1
|
Kaladharan K, Ouyang CH, Yang HY, Tseng FG. Selectively cross-linked hydrogel-based cocktail drug delivery micro-chip for colon cancer combinatorial drug screening using AI-CSR platform for precision medicine. LAB ON A CHIP 2024; 24:4766-4777. [PMID: 39246026 DOI: 10.1039/d4lc00520a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Cancer, ranked as the second leading cause of global mortality with a prevalence of 1 in 6 deaths, necessitates innovative approaches for effective treatment. Combinatorial drug therapy for cancer treatment targets several key pathways simultaneously and potentially enhances anti-cancer efficacy without intolerable side effects. However, it demands precise and accurate control of drug-dose combinations and their release. In this study, we demonstrated a selectively cross-linked hydrogel-based platform that can quantify and release drugs simultaneously for in-parallel cocktail drug screening. PDMS was used as the flow channel substrate and the poly (ethylene glycol) diacrylate (PEGDA) hydrogel array was formed by UV exposure using the photomask. Employing our platform, cocktails of anticancer drugs are precisely loaded and simultaneously released in-parallel into HCT-116 colon cancer cells, facilitating combinatorial drug screening. The integration of an artificial intelligence-based complex system response (AI-CSR) platform successfully identifies optimal drug-dose combinations from a pool of ten approved drugs. Notably, our cocktail drug chip demonstrates exceptional efficiency, screening 155 drug-dose combinations within a brief two and a half hours, a marked improvement over traditional methods. Furthermore, the device exhibits low drug consumption, requiring a mere 1 μL per patch of chip. Thus, our developed PDMS drug-loaded hydrogel platform presents a novel and expedited approach to quantifying drug concentrations, promising to be a faster, efficient and more precise approach for conducting cocktail drug screening experiments.
Collapse
Affiliation(s)
- Kiran Kaladharan
- Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
| | - Chih-Hsuan Ouyang
- Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
| | - Hsin-Yu Yang
- Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
| | - Fan-Gang Tseng
- Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
- Institute of Nano Engineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
2
|
Zhao M, Yang J, Li Z, Zeng Y, Tao C, Dai B, Zhang D, Yamaguchi Y. High-throughput 3D microfluidic chip for generation of concentration gradients and mixture combinations. LAB ON A CHIP 2024; 24:2280-2286. [PMID: 38506153 DOI: 10.1039/d3lc00822c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Concentration gradient generation and mixed combinations of multiple solutions are of great value in the field of biomedical research. However, existing concentration gradient generators for single or two-drug solutions cannot simultaneously achieve multiple concentration gradient formations and mixed solution combinations. Furthermore, the whole system was huge, and required expensive auxiliary equipment, which may lead to complex operations. To address this problem, we devised a novel 3D microchannel network design, which is capable of creating all the desired mixture combinations and concentration gradients of given small amounts of the input solutions. As a proof of concept, the device we presented was verified by both colorimetric and fluorescence detection methods to test the efficiency. This can enable the implementation of one to three solutions with no driving pump and facilitate unique multiple types of more concentration gradients and mixture combinations in a single operation. We envision that this will be a promising candidate for the development of simplified methods for screening of the appropriate concentration and combination, such as various drug screening applications.
Collapse
Affiliation(s)
- Mingwei Zhao
- Engineering Research Center of Optical Instrument and System, Key Lab of Optical Instruments and Equipment for Medical Engineering, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jing Yang
- Anhui Sanlian University, Hefei 230000, China
| | - Zhenqing Li
- Engineering Research Center of Optical Instrument and System, Key Lab of Optical Instruments and Equipment for Medical Engineering, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yuan Zeng
- College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Chunxian Tao
- Engineering Research Center of Optical Instrument and System, Key Lab of Optical Instruments and Equipment for Medical Engineering, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System, Key Lab of Optical Instruments and Equipment for Medical Engineering, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, Key Lab of Optical Instruments and Equipment for Medical Engineering, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yoshinori Yamaguchi
- Picotecbio-Waseda Joint Research Lab, Comprehensive Research Organization, Waseda University, 94-A203, 1011, NishiTomita, Honjo, Saitama, 367-0035, Japan
| |
Collapse
|
3
|
Feng J, Neuzil J, Manz A, Iliescu C, Neuzil P. Microfluidic trends in drug screening and drug delivery. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Chermat R, Ziaee M, Mak DY, Refet-Mollof E, Rodier F, Wong P, Carrier JF, Kamio Y, Gervais T. Radiotherapy on-chip: microfluidics for translational radiation oncology. LAB ON A CHIP 2022; 22:2065-2079. [PMID: 35477748 DOI: 10.1039/d2lc00177b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The clinical importance of radiotherapy in the treatment of cancer patients justifies the development and use of research tools at the fundamental, pre-clinical, and ultimately clinical levels, to investigate their toxicities and synergies with systemic agents on relevant biological samples. Although microfluidics has prompted a paradigm shift in drug discovery in the past two decades, it appears to have yet to translate to radiotherapy research. However, the materials, dimensions, design versatility and multiplexing capabilities of microfluidic devices make them well-suited to a variety of studies involving radiation physics, radiobiology and radiotherapy. This review will present the state-of-the-art applications of microfluidics in these fields and specifically highlight the perspectives offered by radiotherapy on-a-chip in the field of translational radiobiology and precision medicine. This body of knowledge can serve both the microfluidics and radiotherapy communities by identifying potential collaboration avenues to improve patient care.
Collapse
Affiliation(s)
- Rodin Chermat
- μFO Lab, Polytechnique Montréal, Montréal, QC, Canada.
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Maryam Ziaee
- μFO Lab, Polytechnique Montréal, Montréal, QC, Canada.
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - David Y Mak
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Elena Refet-Mollof
- μFO Lab, Polytechnique Montréal, Montréal, QC, Canada.
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Francis Rodier
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montreal, QC, Canada
| | - Philip Wong
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jean-François Carrier
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montreal, QC, Canada
- Département de Physique, Université de Montréal, Montréal, QC, Canada
- Département de Radio-oncologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Yuji Kamio
- Département de Radio-oncologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Thomas Gervais
- μFO Lab, Polytechnique Montréal, Montréal, QC, Canada.
