1
|
Gholami MD, Alzubaidi FM, Liu Q, Izake EL, Sonar P. Rapidly and simply detecting Cr (VI) in aqueous media via a diketopyrrolopyrrole-based chemosensor with both high selectivity and low LOD. Anal Chim Acta 2024; 1316:342861. [PMID: 38969410 DOI: 10.1016/j.aca.2024.342861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The high toxicity of hexavalent chromium [Cr (VI)] could not only cause harmful effects on humans, including carcinogenicity, respiratory issues, genetic damage, and skin irritation, but also contaminate drinking water sources, aquatic ecosystems, and soil, impairing the reproductive capacity, growth, and survival of organisms. Due to these harmful effects, detecting toxic Cr (VI) is of great significance. However, the rapid, simple, and efficient detection at a low Cr (VI) concentration is extremely challenging, especially in an acidic condition (existing as HCrO4-) due to its low adsorption free energy. RESULTS A diketopyrrolopyrrole-based small molecule (DPPT-PhSMe) is designed and characterized to act as a chemosensor, which allows a high selectivity to Cr (VI) at an acidic condition with a low limit of detection to 10-8 M that is two orders of magnitude lower than the cut of limit (1 μM) recommended by World Health Organization (WHO). Mechanism study indicates that the rich sulfur atoms enhance the affinity to HCrO4-. Combining with favorable features of diketopyrrolopyrrole, DPPT-PhSMe not only allows dual-mode detection (colorimetric and spectroscopic) to Cr (VI), but also enables disposable paper-based sensor for naked-eye detection to Cr (VI) from fully aqueous media. The investigation of DPPT-PhSMe chemosensor for the quantification of Cr (VI) in real life samples demonstrates a high reliability and accuracy with an average percentage recovery of 102.1 % ± 4 (n = 3). SIGNIFICANCE DPPT-PhSMe represents the first diketopyrrolopyrrole-derived chemosensor for efficient detection to toxic Cr (VI), not only providing a targeted solution to the bottleneck of Cr (VI) detection in acidic conditions (existing as HCrO4-) caused by its low adsorption free energy, but also opening a new scenario for simple, selective, and efficient Cr (VI) detection with conjugated dye molecules.
Collapse
Affiliation(s)
- Mahnaz D Gholami
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Fatimah M Alzubaidi
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Qian Liu
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia; CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China; Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| | - Emad L Izake
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia; Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| | - Prashant Sonar
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia; Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| |
Collapse
|
2
|
Gu Y, Jia R, Yu Y, Li S, Zhu J, Feng X, Lu Y. Triphenylamine-Based Polythioacetal for Selective Sensing of Mercury(II) with High Specificity and Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10805-10812. [PMID: 38380891 DOI: 10.1021/acsami.3c19521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Utilizing the mercury (Hg2+)-triggered deprotection of thioacetals to aldehyde groups, we constructed a water-soluble triphenylamine (TPA)-based polythioacetal PTA-TPA with thioacetal groups in the backbones for efficient sensing of Hg2+ in aqueous solutions. PTA-TPA is conveniently prepared by polycondensation of 3, 6-dioxa-1,8-octanedithiol (DODT) with 4-(N,N-diphenylamino) benzaldehyde (TPA-CHO) using thiol-terminated mPEG2k-SH as a capping agent. The interaction of Hg2+ with PTA-TPA activates the aggregation-induced emission (AIE) process of TPA-CHO molecules, which makes the emission enhanced, and the emission color changes to sky blue, while other metal ions do not interfere with the sensing process. PTA-TPA can be used as a highly selective and ultrafast detection system for Hg2+ with a low detection limit (LOD) of 9.88 nM and a fast response of less than 1 min. In addition, the prepared test strips report the presence of Hg2+ with an LOD as low as 1 × 10-5 M. Intracellular imaging applications have demonstrated that PTA-TPA acts as a biocompatible fluorescent probe for efficient Hg2+ sensing in HeLa cells. Overall, the PTA-TPA fluorescence probes have the characteristics of easy synthesis, cost-effective, ultrafast detection speed, high selectivity, and high sensitivity, which can be used in practical applications.
