024; 22:18. [PMID: 38172932 PMCID: PMC10765779 DOI: 10.1186/s12951-023-02259-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Exosomes are nanoscale extracellular vesicles secreted by cells and enclosed by a lipid bilayer membrane containing various biologically active cargoes such as proteins, lipids, and nucleic acids. Engineered exosomes generated through genetic modification of parent cells show promise as drug delivery vehicles, and they have been demonstrated to have great therapeutic potential for treating cancer, cardiovascular, neurological, and immune diseases, but systematic knowledge is lacking regarding optimization of drug loading and assessment of delivery efficacy. This review summarizes current approaches for engineering exosomes and evaluating their drug delivery effects, and current techniques for assessing exosome drug loading and release kinetics, cell targeting, biodistribution, pharmacokinetics, and therapeutic outcomes are critically examined. Additionally, this review synthesizes the latest applications of exosome engineering and drug delivery in clinical translation. The knowledge compiled in this review provides a framework for the rational design and rigorous assessment of exosomes as therapeutics. Continued advancement of robust characterization methods and reporting standards will accelerate the development of exosome engineering technologies and pave the way for clinical studies.
Collapse
Affiliation(s)
- Zhen Chen
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan, 250001, China
- School of Public Health, Weifang Medical University, Weifang, 261000, China
| | - Min Xiong
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China
| | - Jiaqi Tian
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan, 250001, China
| | - Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan, 250001, China
| | - Shuyin Duan
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250001, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China.
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan, 250001, China.
| |
Collapse
|
9
|
Xu Y, Zhang Y, Li N, Yang S, Chen J, Hou J, Hou C, Huo D. An ultrasensitive ratiometric electrochemical aptasensor based on metal-organic frameworks and nanoflower-like Bi 2CuO 4 for human epidermal growth factor receptor 2 detection. Bioelectrochemistry 2023; 154:108542. [PMID: 37591183 DOI: 10.1016/j.bioelechem.2023.108542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
An ultra-sensitive ratiometric electrochemical aptasensor was constructed based on metal-organic frameworks (MOFs) and bimetallic oxides for the detection of the human epidermal growth factor receptor 2 (HER2), a breast cancer marker. The aluminum metal-organic framework (Al-MOF) and cerium-metal-organic framework (Ce-MOF) have higher specific surface area, which is conducive to load more aptamers or complementary DNA (cDNA), and realize the amplification of internal reference signal Fc. Furthermore, nanoflower-like bismuth copper oxide (Bi2CuO4) with abundant active sites was introduced to modify more aptamers on its surface, which were then fixed to the glassy carbon electrode (GCE) to amplify the detection signal. The quantitative detection of HER2 was achieved by differential pulse voltammetry (DPV), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The materials were characterized by scanning electron microscope, transmission electron microscope, Zeta potential analyzer, X-ray diffraction and X-ray photoelectron spectroscopy. The ratiometric electrochemical aptasensor based on nanomaterial and chain displacement signal amplification technology could discern HER2 in a very wide range (0.001-20.0 ng/mL) with an extremely low detection limit (0.049 pg/mL) and has demonstrated good performance in clinical serum analysis. This strategy also provides a feasible idea for sensitive analysis of other clinical tumor markers.
Collapse
Affiliation(s)
- Ying Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Ya Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Ning Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Siyi Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Jian Chen
- Chongqing University Three Gorges Hospital, Chongqing 404000, PR China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
10
|
Su X, Xie Y, Liu X, Chen M, Zheng C, Zhong H, Li M. Absolute Quantification of Serum Exosomes in Patients with an SERS-Lateral Flow Strip Biosensor for Noninvasive Clinical Cancer Diagnosis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37130-37142. [PMID: 37525365 DOI: 10.1021/acsami.3c05039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Exosomes (exos) widely existing in body fluids show great potential for noninvasive cancer diagnosis. Quantitative analysis of exos is traditionally performed by targeting specific exosomal surface proteins, but it is often imprecise due to the common expression of exosomal proteins and subtle expression differences between different cancer subtypes. Herein, we report quantitative surface-enhanced Raman spectroscopy (SERS) of serum exos through a combination of a paper-based lateral flow strip (LFS) biosensor with multivariate spectral unmixing analysis rather than simply quantifying exosomal proteins. Our SERS-LFS biosensor enables absolute quantification of two different serum exos with a limit of detection down to ∼106 particles/mL for both exos. We further exemplify the application of this strategy in quantitative dual-plex detection of serum exos from breast cancer patients. We find that human epidermal growth factor receptor 2+ (HER2+) and luminal A breast cancer patients undergoing no surgery are enriched in serum exos derived from SKBR-3 cells and MCF-7 cells (denoted as SKBR and MCF exos), respectively. The surgical treatment of these breast cancer patients accompanies an obvious decrease of either SKBR or MCF exos in the serum. These results suggest the great potential of the combination of the SERS-LFS biosensor and multivariate spectral unmixing for breast cancer subtyping and therapeutic surveillance with the powerful quantitative capability of exos in clinical samples.
