1
|
Michaud SA, Pětrošová H, Sinclair NJ, Kinnear AL, Jackson AM, McGuire JC, Hardie DB, Bhowmick P, Ganguly M, Flenniken AM, Nutter LMJ, McKerlie C, Smith D, Mohammed Y, Schibli D, Sickmann A, Borchers CH. Multiple reaction monitoring assays for large-scale quantitation of proteins from 20 mouse organs and tissues. Commun Biol 2024; 7:6. [PMID: 38168632 PMCID: PMC10762018 DOI: 10.1038/s42003-023-05687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Mouse is the mammalian model of choice to study human health and disease due to its size, ease of breeding and the natural occurrence of conditions mimicking human pathology. Here we design and validate multiple reaction monitoring mass spectrometry (MRM-MS) assays for quantitation of 2118 unique proteins in 20 murine tissues and organs. We provide open access to technical aspects of these assays to enable their implementation in other laboratories, and demonstrate their suitability for proteomic profiling in mice by measuring normal protein abundances in tissues from three mouse strains: C57BL/6NCrl, NOD/SCID, and BALB/cAnNCrl. Sex- and strain-specific differences in protein abundances are identified and described, and the measured values are freely accessible via our MouseQuaPro database: http://mousequapro.proteincentre.com . Together, this large library of quantitative MRM-MS assays established in mice and the measured baseline protein abundances represent an important resource for research involving mouse models.
Collapse
Affiliation(s)
- Sarah A Michaud
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada.
| | - Helena Pětrošová
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Nicholas J Sinclair
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Andrea L Kinnear
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Angela M Jackson
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Jamie C McGuire
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Darryl B Hardie
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Pallab Bhowmick
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Milan Ganguly
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Ann M Flenniken
- The Center for Phenogenomics, Toronto, ON, Canada
- Sinai Health Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Lauryl M J Nutter
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Derek Smith
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Yassene Mohammed
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, 44139, Germany
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - David Schibli
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, 44139, Germany
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, QC, Canada.
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Zurawska M, Basik M, Aguilar-Mahecha A, Dadlez M, Domanski D. A micro-flow, high-pH, reversed-phase peptide fractionation and collection system for targeted and in-depth proteomics of low-abundance proteins in limiting samples. MethodsX 2023; 11:102306. [PMID: 37577163 PMCID: PMC10413349 DOI: 10.1016/j.mex.2023.102306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/29/2023] [Indexed: 08/15/2023] Open
Abstract
We present a method and a simple system for high-pH RP-LC peptide fractionation of small sample amounts (30-60 µg), at micro-flow rates with micro-liter fraction collection using ammonium bicarbonate as an optimized buffer for system stability and robustness. The method is applicable to targeted mass spectrometry approaches and to in-depth proteomic studies where the amount of sample is limited. Using targeted proteomics with peptide standards, we present the method's analytical parameters, and potential in increasing the detection of low-abundance proteins that are difficult to quantify with direct targeted or global LC-MS analyses. This fractionation system increased peptide signals by up to 18-fold, while maintaining high quantitative precision, with high fractionation reproducibility across varied sample sets. In real applications, it increased the detection of targeted endogenous peptides by two-fold in a 25 cell-cycle-control protein panel, and in-depth MS analyses of nuclear extracts, it allowed the detection of up to 8,896 proteins with 138,417 peptides in 24-concatenated fractions compared to 3,344 proteins with 23,093 peptides without fractionation. In a relevant biological problem of CDK4/6-inhibitors and breast cancer, the method reproduced known information and revealed novel insights, highlighting that it can be successfully applied in studies involving low-abundance proteins and limited samples. •Tested nine high-pH buffer/solvent systems to obtain a robust, effective, and reproducible micro-flow fractionation method which was devoid of commonly encountered LC clogging/pressure issues after months of use.•Peptide enrichment method to improve detection and quantitation of low-abundance proteins in targeted and in-depth proteomic studies.•Can be applied to diverse protein samples where the available amount is limited.