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
5
|
Li J, Kim C, Pan CC, Babian A, Lui E, Young JL, Moeinzadeh S, Kim S, Yang YP. Hybprinting for musculoskeletal tissue engineering. iScience 2022; 25:104229. [PMID: 35494239 PMCID: PMC9051619 DOI: 10.1016/j.isci.2022.104229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review presents bioprinting methods, biomaterials, and printing strategies that may be used for composite tissue constructs for musculoskeletal applications. The printing methods discussed include those that are suitable for acellular and cellular components, and the biomaterials include soft and rigid components that are suitable for soft and/or hard tissues. We also present strategies that focus on the integration of cell-laden soft and acellular rigid components under a single printing platform. Given the structural and functional complexity of native musculoskeletal tissue, we envision that hybrid bioprinting, referred to as hybprinting, could provide unprecedented potential by combining different materials and bioprinting techniques to engineer and assemble modular tissues.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Carolyn Kim
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Chi-Chun Pan
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Aaron Babian
- Department of Biological Sciences, University of California, Davis CA 95616, USA
| | - Elaine Lui
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey L Young
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Seyedsina Moeinzadeh
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Sungwoo Kim
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Yang J, Cheng Y, Gong X, Yi S, Li CW, Jiang L, Yi C. An integrative review on the applications of 3D printing in the field of in vitro diagnostics. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Serov N, Vinogradov V. Artificial intelligence to bring nanomedicine to life. Adv Drug Deliv Rev 2022; 184:114194. [PMID: 35283223 DOI: 10.1016/j.addr.2022.114194] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
Abstract
The technology of drug delivery systems (DDSs) has demonstrated an outstanding performance and effectiveness in production of pharmaceuticals, as it is proved by many FDA-approved nanomedicines that have an enhanced selectivity, manageable drug release kinetics and synergistic therapeutic actions. Nonetheless, to date, the rational design and high-throughput development of nanomaterial-based DDSs for specific purposes is far from a routine practice and is still in its infancy, mainly due to the limitations in scientists' capabilities to effectively acquire, analyze, manage, and comprehend complex and ever-growing sets of experimental data, which is vital to develop DDSs with a set of desired functionalities. At the same time, this task is feasible for the data-driven approaches, high throughput experimentation techniques, process automatization, artificial intelligence (AI) technology, and machine learning (ML) approaches, which is referred to as The Fourth Paradigm of scientific research. Therefore, an integration of these approaches with nanomedicine and nanotechnology can potentially accelerate the rational design and high-throughput development of highly efficient nanoformulated drugs and smart materials with pre-defined functionalities. In this Review, we survey the important results and milestones achieved to date in the application of data science, high throughput, as well as automatization approaches, combined with AI and ML to design and optimize DDSs and related nanomaterials. This manuscript mission is not only to reflect the state-of-art in data-driven nanomedicine, but also show how recent findings in the related fields can transform the nanomedicine's image. We discuss how all these results can be used to boost nanomedicine translation to the clinic, as well as highlight the future directions for the development, data-driven, high throughput experimentation-, and AI-assisted design, as well as the production of nanoformulated drugs and smart materials with pre-defined properties and behavior. This Review will be of high interest to the chemists involved in materials science, nanotechnology, and DDSs development for biomedical applications, although the general nature of the presented approaches enables knowledge translation to many other fields of science.
Collapse
Affiliation(s)
- Nikita Serov
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, Saint-Petersburg 191002, Russian Federation
| | - Vladimir Vinogradov
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, Saint-Petersburg 191002, Russian Federation.
| |
Collapse
|
8
|
Meyer C, Zhou C, Fang Z, Longo ML, Pan T, Tan C. High-Throughput Experimentation Using Cell-Free Protein Synthesis Systems. Methods Mol Biol 2022; 2433:121-134. [PMID: 34985741 DOI: 10.1007/978-1-0716-1998-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cell-free protein synthesis can enable the combinatorial screening of many different components and concentrations. However, manual pipetting methods are unfit to handle many cell-free reactions. Here, we describe a microfluidic method that can generate hundreds of unique submicroliter scale reactions. The method is coupled with a high yield cell-free system that can be applied for broad protein screening assays.
Collapse
Affiliation(s)
- Conary Meyer
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Chuqing Zhou
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Zecong Fang
- Department of Biomedical Engineering, University of California, Davis, CA, USA
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Engineering Laboratory of Single-Molecule Detection and Instrument Development, Shenzhen, China
| | - Marjorie L Longo
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Tingrui Pan
- Department of Biomedical Engineering, University of California, Davis, CA, USA
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Engineering Laboratory of Single-Molecule Detection and Instrument Development, Shenzhen, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California, Davis, CA, USA.
| |
Collapse
|
9
|
Zhai J, Li C, Li H, Yi S, Yang N, Miao K, Deng C, Jia Y, Mak PI, Martins RP. Cancer drug screening with an on-chip multi-drug dispenser in digital microfluidics. LAB ON A CHIP 2021; 21:4749-4759. [PMID: 34761772 DOI: 10.1039/d1lc00895a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microfluidics has been the most promising platform for drug screening with a limited number of cells. However, convenient on-chip preparation of a wide range of drug concentrations remains a large challenge and has restricted wide acceptance of microfluidics in precision medicine. In this paper, we report a digital microfluidic system with an innovative control structure and chip design for on-chip drug dispensing to generate concentrations that span three to four orders of magnitude, enabling single drug or combinatorial multi-drug screening with simple electronic control. Specifically, we utilize droplet ejection from a drug drop sitting on a special electrode, named a drug dispenser, under high-voltage pulse actuation to deliver the desired amount of drugs to be picked up by a cell suspension drop driven by low-voltage sine wave actuation. Our proof-of-principle validation for this technique as a convenient single and multi-drug screening involved testing of the drug toxicity of two chemotherapeutics, cisplatin (Cis) and epirubicin (EP), towards MDA-MB-231 breast cancer cells and MCF-10A normal breast cells. The results are consistent with those screened based on traditional 96-well plates. These findings demonstrate the reliability of the drug screening system with an on-chip drug dispenser. This system with fewer cancer cells, less drug consumption, a small footprint, and high scalability with regard to concentration could pave the way for drug screening on biopsied primary tumor cells for precision medicine or any concentration-related research.