Collapse
Affiliation(s)
- Yu Gu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ruixin Jia
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yue Yu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Siyong Li
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jianjian Zhu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yanbing Lu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
3
|
Kazemi S, Zabarjad Shiraz N, Samadizadeh M, Ezabadi A. Theoretical Study on Design and Feasibility of Novel Circumtrindene Derivatives to Remove Ionic Contaminants. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2185642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Sara Kazemi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Nader Zabarjad Shiraz
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Marjaneh Samadizadeh
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Ezabadi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Bhardwaj G, Kaur R, Kaur N, Singh N. Gold nanoparticles capped DHPMs for meliorate detection of antiretroviral drug: Azidothymidine. Talanta 2022; 249:123591. [DOI: 10.1016/j.talanta.2022.123591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/10/2021] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
|
5
|
Zhang Q, Zhang Z, Xu S, Da L, Lin D, Jiang C. Enzyme-free and rapid visual quantitative detection for pesticide residues utilizing portable smartphone integrated paper sensor. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129320. [PMID: 35739808 DOI: 10.1016/j.jhazmat.2022.129320] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/28/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Serious toxicity for organisms from pesticide glyphosate (Gly) residues to the ecosystem and human health has become a consensus. Rapid and selective detection of glyphosate, especially using a simple and portable instrument, is highly desired. In this work, we develop a novel enzyme-free rapid and visual ratiometric fluorescence sensor for selectively quantitative detecting glyphosate by integrating the designed blue carbon nanodots (CDs) and gold nanoclusters (Au NCs). The fluorescence of CDs can be quickly quenched via aggregation-caused quenching (ACQ) within 2 s after introducing glyphosate, resulting from the formation of CDs-Gly-CDs complex aggregation. While the Au NCs serve as the reference signal without any change, therefore leading to obvious and instant ratiometric fluorescence variation from blue to pink to orange. The broad linear range was obtained from 0 to 180 nM with a satisfactory detection limit of 4.19 nM. Furthermore, this approach was successfully applied to detect glyphosate in real samples and a portable smartphone platform integrated paper sensor was developed for in-site visual quantitative glyphosate detection, offering a promising strategy for the construction of enzyme-free trace hazard detection system.
Collapse
Affiliation(s)
- Qianru Zhang
- Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Department of Chemistry, University of Science and Technology of China, Hefei 230026, China; School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, Anhui 232038, China
| | - Zhong Zhang
- Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Shihao Xu
- Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Liangguo Da
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, Anhui 232038, China.
| | - Dan Lin
- Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Changlong Jiang
- Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| |
Collapse
|
6
|
Pang X, Bai H, Zhao H, Liu Y, Qin F, Han X, Fan W, Shi W. Biothiol-Functionalized Cuprous Oxide Sensor for Dual-Mode Sensitive Hg 2+ Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46980-46989. [PMID: 34581178 DOI: 10.1021/acsami.1c10260] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hg2+ ions are one of the highly poisonous heavy metal ions in the environment, so it is urgent to develop rapid and sensitive detection platforms for detecting Hg2+ ions. In this work, a novel electrochemical and photoelectrochemical dual-mode sensor (l-Cys-Cu2O) was successfully fabricated, and the sensor exhibits a satisfactory detection limit (0.2 and 0.01 nM) for the detection of Hg2+, which is far below the dangerous limit of the U.S. Environmental Protection Agency. The linear ranges of dual-mode Hg2+ detections were 0.33-3.3 and 0.17-1.33 μM, respectively. Moreover, the sensor shows desirable stability, selectivity, and reproducibility for detecting Hg2+ ions. For river water samples, the recoveries of 96.6-101.4% (electrochemical data) and 93.0-105.6% (photoelectrochemical data) were obtained, indicating that the sensor could be successfully applied in the determination of Hg2+ ions in environmental water. Therefore, the designed sensor has a potential in the trace-level detection of Hg2+ ions.
