1
|
Park J, Seo B, Jeong Y, Park I. A Review of Recent Advancements in Sensor-Integrated Medical Tools. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307427. [PMID: 38460177 PMCID: PMC11132050 DOI: 10.1002/advs.202307427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/26/2023] [Indexed: 03/11/2024]
Abstract
A medical tool is a general instrument intended for use in the prevention, diagnosis, and treatment of diseases in humans or other animals. Nowadays, sensors are widely employed in medical tools to analyze or quantify disease-related parameters for the diagnosis and monitoring of patients' diseases. Recent explosive advancements in sensor technologies have extended the integration and application of sensors in medical tools by providing more versatile in vivo sensing capabilities. These unique sensing capabilities, especially for medical tools for surgery or medical treatment, are getting more attention owing to the rapid growth of minimally invasive surgery. In this review, recent advancements in sensor-integrated medical tools are presented, and their necessity, use, and examples are comprehensively introduced. Specifically, medical tools often utilized for medical surgery or treatment, for example, medical needles, catheters, robotic surgery, sutures, endoscopes, and tubes, are covered, and in-depth discussions about the working mechanism used for each sensor-integrated medical tool are provided.
Collapse
Affiliation(s)
- Jaeho Park
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
| | - Bokyung Seo
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
| | - Yongrok Jeong
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
- Radioisotope Research DivisionKorea Atomic Energy Research Institute (KAERI)Daejeon34057South Korea
| | - Inkyu Park
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
| |
Collapse
|
2
|
Tang L, Wu P, Zhuang H, Qin Z, Yu P, Fu K, Qiu P, Liu Y, Zhou Y. Nitric oxide releasing polyvinyl alcohol and sodium alginate hydrogels as antibacterial and conductive strain sensors. Int J Biol Macromol 2023; 241:124564. [PMID: 37094648 DOI: 10.1016/j.ijbiomac.2023.124564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
Conductive hydrogels have promising applications in flexible electronic devices and artificial intelligence, which have attracted much attention in recent years. However, most conductive hydrogels have no antimicrobial activity, inevitably leading to microbial infections during utilization. In this work, a series of antibacterial and conductive polyvinyl alcohol and sodium alginate (PVA-SA) hydrogels were successfully developed with the incorporation of S-nitroso-N-acetyl-penicillamine (SNAP) and MXene through a freeze-thaw approach. Due to the reversibility of hydrogen bonding and electrostatic interactions, the resulting hydrogels had excellent mechanical properties. Specifically, the presence of MXene readily interrupted the crosslinked hydrogel network, but the best stretching can reach up to >300 %. Moreover, the impregnation of SNAP achieved the release of NO over several days under physiological conditions. Due to the release of NO, these composited hydrogels demonstrated high antibacterial activities (> 99 %) against both Gram-positive and negative S. aureus and E. coli bacteria. Notably, the excellent conductivity of MXene endowed the hydrogel with a sensitive, fast, and stable strain-sensing ability, to accurately monitor and distinguish subtle physiological activities of the human body including finger bending and pulse beating. These novel composited hydrogels are likely to have potential as strain-sensing materials in the field of biomedical flexible electronics.
Collapse
Affiliation(s)
- Lingjuan Tang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Peixuan Wu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Hao Zhuang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Ziyu Qin
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Peng Yu
- Department of Joint Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Kun Fu
- Department of Joint Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Ping Qiu
- Haikou Wuyuanhe School, Haikou, Hainan 570312, China
| | - Yuanyuan Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China.
| | - Yang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
3
|
Jin J, Mao J, Wu W, Jiang Y, Ma W, Yu P, Mao L. Highly Efficient Electrosynthesis of Nitric Oxide for Biomedical Applications. Angew Chem Int Ed Engl 2022; 61:e202210980. [DOI: 10.1002/anie.202210980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Jin
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids Ministry of Education College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| | - Wenjie Wu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ying Jiang
- College of Chemistry Beijing Normal University Xinjiekouwai Street 19 Beijing 100875 China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 China
- College of Chemistry Beijing Normal University Xinjiekouwai Street 19 Beijing 100875 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
4
|
White CJ, Lehnert N, Meyerhoff ME. Electrochemical Generation of Nitric Oxide for Medical Applications. ELECTROCHEMICAL SCIENCE ADVANCES 2022; 2:e2100156. [PMID: 36386004 PMCID: PMC9642980 DOI: 10.1002/elsa.202100156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
Over the past 30 years, the significance of nitric oxide (NO) has become increasingly apparent in mammalian physiology. It is biosynthesized by three isoforms of nitric oxide synthases (NOS): neuronal (nNOS), endothelial (eNOS), and inducible (iNOS). Neuronal and eNOS both produce low levels of NO (nM) as a signaling agent and vasodilator, respectively. Inducible (iNOS) is present in activated macrophages at sites of infection to generate acutely toxic (μM) levels of NO as part of the mammalian immune defense mechanism. These discoveries have led to numerous animal and clinical studies to evaluate the potential therapeutic utility of NO in various medical operations/treatments, primarily using NO gas (via gas-cylinders) as the NO source. In this review, we focus specifically on recent advances in the electrochemical generation of NO (E-NOgen) as an alternative means to generate NO from cheap and inert sources, and the fabrication and testing of biomedical devices that utilize E-NOgen to controllably generate NO for medical applications.
