1
|
Gao H, He Z, Chen J, Feng H, Zhao R, Huang Y. Macrocyclic Peptide-Based Dual-Sensor Platform for Linkage-Specific Visualization of Ubiquitin Chain Assembling in Live Cells. Anal Chem 2025. [PMID: 39838278 DOI: 10.1021/acs.analchem.4c05720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Intracellular monitoring of protein ubiquitination and differentiating polyubiquitin chain topology are crucial for understanding life processes and drug discovery, which is challenged by the high complexity of the ubiquitination process and a lack of molecular tools. Herein, a synthetic dual-sensor platform specific for K48-linked ubiquitin oligomers was tailored for in situ visualization of polyubiquitin chain assembling in live biosystems. This is achieved using macrocyclic peptides as recognition motifs and a tetraphenylethylene derivative as an activatable reporter. The efficient cell penetration, tight binding, and protection of polyubiquitin delivered a "freeze-and-image" approach, allowing fluorescent readout of polyubiquitin linkage type and chain elongation without perturbing the physiological environment. Motivated by these unique features, mapping of K48-ubiquitination dynamics during protein degradation was facilely achieved. Rapid, sensitive, and intracellular assessment of the mechanism of action and potency dependence for proteolysis-targeting chimeras (PROTACs) was demonstrated, presenting the sensors as promising molecular tools for PROTAC drug development.
Collapse
Affiliation(s)
- Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhirong He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huixia Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Gupta R, Paul K. A fluorescent "Turn-ON" probe with rapid and differential response to HSA and BSA: quantitative detection of HSA in urine. J Mater Chem B 2024; 12:9037-9049. [PMID: 39158475 DOI: 10.1039/d4tb00749b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The present study provides insight into the differential response of a benzimidazole-malononitrile fluorescent "Turn-ON" probe on interaction with two structurally similar proteins, BSA and HSA. Compound 6 shows more sensitivity towards the two SAs, which is completely lost in the case of compound 7, synthesized by substitution on 6. The aggregates of compound 6 show absorption maxima at 385 nm and weak emission maxima at 565 nm. Compound 6 forms a new emission band at 475 nm on gradual addition of BSA (200 μM) along with a slight increase in the emission band at 565 nm. However, on addition of HSA (50 μM), a new band at 475 nm is formed. In contrast to BSA, in the case of HSA, 50% quenching is observed in the emission band of compound 6 at 565 nm. The new band formed on the interaction of 6 with BSA shows four-fold more enhancement compared to HSA. Furthermore, the mechanism of interaction of 6 with serum albumin has been investigated through lifetime-fluorescence analysis, site-selective drug experiments, dynamic light scattering, FE-SEM, FT-IR, etc. Molecular docking studies and site marker drug displacement experiments reveal differential interactions of 6 towards the two structurally similar proteins. Aggregates of 6 with an average hydrodynamic size of 100-190 nm are disassembled on adding BSA and HSA, and the size of the serum albumin and 6 complex decreases to 10-20 nm, revealing the ligand's encapsulation in the serum albumin cavity. Practical applicability for the quantitative detection of HSA in human urine samples is also demonstrated. The high binding affinity, sensitivity, selectivity and differential response of probe 6 towards two serum albumins (HSA and BSA) and significant quantification of HSA in urine samples shows the potential ability of this probe in medical applications.
Collapse
Affiliation(s)
- Rohini Gupta
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, India.
| | - Kamaldeep Paul
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, India.
| |
Collapse
|
3
|
Saczuk K, Dudek M, Matczyszyn K, Deiana M. Advancements in molecular disassembly of optical probes: a paradigm shift in sensing, bioimaging, and therapeutics. NANOSCALE HORIZONS 2024; 9:1390-1416. [PMID: 38963132 DOI: 10.1039/d4nh00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The majority of self-assembled fluorescent dyes suffer from aggregation-caused quenching (ACQ), which detrimentally affects their diagnostic and therapeutic effectiveness. While aggregation-induced emission (AIE) active dyes offer a promising solution to overcome this limitation, they may face significant challenges as the intracellular environment often prevents aggregation, leading to disassembly and posing challenges for AIE fluorogens. Recent progress in signal amplification through the disassembly of ACQ dyes has opened new avenues for creating ultrasensitive optical sensors and enhancing phototherapeutic outcomes. These advances are well-aligned with cutting-edge technologies such as single-molecule microscopy and targeted molecular therapies. This work explores the concept of disaggregation-induced emission (DIE), showcasing the revolutionary capabilities of DIE-based dyes from their design to their application in sensing, bioimaging, disease monitoring, and treatment in both cellular and animal models. Our objective is to provide an in-depth comparison of aggregation versus disaggregation mechanisms, aiming to stimulate further advancements in the design and utilization of ACQ fluorescent dyes through DIE technology. This initiative is poised to catalyze scientific progress across a broad spectrum of disciplines.
