1
|
Gul Z, Ullah S, Khan S, Ullah H, Khan MU, Ullah M, Ali S, Altaf AA. Recent Progress in Nanoparticles Based Sensors for the Detection of Mercury (II) Ions in Environmental and Biological Samples. Crit Rev Anal Chem 2024; 54:44-60. [PMID: 35290138 DOI: 10.1080/10408347.2022.2049676] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To maintain a green and sustainable environment for human beings, rapid detection of potentially toxic heavy metals like mercury (Hg(II)) has attracted great attention. Recently, sensors have been designed which can selectively detect Hg(II) over other common available cations and give a naked eye or fluorometric response. In the last two decades, the trend is shifting from bulky organic chemosensors toward nanoparticles due to their rapid response, low cost, eco-friendly and easy synthesis. In this review, promising nanoparticles-based sensors for Hg(II) detection are discussed. The nano-sensors are functionalized with nucleotide or other suitable materials which coordinate with Hg(II) ions and give clear color or fluorescence change. The operational mechanisms are discussed focusing on its four basic types. The nanoparticles-based sensors are even able to detect Hg in three different oxidation states (Hg(II), Hg(I) and Hg(0)). Recently, the trend has been shifted from ordinary nanoparticles to magnetic nanoparticles to simultaneously detect and remove Hg(II) ions from environmental samples. Furthermore, the nano-sensors for Hg(II) are compared with each other and with the reported organic chemosensors.
Collapse
Affiliation(s)
- Zarif Gul
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Shaheed Ullah
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| | - Hayat Ullah
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Misbah Ullah Khan
- Center for Nano-Science, University of Okara, Okara, Punjab, Pakistan
| | - Munzer Ullah
- Department of Biochemistry, University of Okara, Okara, Punjab, Pakistan
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, PR China
| | - Ataf Ali Altaf
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| |
Collapse
|
2
|
Hu Y, Chen X, Wang K, Jiang C, Liu W, Zhang S, Zheng M, Zhou Y, Xiao Y, Liu Y. Fluorescent responsive membrane based on terbium coordination polymer and carbon dots with AIE effect for rapid and visual detection of fluoroquinolone. Biosens Bioelectron 2024; 254:116205. [PMID: 38484411 DOI: 10.1016/j.bios.2024.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 04/02/2024]
Abstract
In this study, based on aggregation-induced emission (AIE) effect and antenna effect, a novel portable fluorescent responsive membrane was constructed with red carbon dots (R-CDs) as reference signal and terbium coordination polymer (Tb-AMP CPs) as response signal for visual, instrument-free, and sensitive detection of fluoroquinolones (FQs). Specifically, the fluorescent responsive membrane (R-T membrane) was prepared by physically depositing R-CDs with AIE property and Tb-AMP CPs on the surface of polyvinylidene fluoride filter membranes at ambient temperature. In the presence of FQs, Tb3+ in the Tb-AMP CPs of the prepared membrane coordinated with the β-diketone structure of FQs, which turned on the yellow-green fluorescence through the "antenna effect". As the concentration of FQs increased, the R-T membrane achieved a fluorescent color transition from bright pink to yellow-green. Its visual detection sensitivity for three FQs, including ciprofloxacin, difloxacin, and enrofloxacin, was 0.01 μM, and the detection limits were 7.4 nM, 7.8 nM, and 9.2 nM, respectively, by analyzing the color parameter green. In the residue analysis of FQs in real samples, the constructed membrane also exhibited remarkable anti-interference and reliability, which is of great significance for ensuring the safety of animal-derived food.
Collapse
Affiliation(s)
- Yunyun Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xi Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Kai Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Chuang Jiang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Wenya Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Siyu Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
3
|
Ai M, Jiang Y, Xiao Z, Liu J, Liu C. Ratiometric luminescence detection of H 2O 2 in food samples using a terbium coordination polymer sensitized with 3-carboxyphenylboronic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124114. [PMID: 38447441 DOI: 10.1016/j.saa.2024.124114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
A ratiometric luminescent probe was fabricated using adenosine monophosphate (AMP) as a bridging ligand and 3-carboxyphenylboronic acid (3-CPBA) as the sensitizer and functional ligand that allowed the probe to recognize hydrogen peroxide (H2O2). The probe was labeled AMP-Tb/3-CPBA. Adding H2O2 caused the nonluminescent 3-CPBA to be converted into 3-hydroxybenzoic acid, which strongly luminesces at 401 nm. This meant that adding H2O2 decreased the AMP-Tb/3-CPBA luminescence intensity at 544 nm and caused luminescence at 401 nm. The 401 and 544 nm luminescence intensity ratio (I401/I544) was strongly associated with the H2O2 concentration between 0.1 and 60.0 μM, and the detection limit was 0.23 μM. Dual emission reverse-change ratio luminescence sensing using the probe allowed environmental effects to be excluded and the assay to be very selective. We believe that the results pave the way for the development of new functionalized lanthanide coordination polymers for use in luminescence assays.
Collapse
Affiliation(s)
- Mimi Ai
- College of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241000, China
| | - Yuting Jiang
- College of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241000, China
| | - Zhiyuan Xiao
- College of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241000, China
| | - Jinshui Liu
- College of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241000, China.
| | - Chenfu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
4
|
Wang T, Hu J, Xu J, Ji Y, Li R. Self-Calibrating Lanthanide Infinite Coordination Polymer Constructs Fluorescent Probes: A Sensitive Approach for Early Diagnosis of Hepatocellular Carcinoma and Environmental Analysis. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37883193 DOI: 10.1021/acsami.3c13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The development of a self-calibrating ratio fluorescence probe without the need for additional substrates is a major advancement in biosensing. In this study, at room temperature, a self-calibrating infinite coordination polymer (SSA-Tb-ATP ICPs) has been proposed by self-assembling adenosine triphosphate (ATP) with 5-sulfosalicylic acid (SSA) and Tb3+. Due to the antenna effect, SSA-Tb-ATP ICPs exhibited strong green fluorescence emission of Tb3+ (at 547 nm) and blue fluorescence emission of SSA (at 407 nm). This material offers several advantages over existing detection methods, including simplicity of synthesis and exceptional sensitivity. Our self-calibrating SSA-Tb-ATP ICPs demonstrated excellent performance in detecting alkaline phosphatase (ALP) and phosphate (Pi) in both serum and environmental samples with detection limits of 0.076 U/L and 0.025 μM, respectively. Moreover, we successfully employed the SSA-Tb-ATP ICPs to perform cellular imaging of ALP in both hepatocellular carcinoma cells (HepG2) and normal liver cells (LO2), representing a significant advancement in ALP detection and imaging. The simplicity of the synthesis and high sensitivity make this probe a promising tool for early diagnosis of hepatocellular carcinoma in clinical settings and environment analysis.