Collapse
Affiliation(s)
- Xuliang Pang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hongye Bai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Huaiquan Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Youchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Feiyang Qin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xiao Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weiqiang Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
7
|
Abhervé A, Mastropasqua Talamo M, Boi S, Poupard V, Gendron F, Guennic BL, Avarvari N, Pop F. Thiophene-Bipyridine Appended Diketopyrrolopyrrole Ligands and Platinum(II) Complexes. Inorg Chem 2021; 60:7351-7363. [PMID: 33913705 DOI: 10.1021/acs.inorgchem.1c00534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Straightforward palladium(II) catalyzed direct cross-coupling reaction between decyl, (S)-2-methyl-butyl, and dodecyl N-substituted diketopyrrolopyrrole thiophene (DPPT), including a 3-methoxy-thiophene derivative, and 6-bromo-2,2'-bipyridine afforded a series of mono- and bis-bipyridine substituted DPPT ligands 1-3. Complexation reactions with PtCl2(DMSO)2 provided ortho-metalated platinum(II) complexes 1-Pt and 2-Pt, together with the N^N^O complex 3d-Pt(N^N^O) resulted from the O-Me activation of the intermediary complex 3d-Pt(N^N). The ligand 1b and the mononuclear complexes 1a-Pt and 1b-Pt have been structurally characterized by single crystal X-ray structure, evidencing the establishment of numerous intermolecular π-π interactions in the solid state. Moreover, in the crystal structure of the model complex DMTB-Pt(N^N^O) (DMTB = 3,4-dimethoxy-(2,2'-bipyridine)) the chelating tridentate N^N^O mode is clearly evidenced. The chiral ligand 1b and its mononuclear complex 1b-Pt do not show any CD signal in solution, but they are CD active in the solid state with bisignate bands in the low energy region, opposite in sign between the ligand and the complex, suggesting helical supramolecular arrangement of the dpp chromophore in the solid state. Photophysical investigations demonstrate that all of the ligands are fluorescent with high quantum yields, while the emission is quenched for the complexes, except partially in 3d-Pt(N^N), very likely through an intersystem crossing mechanism promoted by the heavy metal. Density functional theory calculations support the differences observed between the absorption properties of the ligands, ortho- and non-ortho-metalated complexes. The highly fluorescent bipyridine ligands reported herein open the way toward multifunctional transition metal complexes and their use in organic electronics.
Collapse
Affiliation(s)
- Alexandre Abhervé
- MOLTECH-Anjou, UMR 6200, CNRS, Université Angers, 2 bd Lavoisier, 49045 Angers Cedex, France
| | | | - Sara Boi
- MOLTECH-Anjou, UMR 6200, CNRS, Université Angers, 2 bd Lavoisier, 49045 Angers Cedex, France
| | - Vincent Poupard
- MOLTECH-Anjou, UMR 6200, CNRS, Université Angers, 2 bd Lavoisier, 49045 Angers Cedex, France
| | - Frédéric Gendron
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Narcis Avarvari
- MOLTECH-Anjou, UMR 6200, CNRS, Université Angers, 2 bd Lavoisier, 49045 Angers Cedex, France
| | - Flavia Pop
- MOLTECH-Anjou, UMR 6200, CNRS, Université Angers, 2 bd Lavoisier, 49045 Angers Cedex, France
| |
Collapse
|
8
|
Loredo A, Wang L, Wang S, Xiao H. Single-Atom Switching as a General Approach to Designing Colorimetric and Fluorogenic Probes for Mercury Ions. DYES AND PIGMENTS : AN INTERNATIONAL JOURNAL 2021; 186:109014. [PMID: 33867600 PMCID: PMC8045779 DOI: 10.1016/j.dyepig.2020.109014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
By performing a single-atom replacement within common fluorophores, we have developed a facile and general strategy to prepare a broad-spectrum class of colorimetric and fluorogenic probes for the selective detection of mercury ions in aqueous environments. Thionation of carbonyl groups from existing fluorophore cores results in a great reduction of fluorescence quantum yield and loss of fluorescence emission. The resulting thiocaged probes are efficiently desulfurized to their oxo derivatives in the presence of mercury ions, leading to pronounced changes in chromogenic and fluorogenic signals. Because these probes exhibit high selectivity, excellent sensitivity, good membrane-permeability, and rapid responses towards mercury ions, they are suitable for visualization of mercury in both aqueous and intracellular environments.