Collapse
Affiliation(s)
- Marta Zurawska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Mark Basik
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | | | - Michal Dadlez
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dominik Domanski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Huynh HH, Kuch K, Orquillas A, Forrest K, Barahona-Carrillo L, Keene D, Henderson VW, Wagner AD, Poston KL, Montine TJ, Lin A, Tian L, MacCoss MJ, Emrick MA, Hoofnagle AN. Metrologically Traceable Quantification of 3 Apolipoprotein E Isoforms in Cerebrospinal Fluid. Clin Chem 2023; 69:734-745. [PMID: 37279935 PMCID: PMC10320014 DOI: 10.1093/clinchem/hvad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/14/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND APOE genotype is associated with Alzheimer disease. Thus, the concentration of apolipoprotein E (apoE) isoforms in cerebrospinal fluid (CSF) could be altered in dementia. However, conflicting results have been obtained in different studies. Carefully validated and standardized assays could improve the interpretation of research findings, allow their replication in other laboratories, and generalize their application. METHODS To evaluate this hypothesis, we aimed to develop, validate, and standardize a new measurement procedure using LC-MS/MS. Purified recombinant apoE protein standards (E2, E3, E4) were thoroughly characterized and used to assign the concentration of a matrix-matched calibration material that contained each apoE isoform, which ensured the metrological traceability of results. RESULTS The assay of each isoform in human CSF was precise (≤11%CV) and of moderate throughput (approximately 80 samples per day). It demonstrated good linearity and parallelism for lumbar CSF, ventricular CSF, and bovine CSF. The use of an SI-traceable matrix-matched calibrator enabled precise and accurate measurements. There was no association observed between total apoE concentration and the number of Ɛ4 alleles in a cohort of 322 participants. However, the concentration of each isoform was significantly different in heterozygotes, with E4 > E3 > E2. Isoform concentrations were associated with cognitive and motor symptoms but contributed negligibly to a predictive model of cognitive impairment that included established CSF biomarkers. CONCLUSIONS Our method simultaneously measures each apoE isoform in human CSF with excellent precision and accuracy. A secondary matrix-matched material has been developed and is available to other laboratories to improve interlaboratory agreement.
Collapse
Affiliation(s)
- Huu-Hien Huynh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Kellie Kuch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Allen Orquillas
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, United States
| | - Katrina Forrest
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Lili Barahona-Carrillo
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Victor W Henderson
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, United States
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, United States
| | - Anthony D Wagner
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Kathleen L Poston
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, United States
| | - Thomas J Montine
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Amy Lin
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, United States
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Michelle A Emrick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Recent advance in the investigation of aquatic “blue foods” at a molecular level: A proteomics strategy. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Surrogate peptide selection and internal standardization for accurate quantification of endogenous proteins. Bioanalysis 2022; 14:949-961. [PMID: 36017716 DOI: 10.4155/bio-2022-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Relative quantification techniques have dominated the field of proteomics. However, biomarker discovery, mathematical model development and studies on transporter-mediated drug disposition still need absolute quantification of proteins. The quality of data of trace-level protein quantification is solely dependent on the specific selection of surrogate peptides. Selection of surrogate peptides has a major impact on the accuracy of the method. In this article, the advanced approaches for selection of surrogate peptides, which can provide absolute quantification of the proteins are discussed. In addition, internal standardization, which accounts for variations in the quantitation process to achieve absolute protein quantification is discussed.