Collapse
Affiliation(s)
- Xiaoming Su
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yangcenzi Xie
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xinyu Liu
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Mingyang Chen
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Chao Zheng
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Hong Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
11
|
Dos Santos DP, Sena MM, Almeida MR, Mazali IO, Olivieri AC, Villa JEL. Unraveling surface-enhanced Raman spectroscopy results through chemometrics and machine learning: principles, progress, and trends. Anal Bioanal Chem 2023; 415:3945-3966. [PMID: 36864313 PMCID: PMC9981450 DOI: 10.1007/s00216-023-04620-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has gained increasing attention because it provides rich chemical information and high sensitivity, being applicable in many scientific fields including medical diagnosis, forensic analysis, food control, and microbiology. Although SERS is often limited by the lack of selectivity in the analysis of samples with complex matrices, the use of multivariate statistics and mathematical tools has been demonstrated to be an efficient strategy to circumvent this issue. Importantly, since the rapid development of artificial intelligence has been promoting the implementation of a wide variety of advanced multivariate methods in SERS, a discussion about the extent of their synergy and possible standardization becomes necessary. This critical review comprises the principles, advantages, and limitations of coupling SERS with chemometrics and machine learning for both qualitative and quantitative analytical applications. Recent advances and trends in combining SERS with uncommonly used but powerful data analysis tools are also discussed. Finally, a section on benchmarking and tips for selecting the suitable chemometric/machine learning method is included. We believe this will help to move SERS from an alternative detection strategy to a general analytical technique for real-life applications.
Collapse
Affiliation(s)
- Diego P Dos Santos
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Marcelo M Sena
- Departamento de Química, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCT Bio), Campinas, SP, 13083-970, Brazil
| | - Mariana R Almeida
- Departamento de Química, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Italo O Mazali
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Alejandro C Olivieri
- Departamento de Química Analítica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Instituto de Química Rosario (IQUIR-CONICET), Suipacha 531, 2000, Rosario, Argentina
| | - Javier E L Villa
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
12
|
Mo W, Ke Q, Zhou M, Xie G, Huang J, Gao F, Ni S, Yang X, Qi D, Wang A, Wen J, Yang Y, Jing M, Du K, Wang X, Du X, Zhao Z. Combined Morphological and Spectroscopic Diagnostic of HER2 Expression in Breast Cancer Tissues Based on Label-Free Surface-Enhanced Raman Scattering. Anal Chem 2023; 95:3019-3027. [PMID: 36706440 DOI: 10.1021/acs.analchem.2c05067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer type worldwide. Overexpression of human epidermal growth factor receptor 2 (HER2) is an important subtype of breast cancer and results in an increased risk of recurrence and metastasis in patients. At present, immunohistochemistry (IHC) is used to detect the expression of HER2 in breast cancer tissues as the golden standard. However, IHC has some shortcomings, such as large subjective impact, long time consumption, expensive reagents, etc. In this paper, a combined morphological and spectroscopic diagnostic method based on label-free surface-enhanced Raman scattering (SERS) for HER2 expression in breast cancer is proposed. It can not only quantitively detect HER2 expression in breast cancer tissues by spectroscopic measurements but also give morphological images reflecting the distribution of HER2 in tissues. The results show that the consistency between this method and IHC is 95% and achieves the annotation of tumor regions on tissue sections. This method is time-consuming, quantifiable, intuitive, scalable, and easy to understand. Combined with deep learning approaches, it is expected to promote the development of clinical detection and diagnosis technology for breast cancer and other cancers.
Collapse
Affiliation(s)
- Wenbo Mo
- China Academy of Engineering Physics, Laser Fusion Research Center, 621900 Mianyang, China.,Department of Engineering Physics, Tsinghua University, 100084 Beijing, China
| | - Qi Ke
- Mianyang Central Hospital, 621000 Mianyang, China
| | - Minjie Zhou
- China Academy of Engineering Physics, Laser Fusion Research Center, 621900 Mianyang, China
| | - Gang Xie
- Mianyang Central Hospital, 621000 Mianyang, China
| | - Jinglin Huang
- China Academy of Engineering Physics, Laser Fusion Research Center, 621900 Mianyang, China
| | - Feng Gao
- Mianyang Central Hospital, 621000 Mianyang, China
| | - Shuang Ni
- China Academy of Engineering Physics, Laser Fusion Research Center, 621900 Mianyang, China
| | - Xiyue Yang
- Mianyang Central Hospital, 621000 Mianyang, China
| | - Daojian Qi
- China Academy of Engineering Physics, Laser Fusion Research Center, 621900 Mianyang, China
| | - Anqun Wang
- Mianyang Central Hospital, 621000 Mianyang, China
| | - Jiaxing Wen
- China Academy of Engineering Physics, Laser Fusion Research Center, 621900 Mianyang, China
| | - Yue Yang
- China Academy of Engineering Physics, Laser Fusion Research Center, 621900 Mianyang, China
| | - Meng Jing
- Mianyang Central Hospital, 621000 Mianyang, China
| | - Kai Du
- China Academy of Engineering Physics, Laser Fusion Research Center, 621900 Mianyang, China
| | - Xuewu Wang
- Department of Engineering Physics, Tsinghua University, 100084 Beijing, China
| | - Xiaobo Du
- Mianyang Central Hospital, 621000 Mianyang, China
| | - Zongqing Zhao
- China Academy of Engineering Physics, Laser Fusion Research Center, 621900 Mianyang, China
| |
Collapse
|