1
|
Di Natale C, Russo S, Graziano F, Vespini V, Luciani G, Vitiello G, Lombardi L, Ferranti F, Mari S, Luca Maffettone P, Grilli S, Coppola S, Ferraro P. Sensitive colorimetric immunosensor using AuNP-functionalized polymer film for picogram-level detection of Tau protein intermediate aggregates. J Colloid Interface Sci 2025; 678:1052-1059. [PMID: 39236434 DOI: 10.1016/j.jcis.2024.08.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
Here we demonstrate for the first time that an antibody-gold nanoparticles (AuNPs)-polymer conjugate thin-film biosensor can easily be fabricated to selectively capture Tau protein. Gold nanoparticles (AuNPs) are employed as sensing elements, thus capitalizing on their propensity to undergo assembly or disassembly in response to the adsorption or conjugation of various biomolecules on their surface, thereby forming robust interactions with the target analyte. We show that the Tau protein in its different aggregation phases can be detected, by restricting the reaction area on the solid thin polymer film and thus reducing the diffusion effects usually encountered in immunosensors. A limit of detection (LOD) of 460 pg/mL was reached, demonstrating a great potential for detecting Tau in aggregation states. This sensor based on thin polymer film could open new routes for sensing and monitoring Tau protein in biological assays and biomedical diagnosis.
Collapse
Affiliation(s)
- Concetta Di Natale
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy.
| | - Simone Russo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Fabiana Graziano
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA 80078, Italy; University of Campania "Luigi Vanvitelli" - Department of Mathematics and Physics, Via Abramo Lincoln 5, 81100 Caserta, Napoli, Italy
| | - Veronica Vespini
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA 80078, Italy
| | - Giuseppina Luciani
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Giuseppe Vitiello
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; Center for Colloid and Surface Science (CSGI), via della Lastruccia, Sesto Fiorentino, FI 80078, Italy
| | - Lorenzo Lombardi
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | | | - Silvia Mari
- Agenzia Spaziale Italiana, Via del Politecnico snc, 00133 Rome, Italy
| | - Pier Luca Maffettone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Simonetta Grilli
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA 80078, Italy
| | - Sara Coppola
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA 80078, Italy.
| | - Pietro Ferraro
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA 80078, Italy
| |
Collapse
|
2
|
Sobek J, Li J, Combes BF, Gerez JA, Henrich MT, Geibl FF, Nilsson PR, Shi K, Rominger A, Oertel WH, Nitsch RM, Nordberg A, Ågren H, Ni R. Efficient characterization of multiple binding sites of small molecule imaging ligands on amyloid-beta, tau and alpha-synuclein. Eur J Nucl Med Mol Imaging 2024; 51:3960-3977. [PMID: 38953933 PMCID: PMC11527973 DOI: 10.1007/s00259-024-06806-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE There is an unmet need for compounds to detect fibrillar forms of alpha-synuclein (αSyn) and 4-repeat tau, which are critical in many neurodegenerative diseases. Here, we aim to develop an efficient surface plasmon resonance (SPR)-based assay to facilitate the characterization of small molecules that can bind these fibrils. METHODS SPR measurements were conducted to characterize the binding properties of fluorescent ligands/compounds toward recombinant amyloid-beta (Aβ)42, K18-tau, full-length 2N4R-tau and αSyn fibrils. In silico modeling was performed to examine the binding pockets of ligands on αSyn fibrils. Immunofluorescence staining of postmortem brain tissue slices from Parkinson's disease patients and mouse models was performed with fluorescence ligands and specific antibodies. RESULTS We optimized the protocol for the immobilization of Aβ42, K18-tau, full-length 2N4R-tau and αSyn fibrils in a controlled aggregation state on SPR-sensor chips and for assessing their binding to ligands. The SPR results from the analysis of binding kinetics suggested the presence of at least two binding sites for all fibrils, including luminescent conjugated oligothiophenes, benzothiazole derivatives, nonfluorescent methylene blue and lansoprazole. In silico modeling studies for αSyn (6H6B) revealed four binding sites with a preference for one site on the surface. Immunofluorescence staining validated the detection of pS129-αSyn positivity in the brains of Parkinson's disease patients and αSyn preformed-fibril injected mice, 6E10-positive Aβ in arcAβ mice, and AT-8/AT-100-positivity in pR5 mice. CONCLUSION SPR measurements of small molecules binding to Aβ42, K18/full-length 2N4R-tau and αSyn fibrils suggested the existence of multiple binding sites. This approach may provide efficient characterization of compounds for neurodegenerative disease-relevant proteinopathies.
Collapse
Affiliation(s)
- Jens Sobek
- Functional Genomics Center, University of Zurich & ETH Zurich, Zürich, Switzerland
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Benjamin F Combes
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Zürich, Switzerland
| | - Juan A Gerez
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zürich, Switzerland
| | - Martin T Henrich
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Fanni F Geibl
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Peter R Nilsson
- Divison of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wolfgang H Oertel
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Zürich, Switzerland
| | - Agneta Nordberg
- Divison of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Zürich, Switzerland.
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zürich, Switzerland.
| |
Collapse
|
3
|
Gao H, Qin H, Fu H, Feng J, Chen M. Tau biosensor on aptamer-modified interdigitated electrode for monitoring neurological effect caused by anesthesia. Heliyon 2024; 10:e37449. [PMID: 39309811 PMCID: PMC11415702 DOI: 10.1016/j.heliyon.2024.e37449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
General anesthesia is significantly gaining prominence and becoming unavoidable in modern medicine. Since neuroprotein fluctuations are common during anesthetic procedures, it is essential to monitor protein levels to identify neuro-related issues. Tau protein fluctuations are often found in the anesthetic process, and higher levels of tau are highly related to various neuro-related issues. Researchers are focusing on monitoring tau levels during and after anesthesia. This research has developed a high-sensitive tau biosensor on a gold nanomaterial-modified interdigitated electrode, measured at 0-2 V on a dual-probe station. Aptamer and antibody were used as capture and detection molecules, and a biotin-streptavidin strategy was employed to attach a higher number of aptamers on the electrode. These immobilized aptamers recognize the tau protein and form a sandwich with antibodies, lowering the detection of tau protein to 1 fM on a linear regression from 0.001 to 100 pM (y = 2.0651x - 1.3813, R2 = 0.987). Further, tau-spiked cerebrospinal fluid increases the current flow without any interferences, confirming the selective detection of tau protein.
Collapse
Affiliation(s)
- Hongjuan Gao
- Operating Room, Wuhan Fourth Hospital, Wuhan, 430000, China
| | - Han Qin
- Department of Anesthesiology, Wuhan Fourth Hospital, Wuhan, 430000, China
| | - Hongjing Fu
- Operating Room, Wuhan Fourth Hospital, Wuhan, 430000, China
| | - Jing Feng
- Department of Nursing, Wuhan Fourth Hospital, Wuhan, 430000, China
| | - Min Chen
- Department of Nursing, Wuhan Fourth Hospital, Wuhan, 430000, China
| |
Collapse
|
4
|
Ran C, Zhang JL, He X, Luo C, Zhang Q, Shen Y, Yin L. Recent development of gold nanochips in biosensing and biodiagnosis sensibilization strategies in vitro based on SPR, SERS and FRET optical properties. Talanta 2024; 282:126936. [PMID: 39362039 DOI: 10.1016/j.talanta.2024.126936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Gold nanomaterials have become attractive nanomaterials for biomedical research due to their unique physical and chemical properties, and nanochips are designed to manufacture high-quality substrates for loading gold nanoparticles (GNPs) to achieve specific and selective detection. By utilizing multiple optical properties of different gold nanostructures, the sensitivity, specificity, speed, contrast, resolution, and other performance of biosensing and biological diagnosis can be significantly improved. This paper summarized the sensitivity enhancement strategies of optical biosensing techniques based on the three main optical properties of gold nanomaterials: surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) and fluorescence resonance energy transfer (FRET). The aim is to comprehensively review the development direction of in vitro diagnostics (IVDs) from two aspects: detection strategies and modification of gold nanomaterials. In addition, some opportunities and challenges that gold-based IVDs may encounter at present or in the future are also mentioned in this paper. In summary, this paper can enlighten readers with feasible strategies for manufacturing potential gold-based nanobiosensors.
Collapse
Affiliation(s)
- Chuanjiang Ran
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Jin-Lin Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China; Jiangsu Institute for Food and Drug Control, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Xinyue He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Changyou Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Qingjie Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China
| | - Yan Shen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China.
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210019, Jiangsu Province, People's Republic of China.
| |
Collapse
|
5
|
Ahn JS, Jang CH. Real-time detection of Tau-381 protein using liquid crystal-based sensors for Alzheimer's disease diagnosis. Colloids Surf B Biointerfaces 2024; 245:114211. [PMID: 39260276 DOI: 10.1016/j.colsurfb.2024.114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/02/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Tau is a protein found in the central nervous system (CNS) and is involved in stabilizing microtubules in axons. Given the link between Tau levels in the body and Alzheimer's disease (AD), there is a demand for straightforward and precise strategies to detect Tau in body fluids. In this study, we report liquid crystal (LC)-based sensors for the real-time detection of Tau protein, a well-known AD biomarker. The sensor uses a detection method based on the orientation change of the LC because of the competitive biomolecular interaction between Tau and Tau aptamers with the cationic polymer poly-L-lysine (PLL). Tau and its aptamers form stable complexes through electrostatic interactions. Owing to the consumption of the aptamer, the positively charged PLL fails to interact with the aptamer but binds to the negatively charged 1.2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) sodium salt (DOPG). The PLL and DOPG complex alters the orientation of the LC to ensure a planar anchoring of the 4-cyano-4'-pentylbiphenyl (5CB)/aqueous interface; this anchoring intensifies with increasing Tau concentration, thus enabling the observation of a bright optical image. Our LC-based sensor demonstrated a low detection limit of 2.77 pg/mL in phosphate buffered saline (PBS) and 10.86 pg/mL and 19.31 pg/mL in human serum and plasma, respectively. Moreover, it is anticipated to be suitable for point-of-care diagnosis of AD because it does not require specialized analytical equipment and only requires microliters of sample.
