1
|
Schmid A, Liebisch G, Burkhardt R, Belikan H, Köhler S, Steger D, Schweitzer L, Pons-Kühnemann J, Karrasch T, Schäffler A. Dynamics of the human bile acid metabolome during weight loss. Sci Rep 2024; 14:25743. [PMID: 39468179 PMCID: PMC11519931 DOI: 10.1038/s41598-024-75831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Bile acids (BA) are supposed to cause metabolic alterations after bariatric surgery (BS). Here we report the longitudinal dynamics of the human BA metabolome by LC-MS/MS after BS versus low calory diet (LCD) in two obesity cohorts over 12 months. Rapid and persistent oscillations of 23 BA subspecies could be identified with highly specific patterns in BS vs. LCD. TCDCA, GLCA, and TLCA represent most promising candidates for drug development.
Collapse
Affiliation(s)
- Andreas Schmid
- Basic Research Laboratory of Molecular Endocrinology, Adipocyte Biology and Biochemistry, University of Giessen, Giessen, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Hannah Belikan
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Sebastian Köhler
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Daniel Steger
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Leonie Schweitzer
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Jörn Pons-Kühnemann
- Medical Statistics, Institute of Medical Informatics, University of Giessen, Giessen, Germany
| | - Thomas Karrasch
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Andreas Schäffler
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany.
- Department of Internal Medicine, Giessen University Hospital, Klinikstrasse 33, 35392, Giessen, Germany.
| |
Collapse
|
2
|
Zöhrer B, Gómez C, Jaumot J, Idborg H, Torekov SS, Wheelock ÅM, Wheelock CE, Checa A. Cohort-based strategies as an in-house tool to evaluate and improve phenotyping robustness of LC-MS/MS lipidomics platforms. Anal Bioanal Chem 2024; 416:5485-5496. [PMID: 38940870 PMCID: PMC11427549 DOI: 10.1007/s00216-024-05404-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
In recent years, instrumental improvements have enabled the spread of mass spectrometry-based lipidomics platforms in biomedical research. In mass spectrometry, the reliability of generated data varies for each compound, contingent on, among other factors, the availability of labeled internal standards. It is challenging to evaluate the data for lipids without specific labeled internal standards, especially when dozens to hundreds of lipids are measured simultaneously. Thus, evaluation of the performance of these platforms at the individual lipid level in interlaboratory studies is generally not feasible in a time-effective manner. Herein, using a focused subset of sphingolipids, we present an in-house validation methodology for individual lipid reliability assessment, tailored to the statistical analysis to be applied. Moreover, this approach enables the evaluation of various methodological aspects, including discerning coelutions sharing identical selected reaction monitoring transitions, pinpointing optimal labeled internal standards and their concentrations, and evaluating different extraction techniques. While the full validation according to analytical guidelines for all lipids included in a lipidomics method is currently not possible, this process shows areas to focus on for subsequent method development iterations as well as the robustness of data generated across diverse methodologies.
Collapse
Affiliation(s)
- Benedikt Zöhrer
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Cristina Gómez
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, 171 65, Solna, Sweden
| | - Joaquim Jaumot
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, E08034, Barcelona, Spain
| | - Helena Idborg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Signe S Torekov
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Craig E Wheelock
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, 171 65, Solna, Sweden
| | - Antonio Checa
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, 171 65, Solna, Sweden.
| |
Collapse
|
3
|
Elger T, Fererberger T, Huss M, Sommersberger S, Mester P, Stoeckert P, Gunawan S, Liebisch G, Loibl J, Kandulski A, Müller M, Buechler C, Tews HC. Urinary soluble CD163 is a putative non-invasive biomarker for primary sclerosing cholangitis. Exp Mol Pathol 2024; 137:104900. [PMID: 38729058 DOI: 10.1016/j.yexmp.2024.104900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/25/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Soluble CD163 (sCD163) is a selective marker of macrophages whose circulating levels have been found to be induced in patients with active inflammatory bowel disease (IBD). Urinary proteins are emerging as non-invasive diagnostic biomarkers, and here, sCD163 levels were measured in the urine of 18 controls and 63 patients with IBD by enzyme-linked immunosorbent assay. Urinary sCD163 levels did, however, not differentiate IBD patients from controls. Analysis of sCD163 in the serum of 51 of these patients did not show higher levels in IBD. Primary sclerosing cholangitis (PSC) is often associated with IBD, and sCD163 was higher in the urine of the 21 patients and in the serum of the 13 patients with PSC compared to patients with IBD. Of clinical relevance, urinary sCD163 levels were higher in PSC patients compared to those with other chronic liver diseases (n = 16), while serum sCD163 levels were comparable between the two groups. Serum sCD163 of IBD and PSC patients positively correlated with serum C-reactive protein. Serum creatinine and glomerular filtration rate, surrogate markers for renal function, did not significantly correlate with urinary or serum sCD163 levels in IBD or PSC patients. Moreover, urinary sCD163 was not related to fecal calprotectin levels whereas serum sCD163 of IBD patients showed a positive trend. PSC associated with IBD and PSC without underlying IBD had similar levels of urinary sCD163 while serum sCD163 tended to be higher in the latter group. In PSC patients, urinary sCD163 did not correlate with serum aminotransferase levels, gamma glutamyl transferase, alkaline phosphatase, bilirubin or the Model for End Stage Liver Disease score. Ursodeoxycholic acid was prescribed to our PSC patients and fecal levels of ursodeoxycholic acid and its conjugated forms were increased in PSC compared to IBD patients. Otherwise, fecal bile acid levels of IBD and PSC patients were almost identical, and were not correlated with urinary and serum sCD163 in PSC. In summary, our study identified urinary sCD163 as a potential biomarker for PSC.
Collapse
Affiliation(s)
- Tanja Elger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Tanja Fererberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Muriel Huss
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stefanie Sommersberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Patricia Mester
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Petra Stoeckert
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stefan Gunawan
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Johanna Loibl
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany.
| | - Hauke Christian Tews
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Yang J, Lin J, Wang A, Yang X, Wang Y, Zhang Y, Dong H, Tian Y, Zhang Z, Wang M, Song R. Study on the effect of calibration standards prepared with different matrix on the accuracy of bile acid quantification using LC-MS/MS. J Pharm Biomed Anal 2024; 237:115785. [PMID: 37837894 DOI: 10.1016/j.jpba.2023.115785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
The transition from relative to absolute quantification of metabolites is the future development trend of mass spectrometry-based metabolomics research, which could fundamentally solve the problem of comparability of data between different laboratories. However, absolute quantification of endogenous molecules is largely hampered by the lack of analyte-free matrix, leading to uncertainty and inconsistency in the preparation of calibration standards. Bile acids (BAs) are an important class of biomarkers that play a key role in disease progression. In this paper, the quantitative accuracy of calibration curves prepared in neat solvent (NSCCs), charcoal stripped matrix (SMCCs) and authentic matrix (AMCCs) were validated using quality control samples (QCs) prepared in authentic matrix. Results suggested that AMCCs could largely minimize the confidence interval (C.I.) and the deviation in accuracy compared with NSCCs and SMCCs when measured concentration is higher than 20% of the background level. In addition, experimental data demonstrated that two-step calibration strategy proposed here is a promising and reliable alternative strategy to quantify endogenous BAs in biological sample.
