1
|
Won A, Choi S, Kim A, Hong J. Effect of DNA aptamer through blocking of negative regulation of Wnt/β-catenin signaling in human hair follicle dermal papilla cells. Skin Res Technol 2023; 29:e13326. [PMID: 37231925 PMCID: PMC10182398 DOI: 10.1111/srt.13326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/03/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND When Wnt binds to the N-terminal of Frizzled, a conformational change occurs in the C-terminal of Frizzled, which binds to Dishevelled1 (Dvl1), a Wnt signaling component protein. When Dvl1 binds to the C-terminal of Frizzled, the concentration of β-catenin increases and it enters the nucleus to transmit cell proliferation signals. CXXC-type zinc finger protein 5 (CXXC5) binds to the Frizzled binding site of Dvl1 and interferes with Dvl1-Frizzled binding. Therefore, blocking CXXC5-Dvl1 binding may induce Wnt signal transduction. MATERIALS AND METHODS We used WD-aptamer, a DNA aptamer that specifically binds to Dvl1 and interferes with CXXC5-Dvl1 interaction. We confirmed the penetration of WD-aptamer into human hair follicle dermal papilla cells (HFDPCs) and measured β-catenin expression following treatment with WD-aptamer in HFDPCs, wherein Wnt signaling was activated by Wnt3a. In addition, MTT assay was performed to investigate the effect of WD-aptamer on cell proliferation. RESULTS WD-aptamer penetrated the cell, affected Wnt signaling, and increased β-catenin expression, which plays an important role in signaling. Additionally, WD-aptamer induced HFDPC proliferation. CONCLUSION CXXC5-associated negative feedback of Wnt/β-catenin signaling can be regulated by interfering with CXXC5-Dvl1 interaction.
Collapse
Affiliation(s)
- Areum Won
- Nexmos, Inc.Sinsu‐ro, Suji‐guYongin‐siGyeonggi‐doRepublic of Korea
| | - Sooho Choi
- Nexmos, Inc.Sinsu‐ro, Suji‐guYongin‐siGyeonggi‐doRepublic of Korea
| | - A‐Ru Kim
- Nexmos, Inc.Sinsu‐ro, Suji‐guYongin‐siGyeonggi‐doRepublic of Korea
| | - Junkee Hong
- Nexmos, Inc.Sinsu‐ro, Suji‐guYongin‐siGyeonggi‐doRepublic of Korea
| |
Collapse
|
2
|
|
3
|
The Evolution of Molecular Recognition: From Antibodies to Molecularly Imprinted Polymers (MIPs) as Artificial Counterpart. J Funct Biomater 2022; 13:jfb13010012. [PMID: 35225975 PMCID: PMC8883926 DOI: 10.3390/jfb13010012] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/15/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Molecular recognition is a useful property shared by various molecules, such as antibodies, aptamers and molecularly imprinted polymers (MIPs). It allows these molecules to be potentially involved in many applications including biological and pharmaceutical research, diagnostics, theranostics, therapy and drug delivery. Antibodies, naturally produced by plasma cells, have been exploited for this purpose, but they present noticeable drawbacks, above all production cost and time. Therefore, several research studies for similar applications have been carried out about MIPs and the main studies are reported in this review. MIPs, indeed, are more versatile and cost-effective than conventional antibodies, but the lack of toxicity studies and their scarce use for practical applications, make it that further investigations on this kind of molecules need to be conducted.
Collapse
|
4
|
Hybridization chain reaction and its applications in biosensing. Talanta 2021; 234:122637. [PMID: 34364446 DOI: 10.1016/j.talanta.2021.122637] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022]
Abstract
To pursue the sensitive and efficient detection of informative biomolecules for bioanalysis and disease diagnosis, a series of signal amplification techniques have been put forward. Among them, hybridization chain reaction (HCR) is an isothermal and enzyme-free process where the cascade reaction of hybridization events is initiated by a target analyte, yielding a long nicked dsDNA molecule analogous to alternating copolymers. Compared with conventional polymerase chain reaction (PCR) that can proceed only with the aid of polymerases and complicated thermal cycling, HCR has attracted increasing attention because it can occur under mild conditions without using enzymes. As a powerful signal amplification tool, HCR has been employed to construct various simple, sensitive and economic biosensors for detecting nucleic acids, small molecules, cells, and proteins. Moreover, HCR has also been applied to assemble complex nanostructures, some of which even act as the carriers to execute the targeted delivery of anticancer drugs. Recently, HCR has engendered tremendous progress in RNA imaging applications, which can not only achieve endogenous RNA imaging in living cells or even living animals but also implement imaging-guided photodynamic therapy, paving a promising path to promote the development of theranostics. In this review, we begin with the fundamentals of HCR and then focus on summarizing the recent advances in HCR-based biosensors for biosensing and RNA imaging strategies. Further, the challenges and future perspective of HCR-based signal amplification in biosensing and theranostic application are discussed.