Collapse
|
6
|
Rubinow KB, Zhong G, Czuba LC, Chen JY, Williams E, Parr Z, Khandelwal S, Kim D, LaFrance J, Isoherranen N. Evidence of depot-specific regulation of all-trans-retinoic acid biosynthesis in human adipose tissue. Clin Transl Sci 2022; 15:1460-1471. [PMID: 35213790 PMCID: PMC9199890 DOI: 10.1111/cts.13259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022] Open
Abstract
The prevalence of obesity continues to rise, underscoring the need to better understand the pathways mediating adipose tissue (AT) expansion. All-trans-retinoic acid (atRA), a bioactive vitamin A metabolite, regulates adipogenesis and energy metabolism, and, in rodent studies, aberrant vitamin A metabolism appears a key facet of metabolic dysregulation. The relevance of these findings to human disease is unknown, as are the specific enzymes implicated in vitamin A metabolism within human AT. We hypothesized that in human AT, family 1A aldehyde dehydrogenase (ALDH1A) enzymes contribute to atRA biosynthesis in a depot-specific manner. To test this hypothesis, parallel samples of subcutaneous and omental AT from participants (n = 15) were collected during elective abdominal surgeries to quantify atRA biosynthesis and key atRA synthesizing enzymes. ALDH1A1 was the most abundant ALDH1A isoform in both AT depots with expression approximately twofold higher in omental than subcutaneous AT. ALDH1A2 was detected only in omental AT. Formation velocity of atRA was approximately threefold higher (p = 0.0001) in omental AT (9.8 [7.6, 11.2]) pmol/min/mg) than subcutaneous AT (3.2 [2.1, 4.0] pmol/min/mg) and correlated with ALDH1A2 expression in omental AT (β-coefficient = 3.07, p = 0.0007) and with ALDH1A1 expression in subcutaneous AT (β-coefficient = 0.13, p = 0.003). Despite a positive correlation between body mass index (BMI) and omental ALDH1A1 protein expression (Spearman r = 0.65, p = 0.01), BMI did not correlate with atRA formation. Our findings suggest that ALDH1A2 is the primary mediator of atRA formation in omental AT, whereas ALDH1A1 is the principal atRA-synthesizing enzyme in subcutaneous AT. These data highlight AT depot as a critical variable for defining the roles of retinoids in human AT biology.
Collapse
Affiliation(s)
- Katya B. Rubinow
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
- Division of Metabolism, Endocrinology and NutritionDepartment of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Guo Zhong
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Lindsay C. Czuba
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Judy Y. Chen
- Division of General SurgeryDepartment of SurgeryUniversity of WashingtonSeattleWashingtonUSA
| | - Estell Williams
- Division of General SurgeryDepartment of SurgeryUniversity of WashingtonSeattleWashingtonUSA
| | - Zoe Parr
- Division of General SurgeryDepartment of SurgeryUniversity of WashingtonSeattleWashingtonUSA
| | - Saurabh Khandelwal
- Division of General SurgeryDepartment of SurgeryUniversity of WashingtonSeattleWashingtonUSA
| | - Daniel Kim
- Division of General SurgeryDepartment of SurgeryUniversity of WashingtonSeattleWashingtonUSA
| | - Jeffrey LaFrance
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Nina Isoherranen
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
7
|
Li H, Li T, Wang Y, Zhang S, Sheng H, Fu L. Liquid chromatography coupled to tandem mass spectrometry for comprehensive quantification of crustacean tropomyosin and arginine kinase in food matrix. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Thyroglobulin and thyroid cancer. Cancer Biomark 2022. [DOI: 10.1016/b978-0-12-824302-2.00006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Benesova E, Vidova V, Spacil Z. A comparative study of synthetic winged peptides for absolute protein quantification. Sci Rep 2021; 11:10880. [PMID: 34035340 PMCID: PMC8149832 DOI: 10.1038/s41598-021-90087-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/06/2021] [Indexed: 11/09/2022] Open
Abstract
A proper internal standard choice is critical for accurate, precise, and reproducible mass spectrometry-based proteomics assays. Synthetic isotopically labeled (SIL) proteins are currently considered the gold standard. However, they are costly and challenging to obtain. An alternative approach uses SIL peptides or SIL "winged" peptides extended at C- or/and N-terminus with an amino acid sequence or a tag cleaved during enzymatic proteolysis. However, a consensus on the design of a winged peptide for absolute quantification is missing. In this study, we used human serum albumin as a model system to compare the quantitative performance of reference SIL protein with four different designs of SIL winged peptides: (i) commercially available SIL peptides with a proprietary trypsin cleavable tag at C-terminus, (ii) SIL peptides extended with five amino acid residues at C-terminus, (iii) SIL peptides extended with three and (iv) with five amino acid residues at both C- and N-termini. Our results demonstrate properties of various SIL extended peptides designs, e.g., water solubility and efficiency of trypsin enzymatic cleavage with primary influence on quantitative performance. SIL winged peptides extended with three amino acids at both C- and N-termini demonstrated optimal quantitative performance, equivalent to the SIL protein.