Collapse
Affiliation(s)
- Jinni Yang
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210009, China; Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing 210009, China
| | - Jiachun Lin
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210009, China; Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing 210009, China
| | - Anhui Wang
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing 210009, China
| | - Xue Yang
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing 210009, China
| | - Yali Wang
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing 210009, China
| | - Yuting Zhang
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing 210009, China
| | - Haijuan Dong
- The Public Laboratory Platform of China Pharmaceutical University, Nanjing 210009, China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing 210009, China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing 210009, China.
| | - Min Wang
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210009, China.
| | - Rui Song
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing 210009, China.
| |
Collapse
|
5
|
Sommersberger S, Gunawan S, Elger T, Fererberger T, Loibl J, Huss M, Kandulski A, Krautbauer S, Müller M, Liebisch G, Buechler C, Tews HC. Altered fecal bile acid composition in active ulcerative colitis. Lipids Health Dis 2023; 22:199. [PMID: 37980492 PMCID: PMC10656844 DOI: 10.1186/s12944-023-01971-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Disturbed bile acid homeostasis associated with a rise of primary and a decline of secondary bile acids is a consistent finding in inflammatory bowel diseases (IBDs). Whether fecal bile acids may emerge as biomarkers for IBD diagnosis and disease severity is less clear. Our study aimed to identify associations of 18 fecal bile acid species with IBD entity and disease activity. METHODS Stool samples of 62 IBD patients and 17 controls were collected. Eighteen fecal bile acid species were quantified by LC-MS/MS using stable isotope dilution. Lipid levels normalized to a dry weight of the fecal homogenates and ratios of single bile acid species to total bile acid levels were used for calculations. RESULTS IBD patients exhibited altered primary and secondary bile acid ratios in stool, with notable distinctions between ulcerative colitis (UC) compared to Crohn's disease (CD) and healthy controls. Fecal calprotectin was negatively correlated with glycolithocholic acid (GLCA) and hyodeoxycholic acid (HDCA) in UC. These bile acids were reduced in stool of UC patients with fecal calprotectin levels > 500 µg/g compared to UC patients with low calprotectin levels. Moreover, negative associations of six secondary bile acids with C-reactive protein (CRP) existed in UC. In CD patients, fecal bile acids did not correlate with CRP or fecal calprotectin. Diarrhoea is common in IBD, and UC patients with diarrhoea had reduced deoxycholic acid (DCA), glycine conjugated DCA (GDCA) and lithocholic acid in stool in contrast to patients with normal stool consistency. Fecal bile acid levels were not associated with diarrhoea in CD patients. UC patients treated with mesalazine had increased levels of fecal GDCA whereas no such changes were observed in CD patients. Bile acid levels of CD and UC patients treated with biologicals or corticosteroids did not change. Relative levels of GHDCA (specificity: 79%, sensitivity: 67%) and glycochenodeoxycholic acid (specificity: 74%, sensitivity: 63%) were the most specific to distinguish UC from CD. CONCLUSION Disrupted fecal bile acid homeostasis is associated with disease severity and disease symptoms in UC but not in CD, potentially aiding in distinguishing IBD subtypes and classifying the pathophysiology of diarrhoea in UC.
Collapse
Affiliation(s)
- Stefanie Sommersberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Stefan Gunawan
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Tanja Elger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Tanja Fererberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Johanna Loibl
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Muriel Huss
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany.
| | - Hauke Christian Tews
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| |
Collapse
|
6
|
Xie S, Lu Y, Wang J, Lin C, Ye P, Liu X, Xiong W, Zeng Z, Zeng D. Development and validation of an LC-MS/MS method for the simultaneous quantification of milbemycin oxime and praziquantel in plasma: application to a pharmacokinetic study in cats. Front Vet Sci 2023; 10:1285932. [PMID: 37964913 PMCID: PMC10642303 DOI: 10.3389/fvets.2023.1285932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Milbemycin oxime (MBO) and praziquantel (PZQ) have a broad spectrum of biological activity and are commonly used to treat the parasitic infection in the veterinary clinic. In this study, a fast and efficient LC-MS/MS method was established and validated for the simultaneous determination of MBO, PZQ, cis-4-hydroxylated-PZQ (C-4-OH-PZQ) and trans-4-hydroxylated-PZQ (T-4-OH-PZQ) and in cat plasma. Methods Extraction of analytes and internal standards from cat plasma by acetonitrile protein precipitation, allows rapid processing of large batches of samples. MBO, PZQ, C-4-OH-PZQ, T-4-OH-PZQ, and internal standard (IS) were eluted for 13.5 min on a C18 column with a 0.1% formic acid water/acetonitrile mixture as the mobile phase. Results Results showed that the method had good precision, accuracy, recovery, and linearity. The linearity range was 2.5-250 ng/mL for MBO, and 10-1000 ng/mL for PZQ, C-4-OH-PZQ, and T-4-OH-PZQ. The intra-day and inter-day precision CV values of the tested components were within 15%. The extraction recoveries of the four components ranged from 98.09% to 107.46%. The analytes in plasma remained stable for 6 h at room temperature, 26 h in the autosampler (4 °C), after freeze-thaw (-20°C) cycles, and 60 days in a -20°C freezer. Method sensitivity sufficed for assessing pharmacokinetic parameters of MBO, PZQ, C-4-OH-PZQ, and T-4-OH-PZQ in plasma samples with LLOQ of 2.5 ng/mL for MBO and 10 ng/mL for PZQ, C-4-OH-PZQ, and T-4-OH-PZQ. Conclusion In this study, a selective and sensitive LC-MS/MS method for the simultaneous quantification of MBO, PZQ, C-4-OH-PZQ, and T-4-OH-PZQ in cat plasma was developed and validated.This method had been successfully applied to evaluate the pharmacokinetics of MBO, PZQ, C-4-OH-PZQ, and T-4-OH-PZQ after a single oral administration of 8 mg MBO and 20 mg PZQ in cats.
Collapse
Affiliation(s)
- Shiting Xie
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
| | - Yixing Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
| | - Changcheng Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
| | - Peiyu Ye
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
| | - Xiaolin Liu
- Livcare (Guangdong) Animal Health Co., Ltd, Qingyuan, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
| | - Dongping Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
| |
Collapse
|
7
|
Rein-Fischboeck L, Pohl R, Haberl EM, Mages W, Girke P, Liebisch G, Krautbauer S, Buechler C. Lower adiposity does not protect beta-2 syntrophin null mice from hepatic steatosis and inflammation in experimental non-alcoholic steatohepatitis. Gene 2023; 859:147209. [PMID: 36681100 DOI: 10.1016/j.gene.2023.147209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Visceral adiposity is strongly associated with liver steatosis, which predisposes to the development of non-alcoholic steatohepatitis (NASH). Mice with loss of the molecular adapter protein beta-2 syntrophin (SNTB2) have greatly reduced intra-abdominal fat mass. Hepatic expression of proteins with a role in fatty acid metabolism such as fatty acid synthase was nevertheless normal. This was also the case for proteins regulating cholesterol synthesis and uptake. Yet, a slight induction of hepatic cholesterol was noticed in the mutant mice. When mice were fed a methionine choline deficient (MCD) diet to induce NASH, liver cholesteryl ester content was induced in the wild type but not the mutant mice. Serum cholesterol of the mice fed a MCD diet declined and this was significant for the SNTB2 null mice. Though the mutant mice lost less fat mass than the wild type animals, hepatic triglyceride levels were similar between the groups. Proteins involved in fatty acid or cholesterol metabolism such as fatty acid synthase, apolipoprotein E and low-density lipoprotein receptor did not differ between the genotypes. Hepatic oxidative stress and liver inflammation of mutant and wild type mice were comparable. Mutant mice had lower hepatic levels of secondary bile acids and higher cholesterol storage in epididymal fat, and this may partly prevent hepatic cholesterol deposition. In summary, the current study shows that SNTB2 null mice have low intra-abdominal fat mass and do not accumulate hepatic cholesteryl esters when fed a MCD diet. Nevertheless, the SNTB2 null mice develop a similar NASH pathology as wild type mice suggesting a minor role of intra-abdominal fat and liver cholesteryl esters in this model.