Collapse
Affiliation(s)
- Jun-Seong Ahn
- Department of Chemistry, Gachon University, Seongnam-daero 1342, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Chang-Hyun Jang
- Department of Chemistry, Gachon University, Seongnam-daero 1342, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
6
|
Hang Z, Zhou L, Bian X, Liu G, Cui F, Du H, Wen Y. Potential application of aptamers combined with DNA nanoflowers in neurodegenerative diseases. Ageing Res Rev 2024; 100:102444. [PMID: 39084322 DOI: 10.1016/j.arr.2024.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The efficacy of neurotherapeutic drugs hinges on their ability to traverse the blood-brain barrier and access the brain, which is crucial for treating or alleviating neurodegenerative diseases (NDs). Given the absence of definitive cures for NDs, early diagnosis and intervention become paramount in impeding disease progression. However, conventional therapeutic drugs and existing diagnostic approaches must meet clinical demands. Consequently, there is a pressing need to advance drug delivery systems and early diagnostic methods tailored for NDs. Certain aptamers endowed with specific functionalities find widespread utility in the targeted therapy and diagnosis of NDs. DNA nanoflowers (DNFs), distinctive flower-shaped DNA nanomaterials, are intricately self-assembled through rolling ring amplification (RCA) of circular DNA templates. Notably, imbuing DNFs with diverse functionalities becomes seamlessly achievable by integrating aptamer sequences with specific functions into RCA templates, resulting in a novel nanomaterial, aptamer-bound DNFs (ADNFs) that amalgamates the advantageous features of both components. This article delves into the characteristics and applications of aptamers and DNFs, exploring the potential or application of ADNFs in drug-targeted delivery, direct treatment, early diagnosis, etc. The objective is to offer prospective ideas for the clinical treatment or diagnosis of NDs, thereby contributing to the ongoing efforts in this critical field.
Collapse
Affiliation(s)
- Zhongci Hang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xiaochun Bian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guotao Liu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fenghe Cui
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangdingdong Road, Zhifu District, Yantai, Shandong 264000, China.
| | - Hongwu Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
7
|
Hatami-Fard G, Anastasova-Ivanova S. Advancements in Cerebrospinal Fluid Biosensors: Bridging the Gap from Early Diagnosis to the Detection of Rare Diseases. SENSORS (BASEL, SWITZERLAND) 2024; 24:3294. [PMID: 38894085 PMCID: PMC11174891 DOI: 10.3390/s24113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Cerebrospinal fluid (CSF) is a body fluid that can be used for the diagnosis of various diseases. However, CSF collection requires an invasive and painful procedure called a lumbar puncture (LP). This procedure is applied to any patient with a known risk of central nervous system (CNS) damage or neurodegenerative disease, regardless of their age range. Hence, this can be a very painful procedure, especially in infants and elderly patients. On the other hand, the detection of disease biomarkers in CSF makes diagnoses as accurate as possible. This review aims to explore novel electrochemical biosensing platforms that have impacted biomedical science. Biosensors have emerged as techniques to accelerate the detection of known biomarkers in body fluids such as CSF. Biosensors can be designed and modified in various ways and shapes according to their ultimate applications to detect and quantify biomarkers of interest. This process can also significantly influence the detection and diagnosis of CSF. Hence, it is important to understand the role of this technology in the rapidly progressing field of biomedical science.
Collapse
Affiliation(s)
- Ghazal Hatami-Fard
- The Hamlyn Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
8
|
Lee SH, Back JH, Joo HJ, Lim DS, Lee JE, Lee HJ. Simultaneous detection method for two cardiac disease protein biomarkers on a single chip modified with mixed aptamers using surface plasmon resonance. Talanta 2024; 267:125232. [PMID: 37806108 DOI: 10.1016/j.talanta.2023.125232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023]
Abstract
A simultaneous detection method for two cardiac disease protein biomarkers present in serum samples on a single planar gold chip using surface plasmon resonance (SPR) is described. The detection of N-terminal pro-brain natriuretic peptide (NT-proBNP) and tumor necrosis factor α (TNF-α), which are known as acute myocardial infarction (AMI) biomarkers, with predetermined clinically relevant concentrations was performed using mixed aptamers specific to each protein tethered on a single gold surface. After the binding of NT-proBNP and/or TNF-α to the mixed aptamers, an antibody specific to each target protein was injected to form a surface sandwich complex to improve selectivity. In order to adjust the dynamic ranges in the known clinically relevant concentration significantly different for NT-proBNP (0.13-0.24 nM) and TNF-α (0.5-3 pM), the surface density ratios of the corresponding pair of aptamer and antibody were first systematically determined, which were the 1:1 mixed aptamer chip with 40 nM anti-NT-proBNP and 100 nM anti-TNF-α. This allowed to establish the distinct dynamic ranges of 0.05-0.5 nM for NT-proBNP and 0.1-5 pM for TNF-α in a buffer, along with detection and quantification limits of 0.03 and 0.19 nM for NT-proBNP and 0.06 and 0.21 pM for TNF-α, respectively. The changes in refractive unit (RU) values observed when exposing both proteins at different concentrations alongside the corresponding fixed concentration of antibodies onto the 1:1 mixed aptamer chip were then correlated to the sum of RU values measured when using the injection of individual protein for evaluating each protein concentration. With a complete characterization of the simultaneous quantification of two protein concentrations in the buffer, the mixed aptamer chip was finally employed for direct measurements of NT-proBNP and TNF-α concentrations in undiluted serum samples from healthy controls and AMI patients. The results of simultaneous SPR measurements for the two proteins in the serum samples were further compared to the individual protein concentration results using an enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Sang Hyuk Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Ji Hyun Back
- Chemical & Biological integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyung Joon Joo
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Eun Lee
- Chemical & Biological integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
9
|
D'Agata R, Bellassai N, Spoto G. Exploiting the design of surface plasmon resonance interfaces for better diagnostics: A perspective review. Talanta 2024; 266:125033. [PMID: 37562226 DOI: 10.1016/j.talanta.2023.125033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Surface Plasmon Resonance based-sensors are promising tools for precision diagnostics as they can provide tests useful for early and, whenever possible, non-invasive disease detection and monitoring. The design of novel, robust and effective interfaces enabling the sensing of a variety of molecular interactions in a highly selective and sensitive manner is a necessary step to obtain both accurate and reliable detection by SPR. This review covers the recent research efforts in this area, specifically emphasizing well-designed interfaces and applications in real-life samples. In particular, after a short introduction which identifies some of the critical challenges, the emerging strategies for the integration of the linker, the metal substrate and the recognition element on the sensing interface will be explored and discussed in three sections, as well as the opportunities for building SPR biosensors, easy to use, and with excellent sensitivities. Finally, a summary of some of the more promising and latest diagnostic applications will be provided, presenting a new window into the near-future perspectives.
Collapse
Affiliation(s)
- Roberta D'Agata
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale Delle Medaglie D'Oro, 305, 00136, Roma, Italy.
| | - Noemi Bellassai
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale Delle Medaglie D'Oro, 305, 00136, Roma, Italy
| | - Giuseppe Spoto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale Delle Medaglie D'Oro, 305, 00136, Roma, Italy
| |
Collapse
|
10
|
Jucknischke U, Friebe S, Rehle M, Quast L, Schmidt SH. Antibody Profiling: Kinetics with Native Biomarkers for Diagnostic Assay and Drug Developments. BIOSENSORS 2023; 13:1030. [PMID: 38131790 PMCID: PMC10742008 DOI: 10.3390/bios13121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Despite remarkable progress in applied Surface Plasmon Resonance (SPR)-based methods, concise monitoring of kinetic properties for native biomarkers from patient samples is still lacking. Not only are low concentrations of native targets in patient samples, often in the pM range, a limiting and challenging factor, but body fluids as complex matrices furthermore complicate measurements. The here-described method enables the determination of kinetic constants and resulting affinities for native antigens from patients' cerebrospinal fluid (CSF) and sera binding to antibodies. Using a significantly extended target-enrichment step, we modified a common sandwich-assay protocol, based on a primary and secondary antibody. We successfully analyze antibody kinetics of native targets from a variety of origins, with consistent results, independent of their source. Moreover, native neurofilament light chain (NFL) was investigated as an exemplary biomarker. Obtained data reveal antibodies recognizing recombinant NFL with high affinities, while showing no, or only significantly weakened binding to native NFL. The indicated differences for recombinant vs. native material demonstrate another beneficial application. Our assay is highly suitable for gaining valuable insights into characteristics of native biomarkers, thus impacting on the binder development of diagnostic reagents or pharmaceutical drugs.