Collapse
Affiliation(s)
- Jiao Zhai
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
- Department of Biomedical Sciences/Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Caiwei Li
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
- Faculty of Science and Technology - DECE, University of Macau, Macau, China
| | - Haoran Li
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
- Faculty of Science and Technology - DECE, University of Macau, Macau, China
| | - Shuhong Yi
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ning Yang
- Department of Electronic Information Engineering, Jiangsu University, Zhenjiang, China
| | - Kai Miao
- Faculty of Health Sciences, University of Macau, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Yanwei Jia
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
- Faculty of Science and Technology - DECE, University of Macau, Macau, China
- Faculty of Health Sciences, University of Macau, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Pui-In Mak
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
- Faculty of Science and Technology - DECE, University of Macau, Macau, China
| | - Rui P Martins
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
- Faculty of Science and Technology - DECE, University of Macau, Macau, China
- On leave from Instituto Superior Tecnico, Universidade de Lisboa, Portugal
| |
Collapse
|
10
|
Mendoza-Martinez AK, Loessner D, Mata A, Azevedo HS. Modeling the Tumor Microenvironment of Ovarian Cancer: The Application of Self-Assembling Biomaterials. Cancers (Basel) 2021; 13:5745. [PMID: 34830897 PMCID: PMC8616551 DOI: 10.3390/cancers13225745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer (OvCa) is one of the leading causes of gynecologic malignancies. Despite treatment with surgery and chemotherapy, OvCa disseminates and recurs frequently, reducing the survival rate for patients. There is an urgent need to develop more effective treatment options for women diagnosed with OvCa. The tumor microenvironment (TME) is a key driver of disease progression, metastasis and resistance to treatment. For this reason, 3D models have been designed to represent this specific niche and allow more realistic cell behaviors compared to conventional 2D approaches. In particular, self-assembling peptides represent a promising biomaterial platform to study tumor biology. They form nanofiber networks that resemble the architecture of the extracellular matrix and can be designed to display mechanical properties and biochemical motifs representative of the TME. In this review, we highlight the properties and benefits of emerging 3D platforms used to model the ovarian TME. We also outline the challenges associated with using these 3D systems and provide suggestions for future studies and developments. We conclude that our understanding of OvCa and advances in materials science will progress the engineering of novel 3D approaches, which will enable the development of more effective therapies.
Collapse
Affiliation(s)
- Ana Karen Mendoza-Martinez
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK;
- Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Daniela Loessner
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Melbourne, VIC 3800, Australia;
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Melbourne, VIC 3800, Australia
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden e.V., 01069 Dresden, Germany
| | - Alvaro Mata
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Helena S. Azevedo
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK;
- Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
11
|
Wang B, Warden AR, Ding X. The optimization of combinatorial drug therapies: Strategies and laboratorial platforms. Drug Discov Today 2021; 26:2646-2659. [PMID: 34332097 DOI: 10.1016/j.drudis.2021.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/19/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022]
Abstract
Designing optimal combinatorial drug therapies is challenging, because the drug interactions depend not only on the drugs involved, but also on their doses. With recent advances, combinatorial drug therapy is closer than ever to clinical application. Herein, we summarize approaches and advances over the past decade for identifying and optimizing drug combination therapies, with innovations across research fields, covering physical laboratory platforms for combination screening to computational models and algorithms designed for synergism prediction and optimization. By comparing different types of approach, we detail a three-step workflow that could maximize the overall optimization efficiency, thus enabling the application of personalized optimization of combinatorial drug therapy.
Collapse
Affiliation(s)
- Boqian Wang
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China
| | - Antony R Warden
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China
| | - Xianting Ding
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China.
| |
Collapse
|
12
|
Amirghasemi F, Adjei-Sowah E, Pockaj BA, Nikkhah M. Microengineered 3D Tumor Models for Anti-Cancer Drug Discovery in Female-Related Cancers. Ann Biomed Eng 2021; 49:1943-1972. [PMID: 33403451 DOI: 10.1007/s10439-020-02704-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
The burden of cancer continues to increase in society and negatively impacts the lives of numerous patients. Due to the high cost of current treatment strategies, there is a crucial unmet need to develop inexpensive preclinical platforms to accelerate the process of anti-cancer drug discovery to improve outcomes in cancer patients, most especially in female patients. Many current methods employ expensive animal models which not only present ethical concerns but also do not often accurately predict human physiology and the outcomes of anti-cancer drug responsiveness. Conventional treatment approaches for cancer generally include systemic therapy after a surgical procedure. Although this treatment technique is effective, the outcome is not always positive due to various complex factors such as intratumor heterogeneity and confounding factors within the tumor microenvironment (TME). Patients who develop metastatic disease still have poor prognosis. To that end, recent efforts have attempted to use 3D microengineered platforms to enhance the predictive power and efficacy of anti-cancer drug screening, ultimately to develop personalized therapies. Fascinating features of microengineered assays, such as microfluidics, have led to the advancement in the development of the tumor-on-chip technology platforms, which have shown tremendous potential for meaningful and physiologically relevant anti-cancer drug discovery and screening. Three dimensional microscale models provide unprecedented ability to unveil the biological complexities of cancer and shed light into the mechanism of anti-cancer drug resistance in a timely and resource efficient manner. In this review, we discuss recent advances in the development of microengineered tumor models for anti-cancer drug discovery and screening in female-related cancers. We specifically focus on female-related cancers to draw attention to the various approaches being taken to improve the survival rate of women diagnosed with cancers caused by sex disparities. We also briefly discuss other cancer types like colon adenocarcinomas and glioblastoma due to their high rate of occurrence in females, as well as the high likelihood of sex-biased mutations which complicate current treatment strategies for women. We highlight recent advances in the development of 3D microscale platforms including 3D tumor spheroids, microfluidic platforms as well as bioprinted models, and discuss how they have been utilized to address major challenges in the process of drug discovery, such as chemoresistance, intratumor heterogeneity, drug toxicity, etc. We also present the potential of these platform technologies for use in high-throughput drug screening approaches as a replacements of conventional assays. Within each section, we will provide our perspectives on advantages of the discussed platform technologies.
Collapse
Affiliation(s)
- Farbod Amirghasemi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287-9709, USA
| | - Emmanuela Adjei-Sowah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287-9709, USA
| | - Barbara A Pockaj
- Division of Surgical Oncology and Endocrine Surgery, Department of Surgery, Mayo Clinic, Phoenix, AZ, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287-9709, USA. .,Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
13
|
Sun Y, Wang G, Jing Z, Liang J, Sui J, Fan J, Li J. Microfluidic Pneumatic Printed Sandwiched Microdroplet Array for High-Throughput Enzymatic Reaction and Screening. SLAS Technol 2020; 25:446-454. [PMID: 32406795 DOI: 10.1177/2472630320908248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-throughput enzyme screening for desired functionality is highly demanded. This paper utilizes a newly developed microfluidic pneumatic printing platform for high-throughput enzyme screening applications. The novel printing platform can achieve distinct features including a disposable cartridge, which avoids crosstalk; a flexible cartridge design, allowing for integration of multiple channels; and fast printing speed with submicroliter spot size. Moreover, a polydimethylsiloxane (PDMS)-based sandwich structure has been proposed and used during the printing and imaging, which can lead to better results, including reduced evaporation as well as a uniform light path during imaging. Using this microfluidic pneumatic printed PDMS sandwiched microdroplet array platform, we have demonstrated the capability of high-throughput generation of a combinatorial droplet array with concentration and volume gradients. Furthermore, the potential for enzymatic study has been validated by quantified cellulose reaction implemented with the printing platform.