Collapse
Affiliation(s)
- Karolina Saczuk
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| | - Marta Dudek
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Marco Deiana
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| |
Collapse
|
4
|
Sasmal M, Islam ASM, Moni D, Katarkar A, Ali M. A microenvironment-sensitive red emissive probe with a large Stokes shift for specific recognition and quantification of serum albumin in complex biofluids and live cells. J Mater Chem B 2024; 12:4478-4488. [PMID: 38629135 DOI: 10.1039/d3tb02985a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Human serum albumin (HSA) is regarded as a useful biomarker for rapid medical diagnosis of various disorders mainly related to the kidneys and liver. Hence, it is crucial to identify and monitor the HSA level in complex biofluids (urine and blood samples) using a simple approach. Herein, we have designed and synthesized an intramolecular charge transfer (ICT) based environment-sensitive fluorescent molecular probe, (E)-2-(3-(2-(5-methoxy-1H-indol-3-yl)vinyl)-5,5-dimethylcyclohex-2-en-1-ylidene)malononitrile (DCI-MIN), that can selectively interact with HSA in PBS buffer solution and exhibit a ∼78-fold enhancement in fluorescence intensity with a significant Stokes shift (∼126 nm), which is important to avoid interference from the excitation light. The significant red fluorescence response can be attributed to the suppression of free intramolecular rotation of the DCI-MIN probe inside the hydrophobic binding cavity of HSA and the low polar microenvironment present within HSA. According to the 3σ/slope method, the detection limit was found to be 1.01 nM (0.0671 mg L-1) in aqueous solutions, which is significantly lower than the normal level of HSA in healthy urine and blood serum, indicating its high sensitivity. DCI-MIN has the ability to exhibit useful applications, including the detection and quantification of HSA concentration in complex biofluids (human urine and blood samples) as well as the imaging of serum albumin in living cells.
Collapse
Affiliation(s)
- Mihir Sasmal
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India.
| | - Abu Saleh Musha Islam
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Dolan Moni
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India.
| | - Atul Katarkar
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Mahammad Ali
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India.
| |
Collapse
|
5
|
Xu C, Ou X, Wang B, Shen H, Liu J, Yang X, Zhou Q, Chau JHC, Sung HHY, Xing G, Lam JWY, Tang BZ. Modulation of Heterotypic and Homotypic Interactions to Visualize the Evolution of Organic Aggregates in a Fluorescence Turn-on Manner. J Am Chem Soc 2024; 146:4851-4863. [PMID: 38346857 DOI: 10.1021/jacs.3c13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The abnormal evolution of membrane-less organelles into amyloid fibrils is a causative factor in many neurodegenerative diseases. Fundamental research on evolving organic aggregates is thus instructive for understanding the root causes of these diseases. In-situ monitoring of evolving molecular aggregates with built-in fluorescence properties is a reliable approach to reflect their subtle structural variation. To increase the sensitivity of real-time monitoring, we presented organic aggregates assembled by TPAN-2MeO, which is a triphenyl acrylonitrile derivative. TPAN-2MeO showed a morphological evolution with distinct turn-on emission. Upon rapid nanoaggregation, it formed non-emissive spherical aggregates in the kinetically metastable state. Experimental and simulation results revealed that the weak homotypic interactions between the TPAN-2MeO molecules liberated their molecular motion for efficient non-radiative decay, and the strong heterotypic interactions between TPAN-2MeO and water stabilized the molecular geometry favorable for the non-fluorescent state. After ultrasonication, the decreased heterotypic interactions and increased homotypic interactions acted synergistically to allow access to the emissive thermodynamic equilibrium state with a decent photoluminescence quantum yield (PLQY). The spherical aggregates were eventually transformed into micrometer-sized blocklike particles. Under mechanical stirring, the co-assembly of TPAN-2MeO and Pluronic F-127 formed uniform fluorescent platelets, inducing a significant enhancement in PLQY. These results decipher the stimuli-triggered structural variation of organic aggregates with concurrent sensitive fluorescence response and pave the way for a deep understanding of the evolutionary events of biogenic aggregates.
