1
|
Rauf A, Liu X, Tian L, Yao F, Guo Y, Kang X. Nanochannel-based biosensor for ultrasensitive and label-free detection of thymidine kinase activity. Talanta 2024; 279:126626. [PMID: 39116732 DOI: 10.1016/j.talanta.2024.126626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Thymidine Kinase 1 (TK1) is a pivotal enzyme in fundamental biochemistry and molecular diagnosis, but recognition and molecule detection is a challenging task. Here, we constructed a DNA-integrated hybrid nanochannel sensor for TK1 activity and inhibition assay. Single-stranded DNA containing thymidine was used as a substrate to functionalize the nanochannels, restricting the ion current through channels. With kinase, the thymidine at the termini of the substrate DNA is phosphorylated, elevating surface charge density and mitigating the pore-obstruction effect by increasing transmembrane ion current. The kinase-induced distinctness can be accurately monitored by this hybrid nanodevice, which benefits from its high sensitivity to the change of surface charge. The excellent analytical performance in both kinase enzyme activity and inhibition analysis resulted in efficient and selective evaluation in human serum. Furthermore, compared to current approaches, it greatly simplifies and offers a direct method of analysis, making it a promising sensor technology for cancer management as well as the activities of multiple types of nucleic acid kinases.
Collapse
Affiliation(s)
- Ayesha Rauf
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Xingtong Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Lei Tian
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Fujun Yao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Yanli Guo
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China.
| | - Xiaofeng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| |
Collapse
|
2
|
Xu S, Wang G, Feng Y, Zheng J, Huang L, Liu J, Jiang Y, Wang Y, Liu N. PNA-Functionalized, Silica Nanowires-Filled Glass Microtube for Ultrasensitive and Label-Free Detection of miRNA-21. Anal Chem 2024; 96:7470-7478. [PMID: 38696229 DOI: 10.1021/acs.analchem.3c05839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
MicroRNAs (miRNAs) are endogenous and noncoding single-stranded RNA molecules with a length of approximately 18-25 nucleotides, which play an undeniable role in early cancer screening. Therefore, it is very important to develop an ultrasensitive and highly specific method for detecting miRNAs. Here, we present a bottom-up assembly approach for modifying glass microtubes with silica nanowires (SiNWs) and develop a label-free sensing platform for miRNA-21 detection. The three-dimensional (3D) networks formed by SiNWs make them abundant and highly accessible sites for binding with peptide nucleic acid (PNA). As a receptor, PNA has no phosphate groups and exhibits an overall electrically neutral state, resulting in a relatively small repulsion between PNA and RNA, which can improve the hybridization efficiency. The SiNWs-filled glass microtube (SiNWs@GMT) sensor enables ultrasensitive, label-free detection of miRNA-21 with a detection limit as low as 1 aM at a detection range of 1 aM-100 nM. Noteworthy, the sensor can still detect miRNA-21 in the range of 102-108 fM in complex solutions containing 1000-fold homologous interference of miRNAs. The high anti-interference performance of the sensor enables it to specifically recognize target miRNA-21 in the presence of other miRNAs and distinguish 1-, 3-mismatch nucleotide sequences. Significantly, the sensor platform is able to detect miRNA-21 in the lysate of breast cancer cell lines (e.g., MCF-7 cells and MDA-MB-231 cells), indicating that it has good potential in the screening of early breast cancers.
Collapse
Affiliation(s)
- Shiwei Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Guofeng Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Yueyue Feng
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Juanjuan Zheng
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Liying Huang
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Jiahao Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Yisha Jiang
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Yajun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| | - Nannan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P. R. China
| |
Collapse
|
3
|
Lv R, Wang X, Mao Z, Bai Y, Hao J, Zhang F. Engineering Sandwiched Nanochannel Aptasensor for Efficiently Screening Cancer Cells. Chemistry 2023; 29:e202203380. [PMID: 36478319 DOI: 10.1002/chem.202203380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Cancer cells are a class of important tumor biomarkers and are closely related to tumorous progression. It is urgent to develop a sensitive and highly efficient method for the rapid and accurate detection of cancer cells. Herein, an aptamer sandwiched nanochannel electrochemical sensor was established for the highly selective determination of cancer cells. By virtue of the porous nanochannels as the filter platform and immobilized with DNA aptamers for specifically capturing the cancer cells, the nanochannel-based electrochemical sensor denotes excellent performance for MCF-7 screening, and allowing a low limit of detection of 36 cells mL-1 . The nanochannels-based sandwich structure aptasensor not only presents an efficacious and reliable approach for cancer cell detection but also provides great advantage for preventing electrode passivation in the process of biomarkers analysis.