Collapse
Affiliation(s)
- Yang Sun
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, College of Life Science, Jilin Agricultural University, Chang Chun, Ji Lin, China.,Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Gang Wang
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, College of Life Science, Jilin Agricultural University, Chang Chun, Ji Lin, China.,Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Zhi Jing
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, College of Life Science, Jilin Agricultural University, Chang Chun, Ji Lin, China
| | - Jingting Liang
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Jiajie Sui
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Jinzhen Fan
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Jiannan Li
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| |
Collapse
|
14
|
Mao K, Min X, Zhang H, Zhang K, Cao H, Guo Y, Yang Z. Paper-based microfluidics for rapid diagnostics and drug delivery. J Control Release 2020; 322:187-199. [PMID: 32169536 DOI: 10.1016/j.jconrel.2020.03.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/13/2020] [Accepted: 03/07/2020] [Indexed: 02/07/2023]
Abstract
Paper is a common material that is promising for constructing microfluidic chips (lab-on-a-paper) for diagnostics and drug delivery for biomedical applications. In the past decade, extensive research on paper-based microfluidics has accumulated a large number of scientific publications in the fields of biomedical diagnosis, food safety, environmental health, drug screening and delivery. This review focuses on the recent progress on paper-based microfluidic technology with an emphasis on the design, optimization and application of the technology platform, in particular for medical diagnostics and drug delivery. Novel advances have concentrated on engineering paper devices for point-of-care (POC) diagnostics, which could be integrated with nucleic acid-based tests and isothermal amplification experiments, enabling rapid sample-to-answer assays for field testing. Among the isothermal amplification experiments, loop-mediated isothermal amplification (LAMP), an extremely sensitive nucleic acid test, specifically identifies ultralow concentrations of DNA/RNA from practical samples for diagnosing diseases. We thus mainly focus on the paper device-based LAMP assay for the rapid infectious disease diagnosis, foodborne pathogen analysis, veterinary diagnosis, plant diagnosis, and environmental public health evaluation. We also outlined progress on paper microfluidic devices for drug delivery. The paper concludes with a discussion on the challenges of this technology and our insights into how to advance science and technology towards the development of fully functional paper devices in diagnostics and drug delivery.
Collapse
Affiliation(s)
- Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Xiaocui Min
- Guangzhou Huali Science and Technology Vocational College, Guangzhou 511325, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.
| | - Kuankuan Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Yongkun Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom.
| |
Collapse
|
15
|
Synergistic effect of the combination therapy on ovarian cancer cells under microfluidic conditions. Anal Chim Acta 2019; 1100:138-148. [PMID: 31987134 DOI: 10.1016/j.aca.2019.11.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022]
Abstract
Ovarian cancer belongs to the group of gynecological cancers and indicates the high resistance to many drugs used in standard anticancer therapy. The treatment of ovarian cancer is a big challenge for the present medicine. In our report we tested the effectiveness of the combination anticancer therapy against ovarian cells: human ovarian carcinoma (A2780) and human ovarian fibroblasts (HOF). Two different types of drugs were used: doxorubicin (DOX) and a new-generation photosensitizer, nanoencapsulated meso-tetraphenylporphyrin (nano-TPP). The aim of the research was to compare the effect of the sequential combination therapy (chemotherapy with DOX and photodynamic therapy with nano-TPP) carried out in static and dynamic conditions. To achieve dynamic culture conditions, similar to in vivo environment, we designed a new microfluidic system in which the simultaneous, independent cultures of two cell lines (non-malignant and cancer cells) and their one-step analysis were possible. We observed that the sequential combination of photodynamic therapy (PDT) with chemotherapy allowed to obtain the synergistic effect of the treatment with using low doses of drugs. We also confirmed that the use of microfluidic conditions significantly increased the effectiveness of combination therapy and allowed for maintaining a high selectivity of the action of drugs on cancer cells. To the best of our knowledge, for the first time the microfluidic system was used to carry out sequential combination therapy against ovarian cancer.
Collapse
|
16
|
Sun J, Warden AR, Ding X. Recent advances in microfluidics for drug screening. BIOMICROFLUIDICS 2019; 13:061503. [PMID: 31768197 PMCID: PMC6870548 DOI: 10.1063/1.5121200] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/07/2019] [Indexed: 05/03/2023]
Abstract
With ever increasing drug resistance and emergence of new diseases, demand for new drug development is at an unprecedented urgency. This fact has led to extensive recent efforts to develop new drugs and novel techniques for efficient drug screening. However, new drug development is commonly hindered by cost and time span. Thus, developing more accessible, cost-effective methods for drug screening is necessary. Compared with conventional drug screening methods, a microfluidic-based system has superior advantages in sample consumption, reaction time, and cost of the operation. In this paper, the advantages of microfluidic technology in drug screening as well as the critical factors for device design are described. The strategies and applications of microfluidics for drug screening are reviewed. Moreover, current limitations and future prospects for a drug screening microdevice are also discussed.