Collapse
Affiliation(s)
- Ute Jucknischke
- Diagnostic Solutions, Reagent Research and Design, Department Antibody and Protein Technologies, (DSRRA) at Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | | | | | | | - Sven H. Schmidt
- Diagnostic Solutions, Reagent Research and Design, Department Antibody and Protein Technologies, (DSRRA) at Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| |
Collapse
|
11
|
Min S, Mohallem R, Aryal UK, Kinzer-Ursem TL, Rochet JC. Effects of Neighboring Phosphorylation Events on the Affinities of pT181-Tau Antibodies. Anal Chem 2023; 95:18241-18248. [PMID: 38014879 DOI: 10.1021/acs.analchem.3c04081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A tau variant phosphorylated on threonine 181 (pT181-tau) has been widely investigated as a potential Alzheimer's disease (AD) biomarker in cerebrospinal fluid (CSF) and blood. pT181-tau is present in neurofibrillary tangles (NFTs) of AD brains, and CSF levels of pT181-tau correlate with the overall NFT burden. Various immunobased analytical methods, including Western blotting and ELISA, have been used to quantify pT181-tau in human biofluids. The reliability of these methods is dependent on the affinity and binding specificity of the antibodies used to measure pT181-tau levels. Although both of these properties could, in principle, be affected by phosphorylation within or near the antibody's cognate antigen, such effects have not been extensively studied. Here, we developed a biolayer interferometry assay to determine the degree to which the affinity of pT181-tau antibodies is altered by the phosphorylation of serine or threonine residues near the target epitope. Our results revealed that phosphorylation near T181 negatively affected the binding of pT181-tau antibodies to their cognate antigen to varying degrees. In particular, two of three antibodies tested showed a complete loss of affinity for the pT181 target when S184 or S185 was phosphorylated. These findings highlight the importance of selecting antibodies that have been thoroughly characterized in terms of affinity and binding specificity, addressing the potential disruptive effects of post-translational modifications in the epitope region to ensure accurate biomarker quantitation.
Collapse
Affiliation(s)
- Sehong Min
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rodrigo Mohallem
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tamara L Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jean-Christophe Rochet
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
12
|
Song Y, Song JY, Shim JE, Kim DH, Na HK, You EA, Ha YG. Highly Effective and Efficient Self-Assembled Multilayer-Based Electrode Passivation for Operationally Stable and Reproducible Electrolyte-Gated Transistor Biosensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46527-46537. [PMID: 37713500 DOI: 10.1021/acsami.3c09976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
To ensure the operational stability of transistor-based biosensors in aqueous electrolytes during multiple measurements, effective electrode passivation is crucially important for reliable and reproducible device performances. This paper presents a highly effective and efficient electrode passivation method using a facile solution-processed self-assembled multilayer (SAML) with excellent insulation property to achieve operational stability and reproducibility of electrolyte-gated transistor (EGT) biosensors. The SAML is created by the consecutive self-assembly of three different molecular layers of 1,10-decanedithiol, vinyl-polyhedral oligomeric silsesquioxane, and 1-octadecanethiol. This passivation enables EGT to operate stably in phosphate-buffered saline (PBS) during repeated measurements over multiple cycles without short-circuiting. The SAML-passivated EGT biosensor is fabricated with a solution-processed In2O3 thin film as an amorphous oxide semiconductor working both as a semiconducting channel in the transistor and as a functionalizable biological interface for a bioreceptor. The SAML-passivated EGT including In2O3 thin film is demonstrated for the detection of Tau protein as a biomarker of Alzheimer's disease while employing a Tau-specific DNA aptamer as a bioreceptor and a PBS solution with a low ionic strength to diminish the charge-screening (Debye length) effect. The SAML-passivated EGT biosensor functionalized with the Tau-specific DNA aptamer exhibits ultrasensitive, quantitative, and reliable detection of Tau protein from 1 × 10-15 to 1 × 10-10 M, covering a much larger range than clinical needs, via changes in different transistor parameters. Therefore, the SAML-based passivation method can be effectively and efficiently utilized for operationally stable and reproducible transistor-based biosensors. Furthermore, this presented strategy can be extensively adapted for advanced biomedical devices and bioelectronics in aqueous or physiological environments.
Collapse
Affiliation(s)
- Youngmin Song
- Department of Chemistry, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jong Yu Song
- Department of Chemistry, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jae-Eul Shim
- Nanobiosensor Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Dong Hyung Kim
- Nanobiosensor Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Hee-Kyung Na
- Bioimaging Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Eun-Ah You
- Nanobiosensor Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Young-Geun Ha
- Department of Chemistry, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
13
|
Nangare S, Patil P. Poly(allylamine) coated layer-by-layer assembly decorated 2D carbon backbone for highly sensitive and selective detection of Tau-441 using surface plasmon resonance biosensor. Anal Chim Acta 2023; 1271:341474. [PMID: 37328252 DOI: 10.1016/j.aca.2023.341474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
The determination of clinically significant amounts of tau protein in bodily fluids is a major problem in Alzheimer's disease (AD) diagnosis. As a result, the present work aims to develop a simple, label-free, fast, highly sensitive, and selective 2D carbon backbone graphene oxide (GO) patterned surface plasmon resonance (SPR) mediated affinity biosensor for Tau-441 monitoring. Initially, non-plasmonic nanosized GO was made using a modified Hummers' method, whereas green synthesized gold nanoparticles (AuNPs) were subjected to a layer-by-layer (LbL) design employing anionic and cationic polyelectrolytes. Several spectroscopical evaluations were carried out to ensure the synthesis of GO, AuNPs, and LbL assembly. Following that, the Anti-Tau rabbit antibody was immobilized on the designed LbL assembly using carbodiimide chemistry, and various studies such as sensitivity, selectivity, stability, repeatability, spiked sample analysis, etc., were conducted using the constructed affinity GO@LbL-AuNPs-Anti-Tau SPR biosensor. As an output, it shows a broad concentration range and a very low detection limit of 150 ng/mL to 5 fg/mL and 13.25 fg/mL, respectively. The remarkable sensitivity of this SPR biosensor represents the merits of a combination of plasmonic AuNPs and a non-plasmonic GO. It also exhibits great selectivity for Tau-441 in the presence of interfering molecules, which may be because of the immobilization of the Anti-Tau rabbit on the surface of the LbL assembly. Furthermore, it ensured high stability and repeatability, while spiked sample analysis and AD-induced animal samples analysis confirmed the practicability of GO@LbL-AuNPs-Anti-Tau SPR biosensor for Tau-441 detection. In conclusion, fabricated sensitive, selective, stable, label-free, quick, simple, and minimally invasive GO@LbL-AuNPs-Anti-Tau SPR biosensor will provide an alternative for AD diagnosis in the future.
Collapse
Affiliation(s)
- Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Dhule, MS, India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Dhule, MS, India.
| |
Collapse
|
14
|
Sadeghzadeh J, Shahabi P, Farhoudi M, Ebrahimi-Kalan A, Mobed A, Shahpasand K. Tau Protein Biosensors in the Diagnosis of Neurodegenerative Diseases. Adv Pharm Bull 2023; 13:502-511. [PMID: 37646056 PMCID: PMC10460811 DOI: 10.34172/apb.2023.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/01/2022] [Accepted: 11/02/2022] [Indexed: 09/01/2023] Open
Abstract
Tau protein plays a crucial role in diagnosing neurodegenerative diseases. However, performing an assay to detect tau protein on a nanoscale is a great challenge for early diagnosis of diseases. Enzyme-linked immunosorbent assay (ELISA), western-blotting, and molecular-based methods, e.g., PCR and real-time PCR, are the most widely used methods for detecting tau protein. These methods are subject to certain limitations: the need for advanced equipment, low sensitivity, and specificity, to name a few. With the above said, it is necessary to discover advanced and novel methods for monitoring tau protein. Counted among remarkable approaches adopted by researchers, biosensors can largely eliminate the difficulties and limitations associated with conventional methods. The main objective of the present study is to review the latest biosensors developed to detect the tau protein. Furthermore, the problems and limitations of conventional diagnosis methods were discussed in detail.
Collapse
Affiliation(s)
- Jafar Sadeghzadeh
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences,Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Farhoudi
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences,Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mobed
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kourosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Tehran, Iran
| |
Collapse
|
15
|
Dang H, Joung Y, Jeong C, Jeon CS, Pyun SH, Park S, Choo J. Nanoplasmonic assay platforms for reproducible
SERS
detection of Alzheimer's disease biomarker. B KOREAN CHEM SOC 2023. [DOI: 10.1002/bkcs.12679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Hajun Dang
- Department of Chemistry Chung‐Ang University Seoul South Korea
| | - Younju Joung
- Department of Chemistry Chung‐Ang University Seoul South Korea
| | - Chaehyeon Jeong
- Department of Chemistry Chung‐Ang University Seoul South Korea
| | | | | | - Sung‐Gyu Park
- Nano‐Bio Convergence Department Korea Institute of Materials Science (KIMS) Changwon South Korea
| | - Jaebum Choo
- Department of Chemistry Chung‐Ang University Seoul South Korea
| |
Collapse
|
16
|
Shiravandi A, Yari F, Tofigh N, Kazemi Ashtiani M, Shahpasand K, Ghanian MH, Shekari F, Faridbod F. Earlier Detection of Alzheimer's Disease Based on a Novel Biomarker cis P-tau by a Label-Free Electrochemical Immunosensor. BIOSENSORS 2022; 12:879. [PMID: 36291017 PMCID: PMC9599477 DOI: 10.3390/bios12100879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Early detection of cis phosphorylated tau (cis P-tau) may help as an effective treatment to control the progression of Alzheimer's disease (AD). Recently, we introduced for the first time a monoclonal antibody (mAb) with high affinity against cis P-tau. In this study, the cis P-tau mAb was utilized to develop a label-free immunosensor. The antibody was immobilized onto a gold electrode and the electrochemical responses to the analyte were acquired by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV). The immunosensor was capable of selective detection of cis P-tau among non-specific targets like trans P-tau and major plasma proteins. A wide concentration range (10 × 10-14 M-3.0 × 10-9 M) of cis P-tau was measured in PBS and human serum matrices with a limit of detection of 0.02 and 0.05 pM, respectively. Clinical applicability of the immunosensor was suggested by its long-term storage stability and successful detection of cis P-tau in real samples of cerebrospinal fluid (CSF) and blood serum collected from human patients at different stages of AD. These results suggest that this simple immunosensor may find great application in clinical settings for early detection of AD which is an unmet urgent need in today's healthcare services.