Collapse
Affiliation(s)
- Corey J White
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| | - Nicolai Lehnert
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| | - Mark E Meyerhoff
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
5
|
Jin J, Mao J, Wu W, Jiang Y, Ma W, Yu P, Mao L. Highly efficient electrosynthesis of nitric oxide for biomedical applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jing Jin
- Institute of Chemistry Chinese Academy of Sciences Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical 100190 CHINA
| | - Junjie Mao
- Anhui Normal University College of Chemistry and Materials Science Key Laboratory of Functional Molecular Solids, Ministry of Education, College of 241002 CHINA
| | - Wenjie Wu
- Institute of Chemistry Chinese Academy of Sciences Institute of Chemistry Chinese Academy of Sciences CHINA
| | - Ying Jiang
- Beijing Normal University College of Chemistry Beijing Normal University 100875 Beijing CHINA
| | - Wenjie Ma
- Institute of Chemistry Chinese Academy of Sciences Institute of Chemistry Chinese Academy of Sciences CHINA
| | - Ping Yu
- Institute of Chemistry Chinese Academy of Sciences Institute of Chemistry Chinese Academy of Sciences CHINA
| | - Lanqun Mao
- Beijing Normal University College of Chemistry No.19, Xinjiekouwai St, Haidian District 100875 Beijing CHINA
| |
Collapse
|
6
|
Zhang X, Wang Y, Wang Y, Guo Y, Xie X, Yu Y, Zhang B. Recent advances in electrocatalytic nitrite reduction. Chem Commun (Camb) 2022; 58:2777-2787. [PMID: 35156964 DOI: 10.1039/d1cc06690k] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Electrocatalytic nitrite reduction is of great significance for wastewater treatment and value-added chemicals synthesis. This review highlights the latest progress in electrochemical nitrite reduction to produce two types of products, including gaseous products (NO, N2O, N2) and liquid products (NH2OH and NH4+). The heterogeneous and homogeneous catalysts used in the corresponding reduction processes are introduced, with emphasis on the product selectivity regulation and reaction mechanism understanding. Finally, the challenges and opportunities in this field are analyzed as well. This review can provide guidelines for designing electrochemical systems with high efficiency and specificity for nitrite reduction.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yuting Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yibo Wang
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China. .,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Yamei Guo
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Xiaoyun Xie
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Yifu Yu
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China.
| | - Bin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
7
|
Zhang Q, Meyerhoff ME. Nitric Oxide Release for Enhanced Biocompatibility and Analytical Performance of Implantable Electrochemical Sensors. ELECTROANAL 2021. [DOI: 10.1002/elan.202100174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qi Zhang
- Department of Chemistry University of Michigan Ann Arbor MI 48109 USA
| | - Mark E. Meyerhoff
- Department of Chemistry University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
8
|
Zhang Q, Murray GP, Hill JE, Harvey SL, Rojas-Pena A, Choi J, Zhou Y, Bartlett RH, Meyerhoff ME. Enhanced Hemocompatibility and In Vivo Analytical Accuracy of Intravascular Potentiometric Carbon Dioxide Sensors via Nitric Oxide Release. Anal Chem 2020; 92:13641-13646. [PMID: 32955253 DOI: 10.1021/acs.analchem.0c02979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this letter, the innate ability of nitric oxide (NO) to inhibit platelet activation/adhesion/thrombus formation is employed to improve the hemocompatibility and in vivo accuracy of an intravascular (IV) potentiometric PCO2 (partial pressure of carbon dioxide) sensor. The catheter-type sensor is fabricated by impregnating a segment of dual lumen silicone tubing with a proton ionophore, plasticizer, and lipophilic cation-exchanger. Subsequent filling of bicarbonate and strong buffer solutions and placement of Ag/AgCl reference electrode wires within each lumen, respectively, enables measurement of the membrane potential difference across the inner wall of the tube, with this potential changing as a function of the logarithm of sample PCO2. The dual lumen device is further encapsulated within a S-nitroso-N-acetyl-DL-penicillamine (SNAP)-doped silicone tube that releases physiological levels of NO. The NO releasing sensor exhibits near-Nernstian sensitivity toward PCO2 (slope = 59.31 ± 0.78 mV/decade) and low drift rates (<2 mV/24 h after initial equilibration). In vivo evaluation of the NO releasing sensors, performed in the arteries and veins of anesthetized pigs for 20 h, shows enhanced accuracy (vs non-NO releasing sensors) when benchmarked to measurements of discrete blood samples made with a commercial blood gas analyzer. The accurate, continuous monitoring of blood PCO2 levels achieved with this new IV NO releasing PCO2 sensor configuration could help better manage hospitalized patients in critical care units.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Griffin P Murray
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joseph E Hill
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephen L Harvey
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alvaro Rojas-Pena
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Surgery, Section of Transplantation. University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jonathan Choi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Robert H Bartlett
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mark E Meyerhoff