Collapse
Affiliation(s)
- Tianmiao Wang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Jing Hu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Jingyuan Xu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| |
Collapse
|
5
|
Wang J, Feng Y, Zhao X, Tian Y, Duan Y. Electrospun nanofiber-based indicatorpaper sensing platform for fluorescence and visualization detection of norfloxacin. Biosens Bioelectron 2023; 238:115562. [PMID: 37586262 DOI: 10.1016/j.bios.2023.115562] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
Norfloxacin (NOR) residues in water pose a serious threat to human health via the food chain, necessitating the development of a rapid on-site antibiotic detection technique. In this work, we utilize electrostatic spinning technology that combines polyacrylonitrile (PAN) fibers and adenosine triphosphate (ATP)-rare earth metal Tb3+ complexes (ATP/Tb) to construct a new ternary film-based sensor for sensitive, quick, and convenient field testing of NOR in water. The operating mechanism is that the ternary system produces gradually enhanced bright green fluorescence at increasing concentrations of NOR. The unique fluorescence property of the ternary systems is attributed to the use of ATP, rather than the commonly used adenosine monophosphate (AMP), to coordinate with Tb3+, which avoided the possible fluorescence quenching from competitive water binding. Benefiting from the PAN nanofiber's superior stability, acid, and alkali resistance, and flexibility as support, the ternary system exhibited a good linear response to NOR in a wide dynamic range of 0.04-30 μM at the detection limit of 16 nM. Additionally, the combination of a smartphone color recognition app allows for quick on-scene NOR detection. This film sensing strategy is instructive for the development of smart and portable sensing platforms for real-time detection of analytes such as antibiotics, pesticide residues, and hazardous materials in water bodies.
Collapse
Affiliation(s)
- Jiayu Wang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Yanting Feng
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Xuyang Zhao
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China.
| |
Collapse
|
6
|
Gao N, Zhang Z, Xiao Y, Huang P, Wu FY. Integrated ratiometric luminescence sensing strategy based on encapsulation of guests in heterobinuclear lanthanide coordination polymer nanoparticles for glucose detection in human serum. Talanta 2023; 265:124854. [PMID: 37413722 DOI: 10.1016/j.talanta.2023.124854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Lanthanide coordination polymers (LnCPs) can be used as a host platform to encapsulate functional guest molecules for the construction of integrated sensing platforms. In this work, two guest molecules, rhodamine B (RhB) and glucose oxidase (GOx), were successfully encapsulated in a heterobinuclear lanthanide coordination polymer synthesized by self-assembly of Ce3+, Tb3+ and adenosine monophosphate (AMP) to form RhB&GOx@AMP-Tb/Ce. Both guest molecules show good storage stability and minimal leakage. The higher catalytic activity and stability of RhB&GOx@AMP-Tb/Ce is obtained due to the confinement effect compared to free GOx. RhB&GOx@AMP-Tb/Ce exhibits superior luminescence based on the internal tandem energy transfer process of the nanoparticles (Ce3+→Tb3+→RhB). Glucose can be oxidized in the presence of GOx to form gluconic acid and H2O2. Subsequently, Ce3+ in the AMP-Tb/Ce host structure can be oxidized by H2O2 to Ce4+, thereby interrupt the internal energy transfer process and cause ratiometric luminescence response. Benefiting from the synergistic effect, the smart integrated luminescent glucose probe exhibits a wide linear range (0.4-80 μM) and a low detection limit (74.3 nM) with high sensitivity, selectivity and simplicity, enabling the quantitative detection of glucose in human serum. This work describes a good strategy to construct an integrated luminescence sensor based on lanthanide coordination polymers.
Collapse
Affiliation(s)
- Nan Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Zhipeng Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Yi Xiao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Pengcheng Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| | - Fang-Ying Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
7
|
Wang H, Ai M, Liu J. Detecting phosphate using lysine-sensitized terbium coordination polymer nanoparticles as ratiometric luminescence probes. Anal Bioanal Chem 2023; 415:2185-2191. [PMID: 36864308 DOI: 10.1007/s00216-023-04624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
Probes for detecting phosphate ions (Pi) are required for environmental monitoring and to protect human health. Here, novel ratiometric luminescent lanthanide coordination polymer nanoparticles (CPNs) were successfully prepared and used to selectively and sensitively detect Pi. The nanoparticles were prepared from adenosine monophosphate (AMP) and Tb3+, and lysine (Lys) was used as a sensitizer (through the antenna effect) to switch on Tb3+ luminescence at 488 and 544 nm while Lys luminescence at 375 nm was quenched because of energy transfer from Lys to Tb3+. The complex involved is here labeled AMP-Tb/Lys. Pi destroyed the AMP-Tb/Lys CPNs and therefore decreased the AMP-Tb/Lys luminescence intensity at 544 nm and increased the luminescence intensity at 375 nm at an excitation wavelength of 290 nm, meaning ratiometric luminescence detection was possible. The ratio between the luminescence intensities at 544 and 375 nm (I544/I375) was strongly associated with the Pi concentration between 0.1 and 6.0 μM, and the detection limit was 0.08 μM. The dual-emission reverse-change ratio luminescence sensing method can exclude environmental effects, so the proposed assay was found to be very selective. The method was successfully used to detect Pi in real water samples, and acceptable recoveries were found, suggesting that the method could be used in practice to detect Pi in water samples.
Collapse
Affiliation(s)
- Huaxin Wang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Mimi Ai
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Jinshui Liu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
8
|
Mhaske A, Sharma S, Shukla R. Nanotheranostic: The futuristic therapy for copper mediated neurological sequelae. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Liu SG, Yang S, Liu S, Hu Y, Gao W, Deng J, Shi X. A fluorescent and scattering dual-mode probe based on a carbon dot@cerium-guanosine monophosphate coordination polymer network for tetracycline detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4300-4308. [PMID: 36268819 DOI: 10.1039/d2ay01361d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dual-mode sensing with a two-signal read-out is conducive to the improvement of detection accuracy. Herein, a fluorescent and scattering dual-mode chemosensor for tetracycline (TC) is proposed based on a carbon dot@cerium-guanosine monophosphate (CD@GMP-Ce) coordination polymer network. The inexpensive CD@GMP-Ce was prepared by exploiting the adaptive inclusion capability of coordination polymers and possessed remarkable fluorescence and strong Rayleigh scattering. The functional CD@GMP-Ce demonstrated fluorescence and scattering, the two optical-signal responses to TC simultaneously. Based on TC-specific fluorescence and scattering decline, the dual-mode detection of TC was established and the probe's detection limits were 43 nM in the fluorescence mode and 77 nM in the scattering mode, respectively. Furthermore, the potential application of the dual-mode sensor was verified by measuring TC in milk and tap-water samples. The study not only provides a new perspective for the development of assay methods for TC but also expands the applications of cerium coordination polymers.
Collapse
Affiliation(s)
- Shi Gang Liu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Shujuan Yang
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Siyi Liu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Yuxiang Hu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenli Gao
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Jiehong Deng
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xingbo Shi
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
10
|
A self-assembly lanthanide nanoparticle for ratiometric fluorescence determination of alkaline phosphatase activity. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Lanthanide coordination polymers used for fluorescent ratiometric sensing of H2O2 and glucose. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Liu B, Zhang Y, Hao Y, Zhu X, Zhang Y, Zhou Y, Tan H, Xu M. All-in-One Luminescent Lanthanide Coordination Polymer Nanoprobe for Facile Detection of Protein Kinase Activity. Anal Chem 2022; 94:10730-10736. [DOI: 10.1021/acs.analchem.2c01307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Baoxia Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Yaoyao Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Xu Zhu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Hongliang Tan
- College of Biological and Food Engineering, Huaihua University, Huaihua 418000, PR China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| |
Collapse
|
13
|
Lunev AM, Belousov YA. Luminescent sensor materials based on rare-earth element complexes for detecting cations, anions, and small molecules. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3485-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
An X, Zhu X, Liu J, Zou L, Li G, Ye B. Ratiometric fluorescence detection of ciprofloxacin using the terbium-based coordination polymers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120775. [PMID: 34954482 DOI: 10.1016/j.saa.2021.120775] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Herein, a facile self-assembly through adenosine monophosphate (AMP) and luminol with Tb3+ was employed to construct a dual-ligand coordinated AMP-Tb-luminol coordination polymers (CPs), which emitted the typical fluorescence of luminol. Based on the sensitization effect of ciprofloxacin (CIP) on the luminescence of Tb3+, a ratiometric sensor was fabricated using the fluorescence of luminol as an inert reference. The fluorescent intensity ratios of Tb3+ to that of luminol enhanced linearly with the CIP concentration in the range from 5 nM to 2.5 μM with a lower limit of detection of 2 nM. In addition, the proposed ratiometric fluorescent sensor exhibited high selectivity for CIP, which could also be used to detect CIP in human blood serum (HBS) with satisfactory results. To our knowledge, this is the first demonstration of using dual-ligand coordination lanthanide (Ln)-based CPs for ratio-metric CIP assay, and this straightforward strategy may open up a new platform for designing the ratio-metric sensors based on the Ln CPs.