Collapse
Affiliation(s)
- Ayoub Shiravandi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran 1665659911, Iran
| | - Farzaneh Yari
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran P.O. Box 14155-6455, Iran
| | - Nahid Tofigh
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417935840, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran 1665659911, Iran
| | - Koorosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran 1665659911, Iran
| | - Mohammad-Hossein Ghanian
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran 1665659911, Iran
| | - Faezeh Shekari
- Advanced Therapy Medicinal Product Technology Development Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran 1665659911, Iran
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran P.O. Box 14155-6455, Iran
| |
Collapse
|
17
|
Sonuç Karaboğa MN, Sezgintürk M. A practical approach for the detection of protein tau with a portable potentiostat. ELECTROANAL 2022. [DOI: 10.1002/elan.202200072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Mollasalehi N, Francois-Moutal L, Porciani D, Burke DH, Khanna M. Aptamers Targeting Hallmark Proteins of Neurodegeneration. Nucleic Acid Ther 2022; 32:235-250. [PMID: 35452303 DOI: 10.1089/nat.2021.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurodegeneration is a progressive deterioration of neural structures leading to cognitive or motor impairment of the affected patient. There is still no effective therapy for any of the most common neurodegenerative diseases (NDs) such as Alzheimer's or Parkinson's disease. Although NDs exhibit distinct clinical characteristics, many are characterized by the accumulation of misfolded proteins or peptide fragments in the brain and/or spinal cord. The presence of similar inclusion bodies in patients with diverse NDs provides a rationale for developing therapies directed at overlapping disease mechanisms. A novel targeting strategy involves the use of aptamers for therapeutic development. Aptamers are short nucleic acid ligands able to recognize molecular targets with high specificity and high affinity. Despite the fact that several academic groups have shown that aptamers have the potential to be used in therapeutic and diagnostic applications, their clinical translation is still limited. In this study, we describe aptamers that have been developed against proteins relevant to NDs, including prion protein and amyloid beta (Aβ), cell surface receptors and other cytoplasmic proteins. This review also describes advances in the application of these aptamers in imaging, protein detection, and protein quantification, and it provides insights about their accelerated clinical use for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Niloufar Mollasalehi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA.,Center for Innovation in Brain Science, Tucson, Arizona, USA
| | - Liberty Francois-Moutal
- Center for Innovation in Brain Science, Tucson, Arizona, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - David Porciani
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA.,MU Bond Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Donald H Burke
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA.,MU Bond Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | - May Khanna
- Center for Innovation in Brain Science, Tucson, Arizona, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
19
|
Current trends in blood biomarker detection and imaging for Alzheimer’s disease. Biosens Bioelectron 2022; 210:114278. [DOI: 10.1016/j.bios.2022.114278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/21/2022] [Accepted: 04/09/2022] [Indexed: 12/28/2022]
|
20
|
Karaboğa MNS, Sezgintürk MK. Biosensor approaches on the diagnosis of neurodegenerative diseases: Sensing the past to the future. J Pharm Biomed Anal 2022; 209:114479. [PMID: 34861607 DOI: 10.1016/j.jpba.2021.114479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/05/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
Early diagnosis of neurodegeneration-oriented diseases that develop with the aging world is essential for improving the patient's living conditions as well as the treatment of the disease. Alzheimer's and Parkinson's diseases are prominent examples of neurodegeneration characterized by dementia leading to the death of nerve cells. The clinical diagnosis of these diseases only after the symptoms appear, delays the treatment process. Detection of biomarkers, which are distinctive molecules in biological fluids, involved in neurodegeneration processes, has the potential to allow early diagnosis of neurodegenerative diseases. Studies on biosensors, whose main responsibility is to detect the target analyte with high specificity, has gained momentum in recent years with the aim of high detection of potential biomarkers of neurodegeneration process. This study aims to provide an overview of neuro-biosensors developed on the basis of biomarkers identified in biological fluids for the diagnosis of neurodegenerative diseases such as Alzheimer's disease (AD), and Parkinson's disease (PD), and to provide an overview of the urgent needs in this field, emphasizing the importance of early diagnosis in the general lines of the neurodegeneration pathway. In this review, biosensor systems developed for the detection of biomarkers of neurodegenerative diseases, especially in the last 5 years, are discussed.
Collapse
|
21
|
Jalili R, Chenaghlou S, Khataee A, Khalilzadeh B, Rashidi MR. An Electrochemiluminescence Biosensor for the Detection of Alzheimer's Tau Protein Based on Gold Nanostar Decorated Carbon Nitride Nanosheets. Molecules 2022; 27:431. [PMID: 35056745 PMCID: PMC8779933 DOI: 10.3390/molecules27020431] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
Human Tau protein is the most reliable biomarker for the prediction of Alzheimer's disease (AD). However, the assay to detect low concentrations of tau protein in serum is a great challenge for the early diagnosis of AD. This paper reports an electrochemiluminescence (ECL) immunosensor for Tau protein in serum samples. Gold nanostars (AuNSs) decorated on carbon nitride nanosheets (AuNS@g-CN nanostructure) show highly strong and stable ECL activity compared to pristine CN nanosheets due to the electrocatalytic and surface plasmon effects of AuNSs. As a result of the strong electromagnetic field at branches, AuNSs showed a better ECL enhancement effect than their spherical counterpart. For the fabrication of a specific immunosensor, immobilized AuNSs were functionalized with a monoclonal antibody specific for Tau protein. In the presence of Tau protein, the ECL intensity of the immunosensor decreased considerably. Under the optimal conditions, this ECL based immunosensor exhibits a dynamic linear range from 0.1 to 100 ng mL-1 with a low limit of detection of 0.034 ng mL-1. The LOD is less than the Tau level in human serum; thus, this study provides a useful method for the determination of Tau. The fabricated ECL immunosensor was successfully applied to the detection of Tau, the biomarker in serum samples. Therefore, the present approach is very promising for application in diagnosing AD within the early stages of the disease.
Collapse
Affiliation(s)
- Roghayeh Jalili
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran or (R.J.); (S.C.)
| | - Salimeh Chenaghlou
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran or (R.J.); (S.C.)
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran or (R.J.); (S.C.)
- Department of Environmental Engineering, Gebze Technical University, Gebze 41400, Turkey
- Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080 Chelyabinsk, Russia
| | - Balal Khalilzadeh
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz 51666-14711, Iran;
| | - Mohammad-Reza Rashidi
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz 51666-14711, Iran;
| |
Collapse
|
22
|
Murakami K, Izuo N, Bitan G. Aptamers targeting amyloidogenic proteins and their emerging role in neurodegenerative diseases. J Biol Chem 2022; 298:101478. [PMID: 34896392 PMCID: PMC8728582 DOI: 10.1016/j.jbc.2021.101478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 01/08/2023] Open
Abstract
Aptamers are oligonucleotides selected from large pools of random sequences based on their affinity for bioactive molecules and are used in similar ways to antibodies. Aptamers provide several advantages over antibodies, including their small size, facile, large-scale chemical synthesis, high stability, and low immunogenicity. Amyloidogenic proteins, whose aggregation is relevant to neurodegenerative diseases, such as Alzheimer's, Parkinson's, and prion diseases, are among the most challenging targets for aptamer development due to their conformational instability and heterogeneity, the same characteristics that make drug development against amyloidogenic proteins difficult. Recently, chemical tethering of aptagens (equivalent to antigens) and advances in high-throughput sequencing-based analysis have been used to overcome some of these challenges. In addition, internalization technologies using fusion to cellular receptors and extracellular vesicles have facilitated central nervous system (CNS) aptamer delivery. In view of the development of these techniques and resources, here we review antiamyloid aptamers, highlighting preclinical application to CNS therapy.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | - Naotaka Izuo
- Laboratory of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, Brain Research Institute, and Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
23
|
Ozturk M, Nilsen-Hamilton M, Ilgu M. Aptamer Applications in Neuroscience. Pharmaceuticals (Basel) 2021; 14:1260. [PMID: 34959661 PMCID: PMC8709198 DOI: 10.3390/ph14121260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Being the predominant cause of disability, neurological diseases have received much attention from the global health community. Over a billion people suffer from one of the following neurological disorders: dementia, epilepsy, stroke, migraine, meningitis, Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, prion disease, or brain tumors. The diagnosis and treatment options are limited for many of these diseases. Aptamers, being small and non-immunogenic nucleic acid molecules that are easy to chemically modify, offer potential diagnostic and theragnostic applications to meet these needs. This review covers pioneering studies in applying aptamers, which shows promise for future diagnostics and treatments of neurological disorders that pose increasingly dire worldwide health challenges.
Collapse
Affiliation(s)
- Meric Ozturk
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (M.O.); (M.N.-H.)
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Marit Nilsen-Hamilton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (M.O.); (M.N.-H.)
- Ames Laboratory, US DOE (United States Department of Energy), Ames, IA 50011, USA
- Aptalogic Inc., Ames, IA 50014, USA
| | - Muslum Ilgu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (M.O.); (M.N.-H.)