Collapse
Affiliation(s)
- Changhuo Xu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Xinwen Ou
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Bingzhe Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Xueqin Yang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Qingqing Zhou
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Joe H C Chau
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
6
|
Wang Y, Huo F, Yin C. Development of Human Serum Albumin Fluorescent Probes in Detection, Imaging, and Disease Therapy. J Phys Chem B 2024; 128:1121-1138. [PMID: 38266243 DOI: 10.1021/acs.jpcb.3c06915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Human serum albumin (HSA) acts as a repository and transporter of substances in the blood. An abnormal concentration may indicate the occurrence of liver- and kidney-related diseases, which has attracted people to investigate the precise quantification of HSA in body fluids. Fluorescent probes can combine with HSA covalently or noncovalently to quantify HSA in urine and plasma. Moreover, probes combined with HSA can improve its photophysical properties; probe-HSA has been applied in real-time monitoring and photothermal and photodynamic therapy in vivo. This Review will introduce fluorescent probes for quantitative HSA according to the three reaction mechanisms of spatial structure, enzymatic reaction, and self-assembly and systematically introduce the application of probes combined with HSA in disease imaging and phototherapy. It will help develop multifunctional applications for HSA probes and provide assistance in the early diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
7
|
Sasmal M, Musha Islam AS, Moni D, Maiti D, Dutta A, Ali M. Serum Albumin Inspired Self-Assembly/Disassembly of a Fluorogenic Nanoprobe for Real-Time Monitoring and Quantification of Urinary Albumin with Live Cell Imaging Application. ACS APPLIED BIO MATERIALS 2022; 5:5854-5864. [PMID: 36441947 DOI: 10.1021/acsabm.2c00820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abnormal levels (high/low) of urinary human serum albumin (HSA) are associated with a number of diseases and thus act as an essential biomarker for quick therapeutic monitoring and biomedical diagnosis, entailing the urgent development of an effective chemosensor to quantify the albumin levels. Herein, we have rationally designed and developed a small fluorogenic molecular probe, (Z)-2-(5-((8-hydroxy-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl) methylene)-4-oxo-2-thioxothiazolidin-3-yl) acetic acid (HJRA) with a twisted intramolecular charge transfer (TICT) property, which can easily self-assemble into nonfluorescent nanoaggregates in aqueous solution. However, HJRA nanoaggregates can selectively bind with serum albumin proteins (HSA/BSA) in ∼100% PBS medium, thereby facilitating the disassembly of nanoaggregates into monomers, exhibiting a clear turn-on red fluorescent response toward HSA and BSA. Analysis of the specific binding mechanism between HJRA and HSA using a site-selective fluorescence displacement assay and molecular docking simulations indicates that a variety of noncovalent interactions are responsible for the disassembly of nanoaggregates with the concomitant trapping of the HJRA monomer at site I in HSA, yielding a substantial red emission caused by the inhibition of intramolecular rotation of HJRA probe inside the hydrophobic cavity of HSA. The limit of detection (LOD) determined by the 3σ/slope method was found to be 1.13 nM, which is substantially below the normal HSA concentration level in healthy urine, signifying the very high sensitivity of the probe toward HSA. The comparable results and quick response toward quantification of HSA in urine by HJRA with respect to the Bradford method clearly point toward the superiority of this method compared to the existing ones and may lead to biomedical applications for HSA quantification in urine. It may also find potential application in live-cell imaging of HSA.
Collapse
Affiliation(s)
- Mihir Sasmal
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata700 032, India
| | - Abu Saleh Musha Islam
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata700032, India
| | - Dolan Moni
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata700 032, India
| | - Debjani Maiti
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata700 032, India
| | - Ananya Dutta
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata700 032, India
| | - Mahammad Ali
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata700 032, India
| |
Collapse
|
8
|
Nie H, Ji W, Cui J, Liang X, Yang X, Bai J, Zhang X. An AIE luminogen self-assembled nanoprobe for efficient monitoring of the concentration and structural transition of human serum albumin. Anal Chim Acta 2022; 1236:340578. [DOI: 10.1016/j.aca.2022.340578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
9
|
Turn-on Fluorescence of Davydov-Split Aggregate Particles for Protein Detection. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Shengda Qi, Zheng H, Almashriqi HS, Lv W, Zhai H. DNA-Templated Gold Nanoclusters for Fluorescence Resonance Energy Transfer-Based Human Serum Albumin Detection. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Chao X, Yao D, Qi Y, Yuan C, Huang D. A fluorescent sensor recognized by the FA1 site for highly sensitive detection of HSA. Anal Chim Acta 2021; 1188:339201. [PMID: 34794581 DOI: 10.1016/j.aca.2021.339201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Human serum albumin (HSA), as the most abundant protein in blood plasma, plays a crucial role in many physiological processes. The abnormal HSA level in serum or in urine is often associated with various diseases. Therefore, to achieve highly sensitive and selective quantification of HSA is of great importance for disease diagnosis and preventive medicine. Herein, an HSA-selective light-up fluorescent sensor, DCM-ML, was successfully developed for quantitative detection of HSA. DCM-ML exhibited good (photo-) stability and strong fluorescence enhancement around 630 nm in the presence of HSA in complex samples containing numerous biological analytes. Upon addition of HSA into DCM-ML containing solution, a good linear relationship (R2 > 0.99) between the fluorescence intensity of DCM-ML and HSA concentration from 0 to 0.08 mg/mL was obtained with the detection limit of 0.25 μg/mL. The sensing mechanism of the sensor towards HSA was demonstrated to be via recognition in the fatty acid site 1 (FA1), instead of the most reported binding sites (Sudlow I and II) in HSA, for the first time, by both the displacement experiments and molecular docking simulation. Thus, DCM-ML can also be assumed as a potential FA1 site-binding marker for examining drugs binding to the FA1 site in HSA. At last, the utilization of sensor DCM-ML for quantification and validation of HSA in urine samples and cell culture medium was effectively demonstrated. Therefore, the development of DCM-ML should find great application potentials in the fields of analytical chemistry and clinical medicine as a highly sensitive HSA sensor.