Collapse
Affiliation(s)
- Xinan An
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xinyue Zhu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jiaojiao Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lina Zou
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Gaiping Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Baoxian Ye
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
15
|
Liu P, Zhao M, Zhu H, Zhang M, Li X, Wang M, Liu B, Pan J, Niu X. Dual-mode fluorescence and colorimetric detection of pesticides realized by integrating stimulus-responsive luminescence with oxidase-mimetic activity into cerium-based coordination polymer nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127077. [PMID: 34482084 DOI: 10.1016/j.jhazmat.2021.127077] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
The great threat of pesticide residues to the environment and human health has drawn widespread interest to explore approaches for pesticide monitoring. Compared to commonly developed single-signal pesticide assays, multi-mode detection with inherent self-validation and self-correction is expected to offer more reliable and anti-interference results. However, how to realize multi-mode analysis of pesticides still remains challenging. Herein, we propose a dual-mode fluorescence and colorimetric method for pesticide determination by integrating stimulus-responsive luminescence with oxidase-mimetic activity into cerium-based coordination polymer nanoparticles (CPNs(Ⅳ)). The CPNs(Ⅳ) exhibit good oxidase-like activity of catalyzing the colorless 3,3',5,5'-tetramethylbenzidine (TMB) oxidation to its blue oxide, offering a visible color signal; by employing acid phosphatase (ACP) to hydrolyze ascorbic acid 2-phosphate (AAP), the generated ascorbic acid (AA) can chemically reduce the CPNs(Ⅳ) to CPNs(Ⅲ), which exhibit a remarkable fluorescence signal but lose the oxidase-mimicking ability to trigger the TMB chromogenic reaction; when pesticides exist, the enzymatic activity of ACP is restrained and the hydrolysis of AAP to AA is blocked, leading to the recovery of the catalytic TMB chromogenic reaction but the suppression of the fluorescence signal of CPNs(Ⅲ). According to this principle, by taking malathion as a pesticide model, dual-mode 'off-on-off' fluorescence and 'on-off-on' colorimetric detection of the pesticide with good sensitivity was realized. Excellent interference-tolerance and reliability were verified by applying it to analyze the target in real sample matrices. With good performance and practicability, the proposed dual-mode approach shows great potential in the facile and reliable monitoring of pesticide residues.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Menghao Zhao
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hengjia Zhu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mingliang Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mengzhu Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bangxiang Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangheng Niu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Normal University, Wuhu 241002, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
16
|
Li K, Li X, Wang D, Li Z, Li C. Sensitive and selective turn-on fluorescent switch based on europium-functionalized fluorescent covalent for rapid monitoring of an anthrax biomarker. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Arroyos G, da Silva CM, Theodoroviez LB, Campanella JEM, Frem RCG. Insights on Luminescent Micro- and Nanospheres of Infinite Coordination Polymers. Chemistry 2021; 28:e202103104. [PMID: 34582106 DOI: 10.1002/chem.202103104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 11/12/2022]
Abstract
Coordination polymers have been extensively studied in recent years. Some of these materials can exhibit several properties such as permanent porosity, high surface area, thermostability and light emission, as well as open sites for chemical functionalization. Concerning the fact that this kind of compounds are usually solids, the size and morphology of the particles are important parameters when an application is desired. Inside this context, there is a subclass of coordination polymers, named infinite coordination polymers (ICPs), which auto-organize as micro- or nanoparticles with low crystallinity. Specifically, the particles exhibiting spherical shapes and reduced sizes can be better dispersed, enter cells much easier than bulk crystals and be converted to inorganic materials by topotactic transformation. Luminescent ICPs, in particular, can find applications in several areas, such as sensing probes, light-emitting devices and bioimaging. In this review, we present the state-of-the-art of ICP-based spherical particles, including the growth mechanisms, some applications for luminescent ICPs and the challenges to overcome in future commercial usage of these materials.
Collapse
Affiliation(s)
- Guilherme Arroyos
- Institute of Chemistry of Araraquara, São Paulo State University - Unesp, 14800-025, Araraquara SP, Brazil
| | - Caroline M da Silva
- Institute of Chemistry of Araraquara, São Paulo State University - Unesp, 14800-025, Araraquara SP, Brazil
| | - Lucas B Theodoroviez
- Institute of Chemistry of Araraquara, São Paulo State University - Unesp, 14800-025, Araraquara SP, Brazil
| | - Jonatas E M Campanella
- Institute of Chemistry of Araraquara, São Paulo State University - Unesp, 14800-025, Araraquara SP, Brazil
| | - Regina C G Frem
- Institute of Chemistry of Araraquara, São Paulo State University - Unesp, 14800-025, Araraquara SP, Brazil
| |
Collapse
|
18
|
Santi S, Wahab AW, Raya I, Ahmad A, Maming M. Synthesis, spectroscopic (FT-IR, UV–visible) study, and HOMO-LUMO analysis of adenosine triphosphate (ATP) doped trivalent terbium. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
A magnetic functionalized lanthanide fluorescent sensor for detection of trace zinc ion. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04472-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Liu J, Cao Y, Zhu X, Zou L, Li G, Ye B. Enhanced oxidase-mimicking activity of Ce 4+ by complexing with nucleotides and its tunable activity for colorimetric detection of Fe 2. Chem Commun (Camb) 2021; 57:8340-8343. [PMID: 34328150 DOI: 10.1039/d1cc02675e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complexing with adenosine-5'-monophosphate (AMP) was proven to be a facile way to enhance the oxidase-mimicking activity of Ce4+, and enabled nanoenzyme recovery and reuse. Additionally, the oxidase-mimicking activity of AMP-Ce4+ infinite coordination polymers (ICPs) could be specifically inhibited by Fe2+. Based on this finding, we developed a simple and highly selective colorimetric assay to detect Fe2+.