Collapse
|
5
|
Zhu J, Liu X, Zheng J, Jiang D. Tuning the conformation of G-quadruplexes by sodium and potassium ions: application to photometric and fluorometric determination of amyloid β(1-40). Mikrochim Acta 2021; 188:98. [PMID: 33624166 DOI: 10.1007/s00604-021-04736-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/28/2021] [Indexed: 11/26/2022]
Abstract
A dual channel method is described for the determination of the amyloid-β peptide Aβ(1-40) that is associated with Alzheimer's disease. The method exploits (a) conformational changes of a G-quadruplex that are triggered by Na+ and K+ ions and (b) the strong affinity between Aβ(1-40) and Cu2+. A G-quadruplex DNA forms an antiparallel structure in the presence of Na+ and can catalyze the oxidation of tetramethylbenzidine by H2O2 system in the presence of Cu2+ to form a visible blue color. If, however, Cu2+ binds to Aβ(1-40), the blue color is no longer formed. Measuring the absorption decrease at 452 nm, the determination of Aβ(1-40) is realized. If K+ is added to the Na+-containing buffer, the antiparallel G-quadruplex DNA is transformed to parallel. This leads to the insertion of protoporphyrin IX (PPIX) into the G-quadruplex and generates enhanced fluorescent signal, with excitation/emission wavelength at 410/630 nm. The G-quadruplex then catalyzes the metalation of PPIX by Cu2+, and the fluorescence intensity decreases. In the presence of Aβ(1-40), the formation of Aβ(1-40)-Cu2+ triggers the recovery of the fluorescence. The Na+/K+-induced tuning of the conformation of the G-quadruplex with the same sequence enables dual (colorimetric and fluorometric) determination of Aβ(1-40), with detection limits of 4.9 pM and 2.3 pM, respectively. The cost is quite low since the developed strategy is label free and enzyme free by using low-cost DNA and Cu2+. More importantly, the dual channel determination operation is very simple without any further modification process. Tuning the conformation of G-quadruplexes by sodium(I) and potassium(I): application to photometric and fluorometric determination of amyloid β(1-40).
Collapse
Affiliation(s)
- Jing Zhu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China.
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, People's Republic of China.
| | - Xia Liu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Jinxue Zheng
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Dafeng Jiang
- Department of Physical and Chemical Testing, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China.
| |
Collapse
|
6
|
Nishio M, Tsukakoshi K, Ikebukuro K. G-quadruplex: Flexible conformational changes by cations, pH, crowding and its applications to biosensing. Biosens Bioelectron 2021; 178:113030. [PMID: 33524709 DOI: 10.1016/j.bios.2021.113030] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
G-quadruplex (G4) is a non-canonical structure that is formed in G-rich sequences of nucleic acids. G4s play important roles in vivo, such as telomere maintenance, transcription, and DNA replication. There are three typical topologies of G4: parallel, anti-parallel, and hybrid. In general, metal cations, such as potassium and sodium, stabilize G4s through coordination in the G-quartet. While G4s have some functions in vivo, there are many reports of developed applications that use G4s. As various conformations of G4s could form from one sequence depending on varying conditions, many researchers have developed G4-based sensors. Furthermore, G4 is a great scaffold of aptamers since many aptamers folded into G4s have also been reported. However, there are some challenges about its practical use due to the difference between practical sample conditions and experimental ones. G4 conformations are dramatically altered by the surrounding conditions, such as metal cations, pH, and crowding. Many studies have been conducted to characterize G4 conformations under various conditions, not only to use G4s in practical applications but also to reveal its function in vivo. In this review, we summarize recent studies that have investigated the effects of surrounding conditions (e.g., metal cations, pH, and crowding) on G4 conformations and the application of G4s mainly in biosensor fields, and in others.