Collapse
Affiliation(s)
- Axel Loredo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005
| | - Lushun Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005
| | - Shichao Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas, 77005
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005 *
| |
Collapse
|
9
|
Gao N, Zhou K, Feng K, Zhang W, Cui J, Wang P, Tian L, Jenkinson-Finch M, Li G. Facile fabrication of self-reporting micellar and vesicular structures based on an etching-ion exchange strategy of photonic composite spheres of poly(ionic liquid). NANOSCALE 2021; 13:1927-1937. [PMID: 33439197 DOI: 10.1039/d0nr07268k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Micellar and vesicular structures capable of sensing and reporting the chemical environment as well as facilely introducing user-defined functions make a vital contribution to constructing versatile compartmentalized systems. Herein, by combining poly(ionic liquid)-based photonic spheres and an etching-ion exchange strategy we fabricate micellar and vesicular photonic compartments that can not only mimic the structure and function of conventional micelles and vesicles, but also sense and report the chemical environment as well as introducing user-defined functions. Photonic composite spheres composed of a SiO2 template and poly(ionic liquid) are employed to selectively etch outer-shell SiO2 followed by ion exchange and removal of the residual SiO2 to afford micellar photonic compartments (MPCs). The MPCs can selectively absorb solvents from the oil/water mixtures together with sensing and reporting the adsorbed solvents by the self-reporting optical signal associated with the uniform porous structure of photonic spheres. Vesicular photonic compartments (VPCs) are fabricated via selective infiltration and polymerization of ionic liquids followed by etching of the SiO2 template. Subsequent ion exchange introduces desirable functions to the VPCs. Furthermore, we demonstrate that the thickness and the anisotropic functions of VPCs can be facilely modulated. Overall, we anticipate that the micellar and vesicular photonic compartments with self-reporting optical signals and user-defined functions could serve as novel platforms towards multifunctional compartmentalized systems.
Collapse
Affiliation(s)
- Ning Gao
- Department of Chemistry, Key Lab of Organic Optoelectronics and Molecular Engineering, the Ministry of Education, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nie H, Li QH, Zhang S, Wang CM, Lin WH, Deng K, Shu LJ, Zeng QD, Wan JH. Figure-eight arylene ethynylene macrocycles: facile synthesis and specific binding behavior toward Hg 2+. Org Chem Front 2021. [DOI: 10.1039/d1qo00812a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two figure-eight arylene ethynylene macrocycles (AEMs) were synthesized from non-helical precursors and the figure-eight shape was clearly imaged by STM.
Collapse
Affiliation(s)
- Hui Nie
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| | - Qian-Hui Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| | - Siqi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Chuan-Ming Wang
- Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai, 201208, P. R. China
| | - Wen-Hui Lin
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Li-Jin Shu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| | - Qing-Dao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Jun-Hua Wan
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| |
Collapse
|
11
|
Chen Y, Zhu Q, Zhou X, Wang R, Yang Z. Reusable, facile, and rapid aptasensor capable of online determination of trace mercury. ENVIRONMENT INTERNATIONAL 2021; 146:106181. [PMID: 33099062 DOI: 10.1016/j.envint.2020.106181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Herein, we reported a homemade waveguide-based evanescent wave aptasensor for the facile online monitoring of mercury pollution. The aptasensor exploited the high selectivity of hairpin structure-based thymidine-Hg2+-thymidine coordination chemistry (T-T mismatch) for Hg2+ recognition and the stably regenerable capability of DNA-functionalized waveguide surfaces. The presence of Hg2+ caused the T-T mismatch of Cy5.5-labeled T-rich single-stranded DNA sequences. The formed hairpin structures blocked the further hybridization of T-rich single-stranded DNA sequences with the complementary DNA strands that are modified on the waveguide surface; this phenomenon was accompanied by the decrease in the fluorescent signals excited by the evanescent wave. The limit of detection in real water samples was determined to be 0.2 μg/L, which was comparable with that of 0.4 μg/L in an ultrapure water under controlled conditions. And the linear range was observed from 1.4 µg/L to 240.7 µg/L. The negligible environmental matrix effect on the performance ensured the reliability of the proposed aptasensor. Moreover, the cross reactivity of this method toward other investigated metal ions was negligible. Through the delicate surface modification with DNA molecules covalently, the chip was reused at least 31 times with a relative standard deviation (RSD) of less than 19%. A Hg2+ pollution accident was successfully detected within 30 min, shedding new light in pollution monitoring, environment restoration, and emergency treatment.