Collapse
Affiliation(s)
- Jiaojiao Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| | | | | | | | | | | |
Collapse
|
21
|
Huang C, Luo Y, Li J, Liu C, Zhou T, Deng J. pH-Regulated H 4TCPE@Eu/AMP ICP Sensor Array and Its Fingerprinting on Test Papers: Toward Point-of-Use Systematic Analysis of Environmental Antibiotics. Anal Chem 2021; 93:9183-9192. [PMID: 34164990 DOI: 10.1021/acs.analchem.1c01214] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, 1,1,2,2-tetra(4-carboxylphenyl)ethylene (H4TCPE) was selected as the guest and incorporated into a Eu/AMP ICP host to establish a "lab-on-an-AIE@Ln/ICP" sensor array for identifying and sensing environmental antibiotics simultaneously. First, on the basis of a theoretical study of the antenna effect and reductive photoinduced charge transfer between the as-prepared H4TCPE@Eu/AMP ICPs and antibiotics, respectively, the response from the sensitized time-resolved fluorescence of the host and the unique aggregation-induced emission (AIE) of the guest were selected as the main sensing elements for the sensor array. With the regulation of pH, the diverse fluorescence responses for antibiotics with either structural differences (flumequine, oxytetracycline, and sulfadiazine) or structural similarities (oxytetracycline, tetracycline, and doxycycline) were recorded and processed by principal component analysis; systematic analysis of environmental antibiotics was therefore realized. Encouraged by the superior anti-aggregation-caused quenching effect of H4TCPE@Eu/AMP ICPs on the test strip, the distinct fluorescence color changes of the "lab-on-an-AIE@Ln/ICP" sensor array were further explored with the aid of smartphones. The fingerprinting pattern of the sensor array on test paper eventually holds great potential for the point-of-use systematic analysis of environmental antibiotics even in complicated real samples.
Collapse
Affiliation(s)
- Chunyu Huang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Yuxin Luo
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Jiacheng Li
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Chang Liu
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Tianshu Zhou
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Jingjing Deng
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
22
|
Zeng HH, Yu K, Huang J, Liu F, Zhang ZY, Chen SP, Zhang F, Guan SP, Qiu L. Ratiometric fluorescence detection of sulfide ions based on lanthanide coordination polymer using guanosine diphosphate as ligand. Colloids Surf B Biointerfaces 2021; 204:111796. [PMID: 33933879 DOI: 10.1016/j.colsurfb.2021.111796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/01/2021] [Accepted: 04/25/2021] [Indexed: 12/27/2022]
Abstract
The efficiency of energy transfer from guanine nucleotide to terbium ion (Tb3+) is affected by the phosphate group significantly. Compared with the biomolecules 5'-GMP (guanosine monophosphate), guanosine diphosphate (GDP) exhibits better sensitize ability to Tb3+ ions luminescence. Assisted with the carboxycoumarin ligand, we synthesized a more stable optical Coumarin@GDP-Tb polymer with the characteristic emission peaks located on 440 nm and 545 nm in this work. The Coumarin@GDP-Tb polymer is not only rich in metal binding sites, but also maintains a moderate ionic binding force, which helps metal ions to bind or leave it easily. Experiment result shows that Coumarin@GDP-Tb polymer has the appropriate binding force for Fe2+ ions, which can be destroyed by sulfur ions (S2-) as the formation of FeS precipitation. Based on this, Coumarin@GDP-Tb was designed as the ratio fluorescence probe for sulfur ions detection, where the fluorescence at 545 nm can be selectively quenched by Fe2+ ions, while that at 440 nm was unaffected, in the presence of S2- ions, the quenched fluorescence can be recovered remarkably. With the increasing S2- ions from 0.1-45 μM, the ratio of fluorescence intensity at 545 nm to 440 nm (F545/F440) is linear to S2- concentration, and the detection limit of S2- was calculated to be 0.073 μM. Contrast to those fluorescence probes with single wavelength emission, Coumarin@GDP-Tb displays a comparable sensitivity, the introduced self-adjust wavelength improved the detection accuracy efficiently. The above 98.1 % recovery rates of S2- ions in the actual water sample demonstrated the practicability of Coumarin@GDP-Tb fluorescence probe.
Collapse
Affiliation(s)
- Hui-Hui Zeng
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China.
| | - Kun Yu
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Jian Huang
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Fang Liu
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Zhi-Yi Zhang
- Jiangxi Institute of Analyzing and Testing, Nanchang, 330029, China
| | - Shi-Ping Chen
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Fei Zhang
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Shu-Ping Guan
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Li Qiu
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| |
Collapse
|
23
|
Falcone E, Okafor M, Vitale N, Raibaut L, Sour A, Faller P. Extracellular Cu2+ pools and their detection: From current knowledge to next-generation probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Yang L, Song Y, Wang L. Multi-emission metal-organic framework composites for multicomponent ratiometric fluorescence sensing: recent developments and future challenges. J Mater Chem B 2021; 8:3292-3315. [PMID: 31829391 DOI: 10.1039/c9tb01931f] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ratiometric fluorescence sensors that are achieved via the ratiometric fluorescence intensity changes of emission peaks based on multi-emission fluorescence probes show a huge advantage. However, the preparation of these multi-emission fluorescence probes is a key challenge, as it is related to having more fluorescence groups with the same excitation but different emission wavelengths, and their assembly is not a simple mixing process. More fluorescent groups or molecules can be assembled into the multi-emission fluorescence probe by covalent bonds and coordination interactions, or by loading in metal-organic frameworks (MOFs). MOFs are excellent candidates for constructing complexes with the capability of multicomponent ratiometric fluorescence sensing, but there are some problems that need to be considered. For example, not all fluorophores can be stably loaded in the MOFs' pores, usually due to the size, surface charge and intrinsic properties of the fluorophore. In turn, it is also related to the structure of the MOF, metal nodes, and properties of the organic ligands. This review first introduces the advantages of the MOF-based multi-component fluorescence sensors, and then discusses the synthesis, classification and application of fluorescent MOFs or MOF composites for multi-component ratiometric fluorescence detection. Particular emphasis is focused on the potential, types and characteristics for sensing and biological applications, and the main challenges and limitations are further explored. This review might be helpful for those researchers interested in the application of multi-component ratiometric fluorescence sensing based on fluorescent MOFs or MOF composites.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| | | | | |
Collapse
|
25
|
Gorai T, Schmitt W, Gunnlaugsson T. Highlights of the development and application of luminescent lanthanide based coordination polymers, MOFs and functional nanomaterials. Dalton Trans 2021; 50:770-784. [PMID: 33351011 DOI: 10.1039/d0dt03684f] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of lanthanide based coordination polymer and metal-organic framework (CPs and MOFs) nanomaterials as novel functional (e.g. luminescent and magnetic) materials has attracted significant attention in recent times. This is in part due to the wide, but yet unique coordination requirements that the f-metal ions possess, as well as their attractive physical properties, which are often transferred to the bulk material. Hence, there is no surprise, that the design, synthesis and characterisation of lanthanide based CP/MOF materials (featuring either 'pure' lanthanides, or a mixture of both f- and d-metal ions) for applications in gas and small molecule absorption, storage, conversion/catalysis, chemical sensing, bio-imaging, drug delivery, etc. has been a prominent feature in the scientific literature. In this review, we give a selected overview of some of the recent developments in the area of Ln CP/MOF based nanomaterials for sensing, optical materials and bio-medicine research, as well as making reference to some more established examples, with the view of introducing, particularly to new researchers to the field, the powerful and attractive features of lanthanide based materials.