Collapse
Affiliation(s)
- Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, D-93053 Regensburg, Germany
| | - Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, D-93053 Regensburg, Germany
| | - Elisabeth M Haberl
- Department of Internal Medicine I, Regensburg University Hospital, D-93053 Regensburg, Germany
| | - Wolfgang Mages
- Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany
| | - Philipp Girke
- Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, D-93053 Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, D-93053 Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, D-93053 Regensburg, Germany.
| |
Collapse
|
8
|
Kotasova M, Lacina O, Springer D, Sevcik J, Brutvan T, Jezkova J, Zima T. A New Heart-Cutting Method for a Multiplex Quantitative Analysis of Steroid Hormones in Plasma Using 2D-LC/MS/MS Technique. Molecules 2023; 28:1379. [PMID: 36771043 PMCID: PMC9921923 DOI: 10.3390/molecules28031379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The aim of the current research was to develop a simple and rapid mass spectrometry-based assay for the determination of 15 steroid hormones in human plasma in a single run, which would be suitable for a routine practice setting. For this purpose, we designed a procedure based on the 2D-liquid chromatography-tandem mass spectrometry with a minimalistic sample pre-treatment. In our arrangement, the preparation of one sample takes only 10 min and can accommodate 40 samples per hour when tested in series. The following analytical run is 18 min long for all steroid hormones. In addition, we developed an independent analytical run for estradiol, significantly increasing the assay accuracy while taking an additional 10 min to perform an analytical run of a sample. The optimized method was applied to a set of human plasma samples, including chylous. Our results indicate the linearity of the method for all steroid hormones with squared regression coefficients R2 ≥ 0.995, within-run and between-run precision (RSD < 6.4%), and an accuracy of 92.9% to 106.2%. The absolute recovery for each analyzed steroid hormone ranged between 101.6% and 116.5%. The method detection limit for 15 steroid hormones ranged between 0.008 nmol/L (2.88 pg/mL) for aldosterone and 0.873 nmol/L (0.252 ng/mL) for DHEA. For all the analytes, the lowest calibration point relative standard deviation was less than 10.8%, indicating a good precision of the assay within the lowest concentration of interest. In conclusion, in this method article, we describe a simple, sensitive, and cost-effective 2D-LC/MS/MS method suitable for the routine analysis of a complex of steroid hormones allowing high analytical specificity and sensitivity despite minimal sample processing and short throughput times.
Collapse
Affiliation(s)
- Marcela Kotasova
- Laboratory Diagnostics and Institute of Medical Biochemistry, The First Faculty of Medicine, General University Hospital, Charles University, 12800 Prague, Czech Republic
| | - Ondrej Lacina
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, 16628 Prague, Czech Republic
| | - Drahomira Springer
- Laboratory Diagnostics and Institute of Medical Biochemistry, The First Faculty of Medicine, General University Hospital, Charles University, 12800 Prague, Czech Republic
| | - Jan Sevcik
- Laboratory Diagnostics and Institute of Medical Biochemistry, The First Faculty of Medicine, General University Hospital, Charles University, 12800 Prague, Czech Republic
| | - Tomas Brutvan
- 3rd Department of Internal Medicine—Endocrinology and Metabolism, The First Faculty of Medicine, General University Hospital, Charles University, 12800 Prague, Czech Republic
| | - Jana Jezkova
- 3rd Department of Internal Medicine—Endocrinology and Metabolism, The First Faculty of Medicine, General University Hospital, Charles University, 12800 Prague, Czech Republic
| | - Tomas Zima
- Laboratory Diagnostics and Institute of Medical Biochemistry, The First Faculty of Medicine, General University Hospital, Charles University, 12800 Prague, Czech Republic
| |
Collapse
|
9
|
Zheng J, Peng X, Zhu T, Huang S, Chen C, Chen G, Liu S, Ouyang G. Detection of bile acids in small volume human bile samples via an amino metal-organic framework composite based solid-phase microextraction probe. J Chromatogr A 2022; 1685:463634. [DOI: 10.1016/j.chroma.2022.463634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
10
|
Pantasis S, Friemel J, Brütsch SM, Hu Z, Krautbauer S, Liebisch G, Dengjel J, Weber A, Werner S, Bordoli MR. Vertebrate lonesome kinase modulates the hepatocyte secretome to prevent perivascular liver fibrosis and inflammation. J Cell Sci 2022; 135:275016. [PMID: 35293576 PMCID: PMC9016620 DOI: 10.1242/jcs.259243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
Vertebrate lonesome kinase (VLK) is the only known extracellular tyrosine kinase, but its physiological functions are largely unknown. We show that VLK is highly expressed in hepatocytes of neonatal mice, but downregulated during adulthood. To determine the role of VLK in liver homeostasis and regeneration, we generated mice with a hepatocyte-specific knockout of the VLK gene (Pkdcc). Cultured progenitor cells established from primary hepatocytes of Pkdcc knockout mice produced a secretome, which promoted their own proliferation in 3D spheroids and proliferation of cultured fibroblasts. In vivo, Pkdcc knockout mice developed liver steatosis with signs of inflammation and perivascular fibrosis upon aging, combined with expansion of liver progenitor cells. In response to chronic CCl4-induced liver injury, the pattern of deposited collagen was significantly altered in these mice. The liver injury marker alpha-fetoprotein (AFP) was increased in the secretome of VLK-deficient cultured progenitor cells and in liver tissues of aged or CCl4-treated knockout mice. These results support a key role for VLK and extracellular protein phosphorylation in liver homeostasis and repair through paracrine control of liver cell function and regulation of appropriate collagen deposition. This article has an associated First Person interview with the first author of the paper. Summary: The secreted protein kinase VLK is released from hepatocytes and protects the liver from perivascular fibrosis and inflammation.
Collapse
Affiliation(s)
- Sophia Pantasis
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology ETH, Otto-Stern Weg 7, CH-8093, Zurich, Switzerland
| | - Juliane Friemel
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Salome Mirjam Brütsch
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology ETH, Otto-Stern Weg 7, CH-8093, Zurich, Switzerland
| | - Zehan Hu
- Department of Biology, Université de Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Joern Dengjel
- Department of Biology, Université de Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology ETH, Otto-Stern Weg 7, CH-8093, Zurich, Switzerland
| | - Mattia Renato Bordoli
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology ETH, Otto-Stern Weg 7, CH-8093, Zurich, Switzerland
| |
Collapse
|
11
|
Zhao X, Liu Z, Sun F, Yao L, Yang G, Wang K. Bile Acid Detection Techniques and Bile Acid-Related Diseases. Front Physiol 2022; 13:826740. [PMID: 35370774 PMCID: PMC8967486 DOI: 10.3389/fphys.2022.826740] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 12/23/2022] Open
Abstract
Bile acid is a derivative of cholinergic acid (steroidal parent nucleus) that plays an important role in digestion, absorption, and metabolism. In recent years, bile acids have been identified as signaling molecules that regulate self-metabolism, lipid metabolism, energy balance, and glucose metabolism. The detection of fine changes in bile acids caused by metabolism, disease, or individual differences has become a research hotspot. At present, there are many related techniques, such as enzyme analysis, immunoassays, and chromatography, that are used for bile acid detection. These methods have been applied in clinical practice and laboratory research to varying degrees. However, mainstream detection technology is constantly updated and replaced with the passage of time, proffering new detection technologies. Previously, gas chromatography (GS) and gas chromatography-mass spectrometry (GC-MS) were the most commonly used for bile acid detection. In recent years, high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has developed rapidly and has gradually become the mainstream bile acid sample separation and detection technology. In this review, the basic principles, development and progress of technology, applicability, advantages, and disadvantages of various detection techniques are discussed and the changes in bile acids caused by related diseases are summarized.
Collapse
Affiliation(s)
- Xiang Zhao
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zitian Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fuyun Sun
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lunjin Yao
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangwei Yang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Kexin Wang,
| |
Collapse
|
12
|
de Zawadzki A, Thiele M, Suvitaival T, Wretlind A, Kim M, Ali M, Bjerre AF, Stahr K, Mattila I, Hansen T, Krag A, Legido-Quigley C. High-Throughput UHPLC-MS to Screen Metabolites in Feces for Gut Metabolic Health. Metabolites 2022; 12:metabo12030211. [PMID: 35323654 PMCID: PMC8950041 DOI: 10.3390/metabo12030211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Feces are the product of our diets and have been linked to diseases of the gut, including Chron’s disease and metabolic diseases such as diabetes. For screening metabolites in heterogeneous samples such as feces, it is necessary to use fast and reproducible analytical methods that maximize metabolite detection. As sample preparation is crucial to obtain high quality data in MS-based clinical metabolomics, we developed a novel, efficient and robust method for preparing fecal samples for analysis with a focus in reducing aliquoting and detecting both polar and non-polar metabolites. Fecal samples (n = 475) from patients with alcohol-related liver disease and healthy controls were prepared according to the proposed method and analyzed in an UHPLC-QQQ targeted platform in order to obtain a quantitative profile of compounds that impact liver-gut axis metabolism. MS analyses of the prepared fecal samples have shown reproducibility and coverage of n = 28 metabolites, mostly comprising bile acids and amino acids. We report metabolite-wise relative standard deviation (RSD) in quality control samples, inter-day repeatability, LOD (limit of detection), LOQ (limit of quantification), range of linearity and method recovery. The average concentrations for 135 healthy participants are reported here for clinical applications. Our high-throughput method provides a novel tool for investigating gut-liver axis metabolism in liver-related diseases using a noninvasive collected sample.