Collapse
Affiliation(s)
- Xijuan Chao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Dezhi Yao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
12
|
Wang ZG, Yan XJ, Liu HB, Zhang DL, Liu W, Xie CZ, Li QZ, Xu JY. A novel hydrazide Schiff base self-assembled nanoprobe for selective detection of human serum albumin and its applications in renal disease surveillance. J Mater Chem B 2021; 8:8346-8355. [PMID: 32794530 DOI: 10.1039/d0tb01411g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human serum albumin (HSA) is considered as a biomarker for the early diagnosis of renal disease, therefore identifying and detecting HSA in biological fluids (especially urine) with an easy method is of great importance. Herein, we report a novel hydrazide Schiff base fluorescent probe N'-((7-(diethylamino)-2-oxo-2H-chromen-3-yl)methylene)pyrazine-2-carbohydrazide (NPC), which self-assembled into nanoparticles in aqueous solution. Based on disassembly-induced emission and the site-specific recognition mechanism, the binding of NPC with HSA resulted in a fluorescence "turn-on" response. Probe NPC exhibited superior selectivity and sensitivity toward HSA with a detection limit of 0.59 mg L-1 in PBS and 0.56 mg L-1 in the urine sample. The site-binding mechanism of NPC with HSA was explored by fluorescence quenching study, Job's plot analysis, HSA destruction, site marker displacement and molecular docking. Fluorescence imaging of HSA in MCF-7 cells was achieved by using a non-toxic NPC probe, suggesting that NPC could be applied to visualize the level of HSA in vivo. More importantly, further practical applications of probe NPC in human urine samples were achieved with satisfactory results by using a fluorometer or test paper, which could provide extensive application in clinical diagnosis.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Xiao-Jing Yan
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Hai-Bo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China
| | - De-Long Zhang
- Department of Pharmacy, Tianjin Santan Hospital, Tianjin 300193, P. R. China
| | - Wei Liu
- The Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Cheng-Zhi Xie
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Qing-Zhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| |
Collapse
|
13
|
Hu Q, Yao B, Owyong TC, Prashanth S, Wang C, Zhang X, Wong WWH, Tang Y, Hong Y. Detection of Urinary Albumin Using a "Turn-on" Fluorescent Probe with Aggregation-Induced Emission Characteristics. Chem Asian J 2021; 16:1245-1252. [PMID: 33759376 DOI: 10.1002/asia.202100180] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Indexed: 01/08/2023]
Abstract
Human serum albumin (HSA) is a broadly used biomarker for the diagnosis of various diseases such as chronic kidney disease. Here, a fluorescent probe TC426 with aggregation-induced emission (AIE) characteristics is reported as a sensitive and specific probe for HSA. This probe is non-emissive in aqueous solution, meanwhile it shows bright fluorescence upon interacting with HSA, which makes it applicable in detecting HSA with a high signal to noise ratio. Besides, the fluorescence of TC426 exhibits a high linear correlation with the concentration of albumin in the range of microalbumin (20-200 mg/L), which has a significant importance for the early diagnosis of glomerulus related diseases. Compared with previously reported HSA probes TPE-4TA and BSPOTPE, TC426 shows comparable anti-interference ability towards creatinine and other major components in urine but is excited by a longer excitation wavelength at the visible light range. Finally, with the established assay, TC426 shows excellent performance in detecting HSA in real human urine, indicating its great potential in practical urinalysis.
Collapse
Affiliation(s)
- Qi Hu
- Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia, 5042, Australia
| | - Bicheng Yao
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Tze Cin Owyong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia.,ARC Centre of Excellence in Exciton Science, School of Chemistry, Bio21 Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Sharon Prashanth
- Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia, 5042, Australia
| | - Changyu Wang
- Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia, 5042, Australia
| | - Xinyi Zhang
- Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia, 5042, Australia.,Australia-China Joint Research Centre for Personal Health Technologies, Flinders University, South Australia, 5042, Australia
| | - Wallace W H Wong
- ARC Centre of Excellence in Exciton Science, School of Chemistry, Bio21 Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Youhong Tang
- Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia, 5042, Australia.,Australia-China Joint Research Centre for Personal Health Technologies, Flinders University, South Australia, 5042, Australia
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| |
Collapse
|
14
|
Yang X, Luo Y, Li S, Xu X, Bao Y, Yang J, Ouyang D, Fan X, Gong P, Cai L. Small Molecular Prodrug Amphiphile Self-Assembled AIE Dots for Cancer Theranostics. Front Bioeng Biotechnol 2020; 8:903. [PMID: 33117772 PMCID: PMC7566912 DOI: 10.3389/fbioe.2020.00903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
A simple and facile one-step method was developed to construct a small molecular prodrug amphiphile self-assembled organic dots CPPG with aggregation-induced emission (AIE) characteristics. Diphenylalanine peptide (FF), which is the essential moiety of the self-assembling peptide-drug conjugate and as its core recognition motifs for molecular self-assembly. In addition, the D-glucose transported protein (GLUT), which is one of the important nutrient transporters and is overexpressed in cancer cells. The conjugation of glycosyl further endues the nanoparticle with good biocompatibility and tumor-targeting ability. Taking advantages of both the cancer cell-targeting capability of small molecular prodrug amphiphile CPPG and the AIE aggregates with strong emission, the prepared CPPG AIE dots can target cancer cells specifically and inhibit the proliferation of cancer cells with good biocompatibility and photostability. Based on the general approach, types of universal organic fluorescent nanoprobes could be facilely constructed for imaging applications and biological therapeutics, which possess the properties of specific recognition and high brightness.
