1
|
Panczyk EM, Lin YF, Harvey SR, Snyder DT, Liu FC, Ridgeway ME, Park MA, Bleiholder C, Wysocki VH. Evaluation of a Commercial TIMS-Q-TOF Platform for Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1394-1402. [PMID: 38905538 DOI: 10.1021/jasms.3c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Mass-spectrometry based assays in structural biology studies measure either intact or digested proteins. Typically, different mass spectrometers are dedicated for such measurements: those optimized for rapid analysis of peptides or those designed for high molecular weight analysis. A commercial trapped ion mobility-quadrupole-time-of-flight (TIMS-Q-TOF) platform is widely utilized for proteomics and metabolomics, with ion mobility providing a separation dimension in addition to liquid chromatography. The ability to perform high-quality native mass spectrometry of protein complexes, however, remains largely uninvestigated. Here, we evaluate a commercial TIMS-Q-TOF platform for analyzing noncovalent protein complexes by utilizing the instrument's full range of ion mobility, MS, and MS/MS (both in-source activation and collision cell CID) capabilities. The TIMS analyzer is able to be tuned gently to yield collision cross sections of native-like complexes comparable to those previously reported on various instrument platforms. In-source activation and collision cell CID were robust for both small and large complexes. TIMS-CID was performed on protein complexes streptavidin (53 kDa), avidin (68 kDa), and cholera toxin B (CTB, 58 kDa). Complexes pyruvate kinase (237 kDa) and GroEL (801 kDa) were beyond the trapping capabilities of the commercial TIMS analyzer, but TOF mass spectra could be acquired. The presented results indicate that the commercial TIMS-Q-TOF platform can be used for both omics and native mass spectrometry applications; however, modifications to the commercial RF drivers for both the TIMS analyzer and quadrupole (currently limited to m/z 3000) are necessary to mobility analyze protein complexes greater than about 60 kDa.
Collapse
Affiliation(s)
- Erin M Panczyk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Yu-Fu Lin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sophie R Harvey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dalton T Snyder
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Fanny C Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Mark E Ridgeway
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Melvin A Park
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Liu R, Xia S, Li H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. MASS SPECTROMETRY REVIEWS 2022:e21793. [PMID: 35757976 DOI: 10.1002/mas.21793] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Progress in structural biology research has led to a high demand for powerful and yet complementary analytical tools for structural characterization of proteins and protein complexes. This demand has significantly increased interest in native mass spectrometry (nMS), particularly native top-down mass spectrometry (nTDMS) in the past decade. This review highlights recent advances in nTDMS for structural research of biological assemblies, with a particular focus on the extra multi-layers of information enabled by TDMS. We include a short introduction of sample preparation and ionization to nMS, tandem fragmentation techniques as well as mass analyzers and software/analysis pipelines used for nTDMS. We highlight unique structural information offered by nTDMS and examples of its broad range of applications in proteins, protein-ligand interactions (metal, cofactor/drug, DNA/RNA, and protein), therapeutic antibodies and antigen-antibody complexes, membrane proteins, macromolecular machineries (ribosome, nucleosome, proteosome, and viruses), to endogenous protein complexes. The challenges, potential, along with perspectives of nTDMS methods for the analysis of proteins and protein assemblies in recombinant and biological samples are discussed.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shujun Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Snyder DT, Harvey SR, Wysocki VH. Surface-induced Dissociation Mass Spectrometry as a Structural Biology Tool. Chem Rev 2022; 122:7442-7487. [PMID: 34726898 PMCID: PMC9282826 DOI: 10.1021/acs.chemrev.1c00309] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Native mass spectrometry (nMS) is evolving into a workhorse for structural biology. The plethora of online and offline preparation, separation, and purification methods as well as numerous ionization techniques combined with powerful new hybrid ion mobility and mass spectrometry systems has illustrated the great potential of nMS for structural biology. Fundamental to the progression of nMS has been the development of novel activation methods for dissociating proteins and protein complexes to deduce primary, secondary, tertiary, and quaternary structure through the combined use of multiple MS/MS technologies. This review highlights the key features and advantages of surface collisions (surface-induced dissociation, SID) for probing the connectivity of subunits within protein and nucleoprotein complexes and, in particular, for solving protein structure in conjunction with complementary techniques such as cryo-EM and computational modeling. Several case studies highlight the significant role SID, and more generally nMS, will play in structural elucidation of biological assemblies in the future as the technology becomes more widely adopted. Cases are presented where SID agrees with solved crystal or cryoEM structures or provides connectivity maps that are otherwise inaccessible by "gold standard" structural biology techniques.