Collapse
Affiliation(s)
- Andressa de Zawadzki
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Maja Thiele
- Department of Gastroenterology and Hepatology, Odense University Hospital, 5000 Odense, Denmark; (M.T.); (A.K.)
- Department of Clinical Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Tommi Suvitaival
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Asger Wretlind
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Min Kim
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
| | - Mina Ali
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Annette F. Bjerre
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Karin Stahr
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Ismo Mattila
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, 5000 Odense, Denmark; (M.T.); (A.K.)
- Department of Clinical Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Cristina Legido-Quigley
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
- Institute of Pharmaceutical Science, King’s College London, London SE19NH, UK
- Correspondence:
| |
Collapse
|
13
|
Hu T, Li H, Xu B, Du P, Liu L, An Z. Parallel derivatization strategy for comprehensive profiling of unconjugated and glycine-conjugated bile acids using Ultra-high performance liquid chromatography-tandem mass spectrometry. J Steroid Biochem Mol Biol 2021; 214:105986. [PMID: 34454009 DOI: 10.1016/j.jsbmb.2021.105986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 07/08/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022]
Abstract
Bile acids (BAs) are steroidal compounds that play important roles in the occurrence and development of liver injury. However, comprehensive characterization of BAs was rarely reported due to the limitations of both standards access and detection sensitivity. In this study, a parallel derivatization strategy was established for the sensitive and comprehensive profiling of unconjugated and glycine-conjugated BAs by using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Two structural analogues 2-hydrazinyl-4,6-dimethylpyrimidine (DMP) and 2-hydrazinylpyrimidine (DP) were used as the parallel derivatization reagents for BAs labeling, facilitating the improvements of both detection sensitivities and chromatographic performances. The derivatization reactions can be completed in 20 min at room temperature, with derivatization efficacy higher than 99 %. Through derivatization, the sensitivity of BAs increased dozens or hundreds of times compared to their non-derivatized forms. Due to the structural similarities of derivatized BAs, general MS parameters can be forged for the analysis of DMP and DP labeled BAs. In addition, the DP labeled BAs were incorporated into the DMP derivatized biological samples for both the discovery and comprehensive characterization of BAs. Retention time shift (RTS) and peak area ratio (PAR) induced by the parallel DMP and DP labeled BAs were used for the rapid identification of BAs from complex biological samples. More than 200 BAs were profiled in rat serum using this parallel derivatization strategy. Further, the new strategy was successfully implemented in BAs profiling of serum samples from tripterysium glycosides-induced liver injury rat model. The disturbance of the BA metabolism network was further interpreted.
Collapse
Affiliation(s)
- Ting Hu
- Beijing Chao-Yang Hospital, Capital Medical University, No.8 Gongti South Road, Chaoyang District, Beijing, 100020, PR China.
| | - Han Li
- Beijing Chao-Yang Hospital, Capital Medical University, No.8 Gongti South Road, Chaoyang District, Beijing, 100020, PR China
| | - Benshan Xu
- Beijing Chao-Yang Hospital, Capital Medical University, No.8 Gongti South Road, Chaoyang District, Beijing, 100020, PR China
| | - Ping Du
- Beijing Chao-Yang Hospital, Capital Medical University, No.8 Gongti South Road, Chaoyang District, Beijing, 100020, PR China
| | - Lihong Liu
- Beijing Chao-Yang Hospital, Capital Medical University, No.8 Gongti South Road, Chaoyang District, Beijing, 100020, PR China
| | - Zhuoling An
- Beijing Chao-Yang Hospital, Capital Medical University, No.8 Gongti South Road, Chaoyang District, Beijing, 100020, PR China.
| |
Collapse
|
14
|
Köfeler HC, Ahrends R, Baker ES, Ekroos K, Han X, Hoffmann N, Holčapek M, Wenk MR, Liebisch G. Recommendations for good practice in MS-based lipidomics. J Lipid Res 2021; 62:100138. [PMID: 34662536 PMCID: PMC8585648 DOI: 10.1016/j.jlr.2021.100138] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
In the last 2 decades, lipidomics has become one of the fastest expanding scientific disciplines in biomedical research. With an increasing number of new research groups to the field, it is even more important to design guidelines for assuring high standards of data quality. The Lipidomics Standards Initiative is a community-based endeavor for the coordination of development of these best practice guidelines in lipidomics and is embedded within the International Lipidomics Society. It is the intention of this review to highlight the most quality-relevant aspects of the lipidomics workflow, including preanalytics, sample preparation, MS, and lipid species identification and quantitation. Furthermore, this review just does not only highlights examples of best practice but also sheds light on strengths, drawbacks, and pitfalls in the lipidomic analysis workflow. While this review is neither designed to be a step-by-step protocol by itself nor dedicated to a specific application of lipidomics, it should nevertheless provide the interested reader with links and original publications to obtain a comprehensive overview concerning the state-of-the-art practices in the field.
Collapse
Affiliation(s)
- Harald C Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria.
| | - Robert Ahrends
- Department for Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Esbo, Finland
| | - Xianlin Han
- Barshop Inst Longev & Aging Studies, Univ Texas Hlth Sci Ctr San Antonio, San Antonio, TX, USA
| | - Nils Hoffmann
- Center for Biotechnology, Universität Bielefeld, Bielefeld, Germany
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
15
|
Zhou L, Yu D, Zheng S, Ouyang R, Wang Y, Xu G. Gut microbiota-related metabolome analysis based on chromatography-mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Hanazawa T, Kamijo Y, Yoshizawa T, Usui K. Rapid measurement of serum caffeine concentrations in acuteclinical settings. TOXICOLOGY COMMUNICATIONS 2021. [DOI: 10.1080/24734306.2021.1928366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Tomoki Hanazawa
- Emergency Center and Poison Center, Saitama Medical University Hospital, Moroyama, Saitama, Japan
- Department of General Internal Medicine, Fujimi Hospital, Itabashi, Tokyo, Japan
| | - Yoshito Kamijo
- Emergency Center and Poison Center, Saitama Medical University Hospital, Moroyama, Saitama, Japan
| | - Tomohiro Yoshizawa
- Emergency Center and Poison Center, Saitama Medical University Hospital, Moroyama, Saitama, Japan
| | - Kiyotaka Usui
- Emergency Center and Poison Center, Saitama Medical University Hospital, Moroyama, Saitama, Japan
- Department of Forensic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
17
|
Ulvik A, McCann A, Midttun Ø, Meyer K, Godfrey KM, Ueland PM. Quantifying Precision Loss in Targeted Metabolomics Based on Mass Spectrometry and Nonmatching Internal Standards. Anal Chem 2021; 93:7616-7624. [PMID: 34014078 DOI: 10.1021/acs.analchem.1c00119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In mass spectrometry, reliable quantification requires correction for variations in ionization efficiency between samples. The preferred method is the addition of a stable isotope-labeled internal standard (SIL-IS). In targeted metabolomics, a dedicated SIL-IS for each metabolite of interest may not always be realized due to high cost or limited availability. We recently completed the analysis of more than 70 biomarkers, each with a matching SIL-IS, across four mass spectrometry-based platforms (one GC-MS/MS and three LC-MS/MS). Using data from calibrator and quality control samples added to 60 96-well trays (analytical runs), we calculated analytical precision (CV) retrospectively. The use of integrated peak areas for all metabolites and internal standards allowed us to calculate precision for all matching analyte (A)/SIL-IS (IS) pairs as well as for all nonmatching A/IS pairs within each platform (total n = 1442). The median between-run precision for matching A/IS across the four platforms was 2.7-5.9%. The median CV for nonmatching A/IS (corresponding to pairing analytes with a non-SIL-IS) was 2.9-10.7 percentage points higher. Across all platforms, CVs for nonmatching A/IS increased with increasing difference in retention time (Spearman's rho of 0.17-0.93). The CV difference for nonmatching vs matching A/IS was often, but not always, smaller when analytes and internal standards were close structural analogs.