Collapse
Affiliation(s)
- Xing Yang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Luo
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sanpeng Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiuli Xu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Nano Science and Technology Institute, University of Science and Technology of China, Hefei, China
| | - Yingxia Bao
- Guangzhou Baiyunshan Pharmaceutical Co., Ltd., Baiyunshan Pharmaceutical General Factory, Guangzhou, China
| | | | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Xingxing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
15
|
Zou Z, Liao X, Yang L, Huang Z, Yang H, Yan Q, Zhang Y, Qing Z, Zhang L, Feng F, Yang R. Human Serum Albumin-Occupying-Based Fluorescence Turn-On Analysis of Antiepileptic Drug Tiagabine Hydrochloride. Anal Chem 2020; 92:3555-3562. [DOI: 10.1021/acs.analchem.9b03507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhen Zou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Xiaodou Liao
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Le Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410112, P. R. China
| | - Ziyun Huang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Hua Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Qi Yan
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Yufei Zhang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Lihua Zhang
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, Shanxi 037009, P. R. China
| | - Feng Feng
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, Shanxi 037009, P. R. China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410112, P. R. China
| |
Collapse
|
16
|
|
17
|
Zhou Y, Yang S, Xiao Y, Zou Z, Qing Z, Liu J, Yang R. Cytoplasmic Protein-Powered In Situ Fluorescence Amplification for Intracellular Assay of Low-Abundance Analyte. Anal Chem 2019; 91:15179-15186. [DOI: 10.1021/acs.analchem.9b03980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yibo Zhou
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Sheng Yang
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Yue Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zhen Zou
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Zhihe Qing
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ronghua Yang
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
18
|
Tu Y, Yu Y, Zhou Z, Xie S, Yao B, Guan S, Situ B, Liu Y, Kwok RTK, Lam JWY, Chen S, Huang X, Zeng Z, Tang BZ. Specific and Quantitative Detection of Albumin in Biological Fluids by Tetrazolate-Functionalized Water-Soluble AIEgens. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29619-29629. [PMID: 31340641 DOI: 10.1021/acsami.9b10359] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The analysis of albumin has clinical significance in diagnostic tests and obvious value to research studies on the albumin-mediated drug delivery and therapeutics. The present immunoassay, instrumental techniques, and colorimetric methods for albumin detection are either expensive, troublesome, or insensitive. Herein, a class of water-soluble tetrazolate-functionalized derivatives with aggregation-induced emission (AIE) characteristics is introduced as novel fluorescent probes for albumin detection. They can be selectively lighted up by site-specific binding with albumin. The resulting albumin fluorescent assay exhibits a low detection limit (0.21 nM), high robustness in aqueous buffer (pH = 6-9), and a broad tunable linear dynamic range (0.02-3000 mg/L) for quantification. The tetrazolate functionality endows the probes with a superior water solubility (>0.01 M) and a high binding affinity to albumin (KD = 0.25 μM). To explore the detection mechanism, three unique polar binding sites on albumin are computationally identified, where the multivalent tetrazolate-lysine interactions contribute to the tight binding and restriction of the molecular motion of the AIE probes. The key role of lysine residues is verified by the detection of poly-l-lysine. Moreover, we applied the fluorogenic method to quantify urinary albumin in clinical samples and found it a feasible and practical strategy for albumin analysis in complex biological fluids.
Collapse
Affiliation(s)
- Yujie Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | | | - Zhibiao Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Sheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | | | - Shujuan Guan
- Department of Laboratory Medicine, Nanfang Hospital , Southern Medical University , Guangzhou 510515 , China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital , Southern Medical University , Guangzhou 510515 , China
| | | | | | | | - Sijie Chen
- Ming Wai Lau Center for Reparative Medicine , Karolinska Institutet , Hong Kong 999077 , China
| | | | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Ben Zhong Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, (Guangzhou International Campus) , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
19
|
Yu Q, Lu W, Ding Z, Wei M, Dai Z. Synthesis of novel chiral fluorescent sensors and their application in enantioselective discrimination of chiral carboxylic acids. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819867619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Novel chiral fluorescent sensors are synthesized from a dibromide containing a tetraphenylethylene moiety and enantiomerically pure amino alcohols and an amine. The sensors are applied for the chiral recognition of a wide range of chiral carboxylic acids and related derivatives.
Collapse
Affiliation(s)
- Qiuhan Yu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Weiwen Lu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Zhiqiang Ding
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Min Wei
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, P.R. China
| | - Zhenya Dai
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
20
|
Choudhury R, Patel SR, Ghosh A. Selective Detection of Human Serum Albumin by Near Infrared Emissive Fluorophores: Insights into Structure-property Relationship. J Photochem Photobiol A Chem 2019; 376:100-107. [PMID: 31762584 PMCID: PMC6874406 DOI: 10.1016/j.jphotochem.2019.02.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two donor-acceptor fluorophores were prepared and tested for quantitative determination of HSA in aqueous samples. Fluorophores were non-emissive in polar solvents due to energy loss via non-radiative decays. Complexation of the fluorophores with HSA resulted multi-fold enhancement of emission in the red-near infrared (NIR) region. The emission intensity was linearly correlated to the amount of protein in the solution, which enabled us to develop calibration graphs for quantitative estimation of HSA in synthetic urine samples. Between the two fluorophores, the methoxy substituted fluorophore 1 selectively recognized HSA. It exhibited remarkable fluorescence enhancement with HSA over bovine serum albumin (BSA) and other globular proteins. The selective sensing aptitude of 1 was attributed to its restricted motions in the protein's microenvironment due to multiple non-covalent interactions, preventing energy loss by radiationless decay. The different recognition properties of the fluorophores were estimated by the steady-state fluorescence and molecular docking studies. These findings indicate that this class of fluorophores can be useful for quantitative estimation of HSA in biological urine and blood samples in clinical practice.