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Thompson AJ, Ma LJ, Major T, Jeakle M, Lautner-Csorba O, Goudie MJ, Handa H, Rojas-Peña A, Potkay JA. Assessing and improving the biocompatibility of microfluidic artificial lungs. Acta Biomater 2020; 112:190-201. [PMID: 32434076 PMCID: PMC10168296 DOI: 10.1016/j.actbio.2020.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
Microfluidic artificial lungs (µALs) have the potential to improve the treatment and quality of life for patients with acute or chronic lung injury. In order to realize the full potential of this technology (including as a destination therapy), the biocompatibility of these devices needs to be improved to produce long-lasting devices that are safe for patient use with minimal or no systemic anticoagulation. Many studies exist which probe coagulation and thrombosis on polydimethyl siloxane (PDMS) surfaces, and many strategies have been explored to improve surface biocompatibility. As the field of µALs is young, there are few studies which investigate biocompatibility of functioning µALs; and even fewer which were performed in vivo. Here, we use both in vitro and in vivo models to investigate two strategies to improve µAL biocompatibility: 1) a hydrophilic surface coating (polyethylene glycol, PEG) to prevent surface fouling, and 2) the addition of nitric oxide (NO) to the sweep gas to inhibit platelet activation locally within the µAL. In this study, we challenge µALs with clottable blood or platelet-rich plasma (PRP) and monitor the resistance to blood flow over time. Device lifetime (the amount of time the µAL remains patent and unobstructed by clot) is used as the primary indicator of biocompatibility. This study is the first study to: 1) investigate the effect of NO release on biocompatibility in a microfluidic network; 2) combine a hydrophilic PEG coating with NO release to improve blood compatibility; and 3) perform extended in vivo biocompatibility testing of a µAL. We found that µALs challenged in vitro with PRP remained patent significantly longer when the sweep gas contained NO than without NO. In the in vivo rabbit model, neither approach alone (PEG coating nor NO sweep gas) significantly improved biocompatibility compared to controls (though with larger sample size significance may become apparent); while the combination of a PEG coating with NO sweep gas resulted in significant improvement of device lifetime. STATEMENT OF SIGNIFICANCE: The development of microfluidic artificial lungs (µALs) can potentially have a massive impact on the treatment of patients with acute and chronic lung impairments. Before these devices can be deployed clinically, the biocompatibility of µALs must be improved and more comprehensively understood. This work explores two strategies for improving biocompatibility, a hydrophilic surface coating (polyethylene glycol) for general surface passivation and the addition of nitric oxide (NO) to the sweep gas to quell platelet and leukocyte activation. These two strategies are investigated separately and as a combined device treatment. Devices are challenged with clottable blood using in vitro testing and in vivo testing in rabbits. This is the first study to our knowledge that allows statistical comparisons of biocompatible µALs in animals, a key step towards eventual clinical use.
Collapse
Affiliation(s)
- Alex J Thompson
- VA Ann Arbor Healthcare System, 2215 Fuller Road, Ann Arbor, MI, USA, 48105; University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, USA, 48109.
| | - Lindsay J Ma
- VA Ann Arbor Healthcare System, 2215 Fuller Road, Ann Arbor, MI, USA, 48105; University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, USA, 48109
| | - Terry Major
- University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, USA, 48109
| | - Mark Jeakle
- University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, USA, 48109
| | | | - Marcus J Goudie
- University of Georgia, College of Engineering, 220 Riverbend Road, Athens, GA, USA, 30602
| | - Hitesh Handa
- University of Georgia, College of Engineering, 220 Riverbend Road, Athens, GA, USA, 30602
| | - Alvaro Rojas-Peña
- University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, USA, 48109
| | - Joseph A Potkay
- VA Ann Arbor Healthcare System, 2215 Fuller Road, Ann Arbor, MI, USA, 48105; University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, USA, 48109
| |
Collapse
|
10
|
Monitoring with In Vivo Electrochemical Sensors: Navigating the Complexities of Blood and Tissue Reactivity. SENSORS 2020; 20:s20113149. [PMID: 32498360 PMCID: PMC7308849 DOI: 10.3390/s20113149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/18/2022]
Abstract
The disruptive action of an acute or critical illness is frequently manifest through rapid biochemical changes that may require continuous monitoring. Within these changes, resides trend information of predictive value, including responsiveness to therapy. In contrast to physical variables, biochemical parameters monitored on a continuous basis are a largely untapped resource because of the lack of clinically usable monitoring systems. This is despite the huge testing repertoire opening up in recent years in relation to discrete biochemical measurements. Electrochemical sensors offer one of the few routes to obtaining continuous readout and, moreover, as implantable devices information referable to specific tissue locations. This review focuses on new biological insights that have been secured through in vivo electrochemical sensors. In addition, the challenges of operating in a reactive, biological, sample matrix are highlighted. Specific attention is given to the choreographed host rejection response, as evidenced in blood and tissue, and how this limits both sensor life time and reliability of operation. Examples will be based around ion, O2, glucose, and lactate sensors, because of the fundamental importance of this group to acute health care.