Collapse
Affiliation(s)
- Dalton T. Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
5
|
Surface-Induced Dissociation for Protein Complex Characterization. Methods Mol Biol 2022; 2500:211-237. [PMID: 35657596 DOI: 10.1007/978-1-0716-2325-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Native mass spectrometry (nMS) enables intact non-covalent complexes to be studied in the gas phase. nMS can provide information on composition, stoichiometry, topology, and, when coupled with surface-induced dissociation (SID), subunit connectivity. Here we describe the characterization of protein complexes by nMS and SID. Substructural information obtained using this method is consistent with the solved complex structure, when a structure exists. This provides confidence that the method can also be used to obtain substructural information for unknowns, providing insight into subunit connectivity and arrangements. High-energy SID can also provide information on proteoforms present. Previously SID has been limited to a few in-house modified instruments and here we focus on SID implemented within an in-house-modified Q Exactive UHMR. However, SID is currently commercially available within the Waters Select Series Cyclic IMS instrument. Projects are underway that involve the NIH-funded native MS resource (nativems.osu.edu), instrument vendors, and third-party vendors, with the hope of bringing the technology to more platforms and labs in the near future. Currently, nMS resource staff can perform SID experiments for interested research groups.
Collapse
|
6
|
Snyder DT, Jones BJ, Lin YF, Cooper-Shepherd DA, Hewitt D, Wildgoose J, Brown JM, Langridge JI, Wysocki VH. Surface-induced dissociation of protein complexes on a cyclic ion mobility spectrometer. Analyst 2021; 146:6861-6873. [PMID: 34632987 PMCID: PMC8574189 DOI: 10.1039/d1an01407b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We describe the implementation of a simple three-electrode surface-induced dissociation (SID) cell on a cyclic ion mobility spectrometer (cIMS) and demonstrate the utility of multipass mobility separations for resolving multiple conformations of protein complexes generated during collision-induced and surface-induced unfolding (CIU & SIU) experiments. In addition to CIU and SIU, SID of protein complexes is readily accomplished within the native instrument software and with no additional external power supplies by entering a single SID collision energy, a simplification in user experience compared to prior implementations. A set of cyclic homomeric protein complexes and a heterohexamer with known CID and SID behavior were analyzed to investigate mass and mobility resolution improvements, the latter of which improved by 20-50% (median: 33%) compared to a linear travelling wave device. Multiple passes of intact complexes, or their SID fragments, increased the mobility resolution by an average of 15% per pass, with the racetrack effect being observed after ∼3 or 4 passes, depending on the drift time spread of the analytes. Even with modest improvements to apparent mobility resolving power, multipass experiments were particularly useful for separating conformations produced from CIU and SIU experiments. We illustrate several examples where either (1) multipass experiments revealed multiple overlapping conformations previously unobserved or obscured due to limited mobility resolution, or (2) CIU or SIU conformations that appeared 'native' in a single pass experiment were actually slightly compacted or expanded, with the change only being measurable through multipass experiments. The work conducted here, the first utilization of multipass cyclic ion mobility for CIU, SIU, and SID of protein assemblies and a demonstration of a wholly integrated SIU/SID workflow, paves the way for widespread adoption of SID technology for native mass spectrometry and also improves our understanding of gas-phase protein complex CIU and SIU conformationomes.
Collapse
Affiliation(s)
- Dalton T Snyder
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, OH, USA 43210
| | - Benjamin J Jones
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, OH, USA 43210.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA 43210.
| | - Yu-Fu Lin
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, OH, USA 43210.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA 43210.
| | | | - Darren Hewitt
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - Jason Wildgoose
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - Jeffery M Brown
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - James I Langridge
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - Vicki H Wysocki
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, OH, USA 43210.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA 43210.