Collapse
Affiliation(s)
- Rajib Choudhury
- Department of Physical Sciences, Arkansas Tech University, Russellville, Arkansas, 72801, United States
| | - Siddhi Rajeshbhai Patel
- Department of Physical Sciences, Arkansas Tech University, Russellville, Arkansas, 72801, United States
| | - Anindya Ghosh
- Department of Chemistry, University of Arkansas, Little Rock, Arkansas, 72204
| |
Collapse
|
21
|
Xie S, Wong AYH, Chen S, Tang BZ. Fluorogenic Detection and Characterization of Proteins by Aggregation‐Induced Emission Methods. Chemistry 2019; 25:5824-5847. [DOI: 10.1002/chem.201805297] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Sheng Xie
- Ming Wai Lau Centre for Reparative MedicineKarolinska Institutet Hong Kong S.A.R. China
| | - Alex Y. H. Wong
- Ming Wai Lau Centre for Reparative MedicineKarolinska Institutet Hong Kong S.A.R. China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative MedicineKarolinska Institutet Hong Kong S.A.R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of NeuroscienceDivision of Biomedical Engineering, and Division of Life Science, HKUST-Shenzhen Research InstituteThe Hong Kong University of Science and Technology, Kowloon Hong Kong S.A.R. China
- NSFC Center for Luminescence from Molecular AggregatesSCUT-HKUST Joint Research InstituteState Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 P.R. China
| |
Collapse
|
22
|
Hu F, Manghnani PN, Feng G, Wu W, Teh C, Liu B. Visualize Embryogenesis and Cell Fate Using Fluorescent Probes with Aggregation-Induced Emission. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3737-3744. [PMID: 30656936 DOI: 10.1021/acsami.8b19391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Horseradish peroxidase (HRP) and fluorogen-dextran conjugate are tracers extensively used for injection-based lineage tracing. However, HRP is sensitive to proteolytic digestion, whereas the high-molecular-weight dextran may have antigenicity. Small molecular tracers can overcome these problems, but they usually diffuse from labeled cells, causing inaccurate information. Herein, we developed a small-molecular-weight fluorogen with aggregation-induced emission (AIEgen) for embryonic cell tracing with strong signals against tracer dilution caused by cell division. Once injected into the ancestor cells, the AIEgen can be entrapped in the cells without leakage because of the two hydrophilic and neutral arms. Consequently, it can specifically trace the progenies of the treated ancestor cells. More importantly, the operating concentration of AIEgen can be much higher than that of fluorogens with aggregation-caused quenching, which provides bright signals in daughter cells during embryonic cell tracing, thus overcoming the problem of fast signal degradation typically encountered with the use of traditional cell tracers.
Collapse
Affiliation(s)
- Fang Hu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Purnima Naresh Manghnani
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Guangxue Feng
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Wenbo Wu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, Biopolis , Singapore 138673 , Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| |
Collapse
|
23
|
Reducing aggregation caused quenching effect through co-assembly of PAH chromophores and molecular barriers. Nat Commun 2019; 10:169. [PMID: 30635576 PMCID: PMC6329816 DOI: 10.1038/s41467-018-08092-y] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/07/2018] [Indexed: 01/17/2023] Open
Abstract
The features of well-conjugated and planar aromatic structures make π-conjugated luminescent materials suffer from aggregation caused quenching (ACQ) effect when used in solid or aggregated states, which greatly impedes their applications in optoelectronic devices and biological applications. Herein, we reduce the ACQ effect by demonstrating a facile and low cost method to co-assemble polycyclic aromatic hydrocarbon (PAH) chromophores and octafluoronaphthalene together. Significantly, the solid photoluminescence quantum yield (PLQYs) for the as-resulted four micro/nanococrystals are enhanced by 254%, 235%, 474 and 582%, respectively. Protection from hydrophilic polymer chains (P123 (PEO20-PPO70-PEO20)) endows the cocrystals with superb dispersibility in water. More importantly, profiting from the above-mentioned highly improved properties, nano-cocrystals present good biocompatibility and considerable cell imaging performance. This research provides a simple method to enhance the emission, biocompatibility and cellular permeability of common chromophores, which may open more avenues for the applications of originally non- or poor fluorescent PAHs.
Collapse
|
24
|
Zhu K, Lv T, Qin T, Huang Y, Wang L, Liu B. A flavonoid-based fluorescent probe enables the accurate quantification of human serum albumin by minimizing the interference from blood lipids. Chem Commun (Camb) 2019; 55:13983-13986. [DOI: 10.1039/c9cc08015e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We herein provide a simple design strategy to improve the sensing specificity towards human serum albumin by incorporating a nitrobenzene quencher into a traditional polarity-sensitive probe in responding to the interference from blood lipids.