Collapse
Affiliation(s)
- Jiahui Sun
- State Key Laboratory of Oncogenes and Related Genes, Institute for
Personalized Medicine and School of Biomedical Engineering, Shanghai Jiao Tong
University, Shanghai 200030, China
| | - Antony R. Warden
- State Key Laboratory of Oncogenes and Related Genes, Institute for
Personalized Medicine and School of Biomedical Engineering, Shanghai Jiao Tong
University, Shanghai 200030, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for
Personalized Medicine and School of Biomedical Engineering, Shanghai Jiao Tong
University, Shanghai 200030, China
| |
Collapse
|
17
|
Wang J, Deng K, Zhou C, Fang Z, Meyer C, Deshpande KUA, Li Z, Mi X, Luo Q, Hammock BD, Tan C, Chen Y, Pan T. Microfluidic cap-to-dispense (μCD): a universal microfluidic-robotic interface for automated pipette-free high-precision liquid handling. LAB ON A CHIP 2019; 19:3405-3415. [PMID: 31501848 PMCID: PMC6785371 DOI: 10.1039/c9lc00622b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Microfluidic devices have been increasingly used for low-volume liquid handling operations. However, laboratory automation of such delicate devices has lagged behind due to the lack of world-to-chip (macro-to-micro) interfaces. In this paper, we have presented the first pipette-free robotic-microfluidic interface using a microfluidic-embedded container cap, referred to as a microfluidic cap-to-dispense (μCD), to achieve a seamless integration of liquid handling and robotic automation without any traditional pipetting steps. The μCD liquid handling platform offers a generic and modular way to connect the robotic device to standard liquid containers. It utilizes the high accuracy and high flexibility of the robotic system to recognize, capture and position; and then using microfluidic adaptive printing it can achieve high-precision on-demand volume distribution. With its modular connectivity, nanoliter processability, high adaptability, and multitask capacity, μCD shows great potential as a generic robotic-microfluidic interface for complete pipette-free liquid handling automation.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ahuja K, Rather GM, Lin Z, Sui J, Xie P, Le T, Bertino JR, Javanmard M. Toward point-of-care assessment of patient response: a portable tool for rapidly assessing cancer drug efficacy using multifrequency impedance cytometry and supervised machine learning. MICROSYSTEMS & NANOENGINEERING 2019; 5:34. [PMID: 31645995 PMCID: PMC6799891 DOI: 10.1038/s41378-019-0073-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/31/2019] [Accepted: 03/25/2019] [Indexed: 05/07/2023]
Abstract
We present a novel method to rapidly assess drug efficacy in targeted cancer therapy, where antineoplastic agents are conjugated to antibodies targeting surface markers on tumor cells. We have fabricated and characterized a device capable of rapidly assessing tumor cell sensitivity to drugs using multifrequency impedance spectroscopy in combination with supervised machine learning for enhanced classification accuracy. Currently commercially available devices for the automated analysis of cell viability are based on staining, which fundamentally limits the subsequent characterization of these cells as well as downstream molecular analysis. Our approach requires as little as 20 μL of volume and avoids staining allowing for further downstream molecular analysis. To the best of our knowledge, this manuscript presents the first comprehensive attempt to using high-dimensional data and supervised machine learning, particularly phase change spectra obtained from multi-frequency impedance cytometry as features for the support vector machine classifier, to assess viability of cells without staining or labelling.
Collapse
Affiliation(s)
- Karan Ahuja
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, NJ USA
| | - Gulam M. Rather
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ USA
| | - Zhongtian Lin
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, NJ USA
| | - Jianye Sui
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, NJ USA
| | - Pengfei Xie
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, NJ USA
| | - Tuan Le
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, NJ USA
| | - Joseph R. Bertino
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ USA
| | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, NJ USA
| |
Collapse
|
19
|
Mattes DS, Jung N, Weber LK, Bräse S, Breitling F. Miniaturized and Automated Synthesis of Biomolecules-Overview and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806656. [PMID: 31033052 DOI: 10.1002/adma.201806656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Chemical synthesis is performed by reacting different chemical building blocks with defined stoichiometry, while meeting additional conditions, such as temperature and reaction time. Such a procedure is especially suited for automation and miniaturization. Life sciences lead the way to synthesizing millions of different oligonucleotides in extremely miniaturized reaction sites, e.g., pinpointing active genes in whole genomes, while chemistry advances different types of automation. Recent progress in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging could match miniaturized chemical synthesis with a powerful analytical tool to validate the outcome of many different synthesis pathways beyond applications in the life sciences. Thereby, due to the radical miniaturization of chemical synthesis, thousands of molecules can be synthesized. This in turn should allow ambitious research, e.g., finding novel synthesis routes or directly screening for photocatalysts. Herein, different technologies are discussed that might be involved in this endeavor. A special emphasis is given to the obstacles that need to be tackled when depositing tiny amounts of materials to many different extremely miniaturized reaction sites.
Collapse
Affiliation(s)
- Daniela S Mattes
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Nicole Jung
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Laura K Weber
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Frank Breitling
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
20
|
Chen YS, Chung KC, Huang WY, Lee WB, Fu CY, Wang CH, Lee GB. Generating digital drug cocktails via optical manipulation of drug-containing particles and photo-patterning of hydrogels. LAB ON A CHIP 2019; 19:1764-1771. [PMID: 30942234 DOI: 10.1039/c9lc00189a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An integrated microfluidic system combining 1) an optically-induced-dielectrophoresis (ODEP) module for manipulation of drug-containing particles and 2) an ultraviolet (UV) "direct writing" module capable of patterning hydrogels was established herein for automatic formulation of customized digital drug cocktails. Using the ODEP module, the drug-containing particles were assembled by using moving light patterns generated from a digital projector. The hydrogel, poly(ethylene glycol) diacrylate (PEGDA), was used as the medium in the ODEP module such that the assembled drug-containing particles could be UV-cured and consequently encapsulated in "pills" of specific sizes and shapes by using the UV direct writing module. At an optimal ODEP force of 335 pN, which was achieved in a solution of 15% PEGDA in 0.2 M sucrose, it was possible to manipulate and UV-cure the drug-containing particles. Furthermore, with a digital micromirror device inside the UV direct writing module, different UV patterns could be designed and projected, allowing for the digital drug cocktails to be packaged into different shapes in <60 s. As a demonstration, emulsion droplets containing two different anti-cancer drugs were further tested to show the capability of the developed device. This represents an automatic digital drug cocktail formulating device which stands to revolutionize personalized medicine.