| |
Collapse
|
7
|
Song JH, Wagner ND, Yan J, Li J, Huang RYC, Balog AJ, Newitt JA, Chen G, Gross ML. Native mass spectrometry and gas-phase fragmentation provide rapid and in-depth topological characterization of a PROTAC ternary complex. Cell Chem Biol 2021; 28:1528-1538.e4. [PMID: 34081921 DOI: 10.1016/j.chembiol.2021.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/17/2021] [Accepted: 05/07/2021] [Indexed: 01/24/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) represent a new direction in small-molecule therapeutics whereby a heterobifunctional linker to a protein of interest (POI) induces its ubiquitination-based proteolysis by recruiting an E3 ligase. Here, we show that charge reduction, native mass spectrometry, and gas-phase activation methods combine for an in-depth analysis of a PROTAC-linked ternary complex. Electron capture dissociation (ECD) of the intact POI-PROTAC-VCB complex (a trimeric subunit of an E3 ubiquitin ligase) promotes POI dissociation. Collision-induced dissociation (CID) causes elimination of the nonperipheral PROTAC, producing an intact VCB-POI complex not seen in solution but consistent with PROTAC-induced protein-protein interactions. In addition, we used ion mobility spectrometry (IMS) and collisional activation to identify the source of this unexpected dissociation. Together, the evidence shows that this integrated approach can be used to screen for ternary complex formation and PROTAC-protein contacts and may report on PROTAC-induced protein-protein interactions, a characteristic correlated with PROTAC selectivity and efficacy.
Collapse
Affiliation(s)
- Jong Hee Song
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Nicole D Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jing Yan
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jing Li
- Bristol Myers Squibb Company, Research and Early Development, Princeton, NJ 08543, USA
| | - Richard Y-C Huang
- Bristol Myers Squibb Company, Research and Early Development, Princeton, NJ 08543, USA
| | - Aaron J Balog
- Bristol Myers Squibb Company, Research and Early Development, Princeton, NJ 08543, USA
| | - John A Newitt
- Bristol Myers Squibb Company, Research and Early Development, Princeton, NJ 08543, USA
| | - Guodong Chen
- Bristol Myers Squibb Company, Research and Early Development, Princeton, NJ 08543, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
8
|
Seffernick JT, Canfield SM, Harvey SR, Wysocki VH, Lindert S. Prediction of Protein Complex Structure Using Surface-Induced Dissociation and Cryo-Electron Microscopy. Anal Chem 2021; 93:7596-7605. [PMID: 33999617 DOI: 10.1021/acs.analchem.0c05468] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A variety of techniques involving the use of mass spectrometry (MS) have been developed to obtain structural information on proteins and protein complexes. One example of these techniques, surface-induced dissociation (SID), has been used to study the oligomeric state and connectivity of protein complexes. Recently, we demonstrated that appearance energies (AE) could be extracted from SID experiments and that they correlate with structural features of specific protein-protein interfaces. While SID AE provides some structural information, the AE data alone are not sufficient to determine the structures of the complexes. For this reason, we sought to supplement the data with computational modeling, through protein-protein docking. In a previous study, we demonstrated that the scoring of structures generated from protein-protein docking could be improved with the inclusion of SID data; however, this work relied on knowledge of the correct tertiary structure and only built full complexes for a few cases. Here, we performed docking using input structures that require less prior knowledge, using homology models, unbound crystal structures, and bound+perturbed crystal structures. Using flexible ensemble docking (to build primarily subcomplexes from an ensemble of backbone structures), the RMSD100 of all (15/15) predicted structures using the combined Rosetta, cryo-electron microscopy (cryo-EM), and SID score was less than 4 Å, compared to only 7/15 without SID and cryo-EM. Symmetric docking (which used symmetry to build full complexes) resulted in predicted structures with RMSD100 less than 4 Å for 14/15 cases with experimental data, compared to only 5/15 without SID and cryo-EM. Finally, we also developed a confidence metric for which all (26/26) proteins flagged as high confidence were accurately predicted.