Collapse
|
11
|
Zhang Q, Stachelek SJ, Inamdar VV, Alferiev I, Nagaswami C, Weisel JW, Hwang JH, Meyerhoff ME. Studies of combined NO-eluting/CD47-modified polyurethane surfaces for synergistic enhancement of biocompatibility. Colloids Surf B Biointerfaces 2020; 192:111060. [PMID: 32450498 PMCID: PMC7572543 DOI: 10.1016/j.colsurfb.2020.111060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 03/15/2020] [Accepted: 04/13/2020] [Indexed: 12/22/2022]
Abstract
The blood compatibility of various intravascular (IV) devices (e.g., catheters, sensors, etc.) is compromised by activation of platelets that can cause thrombus formation and device failure. Such devices also carry a high risk of microbial infection. Recently, nitric oxide (NO) releasing polymers/devices have been proposed to reduce these clinical problems. CD47, a ubiquitously expressed transmembrane protein with proven anti-inflammation/anti-platelet properties when immobilized on polymeric surfaces, is a good candidate to complement NO release in both effectiveness and longevity. In this work, we successfully appended CD47 peptides (pepCD47) to the surface of biomedical grade polyurethane (PU) copolymers. SIRPα binding and THP-1 cell attachment experiments strongly suggested that the pepCD47 retains its biological properties when bound to PU films. In spite of the potentially high reactivity of NO toward various amino acid residues in CD47, the efficacy of surface-immobilized pepCD47 to prevent inflammatory cell attachment was not inhibited after being subjected to a high flux of NO for three days, demonstrating excellent compatibility of the two species. We further constructed a CD47 surface immobilized silicone tubing filled with NO releasing S-nitrosoglutathione/ascorbic acid (GSNO/AA) solution for synergistic biocompatibility evaluation. Via an ex vivo Chandler loop model, we demonstrate for the first time that NO release and CD47 modification could function synergistically at the blood/material interface and produce greatly enhanced anti-inflammatory/anti-platelet effects. This concept should be readily implementable to create a new generation of thromboresistant/antimicrobial implantable devices.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Stanley J Stachelek
- Division of Cardiology-Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States; Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Vaishali V Inamdar
- Division of Cardiology-Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States; Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Ivan Alferiev
- Division of Cardiology-Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States; Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Chandrasekaran Nagaswami
- Department of Cell and Developmental Biology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - John W Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Jeong Hyun Hwang
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Mark E Meyerhoff
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, United States
| |
Collapse
|
12
|
|
13
|
Jin S, Huang J, Chen X, Gu H, Li D, Zhang A, Liu X, Chen H. Nitric Oxide-Generating Antiplatelet Polyurethane Surfaces with Multiple Additional Biofunctions via Cyclodextrin-Based Host–Guest Interactions. ACS APPLIED BIO MATERIALS 2019; 3:570-576. [DOI: 10.1021/acsabm.9b00969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sheng Jin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Jialei Huang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Xianshuang Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Hao Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Dan Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Aiyang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| |
Collapse
|
14
|
McCabe MM, Hala P, Rojas-Pena A, Lautner-Csorba O, Major TC, Ren H, Bartlett RH, Brisbois EJ, Meyerhoff ME. Enhancing analytical accuracy of intravascular electrochemical oxygen sensors via nitric oxide release using S-nitroso-N-acetyl-penicillamine (SNAP) impregnated catheter tubing. Talanta 2019; 205:120077. [PMID: 31450395 DOI: 10.1016/j.talanta.2019.06.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022]
Abstract
Implantable medical devices are an integral part of primary/critical care. However, these devices carry a high risk for blood clots, caused by platelet aggregation on a foreign body surface. This study focuses on the development of a simplified approach to create nitric oxide (NO) releasing intravascular electrochemical oxygen (O2) sensors with increased biocompatibility and analytical accuracy. The implantable sensors are prepared by embedding S-nitroso-N-acetylpenacillamine (SNAP) as the NO donor molecule in the walls of the catheter type sensors. The SNAP-impregnated catheters were prepared by swelling silicone rubber tubing in a tetrahydrofuran solution containing SNAP. Control and SNAP-impregnated catheters were used to fabricate the Clark-style amperometric PO2 sensors. The SNAP-impregnated sensors release NO under physiological conditions for 18 d as measured by chemiluminescence. The analytical response of the SNAP-impregnated sensors was evaluated in vitro and in vivo. Rabbit and swine models (with sensors placed in both veins and arteries) were used to evaluate the effects on thrombus formation and analytical in vivo PO2 sensing performance. The SNAP-impregnated PO2 sensors were found to more accurately measure PO2 levels in blood continuously (over 7 and 20 h animal experiments) with significantly reduced thrombus formation (as compared to controls) on their surfaces.
Collapse
Affiliation(s)
- M M McCabe
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - P Hala
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA; Department of Cardiology, Na Homolce Hospital, Prague, Czech Republic; Department of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - A Rojas-Pena
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - O Lautner-Csorba
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - T C Major
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - H Ren
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - R H Bartlett
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - E J Brisbois
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA.