Collapse
Affiliation(s)
- Maui Nishio
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
7
|
Deore PS, Manderville RA. Ratiometric fluorescent sensing of the parallel G-quadruplex produced by PS2.M: implications for K + detection. Analyst 2020; 145:1288-1293. [PMID: 31895357 DOI: 10.1039/c9an02122a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent ligands that selectively bind to a specific G-quadruplex (GQ) topology (antiparallel, hybrid or parallel) are highly sought after for aptasensor development and nanodevice construction. The coumarin-benzothiazole hybrid (BnBtC) is an internal charge transfer (ICT) ratiometric fluorescent probe, which displays two well-resolved emission bands at ∼450 nm for the coumarin component and ∼650 nm for the ICT band. The red ICT emission of BnBtC displays turn-on responses to protic solvent polarity and upon binding GQ structures, especially those produced by the hemin binding aptamer (PS2.M). In the present work, BnBtC was found to exhibit enhanced ICT emission upon binding the parallel GQ topology of PS2.M that is selectively produced in the presence of K+. This ability to discriminate K+ from other cationic metal ions through a turn-on ratiometric fluorescent response demonstrates the potential utility of the BnBtC probe for biosensor applications.
Collapse
Affiliation(s)
- Prashant S Deore
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | |
Collapse
|
8
|
Xiao F, Chen Z, Wei Z, Tian L. Hydrophobic Interaction: A Promising Driving Force for the Biomedical Applications of Nucleic Acids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001048. [PMID: 32832360 PMCID: PMC7435255 DOI: 10.1002/advs.202001048] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/28/2020] [Indexed: 05/13/2023]
Abstract
The comprehensive understanding and proper use of supramolecular interactions have become critical for the development of functional materials, and so is the biomedical application of nucleic acids (NAs). Relatively rare attention has been paid to hydrophobic interaction compared with hydrogen bonding and electrostatic interaction of NAs. However, hydrophobic interaction shows some unique properties, such as high tunability for application interest, minimal effect on NA functionality, and sensitivity to external stimuli. Therefore, the widespread use of hydrophobic interaction has promoted the evolution of NA-based biomaterials in higher-order self-assembly, drug/gene-delivery systems, and stimuli-responsive systems. Herein, the recent progress of NA-based biomaterials whose fabrications or properties are highly determined by hydrophobic interactions is summarized. 1) The hydrophobic interaction of NA itself comes from the accumulation of base-stacking forces, by which the NAs with certain base compositions and chain lengths show properties similar to thermal-responsive polymers. 2) In conjugation with hydrophobic molecules, NA amphiphiles show interesting self-assembly structures with unique properties in many new biosensing and therapeutic strategies. 3) The working-mechanisms of some NA-based complex materials are also dependent on hydrophobic interactions. Moreover, in recent attempts, NA amphiphiles have been applied in organizing macroscopic self-assembly of DNA origami and controlling the cell-cell interactions.
Collapse
Affiliation(s)
- Fan Xiao
- Department of Materials Science and EngineeringSouthern University of Science and Technology1088 Xueyuan Blvd.Nanshan DistrictShenzhenGuangdong518055P. R. China
- School of Materials Science and EngineeringHarbin Institute of TechnologyNangang DistrictHarbin150001P. R. China
| | - Zhe Chen
- Department of Materials Science and EngineeringSouthern University of Science and Technology1088 Xueyuan Blvd.Nanshan DistrictShenzhenGuangdong518055P. R. China
- Cancer Centre and Centre of ReproductionDevelopment and AgingFaculty of Health SciencesUniversity of MacauTaipaMacau999078P. R. China
| | - Zixiang Wei
- Department of Materials Science and EngineeringSouthern University of Science and Technology1088 Xueyuan Blvd.Nanshan DistrictShenzhenGuangdong518055P. R. China
- Cancer Centre and Centre of ReproductionDevelopment and AgingFaculty of Health SciencesUniversity of MacauTaipaMacau999078P. R. China
| | - Leilei Tian
- Department of Materials Science and EngineeringSouthern University of Science and Technology1088 Xueyuan Blvd.Nanshan DistrictShenzhenGuangdong518055P. R. China
| |
Collapse
|
9
|
Zhang R, Wang Y, Qu X, Li S, Zhao Y, Zhang F, Liu S, Huang J, Yu J. A label-free electrochemical platform for the detection of antibiotics based on cascade enzymatic amplification coupled with a split G-quadruplex DNAzyme. Analyst 2019; 144:4995-5002. [PMID: 31328736 DOI: 10.1039/c9an00857h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, a split G-quadruplex DNAzyme as a signal reporter was integrated into an electrochemical sensing platform for the detection of antibiotics with specificity and sensitivity. To improve the signal-to-noise ratio, two G-rich oligonucleotide sequences (G1 and G2) were blocked into two different hairpin probes, preventing the two segments from assembling into a spilt G-quadruplex structure. Moreover, we designed a double-arch probe, consisting of an aptamer as the recognition element and two-step enzymatic signal amplification. Concretely, the first is the Nt.BbvCI-assisted nicking cyclic reaction activated by target-aptamer binding, and the second is exonuclease III-aided cyclic amplification for generating abundant G1 and G2. The modified capture probe on the electrode was used to combine G1 and G2 to form the spilt G-quadruplex/hemin when K+ and hemin were present. This complex plays the role of DNAzyme with superior horseradish peroxidase activity in catalyzing the decomposition of H2O2. Under optimal conditions, this biosensor showed an excellent performance for sensing kanamycin with a detection limit of 83 fM for kanamycin concentrations ranging from 100 fM to 1 nM. Hence, the proposed strategy has potential as an efficient and actual platform for small molecule analysis.