Collapse
Affiliation(s)
- Justin T Seffernick
- Department of Chemistry and Biochemistry, Ohio State University, 2114 Newman & Wolfrom Laboratory, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Shane M Canfield
- Department of Chemistry, Kenyon College, Gambier, Ohio 43022, United States
| | - Sophie R Harvey
- Department of Chemistry and Biochemistry, Ohio State University, 2114 Newman & Wolfrom Laboratory, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Ohio State University, 2114 Newman & Wolfrom Laboratory, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, 2114 Newman & Wolfrom Laboratory, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Panczyk EM, Snyder DT, Ridgeway ME, Somogyi Á, Park MA, Wysocki VH. Surface-Induced Dissociation of Protein Complexes Selected by Trapped Ion Mobility Spectrometry. Anal Chem 2021; 93:5513-5520. [PMID: 33751887 DOI: 10.1021/acs.analchem.0c05373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Native mass spectrometry (nMS), particularly in conjunction with gas-phase ion mobility spectrometry measurements, has proven useful as a structural biology tool for evaluating the stoichiometry, conformation, and topology of protein complexes. Here, we demonstrate the combination of trapped ion mobility spectrometry (TIMS) and surface-induced dissociation (SID) on a Bruker SolariX XR 15 T FT-ICR mass spectrometer for the structural analysis of protein complexes. We successfully performed SID on mobility-selected protein complexes, including the streptavidin tetramer and cholera toxin B with bound ligands. Additionally, TIMS-SID was employed on a mixture of the peptides desArg1 and desArg9 bradykinin to mobility-separate and identify the individual peptides. Importantly, results show that native-like conformations can be maintained throughout the TIMS analysis. The TIMS-SID spectra are analogous to SID spectra acquired using quadrupole mass selection, indicating little measurable, if any, structural rearrangement during mobility selection. Mobility parking was used on the ion or mobility of interest and 50-200 SID mass spectra were averaged. High-quality TIMS-SID spectra were acquired over a period of 2-10 min, comparable to or slightly longer than SID coupled with ion mobility on various instrument platforms in our laboratory. The ultrahigh resolving power of the 15 T FT-ICR allowed for the identification and relative quantification of overlapping SID fragments with the same nominal m/z based on isotope patterns, and it shows promise as a platform to probe small mass differences, such as protein/ligand binding or post-translational modifications. These results represent the potential of TIMS-SID-MS for the analysis of both protein complexes and peptides.
Collapse
Affiliation(s)
- Erin M Panczyk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.,Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dalton T Snyder
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mark E Ridgeway
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Árpád Somogyi
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States.,Campus Chemical Instrument Center, Mass Spectrometry and Proteomics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Melvin A Park
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.,Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States.,Campus Chemical Instrument Center, Mass Spectrometry and Proteomics, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
10
|
Snyder DT, Lin YF, Somogyi A, Wysocki V. Tandem surface-induced dissociation of protein complexes on an ultrahigh resolution platform. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 461:116503. [PMID: 33889055 PMCID: PMC8057730 DOI: 10.1016/j.ijms.2020.116503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We describe instrumentation for conducting tandem surface-induced dissociation (tSID) of native protein complexes on an ultrahigh resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The two stages of SID are accomplished with split lenses replacing the entrance lenses of the quadrupole mass filter (stage 1, referred to herein as SID-Q) and the collision cell (stage 2, Q-SID). After SID-Q, the scattered projectile ions and subcomplexes formed in transit traverse the 20 mm pre-filter prior to the mass-selecting quadrupole, providing preliminary insights into the SID fragmentation kinetics of noncovalent protein complexes. The isolated SID fragments (subcomplexes) are then fragmented by SID in the collision cell entrance lens (Q-SID), generating subcomplexes of subcomplexes. We show that the ultrahigh resolution of the FT-ICR can be used for deconvolving species overlapping in m/z, which are particularly prominent in tandem SID spectra due to the combination of symmetric charge partitioning and narrow product ion charge state distributions. Various protein complex topologies are explored, including homotetramers, homopentamers, a homohexamer, and a heterohexamer.
Collapse
Affiliation(s)
- Dalton T. Snyder
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus OH, USA 43210
| | - Yu-Fu Lin
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus OH, USA 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH, USA 43210
| | - Arpad Somogyi
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus OH, USA 43210
| | - Vicki Wysocki
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus OH, USA 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH, USA 43210
| |
Collapse
|
11
|
Snyder DT, Panczyk EM, Somogyi A, Kaplan DA, Wysocki V. Simple and Minimally Invasive SID Devices for Native Mass Spectrometry. Anal Chem 2020; 92:11195-11203. [PMID: 32700898 DOI: 10.1021/acs.analchem.0c01657] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We describe a set of simple devices for surface-induced dissociation of proteins and protein complexes on three instrument platforms. All of the devices use a novel yet simple split lens geometry that is minimally invasive (requiring a few millimeters along the ion path axis) and is easier to operate than prior generations of devices. The split lens is designed to be small enough to replace the entrance lens of a Bruker FT-ICR collision cell, the dynamic range enhancement (DRE) lens of a Waters Q-IM-TOF, or the exit lens of a transfer multipole of a Thermo Scientific Extended Mass Range (EMR) Orbitrap. Despite the decrease in size and reduction in number of electrodes to 3 (from 10 to 12 in Gen 1 and ∼6 in Gen 2), we show sensitivity improvement in a variety of cases across all platforms while also maintaining SID capabilities across a wide mass and energy range. The coupling of SID, high resolution, and ion mobility is demonstrated for a variety of protein complexes of varying topologies.