| | - M E Meyerhoff
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Hopkins SP, Pant J, Goudie MJ, Schmiedt C, Handa H. Achieving Long-Term Biocompatible Silicone via Covalently Immobilized S-Nitroso- N-acetylpenicillamine (SNAP) That Exhibits 4 Months of Sustained Nitric Oxide Release. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27316-27325. [PMID: 30028941 PMCID: PMC7951114 DOI: 10.1021/acsami.8b08647] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ever since the role of endogenous nitric oxide (NO) in controlling a wide variety of biological functions was discovered approximately three decades back, multiple NO-releasing polymeric materials have been developed. However, most of these materials are typically short lived due to the inefficient incorporation of the NO donor molecules within the polymer matrix. In the present study, S-nitroso- N-acetyl penicillamine (SNAP) is covalently attached to poly(dimethylsiloxane) (PDMS) to create a highly stable nitric oxide (NO) releasing material for biomedical applications. By tethering SNAP to the cross-linker of PDMS, the NO donor is unable to leach into the surrounding environment. This is the first time that a sustainable NO release and bacterial inhibition for over 125 days has been achieved by any NO-releasing polymer with supporting evidence of potential long-term hemocompatibility and biocompatibility. The material proves to have very high antibacterial efficacy against Staphylococcus aureus by demonstrating a 99.99% reduction in the first 3 days in a continuous flow CDC bioreactor, whereas a similar inhibitory potential of 99.50% was maintained by the end of 1 month. Hemocompatibility of SNAP-PDMS was tested using a rabbit extracorporeal circuit (ECC) model over a 4 h period. Thrombus formation was greatly reduced within the SNAP-PDMS-coated ECCs compared to the control circuits, observing a 78% reduction in overall thrombus mass accumulation. These results demonstrate the potential of utilizing this material for blood and tissue contacting biomedical devices in long-term clinical applications where infection and unwanted clotting are major issues.
Collapse
Affiliation(s)
- Sean P. Hopkins
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Jitendra Pant
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Marcus J. Goudie
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Chad Schmiedt
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| |
Collapse
|
16
|
Konopińska KK, Schmidt NJ, Hunt A, Lehnert N, Wu J, Xi C, Meyerhoff ME. Comparison of Copper(II)-Ligand Complexes as Mediators for Preparing Electrochemically Modulated Nitric Oxide-Releasing Catheters. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25047-25055. [PMID: 29979032 PMCID: PMC6215362 DOI: 10.1021/acsami.8b05917] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Further studies aimed at examining the activity of different Cu(II)-ligand complexes to serve as electron-transfer mediators to prepare novel antimicrobial/thromboresistant nitric oxide (NO)-releasing intravenous catheters are reported. In these devices, the NO release can be modulated by applying different potentials or currents to reduce the Cu(II)-complexes to Cu(I) species which then reduce nitrite ions into NO(g) within a lumen of the catheter. Four different ligands are compared with respect to NO generation efficiency and stability over time using both single- and dual-lumen silicone rubber catheters: N-propanoate- N, N-bis(2-pyridylethyl)amine (BEPA-Pr), N-propanoate- N, N-bis(2-pyridylmethyl)amine (BMPA-Pr), 1,4,7-trimethyl-1,4,7-triazacyclononane (Me3TACN), and tris(2-pyridylmethyl)amine (TPMA). Of these, the Cu(II)BEPA-Pr and Cu(II)Me3TACN complexes provide biomedically useful NO fluxes from the surface of the catheters, >2 × 10-10 mol·min-1·cm-2, under conditions mimicking the bloodstream environment. Cu(II)Me3TACN exhibits the best stability over time with a steady and continuous NO release observed for 8 d under a nitrogen atmosphere. Antimicrobial experiments conducted over 5 d with NO-releasing catheters turned "on" electrochemically for only 3 or 6 h each day revealed >2 logarithmic units in reduction of bacterial biofilm attached to the catheter surfaces. The use of optimal Cu(II)-ligand complexes within a lumen reservoir along with high levels of nitrite ions can potentially provide an effective method of preventing/decreasing the rate of infections caused by intravascular catheters.
Collapse
Affiliation(s)
| | - Nicholas J. Schmidt
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055
| | - Andrew Hunt
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055
| | - Nicolai Lehnert
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055
| | - Jianfeng Wu
- Department of Environmental Health Sciences, The University of Michigan, Ann Arbor, MI 48109-1055
| | - Chuanwu Xi
- Department of Environmental Health Sciences, The University of Michigan, Ann Arbor, MI 48109-1055
| | - Mark E. Meyerhoff
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055
| |
Collapse
|
17
|
Bakhshandeh S, Amin Yavari S. Electrophoretic deposition: a versatile tool against biomaterial associated infections. J Mater Chem B 2018; 6:1128-1148. [PMID: 32254176 DOI: 10.1039/c7tb02445b] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biomaterial-associated infections (BAIs) are today considered as one of the most withering complications of orthopedic implant surgery. Even though BAIs occur relatively infrequently in primary joint replacement surgeries (incidence rates around 1-2%), revision arthroplasties carry up to 40% risk of infection recurrence, with devastating consequences for the patient and significant associated cost. Once the responsible pathogens, mainly bacteria, attach to the surface of the biomaterial, they start creating layers of extracellular matrix with complex architectures, called biofilms. These last mentioned, encapsulate and protect bacteria by hindering the immune response and impeding antibiotics from reaching the pathogens. To prevent such an outcome, the surface of the biomaterials, in particular implants, can be modified in order to play the role of inherent drug delivery devices or as substrates for antibacterial/multifunctional coating deposition. This paper presents an overview of novel electrochemically-triggered deposition strategies, with a focus on electrophoretic deposition (EPD), a versatile and cost-effective technique for organic and inorganic material deposition. Other than being a simple deposition tool, EPD has been recently employed to create novel micro/nanostructured surfaces for multi-purpose antibacterial approaches, presented in detail in this review. In addition, a thorough comparison and assessment of the latest antibacterial and multifunctional compounds deposited by means of EPD have been reported, followed by a critical reflection on current and future prospects of the topic. The relative simplicity of EPD's application, has, by some means, undermined the fundamental requirement of rationality of multifunctional coating design. The demanding practical needs for a successful clinical translation in the growing fields of tissue engineering and antibacterial/multifunctional implant coatings, calls for a more systematic in vitro experimental design rationale, in order to make amends for the scarcity of significant in vivo and clinical studies.