Collapse
Affiliation(s)
- Eliska Benesova
- Faculty of Science, Masaryk University, RECETOX, Kamenice 753/5, Pavilion D29, 625 00, Brno, Czech Republic
| | - Veronika Vidova
- Faculty of Science, Masaryk University, RECETOX, Kamenice 753/5, Pavilion D29, 625 00, Brno, Czech Republic
| | - Zdenek Spacil
- Faculty of Science, Masaryk University, RECETOX, Kamenice 753/5, Pavilion D29, 625 00, Brno, Czech Republic.
| |
Collapse
|
10
|
Shum S, Isoherranen N. Human Fetal Liver Metabolism of Oxycodone Is Mediated by CYP3A7. AAPS J 2021; 23:24. [PMID: 33438174 PMCID: PMC8106324 DOI: 10.1208/s12248-020-00537-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022] Open
Abstract
Oxycodone is an opioid analgesic that is commonly prescribed to pregnant women to treat moderate-to-severe pain. It has been shown to cross the placenta and distribute to the fetus. Oxycodone is mainly metabolized by CYP3A4 in the adult liver. Since CYP3A7 is abundantly expressed in the fetal liver and has overlapping substrate specificity with CYP3A4, we hypothesized that the fetal liver may significantly limit fetal exposure to oxycodone. This study showed that oxycodone is metabolized by CYP3A7 to noroxycodone in fetal liver microsomes (FLMs). The measured CYP3A7 expression was 191-409 pmol/mg protein in 14 FLMs, and an intersystem extrapolation factor (ISEF) for CYP3A7 was 0.016-0.066 in the panel of fetal livers using 6β-OH-testosterone formation as the probe reaction. Noroxycodone formation in the fetal liver was predicted from formation rate by recombinant CYP3A7, CYP3A7 expression level and the established ISEF value with average fold error of 1.25. Based on the intrinsic clearance of oxycodone measured in FLM, the fetal hepatic clearance (CLh) at term was predicted to be 495 (range: 66.4-936) μL/min, a value that is > 99% lower than the predicted adult liver CLh. The predicted fetal hepatic extraction ratio was 0.0019 (range: 0.00003-0.0036). These results suggest that fetal liver metabolism does not quantitatively contribute to the total systemic clearance of oxycodone in pregnant women nor does it provide a barrier for limiting fetal exposure to oxycodone. Additionally, since CYP3A7 forms noroxycodone, an inactive metabolite, the metabolism in the fetal liver is unlikely to affect fetal opioid activity.
Collapse
Affiliation(s)
- Sara Shum
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA.
- University of Washington, Health Science Building Room H-272M, Box 357610, Seattle, Washington, USA.