Collapse
Affiliation(s)
- Yangyang Chen
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China; National Key Laboratory of Science & Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Qian Zhu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Advanced Technology and Equipment of Water Environment Pollution Monitoring, Changsha 410205, China.
| | - Ruoyu Wang
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenchuan Yang
- National Key Laboratory of Science & Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
A review on nanostructure-based mercury (II) detection and monitoring focusing on aptamer and oligonucleotide biosensors. Talanta 2020; 220:121437. [PMID: 32928439 DOI: 10.1016/j.talanta.2020.121437] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/11/2020] [Accepted: 07/19/2020] [Indexed: 02/08/2023]
Abstract
Heavy metal ion pollution is a severe problem in environmental protection and especially in human health due to their bioaccumulation in organisms. Mercury (II) (Hg2+), even at low concentrations, can lead to DNA damage and give permanent harm to the central nervous system by easily passing through biological membranes. Therefore, sensitive detection and monitoring of Hg2+ is of particular interest with significant specificity. In this review, aptamer-based strategies in combination with nanostructures as well as several other strategies to solve addressed problems in sensor development for Hg2+ are discussed in detail. In particular, the analytical performance of different aptamer and oligonucleotide-based strategies using different signal improvement approaches based on nanoparticles were compared within each strategy and in between. Although quite a number of the suggested methodologies analyzed in this review fulfills the standard requirements, further development is still needed on real sample analysis and analytical performance parameters.
Collapse
|
13
|
Panda S, Paital B, Mohapatra S. CQD@γ-Fe2O3 multifunctional nanoprobe for selective fluorescence sensing, detoxification and removal of Hg(II). Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Yang L, Huang Y, Peng Y, Liu F, Zhang Q, He H, Wang J, Jiang L, Zhou Y. Pyridine-Diketopyrrolopyrrole-Based Novel Metal-Free Visible-Light Organophotoredox Catalyst for Atom-Transfer Radical Polymerization. J Phys Chem A 2020; 124:1068-1075. [PMID: 31958227 DOI: 10.1021/acs.jpca.9b10404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the field of electronics, organocatalysts are in high demand for use in the synthesis of clean polymers using solar radiation rather than potentially contaminating metals. Combining theoretical design, simulation, and experiments, this work presents a novel, pyridine-diketopyrrolopyrrole (P-DPP)-based metal-free visible-light organophotoredox catalyst (P-DPP). It is effective in the photocontrolled organocatalytic atom-transfer radical polymerization (O-ATRP) of methyl methacrylate (MMA) and styrene. The use of this catalyst and white light-emitting diode (LED) irradiation produces polymers with a cross-linked feature. In O-ATRP, the P-DPP catalyst has an oxidative quenching catalytic mechanism with an excited-state reductive potential of -1.8 V, fluorescence lifetime of 7.5 ns, and radical-cation oxidative potential of 0.45 V. Through molecular simulation, we found that the adjacent pyridine group is key to reducing the alkyl halide initiator and generating radicals, while the diketopyrrolopyrrole core stabilizes the triplet state of the catalyst through intramolecular charge transfer. The findings related to this novel photoredox catalyst will aid in the search for much more effective organophotoredox catalysts for use in controlled radical polymerization. They will also be of value in the fields of polymer chemistry and physics and in various applications.
Collapse
Affiliation(s)
- Long Yang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , Sichuan , China
| | - Yujie Huang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , Sichuan , China
| | - Yuting Peng
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , Sichuan , China
| | - Fei Liu
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University) , Polymer Research Institute of Sichuan University , Chengdu 610065 , China
| | - Qingchun Zhang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , Sichuan , China
| | - Huichao He
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , Sichuan , China
| | - Jun Wang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering , Southwest University of Science and Technology , Mianyang 621010 , Sichuan , China
| | - Long Jiang
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University) , Polymer Research Institute of Sichuan University , Chengdu 610065 , China
| | - Yong Zhou
- School of Physics , Nanjing University , Nanjing 211102 , Jiangsu , China
| |
Collapse
|
15
|
A Sensitive Isoniazid Capped Silver Nanoparticles - Selective Colorimetric Fluorescent Sensor for Hg 2+ Ions in Aqueous Medium. J Fluoresc 2020; 30:91-101. [PMID: 31897912 DOI: 10.1007/s10895-019-02473-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
Novel isonicotinic acid hydrazide functionalized silver nanoparticles (INH-AgNPs) were synthesized by wet chemical method and used for the detection of Hg2+ ions in aqueous medium. The INH-AgNPs exhibit good absorbance and emission peaks by sensing Hg2+ ions with visible color changes. The detection of Hg2+ ions was confirmed by FT-IR, EDAX spectra and by the changing morphology of INH-AgNPs, and after addition of Hg2+ was confirmed by SEM and TEM imaging studies. Based on the emission intensity the probe INH-AgNPs exhibit a lowest detection limit (LOD) of Hg2+ to 0.18 nM. The association constant (Ka) of INH-AgNPs + Hg2+ ions is calculated using the Bensei-Hildebrand equation. Also, the probe is successfully utilized for the detection of Hg2+ ions in real water samples obtained from different fields, which showed good results.