Collapse
Affiliation(s)
- Sadra Bakhshandeh
- Department of Orthopedics, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | |
Collapse
|
18
|
Wang X, Garcia CT, Gong G, Wishnok JS, Tannenbaum SR. Automated Online Solid-Phase Derivatization for Sensitive Quantification of Endogenous S-Nitrosoglutathione and Rapid Capture of Other Low-Molecular-Mass S-Nitrosothiols. Anal Chem 2018; 90:1967-1975. [PMID: 29271637 PMCID: PMC5892179 DOI: 10.1021/acs.analchem.7b04049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
S-Nitrosothiols (RSNOs) constitute a circulating endogenous reservoir of nitric oxide and have important biological activities. In this study, an online coupling of solid-phase derivatization (SPD) with liquid chromatography-mass spectrometry (LC-MS) was developed and applied in the analysis of low-molecular-mass RSNOs. A derivatizing-reagent-modified polymer monolithic column was prepared and adapted for online SPD-LC-MS. Analytes from the LC autosampler flowed through the monolithic column for derivatization and then directly into the LC-MS for analysis. This integration of the online derivatization, LC separation, and MS detection facilitated system automation, allowing rapid, laborsaving, and sensitive detection of RSNOs. S-Nitrosoglutathione (GSNO) was quantified using this automated online method with good linearity (R2 = 0.9994); the limit of detection was 0.015 nM. The online SPD-LC-MS method has been used to determine GSNO levels in mouse samples, 138 ± 13.2 nM of endogenous GSNO was detected in mouse plasma. Besides, the GSNO concentrations in liver (64.8 ± 11.3 pmol/mg protein), kidney (47.2 ± 6.1 pmol/mg protein), heart (8.9 ± 1.8 pmol/mg protein), muscle (1.9 ± 0.3 pmol/mg protein), hippocampus (5.3 ± 0.9 pmol/mg protein), striatum (6.7 ± 0.6 pmol/mg protein), cerebellum (31.4 ± 6.5 pmol/mg protein), and cortex (47.9 ± 4.6 pmol/mg protein) were also successfully quantified. When the derivatization was performed within 8 min, followed by LC-MS detection, samples could be rapidly analyzed compared with the offline manual method. Other low-molecular-mass RSNOs, such as S-nitrosocysteine and S-nitrosocysteinylglycine, were captured by rapid precursor-ion scanning, showing that the proposed method is a potentially powerful tool for capture, identification, and quantification of RSNOs in biological samples.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biological Engineering Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Carlos T. Garcia
- Department of Biological Engineering Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Guanyu Gong
- Department of Biological Engineering Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John S. Wishnok
- Department of Biological Engineering Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Steven R. Tannenbaum
- Department of Biological Engineering Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Coffel J, Nuxoll E. BioMEMS for biosensors and closed-loop drug delivery. Int J Pharm 2018; 544:335-349. [PMID: 29378239 DOI: 10.1016/j.ijpharm.2018.01.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 12/14/2022]
Abstract
The efficacy of pharmaceutical treatments can be greatly enhanced by physiological feedback from the patient using biosensors, though this is often invasive or infeasible. By adapting microelectromechanical systems (MEMS) technology to miniaturize such biosensors, previously inaccessible signals can be obtained, often from inside the patient. This is enabled by the device's extremely small footprint which minimizes both power consumption and implantation trauma, as well as the transport time for chemical analytes, in turn decreasing the sensor's response time. MEMS fabrication also allows mass production which can be easily scaled without sacrificing its high reproducibility and reliability, and allows seamless integration with control circuitry and telemetry which is already produced using the same materials and fabrication steps. By integrating these systems with drug delivery devices, many of which are also MEMS-based, closed loop drug delivery can be achieved. This paper surveys the types of signal transduction devices available for biosensing-primarily electrochemical, optical, and mechanical-looking at their implementation via MEMS technology. The impact of MEMS technology on the challenges of biosensor development, particularly safety, power consumption, degradation, fouling, and foreign body response, are also discussed.