| |
Collapse
|
11
|
Zhong G, Seaman CJ, Paragas EM, Xi H, Herpoldt KL, King NP, Jones JP, Isoherranen N. Aldehyde Oxidase Contributes to All- Trans-Retinoic Acid Biosynthesis in Human Liver. Drug Metab Dispos 2020; 49:202-211. [PMID: 33355213 DOI: 10.1124/dmd.120.000296] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022] Open
Abstract
All-trans-retinoic acid (atRA) is a critical endogenous signaling molecule. atRA is predominantly synthesized from retinaldehyde by aldehyde dehydrogenase 1A1 (ALDH1A1), but aldehyde oxidase (AOX) may also contribute to atRA biosynthesis. The goal of this study was to test the hypothesis that AOX contributes significantly to atRA formation in human liver. Human recombinant AOX formed atRA from retinaldehyde (Km ∼1.5 ± 0.4 µM; kcat ∼3.6 ± 2.0 minute-1). In human liver S9 fractions (HLS9), atRA formation was observed in the absence of NAD+, suggesting AOX contribution to atRA formation. In the presence of NAD+, Eadie-Hofstee plots of atRA formation in HLS9 indicated that two enzymes contributed to atRA formation. The two enzymes were identified as AOX and ALDH1A1 based on inhibition of atRA formation by AOX inhibitor hydralazine (20%-50% inhibition) and ALDH1A1 inhibitor WIN18,446 (50%-80%inhibition). The expression of AOX in HLS9 was 9.4-24 pmol mg-1 S9 protein, whereas ALDH1A1 expression was 156-285 pmol mg-1 S9 protein measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) quantification of signature peptides. The formation velocity of atRA in the presence of NAD+ correlated significantly with the expression of ALDH1A1 and AOX protein. Taken together, the data show that both AOX and ALDH1A1 contribute to atRA biosynthesis in the human liver, with ALDH1A1 being the high-affinity, low-capacity enzyme and AOX being the low-affinity, high-capacity enzyme. The results suggest that in the case of ALDH1A dysfunction or excess vitamin A, AOX may play an important role in regulating hepatic vitamin A homeostasis and that inhibition of AOX may alter atRA biosynthesis and signaling. SIGNIFICANCE STATEMENT: This study provides direct evidence to show that human AOX converts retinaldehyde to atRA and contributes to hepatic atRA biosynthesis. The finding that AOX may be responsible for 20%-50% of overall hepatic atRA formation suggests that alterations in AOX activity via drug-drug interactions, genetic polymorphisms, or disease states may impact hepatic atRA concentrations and signaling and alter vitamin A homeostasis.
Collapse
Affiliation(s)
- Guo Zhong
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (G.Z., C.J.S., H.X., N.I.); Department of Chemistry, Washington State University, Pullman, Washington (E.M.P., J.P.J.); and Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington (K.-L.H., N.P.K.)
| | - Chris J Seaman
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (G.Z., C.J.S., H.X., N.I.); Department of Chemistry, Washington State University, Pullman, Washington (E.M.P., J.P.J.); and Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington (K.-L.H., N.P.K.)
| | - Erickson M Paragas
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (G.Z., C.J.S., H.X., N.I.); Department of Chemistry, Washington State University, Pullman, Washington (E.M.P., J.P.J.); and Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington (K.-L.H., N.P.K.)
| | - Huaqing Xi
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (G.Z., C.J.S., H.X., N.I.); Department of Chemistry, Washington State University, Pullman, Washington (E.M.P., J.P.J.); and Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington (K.-L.H., N.P.K.)
| | - Karla-Luise Herpoldt
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (G.Z., C.J.S., H.X., N.I.); Department of Chemistry, Washington State University, Pullman, Washington (E.M.P., J.P.J.); and Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington (K.-L.H., N.P.K.)
| | - Neil P King
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (G.Z., C.J.S., H.X., N.I.); Department of Chemistry, Washington State University, Pullman, Washington (E.M.P., J.P.J.); and Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington (K.-L.H., N.P.K.)
| | - Jeffrey P Jones
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (G.Z., C.J.S., H.X., N.I.); Department of Chemistry, Washington State University, Pullman, Washington (E.M.P., J.P.J.); and Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington (K.-L.H., N.P.K.)
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (G.Z., C.J.S., H.X., N.I.); Department of Chemistry, Washington State University, Pullman, Washington (E.M.P., J.P.J.); and Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington (K.-L.H., N.P.K.)