Collapse
Affiliation(s)
- Rufeng Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Umar MI, Ji D, Chan CY, Kwok CK. G-Quadruplex-Based Fluorescent Turn-On Ligands and Aptamers: From Development to Applications. Molecules 2019; 24:E2416. [PMID: 31262059 PMCID: PMC6650947 DOI: 10.3390/molecules24132416] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023] Open
Abstract
Guanine (G)-quadruplexes (G4s) are unique nucleic acid structures that are formed by stacked G-tetrads in G-rich DNA or RNA sequences. G4s have been reported to play significant roles in various cellular events in both macro- and micro-organisms. The identification and characterization of G4s can help to understand their different biological roles and potential applications in diagnosis and therapy. In addition to biophysical and biochemical methods to interrogate G4 formation, G4 fluorescent turn-on ligands can be used to target and visualize G4 formation both in vitro and in cells. Here, we review several representative classes of G4 fluorescent turn-on ligands in terms of their interaction mechanism and application perspectives. Interestingly, G4 structures are commonly identified in DNA and RNA aptamers against targets that include proteins and small molecules, which can be utilized as G4 tools for diverse applications. We therefore also summarize the recent development of G4-containing aptamers and highlight their applications in biosensing, bioimaging, and therapy. Moreover, we discuss the current challenges and future perspectives of G4 fluorescent turn-on ligands and G4-containing aptamers.
Collapse
Affiliation(s)
- Mubarak I Umar
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Danyang Ji
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Chun-Yin Chan
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
11
|
Zhou W, Yu Z, Ma G, Jin T, Li Y, Fan L, Li X. Thioflavin T specifically brightening “Guanine Island” in duplex-DNA: a novel fluorescent probe for single-nucleotide mutation. Analyst 2019; 144:2284-2290. [DOI: 10.1039/c8an02430h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, we found that Thioflavin T (ThT) could specifically bind with a G-GGG unit (named as “Guanine Island”) in double stranded DNA (ds-DNA).
Collapse
Affiliation(s)
- Wei Zhou
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Ze Yu
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Ge Ma
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Tian Jin
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Yunchao Li
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Louzhen Fan
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Xiaohong Li
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| |
Collapse
|
12
|
Li C, Chen H, Zhou L, Shi H, He X, Yang X, Wang K, Liu J. Single-stranded DNA designed lipophilic G-quadruplexes as transmembrane channels for switchable potassium transport. Chem Commun (Camb) 2019; 55:12004-12007. [DOI: 10.1039/c9cc04176a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
G-quadruplex single-stranded DNA was modified lipophilically and developed as a biomimetic ion channel for selective and switchable K+ transport.