Collapse
Affiliation(s)
- Arve Ulvik
- Bevital, Laboratoriebygget, 9 etg., Jonas Lies veg 87, 5021 Bergen, Norway
| | - Adrian McCann
- Bevital, Laboratoriebygget, 9 etg., Jonas Lies veg 87, 5021 Bergen, Norway
| | - Øivind Midttun
- Bevital, Laboratoriebygget, 9 etg., Jonas Lies veg 87, 5021 Bergen, Norway
| | - Klaus Meyer
- Bevital, Laboratoriebygget, 9 etg., Jonas Lies veg 87, 5021 Bergen, Norway
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO17 1BJ, United Kingdom
| | - Per M Ueland
- Bevital, Laboratoriebygget, 9 etg., Jonas Lies veg 87, 5021 Bergen, Norway
| |
Collapse
|
18
|
Barker-Tejeda TC, Villaseñor A, Gonzalez-Riano C, López-López Á, Gradillas A, Barbas C. In vitro generation of oxidized standards for lipidomics. Application to major membrane lipid components. J Chromatogr A 2021; 1651:462254. [PMID: 34118530 DOI: 10.1016/j.chroma.2021.462254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/22/2022]
Abstract
Membrane lipids (sphingolipids, glycerophospholipids, cardiolipins, and cholesteryl esters) are critical in cellular functions. Alterations in the levels of oxidized counterparts of some of these lipids have been linked to the onset and development of many pathologies. Unfortunately, the scarce commercial availability of chemically defined oxidized lipids is a limitation for accurate quantitative analysis, characterization of oxidized composition, or testing their biological effects in lipidomic studies. To address this dearth of standards, several approaches rely on in-house prepared mixtures of oxidized species generated under in vitro conditions from different sources - non-oxidized commercial standards, liposomes, micelles, cells, yeasts, and human preparations - and using different oxidant systems - UVA radiation, air exposure, enzymatic or chemical oxidant systems, among others. Moreover, high-throughput analytical techniques such as liquid chromatography coupled to mass spectrometry (LC-MS) have provided evidence of their capabilities to study oxidized lipids both in in vitro models and complex biological samples. In this review, we describe the commercial resources currently available, the in vitro strategies carried out for obtaining oxidized lipids as standards for LC-MS analysis, and their applications in lipidomics studies, specifically for lipids found in cell and mitochondria membranes.
Collapse
Affiliation(s)
- Tomás Clive Barker-Tejeda
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain; Institute of Applied Molecular Medicine (IMMA), Department of Basic Medical Science, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain.
| | - Alma Villaseñor
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain; Institute of Applied Molecular Medicine (IMMA), Department of Basic Medical Science, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain.
| | - Carolina Gonzalez-Riano
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain.
| | - Ángeles López-López
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain.
| | - Ana Gradillas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain.
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid. Spain.
| |
Collapse
|
19
|
Matysik S, Krautbauer S, Liebisch G, Schött HF, Kjølbaek L, Astrup A, Blachier F, Beaumont M, Nieuwdorp M, Hartstra A, Rampelli S, Pagotto U, Iozzo P. Short-chain fatty acids and bile acids in human faeces are associated with the intestinal cholesterol conversion status. Br J Pharmacol 2021; 178:3342-3353. [PMID: 33751575 DOI: 10.1111/bph.15440] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE The analysis of human faecal metabolites can provide an insight into metabolic interactions between gut microbiota and the host organism. The creation of metabolic profiles in faeces has received little attention until now, and reference values, especially in the context of dietary and therapeutic interventions, are missing. Exposure to xenobiotics significantly affects the physiology of the microbiome, and microbiota manipulation and short-chain fatty acid administration have been proposed as treatment targets for several diseases. The aim of the present study is to give concomitant concentration ranges of faecal sterol species, bile acids and short-chain fatty acids, based on a large cohort. EXPERIMENTAL APPROACH Sterol species, bile acids and short-chain fatty acids in human faeces from 165 study participants were quantified by LC-MS/MS. For standardization, we refer all values to dry weight of faeces. Based on the individual intestinal sterol conversion, we classified participants into low and high converters according to their coprostanol/cholesterol ratio. KEY RESULTS Low converters excrete more straight-chain fatty acids and bile acids than high converters; 5th and 95th percentile and median of bile acids and short-chain fatty acids were calculated for both groups. CONCLUSION AND IMPLICATIONS We give concentration ranges for 16 faecal metabolites that can serve as reference values. Patient stratification into high or low sterol converter groups is associated with significant differences in faecal metabolites with biological activities. Such stratification should then allow better assessment of faecal metabolites before therapeutic interventions. LINKED ARTICLES This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Silke Matysik
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Hans-Frieder Schött
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore
| | - Louise Kjølbaek
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Francois Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Martin Beaumont
- GenPhySE, Université De Toulouse, INRAE, ENVT, Toulouse, France
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Annick Hartstra
- Department of Internal and Vascular Medicine, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Simone Rampelli
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Uberto Pagotto
- Unit of Endocrinology and Prevention and Care of Diabetes, Sant'Orsola Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| |
Collapse
|
20
|
Demlová R, Turjap M, Peš O, Kostolanská K, Juřica J. Therapeutic Drug Monitoring of Sunitinib in Gastrointestinal Stromal Tumors and Metastatic Renal Cell Carcinoma in Adults-A Review. Ther Drug Monit 2021; 42:20-32. [PMID: 31259881 DOI: 10.1097/ftd.0000000000000663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sunitinib is an inhibitor of multiple receptor tyrosine kinases and is a standard-of-care treatment for advanced and metastatic renal cell carcinoma and a second-line treatment in locally advanced inoperable and metastatic gastrointestinal stromal tumors. A fixed dose of the drug, however, does not produce a uniform therapeutic outcome in all patients, and many face adverse effects and/or toxicity. One of the possible causes of the interindividual variability in the efficacy and toxicity response is the highly variable systemic exposure to sunitinib and its active metabolite. This review aims to summarize all available clinical evidence of the treatment of adult patients using sunitinib in approved indications, addressing the necessity to introduce proper and robust therapeutic drug monitoring (TDM) of sunitinib and its major metabolite, N-desethylsunitinib. METHODS The authors performed a systematic search of the available scientific literature using the PubMed online database. The search terms were "sunitinib" AND "therapeutic drug monitoring" OR "TDM" OR "plasma levels" OR "concentration" OR "exposure." The search yielded 520 journal articles. In total, 447 publications were excluded because they lacked sufficient relevance to the reviewed topic. The remaining 73 articles were, together with currently valid guidelines, thoroughly reviewed. RESULTS There is sufficient evidence confirming the concentration-efficacy and concentration-toxicity relationship in the indications of gastrointestinal stromal tumors and metastatic renal clear-cell carcinoma. For optimal therapeutic response, total (sunitinib + N-desethylsunitinib) trough levels of 50-100 ng/mL serve as a reasonable target therapeutic range. To avoid toxicity, the total trough levels should not exceed 100 ng/mL. CONCLUSIONS According to the current evidence presented in this review, a TDM-guided dose modification of sunitinib in selected groups of patients could provide a better treatment outcome while simultaneously preventing sunitinib toxicity.
Collapse
Affiliation(s)
- Regina Demlová
- Department of Pharmacology, Medical Faculty, Masaryk University, Brno
| | - Miroslav Turjap
- Department of Clinical Pharmacy, University Hospital Ostrava, Ostrava
| | - Ondřej Peš
- Department of Biochemistry, Medical Faculty, Masaryk University
| | | | - Jan Juřica
- Department of Pharmacology, Medical Faculty, Masaryk University, Masaryk Memorial Cancer Institute; and.,Department of Human Pharmacology and Toxicology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
21
|
Benítez-Páez A, Hess AL, Krautbauer S, Liebisch G, Christensen L, Hjorth MF, Larsen TM, Sanz Y. Sex, Food, and the Gut Microbiota: Disparate Response to Caloric Restriction Diet with Fiber Supplementation in Women and Men. Mol Nutr Food Res 2021; 65:e2000996. [PMID: 33629506 DOI: 10.1002/mnfr.202000996] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/12/2021] [Indexed: 12/30/2022]
Abstract
SCOPE Dietary-based strategies are regularly explored in controlled clinical trials to provide cost-effective therapies to tackle obesity and its comorbidities. The article presents a complementary analysis based on a multivariate multi-omics approach of a caloric restriction intervention (CRD) with fiber supplementation to unveil synergic effects on body weight control, lipid metabolism, and gut microbiota. METHODS AND RESULTS The study explores fecal bile acids (BAs) and short-chain fatty acids (SCFAs), plasma BAs, and fecal shotgun metagenomics on 80 overweight participants of a 12-week caloric restriction clinical trial (-500 kcal day-1 ) randomly allocated into fiber (10 g day-1 inulin + 10 g day-1 resistant maltodextrin) or placebo (maltodextrin) supplementation groups. The multi-omic data integration analysis uncovered the benefits of the fiber supplementation and/or the CRD (e.g., increase of Parabacteroides distasonis and fecal propionate), showing sex-specific effects on either adiposity and fasting insulin; effects thought to be linked to changes of specific gut microbiota species, functional genes, and bacterially produced metabolites like SCFAs and secondary BAs. CONCLUSIONS This study identifies diet-microbe-host interactions helping to design personalised interventions. It also suggests that sex perspective should be considered routinely in future studies on dietary interventions efficacy. All in all, the study uncovers that the dietary intervention is more beneficial for women than men.