Collapse
|
12
|
Stiving AQ, Gilbert JD, Jones BJ, Wysocki VH. A Tilted Surface and Ion Carpet Array for SID. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:458-462. [PMID: 32031394 PMCID: PMC7203677 DOI: 10.1021/jasms.9b00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of native mass spectrometry (MS) has provided structural biologists an additional tool to probe the structures of large macromolecular systems. Surface-induced dissociation (SID) is one activation method used within tandem MS experiments that has proven useful in interrogating the connectivity and topology of biologically-relevant protein complexes. We present here the use of a tilted surface and ion carpet array within a new SID device design, enabling decreased dimensions along the ion path and fewer lenses to tune. This device works well in fragmenting ions of both low (peptides) and high (protein complexes) m/z. Results show that the ion carpet array, while enabling simplification of the back-end of the device, has deficiencies in product collection and subsequently signal at higher SID energies when fragmenting protein complexes. However, the use of the tilted surface is advantageous as an effective way to shorten the device and reduce the number of independent voltages.
Collapse
|
13
|
Affiliation(s)
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Snyder DT, Panczyk E, Stiving AQ, Gilbert JD, Somogyi A, Kaplan D, Wysocki V. Design and Performance of a Second-Generation Surface-Induced Dissociation Cell for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Native Protein Complexes. Anal Chem 2019; 91:14049-14057. [PMID: 31584811 DOI: 10.1021/acs.analchem.9b03746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A second-generation ("Gen 2") device capable of surface-induced dissociation (SID) and collision-induced dissociation (CID) for Fourier transform ion cyclotron resonance mass spectrometry of protein complexes has been designed, simulated, fabricated, and experimentally compared to a first-generation device ("Gen 1"). The primary goals of the redesign were to (1) simplify SID by reducing the number of electrodes, (2) increase CID and SID sensitivity by lengthening the collision cell, and (3) increase the mass range of the device for analysis of larger multimeric proteins, all while maintaining the normal instrument configuration and operation. Compared to Gen 1, Gen 2 exhibits an approximately 10× increase in sensitivity in flythrough mode, 7× increase in CID sensitivity for protonated leucine enkephalin (m/z 556), and 14× increase of CID sensitivity of 53 kDa streptavidin tetramer. It also approximately doubles the useful mass range (from m/z 8000 to m/z 15 000) using a rectilinear ion trap with a smaller inscribed radius or triples it (to m/z 22 000) using a hexapole collision cell and yields a 3-10× increase in SID sensitivity. We demonstrate the increased mass range and sensitivity on a variety of model molecules spanning nearly 3 orders of magnitude in absolute mass and present examples where the high resolution of the FT-ICR is advantageous for deconvoluting overlapping SID fragments.
Collapse
Affiliation(s)
| | | | | | | | | | - Desmond Kaplan
- KapScience LLC , Tewksbury , Massachusetts 01876 , United States
| | | |
Collapse
|
15
|
Donor MT, Mroz AM, Prell JS. Experimental and theoretical investigation of overall energy deposition in surface-induced unfolding of protein ions. Chem Sci 2019; 10:4097-4106. [PMID: 31049192 PMCID: PMC6471915 DOI: 10.1039/c9sc00644c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022] Open
Abstract
Recent advances in native mass spectrometry have enabled its use to probe the structure of and interactions within biomolecular complexes. Surface-induced dissociation, in which inter- and intramolecular interactions are disrupted following an energetic ion-surface collision, is a method that can directly interrogate the topology of protein complexes. However, a quantitative relationship between the ion kinetic energy at the moment of surface collision and the internal energy deposited into the ion has not yet been established for proteins. The factors affecting energy deposition in surface-induced unfolding (SIU) of protein monomers were investigated and a calibration relating laboratory-frame kinetic energy to internal energy developed. Protein monomers were unfolded by SIU and by collision-induced unfolding (CIU). CIU and SIU cause proteins to undergo the same unfolding transitions at different values of laboratory-frame kinetic energy. There is a strong correlation between the SIU and CIU energies, demonstrating that SIU, like CIU, can largely be understood as a thermal process. The change in internal energy in CIU was modeled using a Monte Carlo approach and theory. Computed values of the overall efficiency were found to be approximately 25% and used to rescale the CIU energy axis and relate nominal SIU energies to internal energy. The energy deposition efficiency in SIU increases with mass and kinetic energy from a low of ∼20% to a high of ∼68%, indicating that the effective mass of the surface increases along with the mass of the ion. The effect of ion structure on energy deposition was probed using multiple stages of ion activation. Energy deposition in SIU strongly depends on structure, decreasing as the protein is elongated, due to decreased effective protein-surface collisional cross section and increased transfer to rotational modes.