Collapse
|
16
|
Engineered cells for selective detection and remediation of Hg2+ based on transcription factor MerR regulated cell surface displayed systems. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Wang D, Zheng Y, Fan X, Xu L, Pang T, Liu T, Liang L, Huang S, Xiao Q. Visual detection of Hg 2+ by manipulation of pyocyanin biosynthesis through the Hg 2+-dependent transcriptional activator MerR in microbial cells. J Biosci Bioeng 2019; 129:223-228. [PMID: 31492609 DOI: 10.1016/j.jbiosc.2019.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 01/16/2023]
Abstract
Mercury pollution has always been a huge threat to human health due to its significant toxicity. Thus, it's the continuing goal to obtain new mercury detection techniques that are cost-effective, operational stable, performance efficient, and applicable to the environmental and biological milieus. In this research, the soluble pigment pyocyanin with anti-bacterial and anti-fungal activities, the biosynthesis pathway of which was engineered under the regulation of Hg2+-dependent transcriptional activator MerR, was firstly used as the visual detection signal in the whole-cell biosensor. The engineered biosensor displayed optical sensing window and a good linearity for Hg2+ in the range of 25-1000 nM, and the detection limit could reach as low as 10 nM. It permitted on-site detection of bioavailable Hg2+ with extraordinary selectivity and could resist the interferences of extra metal ions. What's more, the developed biosensor performed function well in a wide pH range (pH 4-10) as well as the environmental water. By fully imitating and utilizing the biosystems from nature, the engineered colorimetric biosensor has great economic and performance advantages over most chemosensors as well as whole-cell biosensors in the practical application of detecting Hg2+ in the contaminated aquatic systems.
Collapse
Affiliation(s)
- Dan Wang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China.
| | - Yanan Zheng
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Xiaosu Fan
- Experimental Center of College of Agriculture, Guangxi University, Nanning 530005, PR China
| | - Lina Xu
- Institute of Chemical Industry of Forestry Products, CAF, Nanjing 210042, PR China
| | - Ting Pang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Ting Liu
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Legui Liang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Shan Huang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Qi Xiao
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| |
Collapse
|
18
|
Han L, Liu SG, Dong XZ, Liang JY, Li NB, Luo HQ. Construction of an effective ratiometric fluorescent sensing platform for specific and visual detection of mercury ions based on target-triggered the inhibition on inner filter effect. JOURNAL OF HAZARDOUS MATERIALS 2019; 376:170-177. [PMID: 31128396 DOI: 10.1016/j.jhazmat.2019.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/03/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Sensitive and selective determination of mercury ion (Hg2+) is critical for human health and environmental monitoring. Herein we construct an effective ratiometric fluorescent sensing platform by combining green fluorescent polymer carbon dots (PCDs) and red fluorescent tetraphenylporphyrin tetrasulfonic acid hydrate (TPPS) for specific and visual detection of Hg2+. The fluorescence of PCDs can be quenched by TPPS through inner filter effect (IEF). In the presence of both Mn2+ and Hg2+, however, Hg2+ can expedite the complexation of TPPS and Mn2+, which causes the decrease in both fluorescence and absorption of TPPS, accompanied by the fluorescence recovery of PCDs due to the subdued IFE between TPPS and PCDs. Based on the change of fluorescence signal, a ratiometric fluorescent sensing platform is constructed for specific and visual detection of Hg2+. The proposed approach presents a fine linear range for Hg2+ over the range of 10-200 nM with a detection limit of 0.038 nM. Moreover, an easily distinguishable fluorescence color change from pink to green with the increase of Hg2+ concentration can be observed by the naked eye under a UV lamp. Such a simple and effective method shows great potential for visual sensing of Hg2+ in on-site and resource-limited settings.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shi Gang Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xue Zhen Dong
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jia Yu Liang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Nian Bing Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Hong Qun Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
19
|
Wang A, Fan R, Zhou Y, Zheng X, Zhou X, Hao S, Yang Y. Multiple-color aggregation-induced emission-based Schiff base sensors for ultrafast dual recognition of Hg2+ and pH integrating Boolean logic operations. J COORD CHEM 2019. [DOI: 10.1080/00958972.2018.1546851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ani Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Ruiqing Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Yuze Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Xubin Zheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Xuesong Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Sue Hao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| |
Collapse
|
20
|
Ahmed M, Faisal M, Ihsan A, Naseer MM. Fluorescent organic nanoparticles (FONs) as convenient probes for metal ion detection in aqueous medium. Analyst 2019; 144:2480-2497. [DOI: 10.1039/c8an01801d] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent organic nanoparticle (FON)-based chemosensors are emerging as a valuable tool for the fast and accurate detection of metal ions in aqueous media. In this review, we highlight the recent developments in this field.