Collapse
Affiliation(s)
- Joel Coffel
- Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Eric Nuxoll
- Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
20
|
Cha KH, Wang X, Meyerhoff ME. Nitric Oxide Release for Improving Performance of Implantable Chemical Sensors - A Review. APPLIED MATERIALS TODAY 2017; 9:589-597. [PMID: 29520370 PMCID: PMC5837052 DOI: 10.1016/j.apmt.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Over the last three decades, there has been extensive interest in developing in vivo chemical sensors that can provide real-time measurements of blood gases (oxygen, carbon dioxide, and pH), glucose/lactate, and potentially other critical care analytes in the blood of hospitalized patients. However, clot formation with intravascular sensors and foreign body response toward sensors implanted subcutaneously can cause inaccurate analytical results. Further, the risk of bacterial infection from any sensor implanted in the human body is another major concern. To solve these issues, the release of an endogenous gas molecule, nitric oxide (NO), from the surface of such sensors has been investigated owing to NO's ability to inhibit platelet activation/adhesion, foreign body response and bacterial growth. This paper summarizes the importance of NO's therapeutic potential for this application and reviews the publications to date that report on the analytical performance of NO release sensors in laboratory testing and/or during in vivo testing.
Collapse
Affiliation(s)
- Kyoung Ha Cha
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| | - Xuewei Wang
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| | - Mark E Meyerhoff
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
21
|
Cha KH, Meyerhoff ME. Compatibility of Nitric Oxide Release with Implantable Enzymatic Glucose Sensors Based on Osmium (III/II) Mediated Electrochemistry. ACS Sens 2017; 2:1262-1266. [PMID: 28819975 DOI: 10.1021/acssensors.7b00430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The compatibility of nitric oxide (NO) release coatings with implantable enzymatic glucose sensors based on osmium (III/II) mediated electrochemical detection is examined for the first time. NO-releasing osmium-mediated glucose sensors are prepared using a S-nitrosothiol impregnated outer tubing and are tested in vitro in both phosphate buffer (pH 7.4) and whole porcine blood. It is demonstrated that after 3 days of continuous NO release at or above physiological levels, there are no negative effects on the osmium mediated electrochemical currents. Indeed, such sensors maintain their functionality, sensitivity, and accuracy for detecting glucose levels in blood. The results suggest that improved performance of both intravascular and, potentially, subcutaneous Os(III/II) mediated glucose sensors may be realized by taking advantage of NO's well-known anticlotting, anti-inflammatory, and antimicrobial properties.
Collapse
Affiliation(s)
- Kyoung Ha Cha
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Mark E. Meyerhoff
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
22
|
Soto RJ, Hall JR, Brown MD, Taylor JB, Schoenfisch MH. In Vivo Chemical Sensors: Role of Biocompatibility on Performance and Utility. Anal Chem 2017; 89:276-299. [PMID: 28105839 PMCID: PMC6773264 DOI: 10.1021/acs.analchem.6b04251] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Robert J. Soto
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Jackson R. Hall
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Micah D. Brown
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - James B. Taylor
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| |
Collapse
|
23
|
Patrick MM, Grillot JM, Derden ZM, Paul DW. Long-term Drifts in Sensitivity Caused by Biofouling of an Amperometric Oxygen Sensor. ELECTROANAL 2016. [DOI: 10.1002/elan.201600653] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Dongmo S, Leyk J, Dosche C, Richter-Landsberg C, Wollenberger U, Wittstock G. Electrogeneration of O 2
.−
and H 2
O 2
Using Polymer-modified Microelectrodes in the Environment of Living Cells. ELECTROANAL 2016. [DOI: 10.1002/elan.201600267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Saustin Dongmo
- Carl-von-Ossietzky University of Oldenburg, Faculty of Mathematics and Science; Institute of Chemistry; 26111 Oldenburg Germany
| | - Janina Leyk
- Carl-von-Ossietzky University of Oldenburg, Department of Neuroscience; Molecular Neurobiology, and Research Center Neurosensory Science; 26111 Oldenburg Germany
| | - Carsten Dosche
- Carl-von-Ossietzky University of Oldenburg, Faculty of Mathematics and Science; Institute of Chemistry; 26111 Oldenburg Germany
| | - Christiane Richter-Landsberg
- Carl-von-Ossietzky University of Oldenburg, Department of Neuroscience; Molecular Neurobiology, and Research Center Neurosensory Science; 26111 Oldenburg Germany
| | - Ulla Wollenberger
- Institute of Biochemistry and Biology; University of Potsdam; Karl-Liebknecht-Str. 24-25 14476 Potsdam/Golm Germany
| | - Gunther Wittstock
- Carl-von-Ossietzky University of Oldenburg, Faculty of Mathematics and Science; Institute of Chemistry; 26111 Oldenburg Germany
| |
Collapse
|
25
|
Wo Y, Brisbois EJ, Bartlett RH, Meyerhoff ME. Recent advances in thromboresistant and antimicrobial polymers for biomedical applications: just say yes to nitric oxide (NO). Biomater Sci 2016; 4:1161-83. [PMID: 27226170 PMCID: PMC4955746 DOI: 10.1039/c6bm00271d] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomedical devices are essential for patient diagnosis and treatment; however, when blood comes in contact with foreign surfaces or homeostasis is disrupted, complications including thrombus formation and bacterial infections can interrupt device functionality, causing false readings and/or shorten device lifetime. Here, we review some of the current approaches for developing antithrombotic and antibacterial materials for biomedical applications. Special emphasis is given to materials that release or generate low levels of nitric oxide (NO). Nitric oxide is an endogenous gas molecule that can inhibit platelet activation as well as bacterial proliferation and adhesion. Various NO delivery vehicles have been developed to improve NO's therapeutic potential. In this review, we provide a summary of the NO releasing and NO generating polymeric materials developed to date, with a focus on the chemistry of different NO donors, the polymer preparation processes, and in vitro and in vivo applications of the two most promising types of NO donors studied thus far, N-diazeniumdiolates (NONOates) and S-nitrosothiols (RSNOs).