Collapse
Affiliation(s)
- Chunying Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Hui Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Li Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| |
Collapse
|
13
|
|
14
|
Kim J, Jang D, Park H, Jung S, Kim DH, Kim WJ. Functional-DNA-Driven Dynamic Nanoconstructs for Biomolecule Capture and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707351. [PMID: 30062803 DOI: 10.1002/adma.201707351] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The discovery of sequence-specific hybridization has allowed the development of DNA nanotechnology, which is divided into two categories: 1) structural DNA nanotechnology, which utilizes DNA as a biopolymer; and 2) dynamic DNA nanotechnology, which focuses on the catalytic reactions or displacement of DNA structures. Recently, numerous attempts have been made to combine DNA nanotechnologies with functional DNAs such as aptamers, DNAzymes, amplified DNA, polymer-conjugated DNA, and DNA loaded on functional nanoparticles for various applications; thus, the new interdisciplinary research field of "functional DNA nanotechnology" is initiated. In particular, a fine-tuned nanostructure composed of functional DNAs has shown immense potential as a programmable nanomachine by controlling DNA dynamics triggered by specific environments. Moreover, the programmability and predictability of functional DNA have enabled the use of DNA nanostructures as nanomedicines for various biomedical applications, such as cargo delivery and molecular drugs via stimuli-mediated dynamic structural changes of functional DNAs. Here, the concepts and recent case studies of functional DNA nanotechnology and nanostructures in nanomedicine are reviewed, and future prospects of functional DNA for nanomedicine are indicated.
Collapse
Affiliation(s)
- Jinhwan Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
| | - Donghyun Jang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Hyeongmok Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Sungjin Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon, 57922, Korea
| | - Won Jong Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| |
Collapse
|
15
|
Augspurger EE, Rana M, Yigit MV. Chemical and Biological Sensing Using Hybridization Chain Reaction. ACS Sens 2018; 3:878-902. [PMID: 29733201 DOI: 10.1021/acssensors.8b00208] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the advent of its theoretical discovery more than 30 years ago, DNA nanotechnology has been used in a plethora of diverse applications in both the fundamental and applied sciences. The recent prominence of DNA-based technologies in the scientific community is largely due to the programmable features stored in its nucleobase composition and sequence, which allow it to assemble into highly advanced structures. DNA nanoassemblies are also highly controllable due to the precision of natural and artificial base-pairing, which can be manipulated by pH, temperature, metal ions, and solvent types. This programmability and molecular-level control have allowed scientists to create and utilize DNA nanostructures in one, two, and three dimensions (1D, 2D, and 3D). Initially, these 2D and 3D DNA lattices and shapes attracted a broad scientific audience because they are fundamentally captivating and structurally elegant; however, transforming these conceptual architectural blueprints into functional materials is essential for further advancements in the DNA nanotechnology field. Herein, the chemical and biological sensing applications of a 1D DNA self-assembly process known as hybridization chain reaction (HCR) are reviewed. HCR is a one-dimensional (1D) double stranded (ds) DNA assembly process initiated only in the presence of a specific short ssDNA (initiator) and two kinetically trapped DNA hairpin structures. HCR is considered an enzyme-free isothermal amplification process, which shows substantial promise and offers a wide range of applications for in situ chemical and biological sensing. Due to its modular nature, HCR can be programmed to activate only in the presence of highly specific biological and/or chemical stimuli. HCR can also be combined with different types of molecular reporters and detection approaches for various analytical readouts. While the long dsDNA HCR product may not be as structurally attractive as the 2D and 3D DNA networks, HCR is highly instrumental for applied biological, chemical, and environmental sciences, and has therefore been studied to foster a variety of objectives. In this review, we have focused on nucleic acid, protein, metabolite, and heavy metal ion detection using this 1D DNA nanotechnology via fluorescence, electrochemical, and nanoparticle-based methodologies.
Collapse
|
16
|
Copper (II) oxide nanozyme based electrochemical cytosensor for high sensitive detection of circulating tumor cells in breast cancer. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Fozooni T, Ravan H, Sasan H. Signal Amplification Technologies for the Detection of Nucleic Acids: from Cell-Free Analysis to Live-Cell Imaging. Appl Biochem Biotechnol 2017; 183:1224-1253. [DOI: 10.1007/s12010-017-2494-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/24/2017] [Indexed: 12/15/2022]
|
18
|
Lu D, He L, Wang Y, Xiong M, Hu M, Liang H, Huan S, Zhang XB, Tan W. Tetraphenylethene derivative modified DNA oligonucleotide for in situ potassium ion detection and imaging in living cells. Talanta 2017; 167:550-556. [PMID: 28340760 DOI: 10.1016/j.talanta.2017.02.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/18/2017] [Accepted: 02/26/2017] [Indexed: 12/19/2022]
Abstract
The monitoring of K+ is very important and emergency because of their unique relationship in various disease diagnosis and treatment. G-quadruplex analogue is a classical recognition unit for K+ detection and has been widely applied in K+ relevant research. Common fluorescent dyes were employed for design of G-quadruplex structure-based K+ probes which suffered from the aggregation-caused quenching effect, and possibly limited the biological applications in living systems. Herein, we report an aggregation-induced emission (AIE) effect-based fluorescent probe for cellular K+ analysis and imaging. Benefitting from the K+ triggered AIE phenomenon, the designed TPE derivative modified guanine (G)-rich oligonucleotide fluorescent probe (TPE-oligonucleotide probe) exhibits high sensitivity (∼10-fold higher than most reported G-quadruplex-based probes) with extended photostability which facilitates the prolonged fluorescence observations of K+ in living cells. On the basis of these advantages, the TPE-oligonucleotide probe serves as a promising candidate for the functional study and analysis of K+.