Collapse
Affiliation(s)
- Micah T Donor
- Department of Chemistry and Biochemistry , 1253 University of Oregon , Eugene , OR 97403-1253 , USA
| | - Austin M Mroz
- Department of Chemistry and Biochemistry , 1253 University of Oregon , Eugene , OR 97403-1253 , USA
| | - James S Prell
- Department of Chemistry and Biochemistry , 1253 University of Oregon , Eugene , OR 97403-1253 , USA
- Materials Science Institute , University of Oregon , 1252 University of Oregon , Eugene , OR 97403-1252 , USA . ; ; Tel: +1 541 346 2597
| |
Collapse
|
16
|
VanAernum ZL, Gilbert JD, Belov ME, Makarov AA, Horning SR, Wysocki VH. Surface-Induced Dissociation of Noncovalent Protein Complexes in an Extended Mass Range Orbitrap Mass Spectrometer. Anal Chem 2019; 91:3611-3618. [PMID: 30688442 PMCID: PMC6516482 DOI: 10.1021/acs.analchem.8b05605] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Native mass spectrometry continues to develop as a significant complement to traditional structural biology techniques. Within native mass spectrometry (MS), surface-induced dissociation (SID) has been shown to be a powerful activation method for the study of noncovalent complexes of biological significance. High-resolution mass spectrometers have become increasingly adapted to the analysis of high-mass ions and have demonstrated their importance in understanding how small mass changes can affect the overall structure of large biomolecular complexes. Herein we demonstrate the first adaptation of surface-induced dissociation in a modified high-mass-range, high-resolution Orbitrap mass spectrometer. The SID device was designed to be installed in the Q Exactive series of Orbitrap mass spectrometers with minimal disruption of standard functions. The performance of the SID-Orbitrap instrument has been demonstrated with several protein complex and ligand-bound protein complex systems ranging from 53 to 336 kDa. We also address the effect of ion source temperature on native protein-ligand complex ions as assessed by SID. Results are consistent with previous findings on quadrupole time-of-flight instruments and suggest that SID coupled to high-resolution MS is well-suited to provide information on the interface interactions within protein complexes and ligand-bound protein complexes.
Collapse
|
17
|
Wang Y, Park H, Lin H, Kitova EN, Klassen JS. Multipronged ESI–MS Approach for Studying Glycan-Binding Protein Interactions with Glycoproteins. Anal Chem 2019; 91:2140-2147. [DOI: 10.1021/acs.analchem.8b04673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yilin Wang
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Heajin Park
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Hong Lin
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena N. Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S. Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
18
|
Stiving AQ, VanAernum ZL, Busch F, Harvey SR, Sarni SH, Wysocki VH. Surface-Induced Dissociation: An Effective Method for Characterization of Protein Quaternary Structure. Anal Chem 2019; 91:190-209. [PMID: 30412666 PMCID: PMC6571034 DOI: 10.1021/acs.analchem.8b05071] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alyssa Q. Stiving
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Zachary L. VanAernum
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Florian Busch
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Samantha H. Sarni
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
19
|
Lermyte F, Valkenborg D, Loo JA, Sobott F. Radical solutions: Principles and application of electron-based dissociation in mass spectrometry-based analysis of protein structure. MASS SPECTROMETRY REVIEWS 2018; 37:750-771. [PMID: 29425406 PMCID: PMC6131092 DOI: 10.1002/mas.21560] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 05/11/2023]
Abstract
In recent years, electron capture (ECD) and electron transfer dissociation (ETD) have emerged as two of the most useful methods in mass spectrometry-based protein analysis, evidenced by a considerable and growing body of literature. In large part, the interest in these methods is due to their ability to induce backbone fragmentation with very little disruption of noncovalent interactions which allows inference of information regarding higher order structure from the observed fragmentation behavior. Here, we review the evolution of electron-based dissociation methods, and pay particular attention to their application in "native" mass spectrometry, their mechanism, determinants of fragmentation behavior, and recent developments in available instrumentation. Although we focus on the two most widely used methods-ECD and ETD-we also discuss the use of other ion/electron, ion/ion, and ion/neutral fragmentation methods, useful for interrogation of a range of classes of biomolecules in positive- and negative-ion mode, and speculate about how this exciting field might evolve in the coming years.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan, Diepenbeek, Belgium