Collapse
Affiliation(s)
- Rui Lv
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and, Application of Organic Functional Molecules, College of Health Sciences and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Xing Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and, Application of Organic Functional Molecules, College of Health Sciences and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Zhiqiang Mao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and, Application of Organic Functional Molecules, College of Health Sciences and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yurong Bai
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and, Application of Organic Functional Molecules, College of Health Sciences and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Junxing Hao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and, Application of Organic Functional Molecules, College of Health Sciences and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Fan Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and, Application of Organic Functional Molecules, College of Health Sciences and Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
4
|
Recent Advances in Aptamer‐Based Nanopore Sensing at Single‐Molecule Resolution. Chem Asian J 2022; 17:e202200364. [DOI: 10.1002/asia.202200364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Indexed: 11/07/2022]
|
5
|
Wang X, Stevens KC, Ting JM, Marras AE, Rezvan G, Wei X, Taheri-Qazvini N, Tirrell MV, Liu C. Translocation Behaviors of Synthetic Polyelectrolytes through Alpha-Hemolysin (α-HL) and Mycobacterium smegmatis Porin A (MspA) Nanopores. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2022; 169:057510. [PMID: 35599744 PMCID: PMC9121822 DOI: 10.1149/1945-7111/ac6c55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
DNAs have been used as probes for nanopore sensing of noncharged biomacromolecules due to its negative phosphate backbone. Inspired by this, we explored the potential of diblock synthetic polyelectrolytes as more flexible and inexpensive nanopore sensing probes by investigating translocation behaviors of PEO-b-PSS and PEO-b-PVBTMA through commonly used alpha-hemolysin (α-HL) and Mycobacterium smegmatis porin A (MspA) nanopores. Translocation recordings in different configurations of pore orientation and testing voltage indicated efficient PEO-b-PSS translocations through α-HL and PEO-b-PVBTMA translocations through MspA. This work provides insight into synthetic polyelectrolyte-based probes to expand probe selection and flexibility for nanopore sensing.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Kaden C. Stevens
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Jeffrey M. Ting
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Alexander E. Marras
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Gelareh Rezvan
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Xiaojun Wei
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Matthew V. Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Chang Liu
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
6
|
High-performance cascade nanoreactor based on halloysite nanotubes-integrated enzyme-nanozyme microsystem. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Zhang D, Zhang X. Bioinspired Solid-State Nanochannel Sensors: From Ionic Current Signals, Current, and Fluorescence Dual Signals to Faraday Current Signals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100495. [PMID: 34117705 DOI: 10.1002/smll.202100495] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Inspired from bioprotein channels of living organisms, constructing "abiotic" analogues, solid-state nanochannels, to achieve "smart" sensing towards various targets, is highly seductive. When encountered with certain stimuli, dynamic switch of terminal modified probes in terms of surface charge, conformation, fluorescence property, electric potential as well as wettability can be monitored via transmembrane ionic current, fluorescence intensity, faraday current signals of nanochannels and so on. Herein, the modification methodologies of nanochannels and targets-detecting application are summarized in ions, small molecules, as well as biomolecules, and systematically reviewed are the nanochannel-based detection means including 1) by transmembrane current signals; 2) by the coordination of current- and fluorescence-dual signals; 3) by faraday current signals from nanochannel-based electrode. The coordination of current and fluorescence dual signals offers great benefits for synchronous temporal and spatial monitoring. Faraday signals enable the nanoelectrode to monitor both redox and non-redox components. Notably, by incorporation with confined effect of tip region of a needle-like nanopipette, glorious in-vivo monitoring is conferred on the nanopipette detector at high temporal-spatial resolution. In addition, some outlooks for future application in reliable practical samples analysis and leading research endeavors in the related fantastic fields are provided.