Collapse
Affiliation(s)
- Tumpa Gorai
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | | | | |
Collapse
|
26
|
Liu C, Huang C, Ma R, Zhai W, Deng J, Zhou T. Cu 2+-Regulated reversible coordination interaction of GQD@Tb/GMP ICP nanoparticles: towards directly monitoring cerebrospinal acetylcholinesterase as a biomarker for cholinic brain dysfunction. Analyst 2021; 145:7849-7857. [PMID: 33410430 DOI: 10.1039/d0an01440k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work demonstrates a new strategy for sensing cerebrospinal acetylcholinesterase (AChE) as a cholinergic biomarker for brain dysfunction based on graphene quantum dot (GQD)-functionalized lanthanide infinite coordination polymer (Ln-ICP) nanoparticles. The ICPs used in this work were comprised of two components, i.e. a supramolecular Ln-ICP host formed by the coordination between the GMP ligand and central metal ion Tb3+, and guest GQDs with abundant functional groups, which were utilized as antenna ligands to further sensitize the fluorescence of Tb/GMP. Upon excitation at 300 nm, the obtained GQD@Tb/GMP ICP nanoparticles exhibited enhanced green fluorescence from Tb/GMP. With the addition of Cu2+, the competitive coordination between Cu2+ and GQDs weakened the antenna effect, leading to a decrease in the fluorescence of GQD@Tb/GMP ICPs. However, in the presence of thiocholine (TCh), a thiol-containing compound hydrolyzed from acetylthiocholine (ATCh) by AChE, a stronger coordination interaction between Cu2+ and TCh occurred, resulting in the restoration of the fluorescence of GQD@Tb/GMP ICPs. Using the method established herein, the cerebrospinal AChE fluctuation of rats with acute organophosphorus pesticide (OP) poisoning or chronic Alzheimer's disease (AD) could be monitored. This study essentially provides a novel approach to realize the direct monitoring of a biomarker for brain dysfunction by regulating the competitive coordination interaction reversibly, which is critical in the early diagnosis and therapy of brain diseases.
Collapse
Affiliation(s)
- Chang Liu
- School of Ecological and Environmental Sciences, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | | | | | | | | | | |
Collapse
|
27
|
Bhunia S, Dutta B, Pal K, Chandra A, Jana K, Sinha C. Ultra-trace level detection of Cu 2+ in an aqueous medium by novel Zn( ii)-dicarboxylato–pyridyl coordination polymers and cell imaging with HepG2 cells. NEW J CHEM 2021. [DOI: 10.1039/d1nj00917f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fluorescent 1D Zn(ii) coordination polymers are aggregated via noncovalent interactions. The emission of the CPs is exclusively quenched by Cu2+ and the LOD is at μM range. In aqueous medium internalization CPs within HepG2 cells is detected by microscopic cell image using Cu2+.
Collapse
Affiliation(s)
- Suprava Bhunia
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Basudeb Dutta
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Kunal Pal
- Department of Life Science and Biotechnology
- Jadavpur University
- Kolkata 700032
- India
| | - Angeera Chandra
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Kuladip Jana
- Department of Life Science and Biotechnology
- Jadavpur University
- Kolkata 700032
- India
| | | |
Collapse
|
28
|
Shen F, Zhang C, Cai Z, Wang J, Zhang X, Machuki JO, Shi H, Gao F. Carbon Nanohorns/Pt Nanoparticles/DNA Nanoplatform for Intracellular Zn 2+ Imaging and Enhanced Cooperative Phototherapy of Cancer Cells. Anal Chem 2020; 92:16158-16169. [PMID: 33217231 DOI: 10.1021/acs.analchem.0c03880] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Superfluous zinc ion (Zn2+) in living cells has been identified as a potential tumor biomarker for early cancer diagnosis and cancer progression monitoring. In this paper, we developed a novel carbon nanohorns/Pt nanoparticles/DNA (CNHs/Pt NPs/DNA) nanoplatform based on the clamped hybridization chain reaction (c-HCR) process for intracellular Zn2+ imaging and enhanced cooperative phototherapy of cancer cells. Cross-shaped DNAzyme (c-DNAzyme), hairpin DNA1, hairpin DNA2, and aptamer DNA were adsorbed onto the surfaces of CNHs/Pt NPs, and the fluorescence of carboxytetramethyl-rhodamine was also quenched. After entering the living cells, the c-DNAzyme was cleaved to output trigger DNA in the existence of intracellular Zn2+ and initiate the c-HCR process for fluorescence amplification. Compared with the single HCR process triggered by a single DNAzyme, the c-HCR process could further improve the amplification efficiency and sensitivity. In addition, such a nanoprobe possesses a catalysis-enhanced photodynamic effect by Pt NP generation of oxygen in a tumor microenvironment and increases the photothermal effect by loading of Pt NPs on CNHs, indicating that this is a promising biological method for cancer diagnosis and cancer cell therapy.
Collapse
Affiliation(s)
- Fuzhi Shen
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Caiyi Zhang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Zhiheng Cai
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Jiwei Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Xing Zhang
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen 52062, Germany
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Hengliang Shi
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China.,Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| |
Collapse
|
29
|
Huang C, Ma R, Luo Y, Shi G, Deng J, Zhou T. Stimulus Response of TPE-TS@Eu/GMP ICPs: Toward Colorimetric Sensing of an Anthrax Biomarker with Double Ratiometric Fluorescence and Its Coffee Ring Test Kit for Point-of-Use Application. Anal Chem 2020; 92:12934-12942. [DOI: 10.1021/acs.analchem.0c01570] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Chunyu Huang
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Ruixue Ma
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Yuxin Luo
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Guoyue Shi
- Department of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jingjing Deng
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Tianshu Zhou
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
30
|
Xiao YP, Zhang J, Liu YH, Huang Z, Guo Y, Yu XQ. Bioinspired pyrimidine-containing cationic polymers as effective nanocarriers for DNA and protein delivery. J Mater Chem B 2020; 8:2275-2285. [PMID: 32100787 DOI: 10.1039/c9tb02528f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic polymers have shown great potential in the delivery of nucleic acids and proteins. In this study, a series of pyrimidine-based cationic polymers were synthesized via the Michael addition reaction from pyrimidine-based linkages and low molecular weight polyethyleneimine (PEI). The structure-activity relationship (SAR) of these materials in DNA and protein delivery was investigated. These materials could condense both DNA and protein into nanoparticles with proper sizes and zeta-potentials. In vitro experiments indicated that such polymers were efficient in transporting DNA and proteins into cells. Furthermore, the bioactivity of the genes and proteins encapsulated in these polymers were maintained during the delivery processes. Among the polymers, U-PEI600 synthesized from a uracil-containing linker and PEI 600 Da mediated comparable gene expression to PEI 25 kDa. Moreover, the activities of β-galactosidase delivered by U-PEI600 were well maintained after entering the cells. Evaluation using an immune response assay showed that the U-PEI600/OVA polyplex could stimulate greater production of immune factors with low cytotoxicity. Our study provides a strategy for the construction of cationic polymeric gene and cytosolic protein vectors with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yu Guo
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
31
|
Zhou W, Wang L, Liu C, Teng Q, Wang Z, Dai Z. Quantification of cyclic DNA polymerization with lanthanide coordination nanomaterials for liquid biopsy. Chem Sci 2020; 11:3745-3751. [PMID: 34094063 PMCID: PMC8152624 DOI: 10.1039/c9sc06408g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/13/2020] [Indexed: 12/15/2022] Open
Abstract
Quantification of circulating tumor DNA (ctDNA) is of great importance in liquid biopsy but difficult due to its low amount in bodily fluids. To meet this high demand, a novel method for ctDNA detection is established by quantifying cyclic DNA polymerization using lanthanide coordination polymers (Ln-CPs). Relying on the coordination between the pyrophosphate ion (PPi) and trivalent cerium ion (Ce3+), organic ligand-free PPi-Ce coordination polymer networks (PPi-Ce CPNs) with enhanced fluorescence are prepared for the first time. By surveying the optical properties of PPi-Ce CPNs, it is found that PPi regulates electric-dipole transition of Ce3+ to the lowest excited state, thus facilitating the emission of fluorescence. Therefore, fluorescence enhancement of PPi-Ce CPNs originates from the ligand field effect rather than the normal antenna effect. Moreover, a new strategy to quantify DNA polymerization is developed based on PPi-Ce CPNs. By introducing multifold cyclic DNA polymerization, a small amount of ctDNA triggers the exponential generation of PPi to form plenty of PPi-Ce CPNs. Accordingly, a biosensor is constructed for sensitive ctDNA detection by measuring the intense fluorescence of PPi-Ce CPNs. The biosensor is capable of sensing ctDNA at the sub-femtomolar level, which is far better than the analytical performances of commercial dyes. Besides, the analytical method is able to detect single nucleotide polymorphism and determine ctDNA in real samples. Considering that DNA polymerization is widely used in bio-recognition, bio-assembly and biomineralization, the work provides a versatile quantitative strategy of making relevant processes precise and controllable.