Collapse
Affiliation(s)
- Kangning Zhu
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Taoyuze Lv
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Tianyi Qin
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Yingying Huang
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Bin Liu
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| |
Collapse
|
25
|
Lü T, Zhu K, Liu B. Recent Advances of Organic Fluorescent Probes for Detection of Human Serum Albumin. CHINESE J ORG CHEM 2019. [DOI: 10.6023/cjoc201903060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Zheng Z, Li H, Sun S, Xu Y. Media Dependent Switching of Selectivity and Continuous near Infrared Turn-on Fluorescence Response through Cascade Interactions from Noncovalent to Covalent Binding for Detection of Serum Albumin in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44336-44343. [PMID: 30514088 DOI: 10.1021/acsami.8b19768] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Abnormal level of proteins is proved to be associated with diseases. Thus, protein sensing is helpful for clinical diagnosis and therapy. However, there is a great variety of protein species and relatively low concentration of each protein in complicated biological systems including other nonprotein biomolecules. Therefore, it remains challenging to develop an effective method for detecting protein with high selectivity and sensitivity. Herein, a new self-assembly method based on a robust dye SQSS of which two squaraine molecules were conjugated through disulfide bond was developed for highly selective and sensitive detection of serum albumin (SA) in aqueous solution and live cells. SQSS can self-assemble into "compact" aggregates, offering "inert" disulfide group and very low background fluorescence through the combination of aggregation quenching and homogeneous fluorescence resonance energy transfer (homoFRET) quenching. The response of SQSS to SA undergoes two cascade stages. At the first stage, SA drives the compact assemblies of SQSS to form loose ones with fast speed (30 s) through noncovalent interaction, resulting in the enhancement of fluorescence to some extent. In this loose assembly state, the disulfide bond in SQSS is reactive. At the second stage, the Cys34 in SA slowly induced further disassembly through covalent binding with reactive disulfide bond, resulting in fluorescence further increasing and SQSS labeling to SA that cannot be displaced by site binding ligands of SA. The self-assemblies of SQSS can selectively detect SA with continuous near-infrared (NIR) turn-on fluorescence response in 100% aqueous buffer solution. In addition, SQSS showed the potential application of imaging SA in living cells. On the other hand, the loose assembly state of SQSS was also achieved in aqueous solution with 20% CH3CN. In this media, thiol-containing glutathione (GSH) caused the disassembly of SQSS with turn-on fluorescence response through interaction with disulfide bond. SQSS can selectively recognize GSH over other amino acids even in the presence of other sulfhydryl amino acids. As a proof-of-concept method, the molecular self-assembly through multisteps interactions would provide an ideal strategy for detection and live-cell imaging of biorelated molecules with high selectivity and signal-to-noise ratio.
Collapse
Affiliation(s)
- Ziming Zheng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , P.R. China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , P.R. China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , P.R. China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , P.R. China
| |
Collapse
|
27
|
Ronzetti M, Baljinnyam B, Yasgar A, Simeonov A. Testing for drug-human serum albumin binding using fluorescent probes and other methods. Expert Opin Drug Discov 2018; 13:1005-1014. [PMID: 30320522 PMCID: PMC11369766 DOI: 10.1080/17460441.2018.1534824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Drug plasma protein binding remains highly relevant to research and drug development, making the assessment and profiling of compound affinity to plasma proteins essential to drug discovery efforts. Although there are a number of fully-characterized methods, they lack the throughput to handle large numbers of compounds. As the evaluation of adsorption, distribution, metabolism, and excretion is addressed earlier in the drug development timeline, the need for higher-throughput methods has grown. Areas Covered: This review will highlight recent developments on methods for profiling drug plasma binding, with an emphasis on fluorescent probes and emerging high-throughput methodologies. Expert Opinion: There have been a number of high-throughput assays developed in recent years to meet the scaled up demands for compound profiling. Ultimately, the selection of assay technology relies on a number of factors, such as capabilities of the laboratory and the breadth and amount of data required. Fluorescent probe displacement assays are highly flexible and amenable to high-throughput screening, easily scaling up to handle large compound libraries. Recent developments in fluorescence technologies, such as homogenous time-resolved fluorescence and probes utilizing the aggregation-induced emission effect, have improved the sensitivity of these assays. Other technologies, such as microscale thermophoresis and quantitative structure-activity relationship modeling, are gaining popularity as alternative techniques for drug plasma protein binding characterization.