Collapse
Affiliation(s)
- Dan Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| |
Collapse
|
8
|
Xu H, Guo J, Yang L, Gao Z, Song YY. Construction of Peroxidase-like Metal-Organic Frameworks in TiO 2 Nanochannels: Robust Free-Standing Membranes for Diverse Target Sensing. Anal Chem 2021; 93:9486-9494. [PMID: 34170111 DOI: 10.1021/acs.analchem.1c01287] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The high cost and easy denaturation of natural enzymes under environmental conditions hinder their practical usefulness in sensing devices. In this study, peroxidase (POD)-like metal-organic frameworks (MOFs) were in situ grown in the nanochannels of an anodized TiO2 membrane (TiO2NM) as an electrochemical platform for multitarget sensing. By directly using a nanochannel wall as the precursor of metal nodes, Ti-MOFs were in situ derived on the nanochannel wall. Benefitting from the presence of bipyridine groups on the ligands, the MOFs in the nanochannels provide plenty of sites for Fe3+ anchoring, thus endowing the resulting membrane (named as Fe3+:MOFs/TiO2NM) with remarkable POD-like activity. Such Fe3+-induced POD-like activity is very sensitive to thiol-containing molecules owing to the strong coordination effect of thiols on Fe3+. Most importantly, the POD-like activity of nanochannels can be in situ characterized by the current-potential (I-V) properties via catalyzing the oxidation of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) substrate to the corresponding positively charged product ABTS•+. As a proof-of-concept application, the free-standing POD-like membranes were applied as a label-free assay in sensing cysteine, as well as monitoring acetylcholinesterase (AChE) activity through the generated thiol-containing product. Furthermore, based on the toxicity effect of organophosphorus (OP) compounds on AChE, the robust membranes were successfully utilized to evaluate the toxicity of diverse OP compounds. The POD-like nanochannels open up an innovative way to expand the application of nanochannel-based electrochemical sensing platforms in drug inspection, food safety, and environmental pollution.
Collapse
Affiliation(s)
- Huijie Xu
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junli Guo
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Lingling Yang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
9
|
Reynaud L, Bouchet-Spinelli A, Raillon C, Buhot A. Sensing with Nanopores and Aptamers: A Way Forward. SENSORS 2020; 20:s20164495. [PMID: 32796729 PMCID: PMC7472324 DOI: 10.3390/s20164495] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
In the 90s, the development of a novel single molecule technique based on nanopore sensing emerged. Preliminary improvements were based on the molecular or biological engineering of protein nanopores along with the use of nanotechnologies developed in the context of microelectronics. Since the last decade, the convergence between those two worlds has allowed for biomimetic approaches. In this respect, the combination of nanopores with aptamers, single-stranded oligonucleotides specifically selected towards molecular or cellular targets from an in vitro method, gained a lot of interest with potential applications for the single molecule detection and recognition in various domains like health, environment or security. The recent developments performed by combining nanopores and aptamers are highlighted in this review and some perspectives are drawn.
Collapse
|
10
|
Guo J, Yang L, Gao Z, Zhao C, Mei Y, Song YY. Insight of MOF Environment-Dependent Enzyme Activity via MOFs-in-Nanochannels Configuration. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00591] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Junli Guo
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Lingling Yang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Chenxi Zhao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
11
|
An CuInS 2 photocathode for the sensitive photoelectrochemical determination of microRNA-21 based on DNA-protein interaction and exonuclease III assisted target recycling amplification. Mikrochim Acta 2019; 186:692. [PMID: 31605242 DOI: 10.1007/s00604-019-3804-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/07/2019] [Indexed: 01/15/2023]
Abstract
A photocathode is described for the determination of microRNA-21 by using CuInS2 as an active photocathode material. Exonuclease III assisted target recycling amplification was employed to enhance the detection sensitivity. The TATA-binding protein (TBP) was applied to enhance steric hindrance which decreases the photoelectrochemical intensity. This strategy is designed by combining the anti-interference photocathode material, enzyme assisted target recycling amplification and TBP induced signal off, showing remarkable amplification efficiency. Under the optimized conditions, the detection limit for microRNA-21 is as low as 0.47 fM, and a linear range was got from 1.0 × 10-15 M to 1.0 × 10-6 M. Graphical abstract Schematic representation of sensitive photoelectrochemical detection of microRNA-21.CuInS2 is used as an active photocathode material. Combined Exonuclease III assisted target recycling amplification and TATA-binding protein decreased of photoelectrochemical intensity, the detection limit was 0.47 fM with good selectivity. (miR-21: microRNA-21; CS: chitosan).