Collapse
Affiliation(s)
- Mukhtiar Ahmed
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Muhammad Faisal
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Ayesha Ihsan
- Nanobiotechnology group
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad
- Pakistan
| | | |
Collapse
|
21
|
He L, Tao H, Koo S, Chen G, Sharma A, Chen Y, Lim IT, Cao QY, Kim JS. Multifunctional Fluorescent Nanoprobe for Sequential Detections of Hg2+ Ions and Biothiols in Live Cells. ACS APPLIED BIO MATERIALS 2018; 1:871-878. [DOI: 10.1021/acsabm.8b00300] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | - Seyoung Koo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | | | - Amit Sharma
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | | | - In-Taek Lim
- Center for Teaching and Learning, Chunnam Techno University, Gokseong 57500, Korea
| | | | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
22
|
Nasaruddin RR, Chen T, Yan N, Xie J. Roles of thiolate ligands in the synthesis, properties and catalytic application of gold nanoclusters. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.016] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Gui S, Huang Y, Hu F, Jin Y, Zhang G, Zhang D, Zhao R. Bioinspired Peptide for Imaging Hg2+ Distribution in Living Cells and Zebrafish Based on Coordination-Mediated Supramolecular Assembling. Anal Chem 2018; 90:9708-9715. [DOI: 10.1021/acs.analchem.8b00059] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shilang Gui
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Hu
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yulong Jin
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanxin Zhang
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deqing Zhang
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratories of Analytical Chemistry for Living Biosystems and Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
24
|
A hydroxyquinoline-base nanoprobe for fluorescent sensing of Hg 2+ ion in aqueous solution. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.01.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Hai J, Chen F, Su J, Xu F, Wang B. Porous Wood Members-Based Amplified Colorimetric Sensor for Hg2+ Detection through Hg2+-Triggered Methylene Blue Reduction Reactions. Anal Chem 2018. [DOI: 10.1021/acs.analchem.8b00710] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jun Hai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou 730000, P. R. China
| | - Fengjuan Chen
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou 730000, P. R. China
| | - Junxia Su
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou 730000, P. R. China
| | - Fu Xu
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou 730000, P. R. China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou 730000, P. R. China
| |
Collapse
|
26
|
Wang Y, Yang L, Liu B, Yu S, Jiang C. A colorimetric paper sensor for visual detection of mercury ions constructed with dual-emission carbon dots. NEW J CHEM 2018. [DOI: 10.1039/c8nj03683g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A ratiometric fluorescence nanosensor has been developed by mixing blue fluorescent carbon dots and red fluorescent carbon dots, where the blue fluorescence can be selectively quenched by Hg2+, while the red fluorescence is an internal reference.
Collapse
Affiliation(s)
- Yifan Wang
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- China
| | - Liang Yang
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
| | - Bianhua Liu
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
| | - Shaoming Yu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- China
| | - Changlong Jiang
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
| |
Collapse
|
27
|
Pan S, Liu W, Tang J, Yang Y, Feng H, Qian Z, Zhou J. Hydrophobicity-guided self-assembled particles of silver nanoclusters with aggregation-induced emission and their use in sensing and bioimaging. J Mater Chem B 2018; 6:3927-3933. [DOI: 10.1039/c8tb00463c] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrophobicity-guided self-assembled particles of silver nanoclusters with aggregation-induced emission were fabricated and used in sensing and bioimaging.