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
- Ames Laboratory, US DOE (United States Department of Energy), Ames, IA 50011, USA
- Aptalogic Inc., Ames, IA 50014, USA
| |
Collapse
|
24
|
Liu C, Li Y, Luo Y, Zhang Y, Zhou T, Deng J. Lab-on-a-ZnO-Submicron-Particle Sensor Array for Monitoring AD upon Cd 2+ Exposure with CSF Tau441% as an Effective Hallmark. Anal Chem 2021; 93:15005-15014. [PMID: 34738809 DOI: 10.1021/acs.analchem.1c02570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, based on the posttreatment strategy, blue-color-emissive ZnO submicron particles (B-ZnO SMPs) and red-color-emissive ZnO submicron particles (R-ZnO SMPs) were obtained from rationally designed Zn-infinite coordination polymer (ICP) precursors. After modification of thiol-containing aptamers, diverse spectral changes in the ultraviolet and visible regions of B- and R-ZnO SMPs toward different tau species were explored to construct a lab-on-a-ZnO-submicron-particle sensor array. Assisted by principal component analysis (PCA), the unique fingerprints of the sensor array enabled the simultaneous differentiation and quantitative detection of different tau species (tau381, tau410, and tau441) for the first time. Furthermore, the dynamic changes of tau441% (the ratio of the two most reported representative 4R isoform (full-length tau441) and 3R isoform (tau381)) in cerebrospinal fluid (CSF) during the Alzheimer's disease (AD) onset of Cd2+-exposed rats could also be monitored by the lab-on-a-ZnO-submicron-particle sensor array, which was supposed to be an effective hallmark and highly correlated with the formation of neurofibrillary tangles (NFTs). This study not only provides a further insight into the involvement of subchronic Cd2+ exposure in the tau etiology of AD but also offers more comprehensive and effective information about the asymptomatic stage of AD upon environmental risk, which has potential applications in the early diagnosis and therapy.
Collapse
Affiliation(s)
- Chang Liu
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Yuanting Li
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Yuxin Luo
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Ying Zhang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Tianshu Zhou
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Jingjing Deng
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai 200241, China.,Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
25
|
Yin M, Xu D, Yu J, Huang S, Gopinath SCB, Kang P. Impedance spectroscopy for identifying tau protein to monitor anesthesia-based issues. Biotechnol Appl Biochem 2021; 69:1805-1811. [PMID: 34453342 DOI: 10.1002/bab.2246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/23/2021] [Indexed: 11/10/2022]
Abstract
Anesthesia-related drugs cause various side effects and health-related illnesses after surgery. In particular, neurogenerative disorder is a common problem of anesthesia-related drugs. A patient gets anesthesia as a requirement of the preoperative evaluation to diagnose the medical illness, which is caused by anesthetic drug treatment. Different blood-based biomarkers help in identifying the changes appearing in patients after anesthesia treatment. Among them, tau protein is a sensitive biomarker of neurodegenerative diseases, and the fluctuations in tau proteins are highly associated with various diseases. Furthermore, researchers have found unstable levels of tau protein after the anesthesia process. The current research has focused on quantifying tau protein via impedance spectroscopy to identify the problems caused by anesthesia-related drugs. An impedance spectroscopy electrode was modified into a multiwalled carbon nanotube, and an amine-ended aptamer was then attached. This electrode surface was used to quantify the tau protein level and reached the detection limit of 1 fM. The determination coefficient was found to be y = 369.93x + 1144.9, with R2 = 0.9846 in the linear range of 1 fM-1 nM. Furthermore, tau protein spiked human serum was clearly identified on the immobilized aptamer surface, indicating the specific detection.
Collapse
Affiliation(s)
- Miaomiao Yin
- Department of Anesthesiology, Lianyungang Hospital Affiliated to Xuzhou Medical University, Lianyungang, Jiangsu, China
| | - Defang Xu
- Department of Anesthesiology, Tianjin Fourth Center Hospital, Tianjin, China
| | - Jinyong Yu
- Department of Anesthesiology, Zhucheng Maternal and Child Health Hospital, Weifang, Shandong, China
| | - Saisai Huang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Peipei Kang
- Department of Anesthesiology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
26
|
Novel Electrochemical Molecularly Imprinted Polymer-Based Biosensor for Tau Protein Detection. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9090238] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel electrochemical biosensor based on a molecularly imprinted polymer (MIP) was developed for the impedimetric determination of Tau protein, a biomarker of Alzheimer’s disease (AD). Indeed, a recent correlation between AD symptoms and the presence of Tau proteins in their aggregated form made hyperphosphorylated Tau protein (Tangles) a promising biomarker for Alzheimer’s diagnosis. The MIP was directly assembled on a screen-printed carbon electrode (C-SPE) and prepared by electropolymerization of 3-aminophenol (AMP) in the presence of the protein template (p-Tau-441) using cyclic voltammetry. The p-Tau-441 protein bound to the polymeric backbone was digested by the action of the proteolytic activity of proteinase K in urea and then washed away to create vacant sites. The performances of the corresponding imprinted and non-imprinted electrodes were evaluated by electrochemical impedance spectroscopy. The detection limit of the MIP-based sensors was 0.02 pM in PBS buffer pH 5.6. Good selectivity and good results in serum samples were obtained with the developed platform. The biosensor described in this work is a potential tool for screening Tau protein on-site and an attractive complement to clinically established methodologies methods as it is easy to fabricate, has a short response time and is inexpensive.
Collapse
|
27
|
Hanif S, Muhammad P, Niu Z, Ismail M, Morsch M, Zhang X, Li M, Shi B. Nanotechnology‐Based Strategies for Early Diagnosis of Central Nervous System Disorders. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Sumaira Hanif
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Zheng Niu
- Province's Key Lab of Brain Targeted Bionanomedicine School of Pharmacy Henan University Kaifeng Henan 475004 China
| | - Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Marco Morsch
- Department of Biomedical Sciences Macquarie University Centre for Motor Neuron Disease Research Macquarie University NSW 2109 Australia
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine Henan Provincial People's Hospital Zhengzhou Henan 450003 China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine The Third Affiliated Hospital Sun Yat-sen University Guangzhou Guangdong 510630 China
| | - Bingyang Shi
- Department of Biomedical Sciences Faculty of Medicine & Health & Human Sciences Macquarie University NSW 2109 Australia
| |
Collapse
|
28
|
Ghaffari M, Sanadgol N, Abdollahi M. A Systematic Review of Current Progresses in the Nucleic Acid-Based Therapies for Neurodegeneration with Implications for Alzheimer's Disease. Mini Rev Med Chem 2021; 20:1499-1517. [PMID: 32400332 DOI: 10.2174/1389557520666200513122357] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/31/2020] [Accepted: 04/20/2020] [Indexed: 12/30/2022]
Abstract
Recently, manipulation of gene expression and switching genes on or off highlight the potential of nucleic acid-based therapies (NA-BTs). Alzheimer's Disease (AD) is a common devastating neurodegenerative disease (NDs) responsible for 60-80% of all cases of dementia and predicted as a main public health concern among aged populations. The aim of this study was to outline the current research in the field of NA-BTs for the treatment of AD disabilities, including strategies to suppress the memory and learning defects, to promote recovery processes, and to reinforce social relationships in these patients. This review was performed via evaluating PubMed reported studies from January 2010 to November 2019. Also, reference lists were checked to find additional studies. All intermediation or complementarity of animal models, case-control and cohort studies, and controlled trials (CTs) on specific NA-BTs to AD were acceptable, although in vitro studies were excluded due to the considerable diversities and heterogeneities. After removing the duplicates according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) instruction, we merged remaining titles across search databases. There are 48 ongoing studies related to the application of nucleic acids in the treatment and diagnosis of AD where more consideration is given to DNA targeting strategies (18 targets for vectors and aptamers), antisense oligonucleotides (10 targets), micro-RNAs mimics (7 targets), antagomiRs (6 targets), small interferences-RNAs (5 targets), as well as mRNAs (2 targets) respectively. All of these targets are grouped into 4 categories according to their role in molecular pathways where amyloid-β (18 targets), neural survival (11 targets), memory and cognition (8 targets), and tau (3 targets) are more targeted pathways, respectively. With recent successes in the systemic delivery of nucleic acids via intravenous injection; it is worth investing in the production of new-generation medicines. There are still several challenges for NA-BTs including, their delivery to the effective modulators, mass production at low cost, sustaining efficacy and minimizing off-target effects. Regarding miRNA-based therapies, given the obvious involvement of miRNAs in numerous facets of brain disease, and the many sophisticated techniques for delivery to the brain, miRNA-based therapies will make new hope for the treatment of neurological diseases such as AD.
Collapse
Affiliation(s)
- Maryam Ghaffari
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Iran
| |
Collapse
|
29
|
Karki HP, Jang Y, Jung J, Oh J. Advances in the development paradigm of biosample-based biosensors for early ultrasensitive detection of alzheimer's disease. J Nanobiotechnology 2021; 19:72. [PMID: 33750392 PMCID: PMC7945670 DOI: 10.1186/s12951-021-00814-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
This review highlights current developments, challenges, and future directions for the use of invasive and noninvasive biosample-based small biosensors for early diagnosis of Alzheimer's disease (AD) with biomarkers to incite a conceptual idea from a broad number of readers in this field. We provide the most promising concept about biosensors on the basis of detection scale (from femto to micro) using invasive and noninvasive biosamples such as cerebrospinal fluid (CSF), blood, urine, sweat, and tear. It also summarizes sensor types and detailed analyzing techniques for ultrasensitive detection of multiple target biomarkers (i.e., amyloid beta (Aβ) peptide, tau protein, Acetylcholine (Ach), microRNA137, etc.) of AD in terms of detection ranges and limit of detections (LODs). As the most significant disadvantage of CSF and blood-based detection of AD is associated with the invasiveness of sample collection which limits future strategy with home-based early screening of AD, we extensively reviewed the future trend of new noninvasive detection techniques (such as optical screening and bio-imaging process). To overcome the limitation of non-invasive biosamples with low concentrations of AD biomarkers, current efforts to enhance the sensitivity of biosensors and discover new types of biomarkers using non-invasive body fluids are presented. We also introduced future trends facing an infection point in early diagnosis of AD with simultaneous emergence of addressable innovative technologies.