Collapse
Affiliation(s)
- Alfonso Benítez-Páez
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, 46980, Spain
| | - Anne Lundby Hess
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg C, 1958, Denmark
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, 93053, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, 93053, Germany
| | - Lars Christensen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg C, 1958, Denmark
| | - Mads F Hjorth
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg C, 1958, Denmark
| | - Thomas Meinert Larsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg C, 1958, Denmark
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, 46980, Spain
| | | |
Collapse
|
22
|
Dosedělová V, Itterheimová P, Kubáň P. Analysis of bile acids in human biological samples by microcolumn separation techniques: A review. Electrophoresis 2020; 42:68-85. [PMID: 32645223 DOI: 10.1002/elps.202000139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Bile acids are a group of compounds essential for lipid digestion and absorption with a steroid skeleton and a carboxylate side chain usually conjugated to glycine or taurine. Bile acids are regulatory molecules for a number of metabolic processes and can be used as biomarkers of various disorders. Since the middle of the twentieth century, the detection of bile acids has evolved from simple qualitative analysis to accurate quantification in complicated mixtures. Advanced methods are required to characterize and quantify individual bile acids in these mixtures. This article overviews the literature from the last two decades (2000-2020) and focuses on bile acid analysis in various human biological samples. The methods for sample preparation, including the sample treatment of conventional (blood plasma, blood serum, and urine) and unconventional samples (bile, saliva, duodenal/gastric juice, feces, etc.) are shortly discussed. Eventually, the focus is on novel analytical approaches and methods for each particular biological sample, providing an overview of the microcolumn separation techniques, such as high-performance liquid chromatography, gas chromatography, and capillary electrophoresis, used in their analysis. This is followed by a discussion on selected clinical applications.
Collapse
Affiliation(s)
- Věra Dosedělová
- Department of Bioanalytical Instrumentation, CEITEC Masaryk University, Brno, Czech Republic
| | - Petra Itterheimová
- Department of Bioanalytical Instrumentation, CEITEC Masaryk University, Brno, Czech Republic
| | - Petr Kubáň
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| |
Collapse
|
23
|
Advances in lipidomics. Clin Chim Acta 2020; 510:123-141. [PMID: 32622966 DOI: 10.1016/j.cca.2020.06.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/24/2023]
Abstract
The present article examines recently published literature on lipids, mainly focusing on research involving glycero-, glycerophospho- and sphingo-lipids. The primary aim is identification of distinct profiles in biologic lipidomic systems by ultra-high-performance liquid chromatography (UHPLC) coupled with mass spectrometry (MS, tandem MS) with multivariate data analysis. This review specifically targets lipid biomarkers and disease pathway mechanisms in humans and artificial targets. Different specimen matrices such as primary blood derivatives (plasma, serum, erythrocytes, and blood platelets), faecal matter, urine, as well as biologic tissues (liver, lung and kidney) are highlighted.
Collapse
|
24
|
Tachibana K. Letter to the Editor Concerning the Use of Internal Standards: Are We Now Relying on It Too Much? J Chromatogr Sci 2019; 57:766-767. [PMID: 31251326 DOI: 10.1093/chromsci/bmz049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/05/2019] [Accepted: 05/17/2019] [Indexed: 11/15/2022]
Affiliation(s)
- Kazama Tachibana
- Territory Pathology, Department of Pathology, Royal Darwin Hospital, Rocklands Drive, Tiwi, Northern Territory 0810, Australia
| |
Collapse
|
25
|
Validation of an LC-MS/MS Method for the Quantification of Caffeine and Theobromine Using Non-Matched Matrix Calibration Curve. Molecules 2019; 24:molecules24162863. [PMID: 31394755 PMCID: PMC6720522 DOI: 10.3390/molecules24162863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/05/2019] [Indexed: 01/21/2023] Open
Abstract
Caffeine is one of the most widely consumed psycho-stimulants. The study of the beneficial effects of caffeine consumption to decrease the risk of developing several neuropsychiatric pathologies is receiving increasing attention. Thus, accurate and sensitive methods have been developed, mainly by LC-MS/MS, in order to quantify caffeine and its metabolites. These quantifications of caffeine and its metabolites by LC-MS/MS require a considerable effort to select or find a surrogate matrix, without the compounds of interest, to be used in the calibration curves. Thus, we evaluated the possibility of using calibration curves prepared in solvent instead of calibration curves prepared in human plasma. Results show that the calibration curves prepared in solvent and in human plasma were similar by comparing their slopes and interceptions, and the accuracy and precision were within the limits of acceptance for both calibration curves. This work demonstrates that, by using internal standards, it is possible to use a calibration curve in solvent instead of a calibration curve in plasma to perform an accurate and precise quantification of caffeine and theobromine.
Collapse
|
26
|
Tyurina YY, Tyurin VA, Anthonymuthu T, Amoscato AA, Sparvero LJ, Nesterova AM, Baynard ML, Sun W, He R, Khaitovich P, Vladimirov YA, Gabrilovich DI, Bayır H, Kagan VE. "Redox lipidomics technology: Looking for a needle in a haystack". Chem Phys Lipids 2019; 221:93-107. [PMID: 30928338 PMCID: PMC6714565 DOI: 10.1016/j.chemphyslip.2019.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 02/07/2023]
Abstract
Aerobic life is based on numerous metabolic oxidation reactions as well as biosynthesis of oxygenated signaling compounds. Among the latter are the myriads of oxygenated lipids including a well-studied group of polyunsaturated fatty acids (PUFA) - octadecanoids, eicosanoids, and docosanoids. During the last two decades, remarkable progress in liquid-chromatography-mass spectrometry has led to significant progress in the characterization of oxygenated PUFA-containing phospholipids, thus designating the emergence of a new field of lipidomics, redox lipidomics. Although non-enzymatic free radical reactions of lipid peroxidation have been mostly associated with the aberrant metabolism typical of acute injury or chronic degenerative processes, newly accumulated evidence suggests that enzymatically catalyzed (phospho)lipid oxygenation reactions are essential mechanisms of many physiological pathways. In this review, we discuss a variety of contemporary protocols applicable for identification and quantitative characterization of different classes of peroxidized (phospho)lipids. We describe applications of different types of LCMS for analysis of peroxidized (phospho)lipids, particularly cardiolipins and phosphatidylethanolalmines, in two important types of programmed cell death - apoptosis and ferroptosis. We discuss the role of peroxidized phosphatidylserines in phagocytotic signaling. We exemplify the participation of peroxidized neutral lipids, particularly tri-acylglycerides, in immuno-suppressive signaling in cancer. We also consider new approaches to exploring the spatial distribution of phospholipids in the context of their oxidizability by MS imaging, including the latest achievements in high resolution imaging techniques. We present innovative approaches to the interpretation of LC-MS data, including audio-representation analysis. Overall, we emphasize the role of redox lipidomics as a communication language, unprecedented in diversity and richness, through the analysis of peroxidized (phospho)lipids.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Tamil Anthonymuthu
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Critical Care Medicine, Pittsburgh, PA, USA
| | - Andrew A Amoscato
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Louis J Sparvero
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Anastasiia M Nesterova
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Matthew L Baynard
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA
| | - Wanyang Sun
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou, China
| | - RongRong He
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou, China
| | | | - Yuri A Vladimirov
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia
| | | | - Hülya Bayır
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Critical Care Medicine, Pittsburgh, PA, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Pittsburgh, PA, USA; Pharmacology and Chemical Biology, Pittsburgh, PA, USA; Radiation Oncology, Pittsburgh, PA, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
27
|
Ulaszewska MM, Mancini A, Garcia-Aloy M, Del Bubba M, Tuohy KM, Vrhovsek U. Isotopic dilution method for bile acid profiling reveals new sulfate glycine-conjugated dihydroxy bile acids and glucuronide bile acids in serum. J Pharm Biomed Anal 2019; 173:1-17. [PMID: 31100508 DOI: 10.1016/j.jpba.2019.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/02/2019] [Accepted: 05/02/2019] [Indexed: 01/08/2023]
Abstract
An ultrahigh performance liquid chromatography tandem mass spectrometry method (UHPLC-MS/MS) was developed for the determination of 41 target and 8 additional bile acids isomers (BAs) in biological fluids. BAs were analysed by solid-phase extraction on 50 μL biofluid-aliquots, followed by a properly optimised 27 min-chromatographic run. The method provided high sensitivity (limits of detection 0.0002-0.03 μM, limits of quantitation 0.0007-0.11 μM), linearity (R2>0.99) and precision (relative standard deviations ≤16%). A strategy of scheduled/ unscheduled injections of real samples together with neutral loss (80 Da and 176 Da) scans allowed us to find additional bile acid isomers not a priori included in the method, while high resolution full scan and MS/MS fragmentation analysis confirmed their structural adherence to the bile acid family. Moreover this is the first study quantifying four sulfate glycine conjugated-dihydroxy bile acid isomers, independently of the diet and postprandial time. Application to a dietary intervention kinetic study confirmed the existence of possible metabotypes amongst the study population (n = 20). A trend differentiating males from females was observed suggesting that serum samples from women contained smaller amounts of certain bile acids.