- Applied Bio and Molecular Systems, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
20
|
Taylor WS, Pedder RE, Eden AB, Emmerling CL. Systematic Ligand Effects in the Reactions of Fe +( 6D) and FeX +( 5Δ) with CF 3X (X = Cl, Br, I). Ion Mobility Measurements of FeX +( 5Δ) (X = F, Cl, Br, I) in He. J Phys Chem A 2018; 122:6509-6523. [PMID: 30020785 DOI: 10.1021/acs.jpca.8b05708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The gas phase reactions of Fe+(6D) and FeX+(5Δ) with CF3X (X = Cl, Br, I) were examined using a selected-ion drift cell reactor under near-thermal energetic conditions. All reactions were carried out in a uniform electric field at a total pressure of 3.5 Torr at room temperature. In addition, reduced zero-field mobilities were measured for FeX+(5Δ) (X = F, Cl, Br, I) in He, yielding values of 14.2 ± 0.4, 13.7 ± 0.3, 13.3 ± 0.2, and 13.0 ± 0.3 cm2·V-1·s-1, respectively. Fe+(6D) reacts slowly with CF3Cl and CF3Br, producing an adduct exclusively with the former and FeBr+ with the latter. Conversely, Fe+(6D) exhibits efficient chemistry with CF3I to yield FeI+, FeCF3+, and FeFI+ in parallel reactions. Dependent on the halogen, FeX+(5Δ) reactions display one or more of four different processes: F- abstraction, X- abstraction, halogen switching, and association. In general, the presence of the halogen ligand enhances the rate of reaction over that of Fe+(6D) with the same molecular substrate. With CF3Cl, this ligand effect is observed to vary systematically with the electron-withdrawing capability of the halogen. This is illustrated by the correlation between reaction efficiency and the charge distribution on FeX+(5Δ) as determined from DFT calculations. Specific reaction outcomes for the FeX+(5Δ) reactions lead to upper and lower bounds on XFe-Y bond strengths (X, Y = F, Cl, Br, I) that are generally consistent with one another and with known trends.
Collapse
Affiliation(s)
- William S Taylor
- Department of Chemistry University of Central Arkansas Conway , Arkansas 72035 , United States
| | - Randall E Pedder
- Department of Chemistry University of Central Arkansas Conway , Arkansas 72035 , United States
| | - Angela B Eden
- Department of Chemistry University of Central Arkansas Conway , Arkansas 72035 , United States
| | - Christopher L Emmerling
- Department of Chemistry University of Central Arkansas Conway , Arkansas 72035 , United States
| |
Collapse
|
21
|
Zhou M, Yan J, Romano CA, Tebo BM, Wysocki VH, Paša-Tolić L. Surface Induced Dissociation Coupled with High Resolution Mass Spectrometry Unveils Heterogeneity of a 211 kDa Multicopper Oxidase Protein Complex. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:723-733. [PMID: 29388167 PMCID: PMC7305857 DOI: 10.1007/s13361-017-1882-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 05/11/2023]
Abstract
Manganese oxidation is an important biogeochemical process that is largely regulated by bacteria through enzymatic reactions. However, the detailed mechanism is poorly understood due to challenges in isolating and characterizing these unknown enzymes. A manganese oxidase, Mnx, from Bacillus sp. PL-12 has been successfully overexpressed in active form as a protein complex with a molecular mass of 211 kDa. We have recently used surface induced dissociation (SID) and ion mobility-mass spectrometry (IM-MS) to release and detect folded subcomplexes for determining subunit connectivity and quaternary structure. The data from the native mass spectrometry experiments led to a plausible structural model of this multicopper oxidase, which has been difficult to study by conventional structural biology methods. It was also revealed that each Mnx subunit binds a variable number of copper ions. Becasue of the heterogeneity of the protein and limited mass resolution, ambiguities in assigning some of the observed peaks remained as a barrier to fully understanding the role of metals and potential unknown ligands in Mnx. In this study, we performed SID in a modified Fourier transform-ion cyclotron resonance (FTICR) mass spectrometer. The high mass accuracy and resolution offered by FTICR unveiled unexpected artificial modifications on the protein that had been previously thought to be iron bound species based on lower resolution spectra. Additionally, isotopically resolved spectra of the released subcomplexes revealed the metal binding stoichiometry at different structural levels. This method holds great potential for in-depth characterization of metalloproteins and protein-ligand complexes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA, 99354, USA
| | - Jing Yan
- Department of Chemistry and Biochemistry, Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Christine A Romano
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA, 99354, USA.