| |
Collapse
|
12
|
Isoherranen N, Zhong G. Biochemical and physiological importance of the CYP26 retinoic acid hydroxylases. Pharmacol Ther 2019; 204:107400. [PMID: 31419517 PMCID: PMC6881548 DOI: 10.1016/j.pharmthera.2019.107400] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
Abstract
The Cytochrome P450 (CYP) family 26 enzymes contribute to retinoic acid (RA) metabolism and homeostasis in humans, mammals and other chordates. The three CYP26 family enzymes, CYP26A1, CYP26B1 and CYP26C1 have all been shown to metabolize all-trans-retinoic acid (atRA) it's 9-cisRA and 13-cisRA isomers and primary metabolites 4-OH-RA and 4-oxo-RA with high efficiency. While no crystal structures of CYP26 enzymes are available, the binding of various ligands has been extensively explored via homology modeling. All three CYP26 enzymes are inducible by treatment with atRA in various prenatal and postnatal tissues and cell types. However, current literature shows that in addition to regulation by atRA, CYP26 enzyme expression is also regulated by other endogenous processes and inflammatory cytokines. In humans and in animal models the expression patterns of CYP26 enzymes have been shown to be tissue and cell type specific, and the expression of the CYP26 enzymes is believed to regulate the formation of critical atRA concentration gradients in various tissue types. Yet, very little data exists on direct disease associations of altered CYP26 expression or activity. Nevertheless, data is emerging describing a variety of human genetic variations in the CYP26 enzymes that are associated with different pathologies. Interestingly, some of these genetic variants result in increased activity of the CYP26 enzymes potentially leading to complex gene-environment interactions due to variability in dietary intake of retinoids. This review highlights the current knowledge of structure-function of CYP26 enzymes and focuses on their role in human retinoid metabolism in different tissues.
Collapse
Affiliation(s)
- Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA.
| | - Guo Zhong
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Li H, Meng F, Jiang L, Ren Y, Qiu Z, Yu P, Peng J. Comparison of LC-MS/MS-based targeted proteomics and conventional analytical methods for monitoring breast cancer resistance protein expression. Life Sci 2019; 231:116548. [DOI: 10.1016/j.lfs.2019.116548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
|
14
|
Zhou M, Duong DM, Johnson ECB, Dai J, Lah JJ, Levey AI, Seyfried NT. Mass Spectrometry-Based Quantification of Tau in Human Cerebrospinal Fluid Using a Complementary Tryptic Peptide Standard. J Proteome Res 2019; 18:2422-2432. [PMID: 30983353 DOI: 10.1021/acs.jproteome.8b00920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here, we report a method for the generation of complementary tryptic (CompTryp) isotope-labeled peptide standards for the relative and absolute quantification of proteins by mass spectrometry (MS). These standards can be digested in parallel with either trypsin (Tryp-C) or trypsin-N (Tryp-N), to generate peptides that significantly overlap in primary sequence having C- and N-terminal arginine and lysine residues, respectively. As a proof of concept, an isotope-labeled CompTryp standard was synthesized for Tau, a well-established biomarker in Alzheimer's disease (AD), which included both N- and C-terminal heavy isotope-labeled (15N and 13C) arginine residues and flanking amino acid sequences to monitor proteolytic digestion. Despite having the exact same mass, the N- and C-terminal heavy Tau peptides are distinguishable by retention time and MS/MS fragmentation profiles. The isotope-labeled Tau CompTryp standard was added to human cerebrospinal fluid (CSF) followed by parallel digestion with Tryp-N and Tryp-C. The native and isotope-labeled peptide pairs were quantified by parallel reaction monitoring (PRM) in a single assay. Notably, both tryptic peptides were effective at quantifying Tau in human CSF, and both showed a significant difference in CSF Tau levels between AD and controls. Treating these CompTryp Tau peptide measurements as independent replicates also improved the coefficient of variation and correlation with Tau immunoassays. More broadly, we propose that CompTryp standards can be generated for any protein of interest, providing an efficient method to improve the robustness and reproducibility for MS analysis of clinical and research samples.