Collapse
Affiliation(s)
- Wenting Zhou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 P. R. China +86-25-85891051 +86-25-85891051
| | - Lei Wang
- Nanjing Normal University Center for Analysis and Testing Nanjing 210023 P. R. China
| | - Can Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 P. R. China +86-25-85891051 +86-25-85891051
| | - Qiuyi Teng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 P. R. China +86-25-85891051 +86-25-85891051
| | - Zhaoyin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 P. R. China +86-25-85891051 +86-25-85891051
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 P. R. China +86-25-85891051 +86-25-85891051
- Nanjing Normal University Center for Analysis and Testing Nanjing 210023 P. R. China
| |
Collapse
|
32
|
Tian Y, Zhang Z, Gao N, Huang P, Wu FY. A label-free luminescent assay for tyrosinase activity monitoring and inhibitor screening with responsive lanthanide coordination polymer nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117751. [PMID: 31727517 DOI: 10.1016/j.saa.2019.117751] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/02/2019] [Accepted: 11/02/2019] [Indexed: 05/18/2023]
Abstract
In this work, a label-free, selective, and sensitive luminescent sensing platform was established for tyrosinase (TYR) activity monitoring and its inhibitor screening using one kind of lanthanide coordination polymer nanoparticles AMP-Tb/Ag+. By taking advantage of the specific binding and redox properties of Ag+ incorporated into the AMP-Tb network and dopamine (DA) as the product of the model substrate tyramine, the enzymatic reaction and the signal change of the sensing platform was effectively linked. The cooperative effect of a weakened energy transfer from AMP to Tb3+ by altering the electronic structure of Ag+ and an efficient photoinduced election transfer (PET) process caused by dopaquinone facilitated the luminescence quenching of Tb3+. Thus, this luminescent sensing platform could be employed for quantitative evaluation of TYR activity. There was a good linear range for TYR activity from 0.08 to 0.20 U mL-1 with a low detection limit of 0.004 U mL-1. Furthermore, this assay was successfully applied to accurate determination of TYR activity in human serum samples and efficient screening of TYR inhibitors. Considering unique spectral characteristics of lanthanides along with operation simplicity and superior analytical performance, this sensing platform is very promising in clinical diagnosis and drugs screening for TYR-associated diseases.
Collapse
Affiliation(s)
- Yao Tian
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Zhipeng Zhang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Nan Gao
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Pengcheng Huang
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Fang-Ying Wu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| |
Collapse
|
33
|
Emissive carbon dots derived from natural liquid fuels and its biological sensing for copper ions. Talanta 2020; 208:120375. [DOI: 10.1016/j.talanta.2019.120375] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 01/17/2023]
|
34
|
Guo L, Liang M, Wang X, Kong R, Chen G, Xia L, Qu F. The role of l-histidine as molecular tongs: a strategy of grasping Tb 3+ using ZIF-8 to design sensors for monitoring an anthrax biomarker on-the-spot. Chem Sci 2020; 11:2407-2413. [PMID: 34084404 PMCID: PMC8157567 DOI: 10.1039/d0sc00030b] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/15/2020] [Indexed: 01/05/2023] Open
Abstract
In this study, a novel lanthanide-doped nanoprobe for monitoring dipicolinic acid (DPA), a unique biomarker of Bacillus anthracis, was constructed by coordination of Tb3+ with l-histidine (His) functionalized ZIF-8 (His@ZIF-8). After being functionalized with His, the resultant His@ZIF-8 had abundant carboxyl and amino groups, which like tongs help His@ZIF-8 "grasp" Tb3+ firmly to form a stable lanthanide-doped nanoparticle (His@ZIF-8/Tb3+). Owing to the unsaturated coordination of Tb3+ with the amino acid group, the resultant His@ZIF-8/Tb3+ showed reserved response sites of Tb3+ to DPA because of its unique molecular structure. After the His@ZIF-8/Tb3+ coordination with DPA, the intrinsic fluorescence emission of the Tb3+ ions was triggered through energy transfer, leading to bright yellow green luminescence owing to the antenna role of DPA. Benefitting from the His functionalization and the characteristics of ZIF-8, especially the high porosity and large surface area, the developed His@ZIF-8/Tb3+ sensing platform exhibited attractive features as a fluorescent sensor for monitoring DPA such as fast response kinetics (10 s), high sensitivity and selectivity, and being portable, easy to operate, economical and secure. This sensor platform showed a satisfactory linear relationship (R 2 = 0.999) ranging from 0.08 to 10 μmol L-1 and an ultralow limit of detection (LOD) of 0.02 μmol L-1. This strategy for the design of functionalized MOFs to construct sensing probes and the resultant His@ZIF-8/Tb3+ would provide a potential strategy for the exploitation of other functionalized materials used in other research fields and promising fluorescence platforms for the detection of other targets.
Collapse
Affiliation(s)
- Lan Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University Qufu 273165 China
| | - Maosheng Liang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University Qufu 273165 China
| | - Xiuli Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University Qufu 273165 China
| | - Rongmei Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University Qufu 273165 China
| | - Guang Chen
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University Qufu 273165 China
| | - Lian Xia
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University Qufu 273165 China
| | - Fengli Qu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University Qufu 273165 China
| |
Collapse
|
35
|
Liu C, Lu D, You X, Shi G, Deng J, Zhou T. Carbon dots sensitized lanthanide infinite coordination polymer nanoparticles: Towards ratiometric fluorescent sensing of cerebrospinal Aβ monomer as a biomarker for Alzheimer's disease. Anal Chim Acta 2020; 1105:147-154. [PMID: 32138913 DOI: 10.1016/j.aca.2020.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/28/2019] [Accepted: 01/09/2020] [Indexed: 12/31/2022]
Abstract
Herein, a novel ratiometric fluorescent probe based on CDs@Eu/GMP ICP nanoparticles was developed for the detection of Aβ monomer in rat as a biomarker for Alzheimer's disease (AD) by fully exploring the competitive coordination interaction and by taking advantage of excellent optical property of carbon dots sensitized lanthanide infinite coordination polymer (ICP) nanoparticles. The carbon dots (CDs) with abundant functional groups were encapsulated into Eu/GMP ICPs through self-adaptive chemistry, which could not only sensitize the red fluorescence of Eu/GMP ICPs effectively, but also act as an internal reference for self-correction. In the absence of Cu2+, the as-formed CDs@Eu/GMP ICPs exhibited the characteristic emission of CDs at 400 nm and strong emission of Eu3+ at 592 nm, 615 nm, 650 nm and 694 nm. With the addition of Cu2+, the red fluorescence of Eu3+ decreased due to the coordination interaction between CDs and Cu2+, thus destroyed the antenna effect. After the subsequent addition of Aβ monomer, the specific binding occurred between Cu2+ and Aβ monomer, and then the red fluorescence of Eu3+ restored again. During this process, the fluorescence of CDs remained unchanged, thus could be used as an internal reference to cancel out the environmental fluctuation and was more adaptive for the detection of Aβ monomer in biological fluids. The method demonstrated here was highly sensitive, free from the interference of other species in rat brain, the in vivo analysis of Aβ monomer in CSF and different brain regions from normal rats and Alzheimer's rats could be realized, which was of great significance for better understanding the mechanism of AD and paving the way to understand the chemical essence involved in AD.