Collapse
Affiliation(s)
- Hem Prakash Karki
- Department of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Yeongseok Jang
- Department of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Jinmu Jung
- Department of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
- Department of Nano-bio Mechanical System Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Jonghyun Oh
- Department of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
- Department of Nano-bio Mechanical System Engineering, College of Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
30
|
Phan LMT, Hoang TX, Vo TAT, Pham HL, Le HTN, Chinnadayyala SR, Kim JY, Lee SM, Cho WW, Kim YH, Choi SH, Cho S. Nanomaterial-based Optical and Electrochemical Biosensors for Amyloid beta and Tau: Potential for early diagnosis of Alzheimer's Disease. Expert Rev Mol Diagn 2021; 21:175-193. [PMID: 33560154 DOI: 10.1080/14737159.2021.1887732] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD), a heterogeneous pathological process representing the most common causes of dementia worldwide, has required early and accurate diagnostic tools. Neuropathological hallmarks of AD involve the aberrant accumulation of Amyloid beta (Aβ) into Amyloid plaques and hyperphosphorylated Tau into neurofibrillary tangles, occurring long before the onset of brain dysfunction.Areas covered:Considering the significance of Aβ and Tau in AD pathogenesis, these proteins have been adopted as core biomarkers of AD, and their quantification has provided precise diagnostic information to develop next-generation AD therapeutic approaches. However, conventional diagnostic methods may not suffice to achieve clinical criteria that are acceptable for proper diagnosis and treatment. The advantages of nanomaterial-based biosensors including facile miniaturization, mass fabrication, ultra-sensitivity, make them useful to be promising tools to measure Aβ and Tau simultaneously for accurate validation of low-abundance yet potentially informative biomarkers of AD.. EXPERT OPINION The study has identified the potential application of advanced biosensors as standardized clinical diagnostic tools for AD, evolving the way for new and efficient AD control with minimum economic and social burden. After clinical trial, nanobiosensors for measuring Aβ and Tau simultaneously possess innovative diagnosis of AD to provide significant contributions to primary Alzheimer's care intervention.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea.,School of Medicine and Pharmacy, The University of Danang, Danang, Vietnam
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Thuy Anh Thu Vo
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hoang Lan Pham
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hien T Ngoc Le
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | | | - Jae Young Kim
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | | | - Won Woo Cho
- Cantis Inc., Ansan-si, Gyeonggi-do, Republic of Korea
| | - Young Hyo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea.,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
31
|
Nangare S, Patil P. Nanoarchitectured Bioconjugates and Bioreceptors Mediated Surface Plasmon Resonance Biosensor for In Vitro Diagnosis of Alzheimer’s Disease: Development and Future Prospects. Crit Rev Anal Chem 2021; 52:1139-1169. [DOI: 10.1080/10408347.2020.1864716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
32
|
Duan C, Jiao J, Zheng J, Li D, Ning L, Xiang Y, Li G. Polyvalent Biotinylated Aptamer Scaffold for Rapid and Sensitive Detection of Tau Proteins. Anal Chem 2020; 92:15162-15168. [PMID: 33155796 DOI: 10.1021/acs.analchem.0c03643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biomimetic construction of artificial scaffolds has attracted increasing attention. However, the construction methods usually require redundant materials and procedures, which is inconvenient for further application. Herein, inspired by the polyvalent multifunctional structure in nature, we have designed a polyvalent biotinylated aptamer scaffold (PBAS) which can conduct analytical performance with high sensitivity and simplified procedures. To construct a PBAS, the aptamers are designed to hybridize with prepared linker probes to form polyvalent biotinylated scaffolds, which contain both multiple aptamers and signal labels. Therefore, multifunctional scaffolds can be constructed with high recognition and capture efficiency as well as significant signal amplification. Furthermore, the scaffold can be used for the assay of some disease marker proteins. By taking tau proteins as an example, the proposed aptasensor can exhibit excellent performance with a low detection limit of 153 pg mL-1 and a short assay time of 50 min, which is much better than most of the previous methods. By assays of tau proteins in both serum and artificial cerebro spinal fluid, the PBAS-based aptasensor can work well. Therefore, the scaffold may be expected to be a powerful analytical tool which may have wide applications in the detection of a variety of analytes.
Collapse
Affiliation(s)
- Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Jin Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Ji Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Dayong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Limin Ning
- College of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.,Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
33
|
An enzyme linked aptamer photoelectrochemical biosensor for Tau-381 protein using AuNPs/MoSe 2 as sensing material. J Pharm Biomed Anal 2020; 192:113666. [PMID: 33065402 DOI: 10.1016/j.jpba.2020.113666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease is a worldwide health problem and it has attracted extensive attention. Tau protein is an important biomarker in the pathogenesis of Alzheimer's disease. Herein, we devise a in situ enzyme catalysis generating electron donor photoelectrochemical (PEC) biosensor for Tau-381 protein. Tau-381 protein aptamer is immobilized onto the surface of AuNPs/MoSe2 nanosheets modified electrode. In the presence of Tau-381 protein, an aptamer-protein duplex is formed. Meanwhile, the Tau-381 antibody and the protein G/AP (protein G labeled with alkaline phosphatase) are captured with the affinity interaction between Tau-381 protein and Tau-381 antibody, Tau-381 antibody and protein G/AP. The electron donor, ascorbic acid, is in situ produced by the catalyzing of ascorbic acid 2-phosphate in the PEC detection solution. As a result, low blank noise and strong photocurrent response are engendered. The photocurrent response is related to the concentration of Tau-381 protein. The detection range of Tau-381 protein is from 0.5 fM to 1.0 nM with detection limit of 0.3 fM. This in situ generating electron donor PEC biosensor can detect various targets by simply alternating antibody, antigen, or aptamer commercially. Thus, this work represents a simple and general sensing protocol.
Collapse
|
34
|
Razzino CA, Serafín V, Gamella M, Pedrero M, Montero-Calle A, Barderas R, Calero M, Lobo AO, Yáñez-Sedeño P, Campuzano S, Pingarrón JM. An electrochemical immunosensor using gold nanoparticles-PAMAM-nanostructured screen-printed carbon electrodes for tau protein determination in plasma and brain tissues from Alzheimer patients. Biosens Bioelectron 2020; 163:112238. [DOI: 10.1016/j.bios.2020.112238] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
|
35
|
Rezabakhsh A, Rahbarghazi R, Fathi F. Surface plasmon resonance biosensors for detection of Alzheimer's biomarkers; an effective step in early and accurate diagnosis. Biosens Bioelectron 2020; 167:112511. [PMID: 32858422 DOI: 10.1016/j.bios.2020.112511] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
Abstract
The rapid and direct detection of biomarkers in biofluids at clinically relevant concentrations faces serious limitations to develop diagnostic criteria for neurodegenerative diseases such as Alzheimer's disease (AD). In this regard, the early detection of biomarkers correlated with AD using novel modalities and instruments is at the center of attention. Recently, some newly invented optical-based biosensors namely Surface Plasmon Resonance (SPR) has been extensively investigated for the detection of biomarkers using a label-free method or by checking interaction between ligand and analyte. These approaches can sense a very small amount of target molecules in the blood and cerebrospinal fluids samples. In this review, the different hypothesis related to AD, and the structural properties of AD biomarkers was introduced. Also, we aim to highlight the specific role of available SPR-based sensing methods for early detection of AD biomarkers such as aggregated β-amyloid and tau proteins. Efforts to better understand the accuracy and efficiency of optical-based biosensors in the field of neurodegenerative disease enable us to accelerate the advent of novel modalities in the clinical setting for therapeutic and diagnostic purposes.
Collapse
Affiliation(s)
- Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Biosensor Sciences and Technologies Research Center (BSTRC), Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
36
|
Jamerlan A, An SSA, Hulme J. Advances in amyloid beta oligomer detection applications in Alzheimer's disease. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Ameri M, Shabaninejad Z, Movahedpour A, Sahebkar A, Mohammadi S, Hosseindoost S, Ebrahimi MS, Savardashtaki A, Karimipour M, Mirzaei H. Biosensors for detection of Tau protein as an Alzheimer's disease marker. Int J Biol Macromol 2020; 162:1100-1108. [PMID: 32603732 DOI: 10.1016/j.ijbiomac.2020.06.239] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/13/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
Known as a main neural MAP (microtubule associated protein), tau protein contributes to stabilizing microtubules involved in cellular transmission. Tau dysfunction is mainly associated with neurodegenerative diseases, particularly Alzheimer's disease (AD). In these patients, all the six tau isoforms, which are in hyperphosphorylated form, are first aggregated and then polymerized into neurofibrillary tangles inside the brain. Tau protein detected in cerebrospinal fluid (CSF) is significantly correlated with AD and is well recognized as a hallmark of the disease. Served for detection of analytes of interest, biosensor device comprises a physical transducer and a keen biological recognition component. Qualitative and quantitative evaluations may be performed through analyzation of the data, which is gathered by measurable signals converted from biological reaction. Antibodies, receptors, microorganisms, nucleic acids, enzymes, cells and tissues, as well as some biomimetic structures, normally constitute the biosensor biological recognition part. Production of nanobiosensor, which was made possible through several accomplishments in nano- and fabrication technology, opens up new biotechnological horizons in diagnosis of multiple diseases. In recent years, many researches have been focused on developing novel and effective tau protein biosensors for rapid and accurate detection of AD. In this review, tau protein function and correlation with AD as well as the eminent research on developing nanobiosensor based on optical, electrochemical and piezoelectric approaches will be highlighted.