Collapse
Affiliation(s)
- Michael Ronzetti
- a National Center for Advancing Translational Sciences , National Institutes of Health , Rockville , Maryland , USA
| | - Bolormaa Baljinnyam
- a National Center for Advancing Translational Sciences , National Institutes of Health , Rockville , Maryland , USA
| | - Adam Yasgar
- a National Center for Advancing Translational Sciences , National Institutes of Health , Rockville , Maryland , USA
| | - Anton Simeonov
- a National Center for Advancing Translational Sciences , National Institutes of Health , Rockville , Maryland , USA
| |
Collapse
|
28
|
Zhang P, Zhao Z, Li C, Su H, Wu Y, Kwok RTK, Lam JWY, Gong P, Cai L, Tang BZ. Aptamer-Decorated Self-Assembled Aggregation-Induced Emission Organic Dots for Cancer Cell Targeting and Imaging. Anal Chem 2017; 90:1063-1067. [PMID: 29275625 DOI: 10.1021/acs.analchem.7b03933] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A facile and simple one-step method was developed to fabricate aptamer-decorated self-assembled organic dots with aggregation-induced emission (AIE) characteristics. With integration of the advantages of AIE aggregates with strong emission and the cell-targeting capability of aptamers, the as-prepared Apt-AIE organic nanodots can specifically target to cancer cells with good biocompatibility, high image constrast, and photostability. On the basis of this universal method, a variety of versatile organic fluorescent nanoprobes with high brightness, specific recognition, and clinical-transitional potential could be facilely constructed for biological sensing and imaging applications.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Biomedical Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon, China.,Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Zheng Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Biomedical Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon, China
| | - Chuansheng Li
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Huifang Su
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Biomedical Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon, China
| | - Yayun Wu
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Biomedical Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon, China
| | - Jacky Wing Yip Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Biomedical Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon, China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Biomedical Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon, China.,HKUST Shenzhen Research Institute , No. 9 Yuexing First RD, South Area, Hi-Tech Park, Nanshan, Shenzhen, 518057, China
| |
Collapse
|
29
|
Gao T, Yang S, Cao X, Dong J, Zhao N, Ge P, Zeng W, Cheng Z. Smart Self-Assembled Organic Nanoprobe for Protein-Specific Detection: Design, Synthesis, Application, and Mechanism Studies. Anal Chem 2017; 89:10085-10093. [DOI: 10.1021/acs.analchem.7b02923] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tang Gao
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Shuqi Yang
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xiaozheng Cao
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jie Dong
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Ning Zhao
- Molecular
Imaging Program at Stanford (MIPS), Canary Center at Stanford for
Cancer Early Detection, Department of Radiology and Bio-X Program,
School of Medicine, Stanford University, Stanford, California 94040, United States
| | - Peng Ge
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Wenbin Zeng
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zhen Cheng
- Molecular
Imaging Program at Stanford (MIPS), Canary Center at Stanford for
Cancer Early Detection, Department of Radiology and Bio-X Program,
School of Medicine, Stanford University, Stanford, California 94040, United States
| |
Collapse
|
30
|
Tang Y, Shao A, Cao J, Li H, Li Q, Zeng M, Liu M, Cheng Y, Zhu W. cNGR-based synergistic-targeted NIR fluorescent probe for tracing and bioimaging of pancreatic ductal adenocarcinoma. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9092-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Dual-targeting peptide probe for sequence- and structure-sensitive sensing of serum albumin. Biosens Bioelectron 2017; 94:657-662. [DOI: 10.1016/j.bios.2017.03.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/24/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023]
|
32
|
Synthesis of new chiral fluorescent sensors and their applications in enantioselective discrimination. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
You X, Ma H, Wang Y, Zhang G, Peng Q, Liu L, Wang S, Zhang D. Pyridinium-Substituted TetraphenylethyleneEntailing Alkyne Moiety: Enhancement of Photosensitizing Efficiency and Antimicrobial Activity. Chem Asian J 2017; 12:1013-1019. [DOI: 10.1002/asia.201700243] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/13/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Xue You
- CAS Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Huili Ma
- Key Laboratory of Organic OptoElectronics and Molecular Engineering; Department of Chemistry; Tsinghua University; Beijing 100084 P. R. China
| | - Yuancheng Wang
- CAS Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Guanxin Zhang
- CAS Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Qian Peng
- CAS Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Libing Liu
- CAS Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Shu Wang
- CAS Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Deqing Zhang
- CAS Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
34
|
He J, Gui S, Huang Y, Hu F, Jin Y, Yu Y, Zhang G, Zhang D, Zhao R. Rapid, sensitive, and in-solution screening of peptide probes for targeted imaging of live cancer cells based on peptide recognition-induced emission. Chem Commun (Camb) 2017; 53:11091-11094. [DOI: 10.1039/c7cc06485c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A generally applicable method was developed for screening cancer cell-specific peptides with one-residue resolution based on a ligand binding-induced emission phenomenon.
Collapse
Affiliation(s)
- Jiayuan He
- CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Shilang Gui
- CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Yanyan Huang
- CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Fang Hu
- CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Yulong Jin
- CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Yang Yu
- CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Guanxin Zhang
- CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Deqing Zhang
- CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Rui Zhao
- CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| |
Collapse
|
35
|
Wang Y, Zhang G, Gao M, Cai Y, Zhan C, Zhao Z, Zhang D, Tang BZ. Introductory lecture: recent research progress on aggregation-induced emission. Faraday Discuss 2017; 196:9-30. [DOI: 10.1039/c6fd00218h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of the aggregation-induced emission (AIE) phenomenon in 2001, research on AIE molecules has drawn much attention, and this area has been expanding tremendously. This brief review will focus on recent advances in the science and application of AIE molecules, including new mechanistic understanding, new AIE molecules for sensing and imaging, stimuli-responsive AIE molecules and applications of AIE molecules for OLEDs. Moreover, this review will give a perspective on the possible opportunities and challenges that exist in the future for this area.
Collapse
Affiliation(s)
- Yuancheng Wang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Meng Gao
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou
- China
| | - Yuanjing Cai
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou
- China
| | - Chi Zhan
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou
- China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Ben Zhong Tang
- Department of Chemistry
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction
- The Hong Kong University of Science and Technology
- Kowloon
- China
| |
Collapse
|