Collapse
Affiliation(s)
- Chang Liu
- School of Ecological and Environmental Sciences, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China
| | - Dingkun Lu
- School of Ecological and Environmental Sciences, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China
| | - Xinrui You
- School of Ecological and Environmental Sciences, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jingjing Deng
- School of Ecological and Environmental Sciences, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China.
| | - Tianshu Zhou
- School of Ecological and Environmental Sciences, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
36
|
Clerc M, Heinemann F, Spingler B, Gasser G. A Luminescent NOTA-Based Terbium(III) “Turn-Off” Sensor for Copper. Inorg Chem 2019; 59:669-677. [DOI: 10.1021/acs.inorgchem.9b02934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michèle Clerc
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Franz Heinemann
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, F-75005 Paris, France
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, F-75005 Paris, France
| |
Collapse
|
37
|
Chen Z, Liu S, Yu X, Hao L, Wang L, Liu S. Responsive methylene blue release from lanthanide coordination polymer for label-free, immobilization-free and sensitive electrochemical alkaline phosphatase activity assay. Analyst 2019; 144:5971-5979. [PMID: 31498361 DOI: 10.1039/c9an01325c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alkaline phosphatase (ALP) is an important enzyme related to many clinical diseases and also widely used as a labeling enzyme for immunoassay. Herein, a new electrochemical sensing strategy for ALP activity was proposed, which was based on the ALP-triggered methylene blue (MB) release from a lanthanide coordination polymer and successive penetration through a self-assembled dodecanethiol monolayer for electrochemical response. The supramolecular lanthanide coordination polymer was constructed by using guanine monophosphate (GMP) and Tb3+ as the ligand and the metal ion, respectively, and the encapsulated MB as the signal molecule. ALP catalyzed the cleavage of the phosphate group from the GMP ligand and disrupted the coordination polymer network to release abundant MB molecules for electrochemical responses related to ALP activity. The obtained lanthanide coordination polymers were well characterized by various techniques. The fabricated electrochemical sensor for ALP activity assay shows distinct advantages such as being one-step, label-free, immobilization-free and highly sensitive. The detection limit toward ALP activity was down to 0.5 U L-1. With the aid of a MB enrichment process on the modified electrode before measurement, the detection limit could be further improved to 0.1 U L-1. Moreover, the assay method could be applied for ALP detection in complex matrixes such as human serum and also for efficient inhibitor evaluation. Thus, the current study provides a new pathway to the fabrication of a coordination polymer-based electrochemical sensing platform for applications in disease diagnosis and drug discovery.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| | | | | | | | | | | |
Collapse
|
38
|
Zhang Z, Tian Y, Huang P, Wu FY. Using target-specific aptamers to enhance the peroxidase-like activity of gold nanoclusters for colorimetric detection of tetracycline antibiotics. Talanta 2019; 208:120342. [PMID: 31816712 DOI: 10.1016/j.talanta.2019.120342] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 01/21/2023]
Abstract
Tetracycline antibiotics (TCs) are one kind of broad spectrum bacteriostatic agents. However, excessive use of TCs will have a threat to the environment and human health. Therefore, it is necessary to develop a simple method for direct detection of TCs. Based on intrinsic peroxidase-like activity of gold nanoclusters (AuNCs), we used TC-specific aptamers (Apt) to improve the catalytic activity of AuNCs toward the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) oxidation by H2O2, and established a colorimetric sensing platform for TCs. The catalytic enhancement by Apt allows for sensitive colorimetric detection of TCs, and Apt as molecular recognition elements can specifically combine with TCs leading to high selectivity. This developed sensing platform can quantitatively detect TCs in the concentration range of 1-16 μM with a limit of detection (LOD) as low as 46 nM. Interestingly, the naked-eye detection capability of this method is estimated to be 0.5 μM. Finally, the detection of TCs in real samples like drugs and milk was validated.
Collapse
Affiliation(s)
- Zhipeng Zhang
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Yao Tian
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Pengcheng Huang
- College of Chemistry, Nanchang University, Nanchang, 330031, China.
| | - Fang-Ying Wu
- College of Chemistry, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
39
|
Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gorantla S, Bronich TK, Edagwa B, Gendelman HE. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev 2019; 148:252-289. [PMID: 30421721 PMCID: PMC6486471 DOI: 10.1016/j.addr.2018.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
The discipline of neurotheranostics was forged to improve diagnostic and therapeutic clinical outcomes for neurological disorders. Research was facilitated, in largest measure, by the creation of pharmacologically effective multimodal pharmaceutical formulations. Deployment of neurotheranostic agents could revolutionize staging and improve nervous system disease therapeutic outcomes. However, obstacles in formulation design, drug loading and payload delivery still remain. These will certainly be aided by multidisciplinary basic research and clinical teams with pharmacology, nanotechnology, neuroscience and pharmaceutic expertise. When successful the end results will provide "optimal" therapeutic delivery platforms. The current report reviews an extensive body of knowledge of the natural history, epidemiology, pathogenesis and therapeutics of neurologic disease with an eye on how, when and under what circumstances neurotheranostics will soon be used as personalized medicines for a broad range of neurodegenerative, neuroinflammatory and neuroinfectious diseases.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brendan M Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Midhun Ben Thomas
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saumya Nigam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
40
|
Yang L, Song Y, Zeng M, Du Y, Peng B, Huang Z, Wang L. Luminescent SiO2@Tb/guanosine 5′-monophosphate core-shell nanoscale coordination polymers for superoxide anion detection. Talanta 2019; 191:74-80. [DOI: 10.1016/j.talanta.2018.08.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/03/2018] [Accepted: 08/12/2018] [Indexed: 11/29/2022]
|
41
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
42
|
Si H, Sheng R, Li Q, Feng J, Li L, Tang B. Highly Sensitive Fluorescence Imaging of Zn2+ and Cu2+ in Living Cells with Signal Amplification Based on Functional DNA Self-Assembly. Anal Chem 2018; 90:8785-8792. [DOI: 10.1021/acs.analchem.7b05268] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Haibin Si
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014 Shandong, People’s Republic of China
| | - Renjie Sheng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014 Shandong, People’s Republic of China
| | - Qingling Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014 Shandong, People’s Republic of China
| | - Jie Feng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014 Shandong, People’s Republic of China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014 Shandong, People’s Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014 Shandong, People’s Republic of China
| |
Collapse
|
43
|