Collapse
Affiliation(s)
- Yi-Sin Chen
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhang Y, Wang TH. Rapid generation of chemical combinations on a magnetic digital microfluidic array. RSC Adv 2019; 9:21741-21747. [PMID: 35518867 PMCID: PMC9066432 DOI: 10.1039/c9ra03469b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Combinatorial screening is frequently used to identify chemicals with synergistic effects by measuring the response of biological entities exposed to various chemical-dose combinations. Conventional microwell-based combinatorial screening is resource-demanding, and the closed microfluidics-based screening requires sophisticated fluidic control systems. In this work, we present a novel combinatorial screening platform based on the surface energy trap (SET)-assisted magnetic digital microfluidics. This platform, known as FlipDrop, rapidly generates chemical combinations by coupling two droplet arrays with orthogonal chemical concentration gradients with a simple flip. We have illustrated the working principle of FlipDrop by generating combinations of quantum dots. We have also successfully demonstrated the screening of quantum dot fluorescence resonance energy transfer (QD-FRET) on the FlipDrop platform by measuring the FRET response. This report demonstrates that FlipDrop is capable of rapidly generating chemical combinations with unprecedented ease for combinatorial screening. FlipDrop is a combinatorial screening platform. It enables rapid generation of chemical combinations by flipping and coupling two droplet arrays generated by surface energy traps on the magnetic digital microfluidic platform.![]()
Collapse
Affiliation(s)
- Yi Zhang
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
| | - Tza-Huei Wang
- Department of Biomedical Engineering
- Department of Mechanical Engineering
- Johns Hopkins University
- Baltimore
- USA
| |
Collapse
|
22
|
Li J, Tan W, Xiao W, Carney RP, Men Y, Li Y, Quon G, Ajena Y, Lam KS, Pan T. A Plug-and-Play, Drug-on-Pillar Platform for Combination Drug Screening Implemented by Microfluidic Adaptive Printing. Anal Chem 2018; 90:13969-13977. [PMID: 30358386 DOI: 10.1021/acs.analchem.8b03456] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Traditional high-throughput drug combination screening requires automatic pipetting of drugs into high-density microtiter plates. Here, a drug-on-pillar platform is proposed for efficient combination drug screening. Using the proposed approach, combination drug screening can be carried out in a plug-and-play manner, allowing for high-throughput screening of large permutations of drug combinations at various concentrations, such that drug dispensing and cell-based screening can be temporally separated and therefore can potentially be performed at distant laboratories. The dispensing is implemented using our recently developed microfluidic pneumatic printing platform, which features a low-cost disposable cartridge that minimizes cross contamination. Moreover, our previously developed drug nanoformulation method with amphiphilic telodendrimers has been utilized to maintain drug stability in a dry form, allowing for convenient drug storage, shipping, and subsequent rehydration. Combining the features described above, we have implemented a 1260-spot drug combination array to study the effect of paired drugs against MDA-MB-231 triple negative human breast cancer cells. This study supports the feasibility of the drug-on-pillar platform for combination drug screening and has provided valuable insight into drug combination efficacy against breast cancer.
Collapse
Affiliation(s)
- Jiannan Li
- Micro-Nano Innovations (MiNI) Laboratory, Department of Biomedical Engineering and Department of Electrical and Computer Engineering , University of California , Davis , California 95616 , United States
| | - Wen Tan
- Micro-Nano Innovations (MiNI) Laboratory, Department of Biomedical Engineering and Department of Electrical and Computer Engineering , University of California , Davis , California 95616 , United States.,School of Pharmacy , Lanzhou University , Lanzhou , Gansu , China 730000
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis NCI-designated Comprehensive Cancer Center , University of California Davis , Sacramento , California 95817 , United States
| | - Randy P Carney
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis NCI-designated Comprehensive Cancer Center , University of California Davis , Sacramento , California 95817 , United States
| | - Yongfan Men
- Micro-Nano Innovations (MiNI) Laboratory, Department of Biomedical Engineering and Department of Electrical and Computer Engineering , University of California , Davis , California 95616 , United States.,Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen , Guangdong , China 518055
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis NCI-designated Comprehensive Cancer Center , University of California Davis , Sacramento , California 95817 , United States
| | - Gerald Quon
- Department of Molecular and Cellular Biology , University of California , Davis , California 95616 , United States
| | - Yousif Ajena
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis NCI-designated Comprehensive Cancer Center , University of California Davis , Sacramento , California 95817 , United States
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis NCI-designated Comprehensive Cancer Center , University of California Davis , Sacramento , California 95817 , United States
| | - Tingrui Pan
- Micro-Nano Innovations (MiNI) Laboratory, Department of Biomedical Engineering and Department of Electrical and Computer Engineering , University of California , Davis , California 95616 , United States.,Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen , Guangdong , China 518055
| |
Collapse
|
23
|
Li L, Li Y, Shao Z, Luo G, Ding M, Liang Q. Simultaneous Assay of Oxygen-Dependent Cytotoxicity and Genotoxicity of Anticancer Drugs on an Integrated Microchip. Anal Chem 2018; 90:11899-11907. [PMID: 30168712 DOI: 10.1021/acs.analchem.8b02070] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxygen deprivation is a common feature in a variety of cancer tissues and associated with tumor progression, acquisition of antiapoptotic potential, and clinical therapeutic resistance. Thus, great interest has been aroused to develop new platforms or approaches of activity assays to impact on the hypoxic microenvironment and oxygen-dependent drug responses to improve the productivity of new drug discovery. In this study, an integrated microsystem is established to combine the cytotoxic and genotoxic tests together for continuous multiple measurements under mimicking hypoxic tumor microenvironment. We fabricated a double-layer chip device by combining a single-cell-arrayed agarose layer with a microfluidics-based oxygen gradient-generating layer using a PDMS membrane. Using tirapazamine (TPZ) and blemycin (BLM) as model anticancer drugs, we demonstrated its application and performance in single cell loading, cell cultivation, and subsequent drug treatment as well as in situ analysis of oxygen-dependent cytotoxicity and genotoxicity of anticancer drugs. The results demonstrated the opposite oxygen-dependent toxicity of TPZ and BLM, which also indicated that the formation of DNA breaks is related with cell apoptosis. Compared with the traditional assays, this device takes advantage of microfluidic phenomena to generate various oxygen concentrations while exhibiting the combinatorial diversities achieved by the single cell microarray, offering a powerful tool to study single cell behaviors and responses under different oxygen conditions with desired high-content and high-throughput capabilities.