Collapse
Affiliation(s)
- Yaqi Wo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
26
|
Ren H, Bull JL, Meyerhoff ME. Transport of Nitric Oxide (NO) in Various Biomedical grade Polyurethanes: Measurements and Modeling Impact on NO Release Properties of Medical Devices. ACS Biomater Sci Eng 2016; 2:1483-1492. [PMID: 27660819 PMCID: PMC5022780 DOI: 10.1021/acsbiomaterials.6b00215] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/27/2016] [Indexed: 11/27/2022]
Abstract
Nitric oxide (NO) releasing polymers are promising in improving the biocompatibility of medical devices. Polyurethanes are commonly used to prepare/fabricate many devices (e.g., catheters); however, the transport properties of NO within different polyurethanes are less studied, creating a gap in the rational design of new NO releasing devices involving polyurethane materials. Herein, we study the diffusion and partitioning of NO in different biomedical polyurethanes via the time-lag method. The diffusion of NO is positively correlated with the PDMS content within the polyurethanes, which can be rationalized by effective media theory considering various microphase morphologies. Using catheters as a model device, the effect of these transport properties on the NO release profiles and the distribution around an asymmetric dual lumen catheter are simulated using finite element analysis and validated experimentally. This method can be readily applied in studying other NO release medical devices with different configurations.
Collapse
Affiliation(s)
- Hang Ren
- Department of Chemistry, University of Michigan , 930 North University, Ann Arbor, Michigan 48109, United States
| | - Joseph L Bull
- Department of Biomedical Engineering, University of Michigan , 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109, United States
| | - Mark E Meyerhoff
- Department of Chemistry, University of Michigan , 930 North University, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
27
|
Affiliation(s)
- Eric Bakker
- Department of Inorganic and
Analytical Chemistry, University of Geneva, Quai E.-Ansermet 30, 1211 Geneva 4, Switzerland
| |
Collapse
|
28
|
Brisbois EJ, Major TC, Goudie MJ, Bartlett RH, Meyerhoff ME, Handa H. Improved hemocompatibility of silicone rubber extracorporeal tubing via solvent swelling-impregnation of S-nitroso-N-acetylpenicillamine (SNAP) and evaluation in rabbit thrombogenicity model. Acta Biomater 2016; 37:111-9. [PMID: 27095484 PMCID: PMC4870167 DOI: 10.1016/j.actbio.2016.04.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/01/2016] [Accepted: 04/13/2016] [Indexed: 01/13/2023]
Abstract
UNLABELLED Blood-contacting devices, including extracorporeal circulation (ECC) circuits, can suffer from complications due to platelet activation and thrombus formation. Development of nitric oxide (NO) releasing polymers is one method to improve hemocompatibility, taking advantage of the ability of low levels of NO to prevent platelet activation/adhesion. In this study a novel solvent swelling method is used to load the walls of silicone rubber tubing with the NO donor S-nitroso-N-acetylpenicillamine (SNAP). This SNAP-silicone rubber tubing exhibits an NO flux of ca. 1×10(-10)molcm(-2)min(-1), which mimics the range of NO release from the normal endothelium, which is stable for at least 4h. Images of the tubing before and after swelling, obtained via scanning electron microscopy, demonstrate that this swelling method has little effect on the surface properties of the tubing. The SNAP-loaded silicone rubber and silicone rubber control tubing are used to fabricate ECC circuits that are evaluated in a rabbit model of thrombogenicity. After 4h of blood flow, the SNAP-loaded silicone rubber circuits were able to preserve the blood platelet count at 64% of baseline (vs. 12% for silicone rubber control). A 67% reduction in the degree of thrombus formation within the thrombogenicity chamber was also observed. This study demonstrates the ability to improve the hemocompatibility of existing/commercial silicone rubber tubing via a simple solvent swelling-impregnation technique, which may also be applicable to other silicone-based blood-contacting devices. STATEMENT OF SIGNIFICANCE Localized nitric oxide (NO) release can be achieved from biomedical grade polymers doped with S-nitroso-N-acetylpenicillamine (SNAP). Despite the promising in vitro and in vivo biocompatibility results reported for these NO releasing polymers, many of these materials may face challenges in being translated to clinical applications, especially in the areas of polymer processing and manufacturing. In this study, we report a solvent swelling-impregnation technique to incorporate SNAP into extracorporeal circuit (ECC) tubing. These NO-releasing ECCs were able to attenuate the activation of platelets and maintain their functionality, while significantly reducing the extent of thrombus formation during 4h blood flow in the rabbit model of thrombogenicity.
Collapse
Affiliation(s)
| | - Terry C Major
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Marcus J Goudie
- Department of Biological Engineering, University of Georgia, Athens, GA, USA
| | | | - Mark E Meyerhoff
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Hitesh Handa
- Department of Biological Engineering, University of Georgia, Athens, GA, USA.
| |
Collapse
|