Xue SF, Zhang JF, Chen ZH, Han XY, Zhang M, Shi G. Multifunctional fluorescent sensing of chemical and physical stimuli using smart riboflavin-5′-phosphate/Eu 3+ coordination polymers. Anal Chim Acta 2018; 1012:74-81. [DOI: 10.1016/j.aca.2018.01.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/12/2022]
|
44
|
Gao N, Zhang Y, Huang P, Xiang Z, Wu FY, Mao L. Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores. Anal Chem 2018; 90:7004-7011. [DOI: 10.1021/acs.analchem.8b01365] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nan Gao
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yunfang Zhang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Pengcheng Huang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Zhehao Xiang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Fang-Ying Wu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
45
|
Zhang Z, Wu Y, He S, Xu Y, Li G, Ye B. Ratiometric fluorescence sensing of mercuric ion based on dye-doped lanthanide coordination polymer particles. Anal Chim Acta 2018. [PMID: 29523256 DOI: 10.1016/j.aca.2018.01.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This work focused on the development of a novel ratiometric fluorescence sensor for detection of Hg2+ by using dye-doped lanthanide infinite coordination polymer (Ln-ICP) particles. The dye-doped Ln-ICP used herein was prepared by self-assemble of adenosine monophosphate (AMP) with Ce3+ and Tb3+ (Ce/Tb-AMP) through self-adaptive chemistry, in which the fluorescent dye coumarin was encapsulated during the assembly process as a guest molecule. Under 310 nm irradiation, the obtained coumarin@Ce/Tb-AMP itself emitted characteristic green luminescence of Tb3+, accompanied with a weak fluorescence at 445 nm originated from coumarin encapsulated in the Ce/Tb-AMP networks. The fluorescence emission of coumarin became strong when it was released to the solution. In the presence of Hg2+, the coumarin@Ce/Tb-AMP was destroyed due to the specific coordination interaction between AMP and Hg2+, which leaded to the release of coumarin to the solution meanwhile. Consequently, the fluorescence of Ce/Tb-AMP was quenched, while that of coumarin enhanced. On the basis of this strategy, we developed a novel ratiometric fluorescent sensor for the detection of Hg2+ by measuring the ratio of fluorescent intensity of the coumarin@Ce/Tb-AMP suspension, which showed a wide linear range from 0.08 to 1000 nM and detection limit of 0.03 nM with high selectivity and sensitivity. Furthermore, the constructed ratiometric fluorescent sensor was successfully applied in detecting Hg2+ in drinking water and human blood serum (HBS) with satisfactory results.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yongmei Wu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Shizhen He
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yuanyuan Xu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Gaiping Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Baoxian Ye
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
46
|
Chen C, Zhao J, Lu Y, Sun J, Yang X. Fluorescence Immunoassay Based on the Phosphate-Triggered Fluorescence Turn-on Detection of Alkaline Phosphatase. Anal Chem 2018; 90:3505-3511. [DOI: 10.1021/acs.analchem.7b05325] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jiahui Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
47
|
Kang M, Oderinde O, Deng Y, Liu S, Yao F, Fu G. Characterization and study of luminescence enhancement behaviour of alginate-based hydrogels. NEW J CHEM 2018. [DOI: 10.1039/c8nj03004a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Luminescence enhanced composites were fabricated via introducing 5-sulfosalicylic acid molecules into a Tb(iii)-based system to avoid being quenched by water.
Collapse
Affiliation(s)
- Mengmeng Kang
- School of Chemistry and Chemical Engineering
- Southeast University
- Jiangning District
- Nanjing
- China
| | - Olayinka Oderinde
- School of Chemistry and Chemical Engineering
- Southeast University
- Jiangning District
- Nanjing
- China
| | - Yaoyao Deng
- School of Chemistry and Chemical Engineering
- Southeast University
- Jiangning District
- Nanjing
- China
| | - Shunli Liu
- School of Chemistry and Chemical Engineering
- Southeast University
- Jiangning District
- Nanjing
- China
| | - Fang Yao
- School of Chemistry and Chemical Engineering
- Southeast University
- Jiangning District
- Nanjing
- China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering
- Southeast University
- Jiangning District
- Nanjing
- China
| |
Collapse
|
48
|
Lu YN, Peng JL, Zhou X, Wu JZ, Ou YC, Cai YP. Rapid naked-eye luminescence detection of carbonate ion through acetonitrile hydrolysis induced europium complexes. CrystEngComm 2018. [DOI: 10.1039/c8ce01414k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
[Eu2(Hhpip)2(OAc)6] in DMSO shows a specific and prompt photoluminescence colour change in response to CO32− detectable with naked eyes.
Collapse
Affiliation(s)
- Yan-Na Lu
- School of Chemistry and Environment
- South China Normal University
- Guangzhou 510006
- China
| | - Jun-Ling Peng
- School of Chemistry and Environment
- South China Normal University
- Guangzhou 510006
- China
| | - Xia Zhou
- School of Chemistry and Environment
- South China Normal University
- Guangzhou 510006
- China
| | - Jian-Zhong Wu
- School of Chemistry and Environment
- South China Normal University
- Guangzhou 510006
- China
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
| | - Yong-Cong Ou
- School of Chemistry and Environment
- South China Normal University
- Guangzhou 510006
- China
| | - Yue-Peng Cai
- School of Chemistry and Environment
- South China Normal University
- Guangzhou 510006
- China
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
| |
Collapse
|
49
|
Pu F, Ren J, Qu X. Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials. Chem Soc Rev 2017; 47:1285-1306. [PMID: 29265140 DOI: 10.1039/c7cs00673j] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The incorporation of biomolecules into nanomaterials generates functional nanosystems with novel and advanced properties, presenting great potential for applications in various fields. Nucleobases, nucleosides and nucleotides, as building blocks of nucleic acids and biological coenzymes, constitute necessary components of the foundation of life. In recent years, as versatile biomolecules for the construction or regulation of functional nanomaterials, they have stimulated interest in researchers, due to their unique properties such as structural diversity, multiplex binding sites, self-assembly ability, stability, biocompatibility, and chirality. In this review, strategies for the synthesis of nanomaterials and the regulation of their morphologies and functions using nucleobases, nucleosides, and nucleotides as building blocks, templates or modulators are summarized alongside selected applications. The diverse applications range from sensing, bioimaging, and drug delivery to mimicking light-harvesting antenna, the construction of logic gates, and beyond. Furthermore, some perspectives and challenges in this emerging field are proposed. This review is directed toward the broader scientific community interested in biomolecule-based functional nanomaterials.
Collapse
Affiliation(s)
- Fang Pu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
50
|
Mishra R, Patil B, Karadaş F, Yılmaz E. Bioinspired Copper Coordination Polymer Catalysts for Oxygen Reduction Reaction. ChemistrySelect 2017. [DOI: 10.1002/slct.201701303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rupali Mishra
- Department of Chemistry; Bilkent University; 06800 Ankara Turkey
| | - Bhushan Patil
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM) Bilkent University; 06800 Ankara Turkey
| | - Ferdi Karadaş
- Department of Chemistry; Bilkent University; 06800 Ankara Turkey
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM) Bilkent University; 06800 Ankara Turkey
| | - Eda Yılmaz
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM) Bilkent University; 06800 Ankara Turkey
| |
Collapse
|