Collapse
Affiliation(s)
- Lili Li
- MOE Key Laboratory Bioorganic Phosphorous Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China.,Department of Pharmacy , Beijing Pharmaceutical University of Staff and Workers , Beijing 100079 , P. R. China
| | - Yaqiong Li
- MOE Key Laboratory Bioorganic Phosphorous Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Zixing Shao
- MOE Key Laboratory Bioorganic Phosphorous Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Guoan Luo
- MOE Key Laboratory Bioorganic Phosphorous Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Mingyu Ding
- MOE Key Laboratory Bioorganic Phosphorous Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Qionglin Liang
- MOE Key Laboratory Bioorganic Phosphorous Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|
24
|
Jin BJ, Lee S, Verkman AS. Hollow Micropillar Array Method for High-Capacity Drug Screening on Filter-Grown Epithelial Cells. Anal Chem 2018; 90:7675-7681. [PMID: 29779372 DOI: 10.1021/acs.analchem.8b01554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
New high-throughput assay formats and innovative screening technologies are needed for miniaturized screens using small quantities of near-native, patient-derived cells. Here, we developed a hollow micropillar array method to screen compounds using epithelial cells cultured on a porous support, with the goal of screening thousands of compounds using a single 24 mm diameter transwell filter containing cultured cells. Test compounds (∼1 nL) in an alginate hydrogel were printed by microinjection in hollow cylindrical micropillars (height = 150 μm, inner diameter = 100 μm) spaced 300 μm apart in a square array configuration. Compounds were delivered by positioning the array near the surface of a cell layer, with 5-10 μm of distance between the micropillars and cell surface. Micropillar array geometry, and the viscosity of the hydrogel and overlying solutions, were optimized computationally and experimentally to produce sustained exposure of cells to test compounds with minimal cross-talk from compounds in neighboring micropillar wells. The method was implemented using a 10 × 10 micropillar array (size = 3 × 3 mm) on CFTR-expressing epithelial cells, in which CFTR chloride channel function was measured from fluorescence in response to iodide addition using a genetically encoded cytoplasmic yellow fluorescent protein halide indicator. The hollow micropillar array platform developed here should be generally applicable for high-capacity drug screening using small numbers of cells cultured on solid or porous supports.
Collapse
Affiliation(s)
- Byung-Ju Jin
- Departments of Medicine and Physiology , University of California , San Francisco , California 94143-0521 , United States
| | - Sujin Lee
- Departments of Medicine and Physiology , University of California , San Francisco , California 94143-0521 , United States
| | - Alan S Verkman
- Departments of Medicine and Physiology , University of California , San Francisco , California 94143-0521 , United States
| |
Collapse
|
25
|
Fan J, Men Y, Hao Tseng K, Ding Y, Ding Y, Villarreal F, Tan C, Li B, Pan T. Dotette: Programmable, high-precision, plug-and-play droplet pipetting. BIOMICROFLUIDICS 2018; 12:034107. [PMID: 29861810 PMCID: PMC5962442 DOI: 10.1063/1.5030629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/09/2018] [Indexed: 05/19/2023]
Abstract
Manual micropipettes are the most heavily used liquid handling devices in biological and chemical laboratories; however, they suffer from low precision for volumes under 1 μl and inevitable human errors. For a manual device, the human errors introduced pose potential risks of failed experiments, inaccurate results, and financial costs. Meanwhile, low precision under 1 μl can cause severe quantification errors and high heterogeneity of outcomes, becoming a bottleneck of reaction miniaturization for quantitative research in biochemical labs. Here, we report Dotette, a programmable, plug-and-play microfluidic pipetting device based on nanoliter liquid printing. With automated control, protocols designed on computers can be directly downloaded into Dotette, enabling programmable operation processes. Utilizing continuous nanoliter droplet dispensing, the precision of the volume control has been successfully improved from traditional 20%-50% to less than 5% in the range of 100 nl to 1000 nl. Such a highly automated, plug-and-play add-on to existing pipetting devices not only improves precise quantification in low-volume liquid handling and reduces chemical consumptions but also facilitates and automates a variety of biochemical and biological operations.
Collapse
Affiliation(s)
- Jinzhen Fan
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | | | - Kuo Hao Tseng
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - Yi Ding
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - Yunfeng Ding
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - Fernando Villarreal
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - Baoqing Li
- Authors to whom correspondence should be addressed: and
| | - Tingrui Pan
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
26
|
Li J, Carney RP, Liu R, Fan J, Zhao S, Chen Y, Lam KS, Pan T. Microfluidic Print-to-Synthesis Platform for Efficient Preparation and Screening of Combinatorial Peptide Microarrays. Anal Chem 2018; 90:5833-5840. [PMID: 29633611 DOI: 10.1021/acs.analchem.8b00371] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper, we introduce a novel microfluidic combinatorial synthesis platform, referred to as Microfluidic Print-to-Synthesis (MPS), for custom high-throughput and automated synthesis of a large number of unique peptides in a microarray format. The MPS method utilizes standard Fmoc chemistry to link amino acids on a polyethylene glycol (PEG)-functionalized microdisc array. The resulting peptide microarrays permit rapid screening for interactions with molecular targets or live cells, with low nonspecific binding. Such combinatorial peptide microarrays can be reliably prepared at a spot size of 200 μm with 1 mm center-to-center distance, dimensions that require only minimal reagent consumption (less than 30 nL per spot per coupling reaction). The MPS platform has a scalable design for extended multiplexibility, allowing for 12 different building blocks and coupling reagents to be dispensed in one microfluidic cartridge in the current format, and could be further scaled up. As proof of concept for the MPS platform, we designed and constructed a focused tetrapeptide library featuring 2560 synthetic peptide sequences, capped at the N-terminus with 4-[( N'-2-methylphenyl)ureido]phenylacetic acid. We then used live human T lymphocyte Jurkat cells as a probe to screen the peptide microarrays for their interaction with α4β1 integrin overexpressed and activated on these cells. Unlike the one-bead-one-compound approach that requires subsequent decoding of positive beads, each spot in the MPS array is spatially addressable. Therefore, this platform is an ideal tool for rapid optimization of lead compounds found in nature or discovered from diverse combinatorial libraries, using either biochemical or cell-based assays.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Biomedical Engineering , University of California , Davis , California 95765 , United States
| | - Randy P Carney
- Department of Biochemistry and Molecular Medicine , University of California , Davis , California 95765 , United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine , University of California , Davis , California 95765 , United States
| | - Jinzhen Fan
- Department of Biomedical Engineering , University of California , Davis , California 95765 , United States
| | - Siwei Zhao
- Department of Biomedical Engineering , University of California , Davis , California 95765 , United States
| | - Yan Chen
- Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055 , People's Republic of China
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine , University of California , Davis , California 95765 , United States
| | - Tingrui Pan
- Department of Biomedical Engineering , University of California , Davis , California 95765 , United States
| |
Collapse
|
27
|
Microfluidic technologies for anticancer drug studies. Drug Discov Today 2017; 22:1654-1670. [DOI: 10.1016/j.drudis.2017.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/29/2017] [Accepted: 06/28/2017] [Indexed: 01/09/2023]
|
28
|
Drug screening of cancer cell lines and human primary tumors using droplet microfluidics. Sci Rep 2017; 7:9109. [PMID: 28831060 PMCID: PMC5567315 DOI: 10.1038/s41598-017-08831-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/19/2017] [Indexed: 01/23/2023] Open
Abstract
Precision Medicine in Oncology requires tailoring of therapeutic strategies to individual cancer patients. Due to the limited quantity of tumor samples, this proves to be difficult, especially for early stage cancer patients whose tumors are small. In this study, we exploited a 2.4 × 2.4 centimeters polydimethylsiloxane (PDMS) based microfluidic chip which employed droplet microfluidics to conduct drug screens against suspended and adherent cancer cell lines, as well as cells dissociated from primary tumor of human patients. Single cells were dispersed in aqueous droplets and imaged within 24 hours of drug treatment to assess cell viability by ethidium homodimer 1 staining. Our results showed that 5 conditions could be screened for every 80,000 cells in one channel on our chip under current circumstances. Additionally, screening conditions have been adapted to both suspended and adherent cancer cells, giving versatility to potentially all types of cancers. Hence, this study provides a powerful tool for rapid, low-input drug screening of primary cancers within 24 hours after tumor resection from cancer patients. This paves the way for further technological advancement to cutting down sample size and increasing drug screening throughput in advent to personalized cancer therapy.