Collapse
Affiliation(s)
| | | | | | - Jingting Dai
- Department of Neurology, Second Xiangya Hospital , Central South University , Changsha , Hunan 410078 , China
| | | | | | | |
Collapse
|
15
|
Korte R, Oberleitner D, Brockmeyer J. Determination of food allergens by LC-MS: Impacts of sample preparation, food matrix, and thermal processing on peptide detectability and quantification. J Proteomics 2018; 196:131-140. [PMID: 30408562 DOI: 10.1016/j.jprot.2018.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/17/2018] [Accepted: 11/02/2018] [Indexed: 01/02/2023]
Abstract
Food allergies are a growing worldwide concern and the contamination of products with food allergens represents a significant health risk to allergic consumers. With the introduction of reference doses, quantitative methods are needed for the monitoring of allergen levels, and the potential of LC-MS/MS is of hugely growing interest. In this study, we demonstrate that relevant food matrices (bakery products and chocolates) and thermal food processing substantially influence the quantification of 18 marker peptides from various nut and peanut allergens via targeted proteomics. In addition, we characterize the individual release kinetics of marker peptides and provide examples for metastable marker peptide candidates. Matrix recovery rates overall ranged between 15 and 250% with the observed variation being linked to the individual peptide structure as well as to specific matrix interferences. In contrast, thermal processing considerably influences the detectability of allergens on the protein level as different marker peptides from the identical parent allergen are similarly affected, leading to a loss in signal of up to 83% in extreme cases after a 45-min simulated baking. Provided data are finally used for evaluation of different calibrators as well as the overall potential and challenges of LC-MS for the absolute quantification of food allergens. SIGNIFICANCE: With the scientific discussion moving towards a risk-based management of food allergens, including the establishment of threshold doses, robust methods for the absolute quantification of allergens in food samples are urgently needed. Because the currently used antibody- and DNA-based technologies show severe limitations in terms of specificity and reproducibility, LC-MS has emerged as a promising alternative. Its application to absolute quantification, however, first requires an understanding of the various impacts that affect quantification results, including different food matrices, sample preparation, and thermal processing of foodstuffs. Knowledge of these factors, which are assessed as part of a comprehensive survey in this study, is also an important prerequisite to evaluate means of calibration for an LC-MS-based quantification of food allergens.
Collapse
Affiliation(s)
- Robin Korte
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster 48149, Germany
| | - Daniela Oberleitner
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster 48149, Germany
| | - Jens Brockmeyer
- Institute of Biochemistry and Technical Biochemistry, Department of Food Chemistry, University of Stuttgart, Allmandring 5b, Stuttgart 70569, Germany.
| |
Collapse
|
16
|
Development and validation of analytical methodology by GC-FID using hexadecyl propanoate as an internal standard to determine the bovine tallow methyl esters content. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1093-1094:134-140. [DOI: 10.1016/j.jchromb.2018.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/15/2018] [Accepted: 06/14/2018] [Indexed: 11/22/2022]
|
17
|
Andjelković U, Josić D. Mass spectrometry based proteomics as foodomics tool in research and assurance of food quality and safety. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Martinović T, Šrajer Gajdošik M, Josić D. Sample preparation in foodomic analyses. Electrophoresis 2018; 39:1527-1542. [DOI: 10.1002/elps.201800029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Djuro Josić
- Department of Biotechnology; University of Rijeka; Rijeka Croatia
- Department of Medicine; Brown Medical School; Brown University; Providence RI USA
| |
Collapse
|
19
|
Gundinger T, Pansy A, Spadiut O. A sensitive and robust HPLC method to quantify recombinant antibody fragments in E . coli crude cell lysate. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1083:242-248. [DOI: 10.1016/j.jchromb.2018.02.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/19/2018] [Accepted: 02/28/2018] [Indexed: 12/01/2022]
|
20
|
Dittrich J, Adam M, Maas H, Hecht M, Reinicke M, Ruhaak LR, Cobbaert C, Engel C, Wirkner K, Löffler M, Thiery J, Ceglarek U. Targeted On-line SPE-LC-MS/MS Assay for the Quantitation of 12 Apolipoproteins from Human Blood. Proteomics 2018; 18. [PMID: 29280342 DOI: 10.1002/pmic.201700279] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/01/2017] [Indexed: 12/22/2022]
Abstract
Laborious sample pretreatment of biological samples represents the most limiting factor for the translation of targeted proteomics assays from research to clinical routine. An optimized method for the simultaneous quantitation of 12 major apolipoproteins (apos) combining on-line SPE and fast LC-MS/MS analysis in 6.5 min total run time was developed, reducing the manual sample pretreatment time of 3 μL serum or plasma by 60%. Within-run and between-day imprecisions below 10 and 15% (n = 10) and high recovery rates (94-131%) were obtained applying the high-throughput setup. High-quality porcine trypsin was used, which outperformed cost-effective bovine trypsin regarding digestion efficiency. Comparisons with immunoassays and another LC-MS/MS assay demonstrated good correlation (Pearson's R: 0.81-0.98). Further, requirements on sample quality concerning sampling, processing, and long-term storage up to 1 year were investigated revealing significant influences of the applied sampling material and coagulant on quantitation results. Apo profiles of 1339 subjects of the LIFE-Adult-Study were associated with lifestyle and physiological parameters as well as establish parameters of lipid metabolism (e.g., triglycerides, cholesterol). Besides gender effects, most significant impact was seen regarding lipid-lowering medication. In conclusion, this novel highly standardized, high-throughput targeted proteomics assay utilizes a fast, simultaneous analysis of 12 apos from least sample amounts.