| |
Collapse
|
22
|
Affiliation(s)
- Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
23
|
Plach MG, Grasser K, Schubert T. MicroScale Thermophoresis as a Tool to Study Protein-peptide Interactions in the Context of Large Eukaryotic Protein Complexes. Bio Protoc 2017; 7:e2632. [PMID: 34595300 PMCID: PMC8438368 DOI: 10.21769/bioprotoc.2632] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 06/30/2024] Open
Abstract
Protein-peptide interactions are part of many physiological processes, for example, epigenetics where peptide regions of histone complexes are crucial for regulation of chromatin structure. Short peptides are often also used as alternatives to small molecule drugs to target protein complexes. Studying the interactions between proteins and peptides is thus an important task in systems biology, cell biology, biochemistry, and drug design. However, this task is often hampered by the drawbacks of classical biophysical methods for analysis of molecular interactions like surface plasmon resonance (SPR) or isothermal titration calorimetry (ITC), which require immobilization of the interaction partners or very high sample concentrations. MicroScale Thermophoresis (MST) is an innovative method that offers the possibility to determine the important parameters of a molecular interaction, such as dissociation constant, stoichiometry, and thermodynamics. Moreover, it does so in a rapid and precise manner, with free choice of buffers or biological liquids, no need for sample immobilization, and very low sample consumption. Here we describe two MST assays in detail, which analyze (i) the interactions between certain peptide stretches of the eukaryotic RNA polymerase II and a protein subunit of the eukaryotic transcription elongation complex and (ii) interactions between N-terminal histone tail peptides and epigenetic reader proteins. These experiments show that MST is able to characterize protein-peptide interactions that are triggered by only minor changes in the peptide, for example, only one phosphorylation at a specific serine residue.
Collapse
Affiliation(s)
| | - Klaus Grasser
- Department of Cell Biology and Plant Biochemistry, Biochemistry Center, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
24
|
Benigni P, Sandoval K, Thompson CJ, Ridgeway ME, Park MA, Gardinali P, Fernandez-Lima F. Analysis of Photoirradiated Water Accommodated Fractions of Crude Oils Using Tandem TIMS and FT-ICR MS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5978-5988. [PMID: 28457132 PMCID: PMC5661887 DOI: 10.1021/acs.est.7b00508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
For the first time, trapped ion mobility spectrometry (TIMS) in tandem with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is applied to the analysis of the low energy water accommodated fraction (WAF) of a crude oil as a function of the exposure to light. The TIMS-FT-ICR MS analysis provided, in addition to the heteroatom series identification, new insights into the WAF isomeric complexity (e.g., [m/z; chemical formula; collision cross section] data sets) for a better evaluation of the degree of chemical and structural photoinduced transformations. Inspection of the [m/z; chemical formula; collision cross section] data sets shows that the WAF composition changes as a function of the exposure to light in the first 115 h by initial photosolubilization of HC components and their photo-oxidation up to O4-5 of mainly high double bond equivalence species (DBE > 9). The addition of high resolution TIMS (resolving power of 90-220) to ultrahigh resolution FT-ICR MS (resolving power over 400k) permitted the identification of a larger number of molecular components in a single analysis (e.g., over 47k using TIMS-MS compared to 12k by MS alone), with instances of over 6-fold increase in the number of molecular features per nominal mass due to the WAF isomeric complexity. This work represents a stepping stone toward a better understanding of the WAF components and highlights the need for better experimental and theoretical approaches to characterize the WAF structural diversity.
Collapse
Affiliation(s)
- Paolo Benigni
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Kathia Sandoval
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | | | | | - Melvin A. Park
- Bruker Daltonics, Inc., Billerica, Massachusetts 01821, USA
| | - Piero Gardinali
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Southeast Environmental Research Center, Florida International University, Miami, Florida 33199, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199
| |
Collapse
|