Collapse
|
29
|
Liu R, Li X, Xiao W, Lam KS. Tumor-targeting peptides from combinatorial libraries. Adv Drug Deliv Rev 2017; 110-111:13-37. [PMID: 27210583 DOI: 10.1016/j.addr.2016.05.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
Abstract
Cancer is one of the major and leading causes of death worldwide. Two of the greatest challenges in fighting cancer are early detection and effective treatments with no or minimum side effects. Widespread use of targeted therapies and molecular imaging in clinics requires high affinity, tumor-specific agents as effective targeting vehicles to deliver therapeutics and imaging probes to the primary or metastatic tumor sites. Combinatorial libraries such as phage-display and one-bead one-compound (OBOC) peptide libraries are powerful approaches in discovering tumor-targeting peptides. This review gives an overview of different combinatorial library technologies that have been used for the discovery of tumor-targeting peptides. Examples of tumor-targeting peptides identified from each combinatorial library method will be discussed. Published tumor-targeting peptide ligands and their applications will also be summarized by the combinatorial library methods and their corresponding binding receptors.
Collapse
Affiliation(s)
- Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Xiaocen Li
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; Division of Hematology & Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
30
|
Dong H, Sun H, Zheng J. A microchip for integrated single-cell genotoxicity assay. Talanta 2016; 161:804-811. [PMID: 27769486 DOI: 10.1016/j.talanta.2016.09.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/08/2016] [Accepted: 09/16/2016] [Indexed: 11/19/2022]
Abstract
With the development of large-scale biologic databases, precision medicine is becoming a frontier in biomedical research. As a main focus of precision medicine study, cancer has been widely accepted as a disease born out of inherited genetic variations or accumulating genomic damage. At the single-cell level, microfluidics or lab-on-a-chip technology for cancer study is an emerging tool for improving risk assessment, diagnostic categories and therapeutic strategies. This work presents a multi-layer microchip for single-cell gene expression profiling. Treated by three drug reagents (i.e. methyl methanesulfonate, docetaxel and colchicine) with varied concentrations and time lengths, individual human breast cancer cells (MCF-7) are then lysed on-chip, and the released mRNA templates are captured and reversely transcribed into cDNA on microbead surface. Three genes (GAPDH, CDKN1A, AURKA) are amplified and quantified simultaneously through triplex real-time polymerase chain reactions (qPCR). Readout per run is set to be eighteen, and can be further improved following same approach. The microchip is able to integrate all steps of single-cell gene expression profiling, and provide precision study of drug induced genotoxicity with reduced reagents consumption per reaction and instrumental cost.
Collapse
Affiliation(s)
- Hui Dong
- School of Mechanical Engineering and Automation, Fuzhou University, Fujian 350116, China
| | - Hao Sun
- School of Mechanical Engineering and Automation, Fuzhou University, Fujian 350116, China.
| | - Jianping Zheng
- Department of Medical Oncology, Fujian Provincial Hospital, Fujian 350001, China
| |
Collapse
|
31
|
Advances of Microfluidic Technologies Applied in Bio-analytical Chemistry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60982-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Ewing AV, Clarke GS, Kazarian SG. Attenuated total reflection-Fourier transform infrared spectroscopic imaging of pharmaceuticals in microfluidic devices. BIOMICROFLUIDICS 2016; 10:024125. [PMID: 27158293 PMCID: PMC4841796 DOI: 10.1063/1.4946867] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/04/2016] [Indexed: 05/14/2023]
Abstract
The poor aqueous solubility of many active pharmaceutical ingredients presents challenges for effective drug delivery. In this study, the combination of attenuated total reflection (ATR)-FTIR spectroscopic imaging with specifically designed polydimethylsiloxane microfluidic devices to study drug release from pharmaceutical formulations has been developed. First, the high-throughput analysis of the dissolution of micro-formulations studied under flowing conditions has been introduced using a model formulation of ibuprofen and polyethylene glycol. The behaviour and release of the drug was monitored in situ under different pH conditions. In contrast to the neutral solution, where both the drug and excipient dissolved at a similar rate, structural change from the molecularly dispersed to a crystalline form of ibuprofen was characterised in the obtained spectroscopic images and the corresponding ATR-FTIR spectra for the experiments carried out in the acidic medium. Further investigations into the behaviour of the drug after its release from formulations (i.e., dissolved drug) were also undertaken. Different solutions of sodium ibuprofen dissolved in a neutral medium were studied upon contact with acidic conditions. The phase transition from a dissolved species of sodium ibuprofen to the formation of solid crystalline ibuprofen was revealed in the microfluidic channels. This innovative approach could offer a promising platform for high-throughput analysis of a range of micro-formulations, which are of current interest due to the advent of 3D printed pharmaceutical and microparticulate delivery systems. Furthermore, the ability to study dissolved drug in solution under flowing conditions can be useful for the studies of the diffusion of drugs into tissues or live cells.
Collapse
Affiliation(s)
- Andrew V Ewing
- Department of Chemical Engineering, Imperial College London , London SW7 2AZ, United Kingdom
| | - Graham S Clarke
- Bristol-Myers Squibb , Reeds Lane, Moreton, Wirral, Merseyside CH46 1QW, United Kingdom
| | - Sergei G Kazarian
- Department of Chemical Engineering, Imperial College London , London SW7 2AZ, United Kingdom
| |
Collapse
|