Collapse
Affiliation(s)
- Mehrdad Ameri
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, School of Basic Science, Tarbiat Modares University, Tehran, Iran; Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soheila Mohammadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saereh Hosseindoost
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
38
|
Mauriz E. Low-Fouling Substrates for Plasmonic Sensing of Circulating Biomarkers in Biological Fluids. BIOSENSORS-BASEL 2020; 10:bios10060063. [PMID: 32531908 PMCID: PMC7345924 DOI: 10.3390/bios10060063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
Abstract
The monitoring of biomarkers in body fluids provides valuable prognostic information regarding disease onset and progression. Most biosensing approaches use noninvasive screening tools and are conducted in order to improve early clinical diagnosis. However, biofouling of the sensing surface may disturb the quantification of circulating biomarkers in complex biological fluids. Thus, there is a great need for antifouling interfaces to be designed in order to reduce nonspecific adsorption and prevent inactivation of biological receptors and loss of sensitivity. To address these limitations and enable their application in clinical practice, a variety of plasmonic platforms have been recently developed for biomarker analysis in easily accessible biological fluids. This review presents an overview of the latest advances in the design of antifouling strategies for the detection of clinically relevant biomarkers on the basis of the characteristics of biological samples. The impact of nanoplasmonic biosensors as point-of-care devices has been examined for a wide range of biomarkers associated with cancer, inflammatory, infectious and neurodegenerative diseases. Clinical applications in readily obtainable biofluids such as blood, saliva, urine, tears and cerebrospinal and synovial fluids, covering almost the whole range of plasmonic applications, from surface plasmon resonance (SPR) to surface-enhanced Raman scattering (SERS), are also discussed.
Collapse
Affiliation(s)
- Elba Mauriz
- Department of Nursing and Physiotherapy, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain;
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
| |
Collapse
|
39
|
LI LY, WANG XY. Progress in Analysis of Tau Protein. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60024-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
40
|
Hu T, Wu L, Sun X, Su P, Yang Y. Comparative study on quantitation of human myoglobin by both isotope dilution mass spectrometry and surface plasmon resonance based on calibration-free analysis. Anal Bioanal Chem 2020; 412:2777-2784. [PMID: 32076791 DOI: 10.1007/s00216-020-02504-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 01/11/2023]
Abstract
The activity of proteins rather than the concentration of proteins in biopharmaceutical and in vitro diagnostics are often the primary focus. Nonetheless, development of a calibration-free concentration analysis (CFCA) approach that accurately quantifies the concentration of proteins based on molecular interactions with specific monoclonal antibodies and without the requirement of external calibrators would be beneficial to diagnostics. Generally, only analytes that interact with the antibody (Ab) are quantified by CFCA. Moreover, protein concentrations measured by CFCA usually vary when different Abs are used, and are lower than those obtained by amino acid analysis because any non-native state population of the target protein is not captured by the Ab. To achieve comparable results between CFCA and traditional amino acid analysis (AAA), an Ab that recognizes the target protein irrespective of its conformation should be used. In this report, three different monoclonal antibodies were used to quantify purified human myoglobin in solution by CFCA. The concentrations obtain by the Abs (i.e., 2.985, 2.912, 3.032 mg mL-1) were comparable with that obtained by AAA. Moreover, isotope dilution mass spectrometry (IDMS) gave a human myoglobin concentration of 2.851 mg mL-1, which is also in agreement with the results from CFCA. The performance of CFCA was evaluated by measuring various parameters, including within-day and between-day precision. The results demonstrated that the active concentration measured by CFCA is comparable with that of IDMS when the appropriate Ab is used. Recommended procedures for performing the new CFCA approach are provided. This study shows that CFCA represents a primary method for accurate protein concentration determination, which should aid the development of certified reference materials. Graphical abstract.
Collapse
Affiliation(s)
- Tingting Hu
- Beijing University of Chemical Technology, No. 15 North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Liqing Wu
- National Institute of Metrology, No. 18 North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Xiaonan Sun
- Beijing University of Chemical Technology, No. 15 North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Ping Su
- Beijing University of Chemical Technology, No. 15 North Third Ring Road, Chaoyang District, Beijing, 100029, China.
| | - Yi Yang
- Beijing University of Chemical Technology, No. 15 North Third Ring Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
41
|
Magnetic gold nanocomposite and aptamer assisted triple recognition electrochemical immunoassay for determination of brain natriuretic peptide. Mikrochim Acta 2020; 187:231. [PMID: 32180025 DOI: 10.1007/s00604-020-4221-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/07/2020] [Indexed: 01/02/2023]
Abstract
A triple recognition voltammetric method for the determination of brain natriuretic peptide (BNP) is described. Gold nanoparticles (AuNPs) and magnetic nanoparticles (MagNPs), sized 26 and 310 nm, respectively, were synthesized and characterized by transmission electron microscopy (TEM), FT-IR, dynamic light scattering (DLS), and Z-potential measurements. Antibody-modified MagNPs and methylene blue-labeled aptamer (Apt-MB)-modified AuNPs were used as an identifier, a signal reporter, and an amplifier, respectively. In the presence of BNP, the magnetic gold nanocomposite is formed through cascade conjugation via specific interaction. It then hybridized with complementary DNA (cDNA) on the interface, thereby amplifying the current signal of Apt-MB and increasing the selectivity of the immunoassay. Results obtained demonstrate the development of a highly selective method with a detection limit of 0.56 pg mL-1 and a linear response over the concentration range 1-10,000 pg mL-1. The standard deviation of the method is < 6% while the recovery ranged from 92.2 to 104.2%. Graphical abstract Schematic representation of triple recognition electrochemical immunosensor based on two functionalized nanoparticles (antibody-modified magnetic nanoparticle (MNP-Ab) and aptamer-modified gold nanoparticle (AuNPs-Apt)) for determination of brain natriuretic peptide (BNP).
Collapse
|
42
|
Kim K, Park CB. Femtomolar sensing of Alzheimer's tau proteins by water oxidation-coupled photoelectrochemical platform. Biosens Bioelectron 2020; 154:112075. [PMID: 32056970 DOI: 10.1016/j.bios.2020.112075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. A key pathogenic event of AD is the formation of intracellular neurofibrillary tangles that are mainly composed of tau proteins. Here, we report on ultrasensitive detection of total tau (t-tau) proteins using an artificial electron donor-free, BiVO4-based photoelectrochemical (PEC) analysis. The platform was constructed by incorporating molybdenum (Mo) dopant and iron oxyhydroxide (FeOOH) ad-layer into the BiVO4 photoelectrode and employing a signal amplifier formed by horseradish peroxidase (HRP)-triggered oxidation of 3,3'-diaminobenzidine (DAB). Despite the absence of additional electron suppliers, the FeOOH/Mo:BiVO4 conjugated with the Tau5 antibody produced strong current signals at 0 V (vs. Ag/AgCl, 3 M NaCl) under the illumination of a white light-emitting diode. The Mo extrinsic dopants increased the charge carrier density of BiVO4-Tau5 by 1.57 times, and the FeOOH co-catalyst promoted the interfacial water oxidation reaction of Mo:BiVO4-Tau5 by suppressing charge recombination. The introduction of HRP-labeled Tau46 capture antibodies to the FeOOH/Mo:BiVO4-Tau5 platform produced insoluble precipitation on the transducer by accelerating the oxidation of DAB, which amplified the photocurrent signal of FeOOH/Mo:BiVO4-Tau5 by 2.07-fold. Consequently, the water oxidation-coupled, FeOOH/Mo:BiVO4-based PEC sensing platform accurately and selectively recognized t-tau proteins down to femtomolar concentrations; the limit of detection and limit of quantification were determined to be 1.59 fM and 4.11 fM, respectively.
Collapse
Affiliation(s)
- Kayoung Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
43
|
A surface plasmon resonance biosensor in conjunction with a DNA aptamer-antibody bioreceptor pair for heterogeneous nuclear ribonucleoprotein A1 concentrations in colorectal cancer plasma solutions. Biosens Bioelectron 2020; 154:112065. [PMID: 32056960 DOI: 10.1016/j.bios.2020.112065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
A new DNA aptamer and antibody pair was incorporated into surface plasmon resonance (SPR) sensing platform to detect heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) in plasma at clinically relevant native concentrations for the diagnosis of colorectal cancer (CRC). SPR detection of hnRNP A1 was realized via formation of the surface sandwich complex of aptamer/hnRNP A1/anti-hnRNP A; the specific adsorption of hnRNP A1 onto a gold chip surface modified with a DNA aptamer followed by the adsorption of anti-hnRNP A1. Changes in the refractive unit (RU) with respect to the hnRNP A1 concentration in buffer solutions were monitored at a fixed anti-hnRNP A1 concentration of 90 nM, resulting in a dynamic range of 0.1-10 nM of hnRNP A1. The surface sandwich SPR biosensor was further applied to the direct analysis of undiluted human normal and pooled CRC patient plasma solutions. Our plasma analysis results were compared to those obtained with a commercial enzyme-linked immunosorbent assay kit.
Collapse
|
44
|
Ziu I, Laryea ET, Alashkar F, Wu CG, Martic S. A dip-and-read optical aptasensor for detection of tau protein. Anal Bioanal Chem 2020; 412:1193-1201. [PMID: 31900535 DOI: 10.1007/s00216-019-02350-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022]
Abstract
Neurodegeneration currently remains without a differential diagnosis or cure. Tau protein is one of the biomarkers of neurodegenerative diseases commonly known as tauopathies. Tau protein plays an integral role in stabilizing microtubules and cell structure; however, due to post-translational modifications, tau protein undergoes self-assembly into cytotoxic structures and is co-localized intra- and extracellularly. Hence, tau protein is a viable biomarker associated with protein pathogenesis and neurodegeneration. The novel optical biosensor for tau441 protein is based on the aptamer recognition probe and the biolayer interferometry (BLI) method for detection. The current biotin-aptasensor in combination with the streptavidin surface provides real-time monitoring of tau441 protein in the nanomolar range, with the limit of detection at 6.7 nM in vitro. The tau441 detection is achieved with high selectivity over other neurodegeneration biomarkers which include amyloid-β and α-synuclein. The aptasensor also allows for tau441 protein detection in a complex matrix such as fetal bovine serum, indicating its utility in other biological fluids for diagnostic applications. The optical method is simple, rapid and highly selective for point-of-care application which is critical for achieving the early and differential diagnosis of neurodegenerative diseases and identifying their treatments. Graphical abstract.