Collapse
Affiliation(s)
- Julia Dittrich
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany.,LIFE, Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Melanie Adam
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Hilke Maas
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Max Hecht
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Madlen Reinicke
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Christa Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Christoph Engel
- LIFE, Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany.,Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany
| | - Kerstin Wirkner
- LIFE, Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Markus Löffler
- LIFE, Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany.,Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany.,LIFE, Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany.,LIFE, Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| |
Collapse
|
21
|
Oeckl P, Steinacker P, Otto M. Comparison of Internal Standard Approaches for SRM Analysis of Alpha-Synuclein in Cerebrospinal Fluid. J Proteome Res 2017; 17:516-523. [PMID: 29183121 DOI: 10.1021/acs.jproteome.7b00660] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Absolute protein quantification by selected reaction monitoring (SRM, also MRM) is an alternative to immunoassays, and the gold standard here is the addition of stable-isotope labeled (SIL) proteins (PSAQ). Cerebrospinal fluid (CSF) is the preferred source of biomarkers for neurological diseases, and recent improvements in mass spectrometry enable the quantification of disease-relevant proteins in CSF. We used alpha-synuclein SRM to investigate alternatives to the PSAQ approach in human CSF regarding precision and accuracy, including SIL peptides, winged SIL (WiSIL) peptides, and quantitative protein epitope signature tags (QPrESTs). All approaches yielded precise results in CSF with CV values <15% in several runs for all four measured peptides. PSAQ and QPrEST also showed good accuracy (deviation ≤15%), whereas SIL and WiSIL peptides yielded deviations up to 54% that greatly depended on the measured peptide. Total protein concentration in CSF did not affect precision and accuracy. Thus, our study indicates that all four approaches are suitable for relative quantification of alpha-synuclein in CSF. QPrESTs are a valuable alternative to PSAQ in terms of precision and accuracy, although SIL and WiSIL peptides can yield accurate results as well when peptides are selected consciously.
Collapse
Affiliation(s)
- Patrick Oeckl
- Department of Neurology, Ulm University Hospital , D-89081 Ulm, Germany
| | - Petra Steinacker
- Department of Neurology, Ulm University Hospital , D-89081 Ulm, Germany
| | - Markus Otto
- Department of Neurology, Ulm University Hospital , D-89081 Ulm, Germany
| |
Collapse
|
22
|
Bhatt DK, Prasad B. Critical Issues and Optimized Practices in Quantification of Protein Abundance Level to Determine Interindividual Variability in DMET Proteins by LC-MS/MS Proteomics. Clin Pharmacol Ther 2017; 103:619-630. [PMID: 28833066 DOI: 10.1002/cpt.819] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/24/2017] [Accepted: 08/12/2017] [Indexed: 12/16/2022]
Abstract
Protein quantification data on drug metabolizing enzymes and transporters (collectively referred as DMET proteins) in human tissues are useful in predicting interindividual variability in drug disposition. While targeted proteomics is an emerging technique for quantification of DMET proteins, the methodology involves significant technical challenges especially when multiple samples are analyzed in a single study over a long period of time. Therefore, it is important to thoroughly address the critical variables that could affect DMET protein quantification.
Collapse
Affiliation(s)
- Deepak Kumar Bhatt
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| |
Collapse
|