Collapse
|
12
|
|
13
|
|
14
|
Liu M, Li Z, Li Y, Chen J, Yuan Q. Self-assembled nanozyme complexes with enhanced cascade activity and high stability for colorimetric detection of glucose. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Li M, Liang W, Yuan R, Chai Y. CdTe QD-CeO 2 Complex as a Strong Photoelectrochemical Signal Indicator for the Ultrasensitive microRNA Assay. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11834-11840. [PMID: 30855130 DOI: 10.1021/acsami.9b02189] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The photoelectrochemical (PEC) signal can be enhanced by constructing sensitization structures containing photoactive materials and appropriate sensitizers. However, usually, the photoactive materials and sensitizers were separated in independent nanostructures, thereby producing long electron-transfer path and large energy loss, which could further result in limited photoelectric conversion efficiency and PEC signals. Herein, we designed a novel sensitization nanostructure simultaneously containing the photoactive material cerium dioxide (CeO2) and its sensitizer CdTe quantum dots (QDs) as the strong PEC signal indicator (CdTe QD-CeO2 complex), which prominently enhanced photoelectric conversion efficiency because of the shortened electron-transfer path and reduced energy loss. The proposed CdTe QD-CeO2 complex was used to construct a PEC biosensor for achieving ultrasensitive determination of microRNA-141 (miRNA-141) coupling with target converting amplification and DNA supersandwich structure amplification. The designed PEC biosensor demonstrated a wide linear range from 0.5 fM to 5 nM with a detection limit of 0.17 fM for miRNA-141. Impressively, this work provided a new and strong PEC signal indicator for the construction of PEC sensing platform and would extend the application of PEC sensors in bioanalysis and early disease diagnosis.
Collapse
Affiliation(s)
- Mengjie Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Wenbin Liang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| |
Collapse
|
16
|
Long Z, Zhan S, Gao P, Wang Y, Lou X, Xia F. Recent Advances in Solid Nanopore/Channel Analysis. Anal Chem 2017; 90:577-588. [DOI: 10.1021/acs.analchem.7b04737] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zi Long
- Faculty
of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P. R. China
| | - Shenshan Zhan
- School
of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Pengcheng Gao
- Faculty
of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P. R. China
| | - Yongqian Wang
- Faculty
of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P. R. China
| | - Xiaoding Lou
- Faculty
of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P. R. China
- School
of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Fan Xia
- Faculty
of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P. R. China
- School
of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
17
|
Liao T, Li X, Tong Q, Zou K, Zhang H, Tang L, Sun Z, Zhang GJ. Ultrasensitive Detection of MicroRNAs with Morpholino-Functionalized Nanochannel Biosensor. Anal Chem 2017; 89:5511-5518. [PMID: 28429595 DOI: 10.1021/acs.analchem.7b00487] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Here, we demonstrate a phosphorodiamidate morpholino oligos (PMO)-functionalized nanochannel biosensor for label-free detection of microRNAs (miRNAs) with ultrasensitivity and high sequence specificity. PMO, as a capture probe, was covalently anchored on the nanochannel surface. Because of the neutral character and high sequence-specific affinity of PMO, hybridization efficiency between PMO and miRNAs was enhanced, thus largely decreasing background signals and highly improving the detection specificity and sensitivity. The miRNAs detection was realized through observing the change of surface charge density when PMO/miRNAs hybridization occurred. Not only could the developed biosensor specifically discriminate complementary miRNAs (Let-7b) from noncomplementary miRNAs (miR-21) and one-base mismatched miRNAs (Let-7c), but also it could detect target miRNAs in serum samples. In addition, this nanochannel-based biosensor attained a reliable limit of detection down to 1 fM in PBS and 10 fM in serum sample, respectively. It is expected that such a new method will benefit miRNA detection in clinical diagnosis.