Collapse
Affiliation(s)
- Maria M Ulaszewska
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010, San Michele all'Adige, Trento, Italy.
| | - Andrea Mancini
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010, San Michele all'Adige, Trento, Italy
| | - Mar Garcia-Aloy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010, San Michele all'Adige, Trento, Italy
| | - Massimo Del Bubba
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Kieran Micheal Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010, San Michele all'Adige, Trento, Italy
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010, San Michele all'Adige, Trento, Italy
| |
Collapse
|
28
|
Liebisch G, Ecker J, Roth S, Schweizer S, Öttl V, Schött HF, Yoon H, Haller D, Holler E, Burkhardt R, Matysik S. Quantification of Fecal Short Chain Fatty Acids by Liquid Chromatography Tandem Mass Spectrometry-Investigation of Pre-Analytic Stability. Biomolecules 2019; 9:E121. [PMID: 30925749 PMCID: PMC6523859 DOI: 10.3390/biom9040121] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 01/12/2023] Open
Abstract
Short chain fatty acids (SCFAs) are generated by the degradation and fermentation of complex carbohydrates, (i.e., dietary fiber) by the gut microbiota relevant for microbe⁻host communication. Here, we present a method for the quantification of SCFAs in fecal samples by liquid chromatography tandem mass spectrometry (LC-MS/MS) upon derivatization to 3-nitrophenylhydrazones (3NPH). The method includes acetate, propionate, butyrate, and isobutyrate with a run time of 4 min. The reproducible (coefficients of variation (CV) below 10%) quantification of SCFAs in human fecal samples was achieved by the application of stable isotope labelled internal standards. The specificity was demonstrated by the introduction of a quantifier and qualifier ions. The method was applied to investigate the pre-analytic stability of SCFAs in human feces. Concentrations of SCFA may change substantially within hours; the degree and kinetics of these changes revealed huge differences between the donors. The fecal SCFA level could be preserved by the addition of organic solvents like isopropanol. An analysis of the colon content of mice either treated with antibiotics or fed with a diet containing a non-degradable and -fermentable fiber source showed decreased SCFA concentrations. In summary, this fast and reproducible method for the quantification of SCFA in fecal samples provides a valuable tool for both basic research and large-scale studies.
Collapse
Affiliation(s)
- Gerhard Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Josef Ecker
- Nutritional Physiology, Technical University of Munich, 85354 Freising, Germany.
- ZIEL-Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany.
| | - Sebastian Roth
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Sabine Schweizer
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Veronika Öttl
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Hans-Frieder Schött
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Hongsup Yoon
- ZIEL-Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany.
- Chair of Nutrition and Immunology, Technical University of Munich, 85354 Freising, Germany.
| | - Dirk Haller
- ZIEL-Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany.
- Chair of Nutrition and Immunology, Technical University of Munich, 85354 Freising, Germany.
| | - Ernst Holler
- Department of Hematology and Oncology, Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany.
| | - Ralph Burkhardt
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Silke Matysik
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
29
|
Ibrahim S, Dayoub R, Krautbauer S, Liebisch G, Wege AK, Melter M, Weiss TS. Bile acid-induced apoptosis and bile acid synthesis are reduced by over-expression of Augmenter of Liver Regeneration (ALR) in a STAT3-dependent mechanism. Exp Cell Res 2019; 374:189-197. [DOI: 10.1016/j.yexcr.2018.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/31/2018] [Accepted: 11/25/2018] [Indexed: 11/24/2022]
|
30
|
Huang S, Zheng J, Yang Q, Chen G, Xu J, Shen Y, Zhang Y, Ouyang G. High-Efficiency, Matrix Interference-Free, General Applicable Probes for Bile Acids Extraction and Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800774. [PMID: 30581699 PMCID: PMC6299822 DOI: 10.1002/advs.201800774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/27/2018] [Indexed: 05/25/2023]
Abstract
Although bile acids (BAs) have been suggested as important biomarkers for endocrine diseases, the identification and quantification of different BAs are still challenges due to their enormous species and wide range concentrations. Herein, a copolymer probe based on β-cyclodextrin (β-CD) is fabricated through a simple in-mold photopolymerization for the selective extraction of BAs. Through the unique stereochemical affinity between BAs and the cavity of β-CD, the custom probe shows superior enriching capacities to series BAs. Moreover, the outstanding extraction ability is proved to be consistent in various interfering conditions, including pH changing and the addition of complex matrix. Further comparison shows that the stereostructure of the nucleus of BAs plays a vital role during the formation of the β-CD/BA complex, indicating the potential for efficient extraction of other BAs, including their structural analogues or some unknown ones. The developed probe is used for solid phase microextraction, and the limits of detection are lower than 0.075 ng mL-1 by coupling to high performance liquid chromatography-tandem mass analysis. The results in this study highlight the potential for effective improvement of immediate detection and profiling of BAs in real samples, which will make a tremendous impact in the analytical field or clinical diagnosis.
Collapse
Affiliation(s)
- Shuyao Huang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275China
| | - Jiating Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275China
| | - Qian Yang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275China
| | - Yong Shen
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275China
| | - Yimin Zhang
- Urology DepartmentSun Yat‐Sen University Sixth Affiliated HospitalGuangzhouGuangdong510000China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275China
| |
Collapse
|
31
|
Schött HF, Krautbauer S, Höring M, Liebisch G, Matysik S. A Validated, Fast Method for Quantification of Sterols and Gut Microbiome Derived 5α/β-Stanols in Human Feces by Isotope Dilution LC–High-Resolution MS. Anal Chem 2018; 90:8487-8494. [DOI: 10.1021/acs.analchem.8b01278] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hans-Frieder Schött
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Sabrina Krautbauer
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Marcus Höring
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Silke Matysik
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
32
|
Wood PL, Cebak JE. Lipidomics biomarker studies: Errors, limitations, and the future. Biochem Biophys Res Commun 2018; 504:569-575. [PMID: 29596837 DOI: 10.1016/j.bbrc.2018.03.188] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 03/25/2018] [Indexed: 12/16/2022]
Abstract
Lipidomics is an ever-expanding subfield of metabolomics that surveys 3000 to 5000 individual lipids across more than 56 lipid subclasses, including lipid peroxidation products. Unfortunately, there exists a large number of publications with poor quality data obtained with unit mass resolution leading to many lipid misidentifications. This is further complicated by poor scientific oversight with regard to recognition of isobar issues, sample collection, and sample storage issues that inexplicably requires more detailed attention. Inadvertent or intentional obfuscation of relative quantification data represented as absolute quantification is a subtle but profound difference that may readers outside of the field may not realize, therefore, instigating disservice and unnecessary distrust in the scientific community. These issues need to be addressed aggressively as high quality data are essential for the translation of biomarker research to clinical practice.