Collapse
Affiliation(s)
- Iva Ziu
- Department of Chemistry, Oakland University, Rochester, MI, 48309, USA
| | - Erving T Laryea
- Department of Chemistry, Oakland University, Rochester, MI, 48309, USA
| | - Fayza Alashkar
- Department of Chemistry, Oakland University, Rochester, MI, 48309, USA
| | - Colin G Wu
- Department of Chemistry, Oakland University, Rochester, MI, 48309, USA
| | - Sanela Martic
- Department of Forensic Science, Environmental and Life Sciences, Trent University, Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
45
|
Carneiro P, Morais S, do Carmo Pereira M. Biosensors on the road to early diagnostic and surveillance of Alzheimer's disease. Talanta 2020; 211:120700. [PMID: 32070618 DOI: 10.1016/j.talanta.2019.120700] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/21/2019] [Accepted: 12/28/2019] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease is a debilitating and largely untreatable condition with subtle onset and slow progression over an extensive period of time, which culminate in increasing levels of disability. As Alzheimer's disease prevalence is expected to grow exponentially in the upcoming decades, there is an urgency to develop analytical technologies for the sensitive, reliable and cost-effective detection of Alzheimer's disease biomarkers. Biosensors are powerful analytical devices that translate events of biological recognition on physical or chemical transducers into electrical, thermal or optical signals. The high sensitivity and selectivity of biosensors associated with easy, rapid and low-cost determination of analytes have made this discipline one of the most intensively studied in the past decades. This review centers on recent advances, challenges and trends of Alzheimer's disease biosensing particularly in the effort to combine the unique properties of nanomaterials with biorecognition elements. In the last decade, impressive progresses have been made towards the development of biosensors, mainly electrochemical and optical, for detection of Alzheimer's disease biomarkers in the pico- and femto-molar range. Nonetheless, advances in multiplexed detection, robustness, stability and specificity are still necessary to ensure an accurate and differentiated diagnosis of this disease.
Collapse
Affiliation(s)
- Pedro Carneiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal.
| | - Maria do Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
46
|
Kim K, Lee CH, Park CB. Chemical sensing platforms for detecting trace-level Alzheimer's core biomarkers. Chem Soc Rev 2020; 49:5446-5472. [DOI: 10.1039/d0cs00107d] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This review provides an overview of recent advances in optical and electrical detection of Alzheimer's disease biomarkers in clinically relevant fluids.
Collapse
Affiliation(s)
- Kayoung Kim
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Chang Heon Lee
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| |
Collapse
|
47
|
Mercadal PA, Motrich RD, Coronado EA. A Plasmonic Approach to Study Protein Interaction Kinetics through the Dimerization of Functionalized Ag Nanoparticles. Sci Rep 2019; 9:13122. [PMID: 31511649 PMCID: PMC6739483 DOI: 10.1038/s41598-019-49583-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 08/28/2019] [Indexed: 11/09/2022] Open
Abstract
Understanding the kinetics of protein interactions plays a key role in biology with significant implications for the design of analytical methods for disease monitoring and diagnosis in medical care, research and industrial applications. Herein, we introduce a novel plasmonic approach to study the binding kinetics of protein-ligand interactions following the formation of silver nanoparticles (Ag NPs) dimers by UV-Vis spectroscopy that can be used as probes for antigen detection and quantification. To illustrate and test the method, the kinetics of the prototype biotin-streptavidin (Biot-STV) pair interaction was studied. Controlled aggregates (dimers) of STV functionalized Ag NPs were produced by adding stoichiometric quantities of gliadin-specific biotinylated antibodies (IgG-Biot). The dimerization kinetics was studied in a systematic way as a function of Ag NPs size and at different concentrations of IgG-Biot. The kinetics data have shown to be consistent with a complex reaction mechanism in which only the Ag NPs attached to the IgG-Biot located in a specific STV site are able to form dimers. These results help in elucidating a complex reaction mechanism involved in the dimerization kinetics of functionalized Ag NPs, which can serve as probes in surface plasmon resonance-based bioassays for the detection and quantification of different biomarkers or analytes of interest.
Collapse
Affiliation(s)
- Pablo A Mercadal
- INFIQC-CONICET, Centro Láser de Ciencias Moleculares, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ruben D Motrich
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Eduardo A Coronado
- INFIQC-CONICET, Centro Láser de Ciencias Moleculares, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
48
|
McKeating KS, Hinman SS, Rais NA, Zhou Z, Cheng Q. Antifouling Lipid Membranes over Protein A for Orientation-Controlled Immunosensing in Undiluted Serum and Plasma. ACS Sens 2019; 4:1774-1782. [PMID: 31262175 DOI: 10.1021/acssensors.9b00257] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An important advance in biosensor research is the extension and application of laboratory-developed methodologies toward clinical diagnostics, though the propensity toward nonspecific binding of materials in clinically relevant matrices, such as human blood serum and plasma, frequently leads to compromised assays. Several surface chemistries have been developed to minimize nonspecific interactions of proteins and other biological components found within blood and serum samples, though these often exhibit substantially variable outcomes. Herein we report a surface chemistry consisting of a charged-matched supported lipid membrane that has been tailored to form over a gold surface functionalized with protein A. Fine tuning of the interfacial charge of this membrane, along with rational selection of a backfilling self-assembled monolayer, allows for high surface coverage with retention of orientation-controlled capture antibody attachment. We demonstrate using surface-plasmon resonance (SPR) that this highly charged lipid membrane is antifouling, allowing for complete removal of nonspecific human serum and plasma components using only a mild buffer rinse, which we attribute to unique steric interactions with the underlying surface. Furthermore, this surface chemistry is successfully applied for specific detection of IgG and cholera toxin in undiluted human biofluids with negligible sacrifice of SPR signal compared to buffered analysis. This novel lipid membrane interface over protein A may open new avenues for direct biosensing of disease markers within clinical samples.
Collapse
Affiliation(s)
| | | | | | - Zhiguo Zhou
- Luna Innovations Inc., Danville, Virginia 24541, United States
| | | |
Collapse
|
49
|
Tao D, Shui B, Gu Y, Cheng J, Zhang W, Jaffrezic-Renault N, Song S, Guo Z. Development of a Label-Free Electrochemical Aptasensor for the Detection of Tau381 and its Preliminary Application in AD and Non-AD Patients' Sera. BIOSENSORS 2019; 9:E84. [PMID: 31262001 PMCID: PMC6784373 DOI: 10.3390/bios9030084] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 12/25/2022]
Abstract
The electrochemical aptamer sensor has been designed for detecting tau381, a critical biomarker of Alzheimer's disease in human serum. The aptasensor is obtained by immobilizing the aptamer on a carboxyl graphene/thionin/gold nanoparticle modified glassy-carbon electrode. As a probe and bridge molecule, thionin connected carboxyl graphene and gold nanoparticles, and gave the electrical signal. Under optimal conditions, the increment of differential pulse voltammetry signal increased linearly with the logarithm of tau381 concentration in the range from 1.0 pM to 100 pM, and limit of detection was 0.70 pM. The aptasensor reliability was evaluated by determining its selectivity, reproducibility, stability, detection limit, and recovery. Performance analysis of the tau381 aptasensor in 10 patients' serum samples showed that the aptasensor could screen patients with and without Alzheimer's disease. The proposed aptasensor has potential for use in clinically diagnosing Alzheimer's disease in the early stage.
Collapse
Affiliation(s)
- Dan Tao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
- Resources and Environmental Engineering College, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Bingqing Shui
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yingying Gu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jing Cheng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Weiying Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, 69100 Villeurbanne, France.
| | - Shizhen Song
- Resources and Environmental Engineering College, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
50
|
Chan HN, Xu D, Ho SL, He D, Wong MS, Li HW. Highly sensitive quantification of Alzheimer's disease biomarkers by aptamer-assisted amplification. Am J Cancer Res 2019; 9:2939-2949. [PMID: 31244934 PMCID: PMC6568170 DOI: 10.7150/thno.29232] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/26/2018] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD), a chronic neurodegenerative disease associated with the loss of neurons in the brain, is the most pervasive type of dementia; 47 million people are affected, and the number is expected to increase to more than 131 million by 2050, according to Alzheimer's Disease International. Both early diagnosis and continuous monitoring are crucial for early intervention, symptomatic treatment, monitoring of the efficacy of intervention and improved patient function. Beta-amyloid peptide, tau, and phosphorylated tau are useful for screening and diagnosis; meanwhile, simultaneous assessment of multiple biomarkers is of paramount importance for accurate disease diagnosis. Methods: Herein, we report a direct, inexpensive and ultrasensitive aptamer-based multiplex assay for the quantification of trace amounts of AD biomarkers in both human serum and cerebrospinal fluid (CSF) samples. In this newly developed assay, molecular recognition of an antibody-aptamer pair provides high specificity in target detection, and the use of a DNA amplification strategy affords high sensitivity, allowing quantification of AD biomarkers in both biological fluids in 1.5 h with only a diminutive amount of the sample consumed. A tailor-made turn-on fluorophore, namely, SPOH, was employed to label the antibody-aptamer hybrids and provide a strong fluorescence signal, which was then detected with a total internal reflection fluorescence microscopy electron-multiplying charge-coupled device (TIRFM-EMCCD) imaging system. The simultaneous detection of biomarkers was achieved by a direct shape-coded method in which the nanoplatforms can be distinguished from one another by their morphologies. Results: This assay demonstrated a lower detection limit (in the femtomolar range) for AD biomarkers than the previously reported antibody-antibody method. Conclusion: The developed assay holds tremendous clinical potential for early diagnosis of AD and monitoring of its progression.
Collapse
|