Collapse
Affiliation(s)
- Tangbin Liao
- School of Laboratory Medicine, Hubei University of Chinese Medicine , 1 Huangjia Lake West Road, Wuhan, Hubei 430065, China
| | - Xiaorui Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine , 1 Huangjia Lake West Road, Wuhan, Hubei 430065, China
| | - Qian Tong
- School of Laboratory Medicine, Hubei University of Chinese Medicine , 1 Huangjia Lake West Road, Wuhan, Hubei 430065, China
| | - Kai Zou
- School of Laboratory Medicine, Hubei University of Chinese Medicine , 1 Huangjia Lake West Road, Wuhan, Hubei 430065, China
| | - Hang Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine , 1 Huangjia Lake West Road, Wuhan, Hubei 430065, China
| | - Lina Tang
- School of Laboratory Medicine, Hubei University of Chinese Medicine , 1 Huangjia Lake West Road, Wuhan, Hubei 430065, China
| | - Zhongyue Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine , 1 Huangjia Lake West Road, Wuhan, Hubei 430065, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine , 1 Huangjia Lake West Road, Wuhan, Hubei 430065, China
| |
Collapse
|
18
|
Biomimetic nanochannels based biosensor for ultrasensitive and label-free detection of nucleic acids. Biosens Bioelectron 2016; 86:194-201. [DOI: 10.1016/j.bios.2016.06.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/07/2016] [Accepted: 06/19/2016] [Indexed: 11/18/2022]
|
19
|
Liu N, Hou R, Gao P, Lou X, Xia F. Sensitive Zn(2+) sensor based on biofunctionalized nanopores via combination of DNAzyme and DNA supersandwich structures. Analyst 2016; 141:3626-9. [PMID: 26911926 DOI: 10.1039/c6an00171h] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The sensitivity of detection based on biofunctionalized nanopores is limited since the target-to-signal ratio is 1 : 1. Isothermal amplification is a promising amplification strategy at constant temperature due to its easy operation, quick results, PCR-like sensitivity, low cost and energy efficiency. In the present work, the isothermally amplified detection of Zn(2+) is achieved by using a DNA supersandwich structure and Zn(2+)-requiring DNAzymes. The DNA supersandwich structures, due to the multiple amplification of nucleic acids, heavily plug the nanopore. Simultaneously, the DNA supersandwich structures bond with the sessile probe (SP) of the substrate in the nanopore which partially hybridizes with DNAzymes. In the presence of Zn(2+), the Zn(2+)-requiring DNAzyme cleaves the SP into two fragments, while the DNA supersandwich structures are peeled off and the ionic pathway is unimpeded. A steep drop and a sequential complete recovery of the current occur in the I-V plot when the DNA supersandwich structures are decorated and peeled off. In the present system, the reliable detection limit of Zn(2+) is as low as 1 nM. Discrimination between different types of ions (Cu(2+), Hg(2+), Pb(2+)) is achieved.
Collapse
Affiliation(s)
- Nannan Liu
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | | | | | | | | |
Collapse
|
20
|
Xu X, Hou R, Gao P, Miao M, Lou X, Liu B, Xia F. Highly Robust Nanopore-Based Dual-Signal-Output Ion Detection System for Achieving Three Successive Calibration Curves. Anal Chem 2016; 88:2386-91. [DOI: 10.1021/acs.analchem.5b04388] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xuemei Xu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruizuo Hou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pengcheng Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mao Miao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoding Lou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bifeng Liu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fan Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
21
|
Liu N, Yang Z, Ou X, Wei B, Zhang J, Jia Y, Xia F. Nanopore-based analysis of biochemical species. Mikrochim Acta 2015; 183:955-963. [PMID: 27013767 PMCID: PMC4778144 DOI: 10.1007/s00604-015-1560-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 06/30/2015] [Indexed: 12/11/2022]
Abstract
Biological nanochannels or nanopores play a crucial role in basic biochemical processes in cells. Artificial nanopores possessing dimensions comparable to the size of biological molecules and mimicking the function of biological ion channels are of particular interest with respect to the design of biosensors with a sensitivity that can go down to the fM level and even to single molecule detection. Nanopore-based analysis (NPA) is currently a new research field with fascinating prospects. This review (with 118 refs.) summarizes the progress made in this field in the recent 10 years. Following an introduction into the fundamentals of NPA, we demonstrate its potential by describing selected methods for sensing (a) proteins such as streptavidin, certain antibodies, or thrombin via aptamers; (b) oligomers, larger nucleic acids, or micro-RNA; (c) small molecules, (d) ions such as K(I) which is vital to the maintenance of life, or Hg(II) which is dangerous to health. We summarize the results and discuss the merits and limitations of the various methods at last. Graphical abstractSchematic of a signal-off system and a signal-on system in nanopore analysis. The effective diameter of nanopores decreases when targets undergo certain interactions with receptors attached on the inner surface of the nanopore. Correspondingly, the current will drop on appearance of the analyte. This is referred to as a "signal-off" system. Conversely, it is called a "signal-on" system.
Collapse
Affiliation(s)
- Nannan Liu
- />Key Laboratory for Large-Format Battery Materials and Systems, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Zekun Yang
- />Key Laboratory for Large-Format Battery Materials and Systems, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Xiaowen Ou
- />Key Laboratory for Large-Format Battery Materials and Systems, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Benmei Wei
- />Key Laboratory for Large-Format Battery Materials and Systems, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Juntao Zhang
- />Key Laboratory for Large-Format Battery Materials and Systems, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Yongmei Jia
- />Key Laboratory for Large-Format Battery Materials and Systems, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
| | - Fan Xia
- />Key Laboratory for Large-Format Battery Materials and Systems, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074 China
- />National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074 China
| |
Collapse
|