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN 37752, USA.
| | - John E Cebak
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN 37752, USA; Department of Medicine, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN 37752, USA
| |
Collapse
|
33
|
Rossmann J, Renner LD, Oertel R, El-Armouche A. Post-column infusion of internal standard quantification for liquid chromatography-electrospray ionization-tandem mass spectrometry analysis – Pharmaceuticals in urine as example approach. J Chromatogr A 2018; 1535:80-87. [DOI: 10.1016/j.chroma.2018.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/21/2017] [Accepted: 01/01/2018] [Indexed: 10/18/2022]
|
34
|
Abstract
Besides their role as lipid solubilizers, bile acids (BAs) are increasingly appreciated as bioactive molecules. They bind to G-protein-coupled receptors and nuclear hormone receptors. So they control their own metabolism and act on lipid and energy metabolism. Here we describe a simple, accurate, and fast liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of BAs in human plasma/serum.
Collapse
Affiliation(s)
- Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
35
|
Liquid chromatography-mass spectrometry with triazole-bonded stationary phase for N-methyl-d-aspartate receptor-related amino acids: development and application in microdialysis studies. Anal Bioanal Chem 2017; 409:7201-7210. [DOI: 10.1007/s00216-017-0682-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
|
36
|
Quantification of steroid hormones in human serum by liquid chromatography-high resolution tandem mass spectrometry. J Chromatogr A 2017; 1526:112-118. [PMID: 29061472 DOI: 10.1016/j.chroma.2017.10.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 11/23/2022]
Abstract
A limited specificity is inherent to immunoassays for steroid hormone analysis. To improve selectivity mass spectrometric analysis of steroid hormones by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been introduced in the clinical laboratory over the past years usually with low mass resolution triple-quadrupole instruments or more recently by high resolution mass spectrometry (HR-MS). Here we introduce liquid chromatography-high resolution tandem mass spectrometry (LC-MS/HR-MS) to further increase selectivity of steroid hormone quantification. Application of HR-MS demonstrates an enhanced selectivity compared to low mass resolution. Separation of isobaric interferences reduces background noise and avoids overestimation. Samples were prepared by automated liquid-liquid extraction with MTBE. The LC-MS/HR-MS method using a quadrupole-Orbitrap analyzer includes eight steroid hormones i.e. androstenedione, corticosterone, cortisol, cortisone, 11-deoxycortisol, 17-hydroxyprogesterone, progesterone, and testosterone. It has a run-time of 5.3min and was validated according to the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) guidelines. For most of the analytes coefficient of variation were 10% or lower and LOQs were determined significantly below 1ng/ml. Full product ion spectra including accurate masses substantiate compound identification by matching their masses and ratios with authentic standards. In summary, quantification of steroid hormones by LC-MS/HR-MS is applicable for clinical diagnostics and holds also promise for highly selective quantification of other small molecules.
Collapse
|
37
|
Yang T, Shu T, Liu G, Mei H, Zhu X, Huang X, Zhang L, Jiang Z. Quantitative profiling of 19 bile acids in rat plasma, liver, bile and different intestinal section contents to investigate bile acid homeostasis and the application of temporal variation of endogenous bile acids. J Steroid Biochem Mol Biol 2017; 172:69-78. [PMID: 28583875 DOI: 10.1016/j.jsbmb.2017.05.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/23/2017] [Accepted: 05/31/2017] [Indexed: 02/08/2023]
Abstract
Bile acid homeostasis is maintained by liver synthesis, bile duct secretion, microbial metabolism and intestinal reabsorption into the blood. When drug insults result in liver damage, the variances of bile acids (BAs) are related to the physiological status of the liver. Here, we established a method to simultaneously quantify 19 BAs in rat plasma, liver, bile and different intestinal section contents (duodenum, jejunum, ileum, cecum and colon) using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) to reveal the pattern of bile acid homeostasis in the enterohepatic circulation of bile acids in physiological situations. Dynamic changes in bile acid composition appeared throughout the enterohepatic circulation of the BAs; taurine- and glycine-conjugated BAs and free BAs had different dynamic homeostasis levels in the circulatory system. cholic acid (CA), beta-muricholic acid (beta-MCA), lithocholic acid (LCA), glycocholic acid (GCA) and taurocholic acid (TCA) greatly fluctuated in the bile acid pool under physiological conditions. Taurine- and glycine-conjugated bile acids constituted more than 90% in the bile and liver, whereas GCA and TCA accounted for more than half of the total bile acids and the secretion of bile mainly via conjugating with taurine. While over 80% of BAs in plasma were unconjugated bile acids, CA and HDCA were the most abundant elements. Unconjugated bile acids constituted more than 90% in the intestine, and CA, beta-MCA and HDCA were the top three bile acids in the duodenum, jejunum and ileum content, but LCA and HDCA were highest in the cecum and colon content. As the main secondary bile acid converted by microflora in the intestine, LCA was enriched in the cecum and DCA mostly in the colon. As endogenous substances, the concentrations of plasma BAs were closely related to time rhythm and diet. In conclusion, analyzing detailed BA profiles in the enterohepatic circulation of bile acids in a single run is possible using LC-MS/MS. Based on the physiological characteristics of the metabolic profiling of 19 BAs in the total bile acid pool and the time rhythm variation of the endogenous bile acids, this study provided a new valuable method and theoretical basis for the clinical research of bile acid homeostasis.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China, China
| | - Ting Shu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China, China
| | - Guanlan Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China, China
| | - Huifang Mei
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China, China
| | - Xiaoyu Zhu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China, China
| | - Xin Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China.
| |
Collapse
|
38
|
Hänninen S, Somerharju P, Hermansson M. Metabolic Heavy Isotope Labeling to Study Glycerophospholipid Homeostasis of Cultured Cells. Bio Protoc 2017; 7:e2268. [PMID: 34541253 DOI: 10.21769/bioprotoc.2268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/26/2017] [Accepted: 04/04/2017] [Indexed: 11/02/2022] Open
Abstract
Glycerophospholipids consist of a glycerophosphate backbone to which are esterified two acyl chains and a polar head group. The head group (e.g., choline, ethanolamine, serine or inositol) defines the glycerophospholipid class, while the acyl chains together with the head group define the glycerophospholipid molecular species. Stable heavy isotope (e.g., deuterium)-labeled head group precursors added to the culture medium incorporate efficiently into glycerophospholipids of mammalian cells, which allows one to determine the rates of synthesis, acyl chain remodeling or turnover of the individual glycerophospholipids using mass spectrometry. This protocol describes how to study the metabolism of the major mammalian glycerophospholipids i.e., phosphatidylcholines, phosphatidylethanolamines, phosphatidylserines and phosphatidylinositols with this approach.
Collapse
Affiliation(s)
- Satu Hänninen
- Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, Helsinki, Finland
| | - Pentti Somerharju
- Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, Helsinki, Finland
| | - Martin Hermansson
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
39
|
Liebisch G, Ekroos K, Hermansson M, Ejsing CS. Reporting of lipidomics data should be standardized. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:747-751. [PMID: 28238863 DOI: 10.1016/j.bbalip.2017.02.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/03/2023]
Abstract
This article highlights, to our opinion, some of the most pertinent issues related to producing high quality lipidomics data. These issues include pitfalls related to sample collection and storage, lipid extraction, the use of shotgun and LC-MS-based lipidomics approaches, and the identification, annotation and quantification of lipid species. We hope that highlighting these issues will help stimulate efforts to implement reporting standards for dissemination of lipidomics data. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein.
Collapse
Affiliation(s)
- Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany.
| | - Kim Ekroos
- Lipidomics Consulting Ltd., FI-02230 Esbo, Finland.
| | - Martin Hermansson
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense, Denmark.
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense, Denmark.
| |
Collapse
|