Collapse
Affiliation(s)
- Saifei Pan
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- People's Republic of China
| | - Weidong Liu
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- People's Republic of China
| | - Jiantao Tang
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- People's Republic of China
| | - Yingjie Yang
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- People's Republic of China
| | - Hui Feng
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- People's Republic of China
| | - Zhaosheng Qian
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- People's Republic of China
| | - Jin Zhou
- College of Pharmacy
- Weifang Medical University
- Weifang 261053
- People's Republic of China
| |
Collapse
|
28
|
Ma DL, Wu C, Tang W, Gupta AR, Lee FW, Li G, Leung CH. Recent advances in iridium(iii) complex-assisted nanomaterials for biological applications. J Mater Chem B 2018; 6:537-544. [DOI: 10.1039/c7tb02859h] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phosphorescent iridium(iii) complexes have gained increasing attention in biological applications owing to their excellent photophysical properties and efficient transportation into live cells.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Chun Wu
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Wei Tang
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | | | - Fu-Wa Lee
- College of International Education
- School of Continuing Education
- Hong Kong Baptist University
- China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| |
Collapse
|
29
|
Qing Z, Zhu L, Li X, Yang S, Zou Z, Guo J, Cao Z, Yang R. A Target-Lighted dsDNA-Indicator for High-Performance Monitoring of Mercury Pollution and Its Antagonists Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11884-11890. [PMID: 28945077 DOI: 10.1021/acs.est.7b02858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As well-known, the excessive discharge of heavy-metal mercury not only destroys the ecological environment, bust also leads to severe damage of human health after ingestion via drinking and bioaccumulation of food chains, and mercury ion (Hg2+) is designated as one of most prevalent toxic metal ions in drinking water. Thus, the high-performance monitoring of mercury pollution is necessary. Functional nucleic acids have been widely used as recognition probes in biochemical sensing. In this work, a carbazole derivative, ethyl-4-[3,6-bis(1-methyl-4-vinylpyridium iodine)-9H-carbazol -9-yl)] butanoate (EBCB), has been synthesized and found as a target-lighted DNA fluorescent indicator. As a proof-of-concept, Hg2+ detection was carried out based on EBCB and Hg2+-mediated conformation transformation of a designed DNA probe. By comparison with conventional nucleic acid indicators, EBCB held excellent advantages, such as minimal background interference and maximal sensitivity. Outstanding detection capabilities were displayed, especially including simple operation (add-and-read manner), ultrarapidity (30 s), and low detection limit (0.82 nM). Furthermore, based on these advantages, the potential for high-performance screening of mercury antagonists was also demonstrated by the fluorescence change of EBCB. Therefore, we believe that this work is meaningful in pollution monitoring, environment restoration and emergency treatment, and may pave a way to apply EBCB as an ideal signal transducer for development of high-performance sensing strategies.
Collapse
Affiliation(s)
- Zhihe Qing
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China
| | - Lixuan Zhu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
| | - Xiaoxuan Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
| | - Sheng Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China
| | - Zhen Zou
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China
| | - Jingru Guo
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China
| |
Collapse
|
30
|
Zhi L, Zeng X, Wang H, Hai J, Yang X, Wang B, Zhu Y. Photocatalysis-Based Nanoprobes Using Noble Metal–Semiconductor Heterostructure for Visible Light-Driven in Vivo Detection of Mercury. Anal Chem 2017; 89:7649-7658. [DOI: 10.1021/acs.analchem.7b01602] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lihua Zhi
- State
Key Laboratory of Applied Organic Chemistry and Key Laboratory of
Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China
- College
of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Xiaofan Zeng
- College
of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Hao Wang
- State
Key Laboratory of Applied Organic Chemistry and Key Laboratory of
Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China
| | - Jun Hai
- State
Key Laboratory of Applied Organic Chemistry and Key Laboratory of
Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China
| | - Xiangliang Yang
- College
of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Baodui Wang
- State
Key Laboratory of Applied Organic Chemistry and Key Laboratory of
Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China
| | - Yanhong Zhu
- College
of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| |
Collapse
|