Collapse
Affiliation(s)
- Danqing Lu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Lei He
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Yaya Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Mengyi Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Miaomiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Hao Liang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Shuangyan Huan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China.
| |
Collapse
|
19
|
Kim BJ, Kim YR, Seo M, Kim EJ, Jeon J, Chung TD. Electrochemical Impedance Spectroscopy at Well-Controlled dc Bias for Nanoporous Platinum Microelectrodes in Rat Embryo Brain. ChemElectroChem 2016. [DOI: 10.1002/celc.201600404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Beom Jin Kim
- Department of Chemistry; Seoul National University; Seoul 00826 Republic of Korea
| | - Yang-Rae Kim
- Department of Chemistry; Kwangwoon University; Seoul 01897 Republic of Korea
| | - Minjee Seo
- Department of Chemistry; Seoul National University; Seoul 00826 Republic of Korea
| | - Eun Joong Kim
- Department of Chemistry; Seoul National University; Seoul 00826 Republic of Korea
| | - Joohee Jeon
- Department of Chemistry; Seoul National University; Seoul 00826 Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry; Seoul National University; Seoul 00826 Republic of Korea
- Advanced Institutes of Convergence Technology; Suwon-Si Gyeonggi-do 16229 Republic of Korea
| |
Collapse
|
20
|
Liu W, Lin M, Yang X, Wu B, Chen N, Wang Q, Wang K, Qin S. Investigation of newly identified G-quadruplexes and their application to DNA detection. Analyst 2016; 141:4463-9. [PMID: 27215424 DOI: 10.1039/c6an00987e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
G-quadruplexes are guanine-rich nucleic acid sequences that can act as universal signal-transducers and generate colorimetric, fluorescence, and chemiluminescence signals when complexed with different ligands. Due to their merits including easy modification and low cost, it is of great importance to explore new G-quadruplexes with improved performance. Herein the properties of newly identified G-quadruplexes 9th-3-35 and 10th-2-40 were investigated in detail with UV-vis spectra, circular dichroism (CD) spectra and fluorescence spectra. The results indicated that 9th-3-35 and 10th-2-40 exhibited excellent peroxidase-like activity, as well as fluorescence enhancement of thioflavin T (ThT). Furthermore, the application of G-quadruplexes to DNA detection was performed on account of the ThT fluorescence enhancement, and the limit of detection was as low as 8 pM. This study implied that 9th-3-35 and 10th-2-40 are competitive candidates as signal-transducers in the design of bioassays.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha, 410082, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Cheng H, Zhang L, He J, Guo W, Zhou Z, Zhang X, Nie S, Wei H. Integrated Nanozymes with Nanoscale Proximity for in Vivo Neurochemical Monitoring in Living Brains. Anal Chem 2016; 88:5489-97. [DOI: 10.1021/acs.analchem.6b00975] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hanjun Cheng
- College
of Engineering and Applied Sciences, Nanjing National
Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
- Collaborative
Innovation Center of Chemistry for Life Sciences, State Key Laboratory
of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lei Zhang
- College
of Engineering and Applied Sciences, Nanjing National
Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jian He
- Department
of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Wenjing Guo
- College
of Engineering and Applied Sciences, Nanjing National
Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zhengyang Zhou
- Department
of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Xuejin Zhang
- College
of Engineering and Applied Sciences, Nanjing National
Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Shuming Nie
- College
of Engineering and Applied Sciences, Nanjing National
Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
- Department
of Biomedical Engineering, Emory University, Atlanta, Georgia 30322, United States
| | - Hui Wei
- College
of Engineering and Applied Sciences, Nanjing National
Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
- Collaborative
Innovation Center of Chemistry for Life Sciences, State Key Laboratory
of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|