1
|
Zhang Y, Li J, Zhou Y, Zhang X, Liu X. Artificial Intelligence-Based Microfluidic Platform for Detecting Contaminants in Water: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:4350. [PMID: 39001129 PMCID: PMC11243966 DOI: 10.3390/s24134350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Water pollution greatly impacts humans and ecosystems, so a series of policies have been enacted to control it. The first step in performing pollution control is to detect contaminants in the water. Various methods have been proposed for water quality testing, such as spectroscopy, chromatography, and electrochemical techniques. However, traditional testing methods require the utilization of laboratory equipment, which is large and not suitable for real-time testing in the field. Microfluidic devices can overcome the limitations of traditional testing instruments and have become an efficient and convenient tool for water quality analysis. At the same time, artificial intelligence is an ideal means of recognizing, classifying, and predicting data obtained from microfluidic systems. Microfluidic devices based on artificial intelligence and machine learning are being developed with great significance for the next generation of water quality monitoring systems. This review begins with a brief introduction to the algorithms involved in artificial intelligence and the materials used in the fabrication and detection techniques of microfluidic platforms. Then, the latest research development of combining the two for pollutant detection in water bodies, including heavy metals, pesticides, micro- and nanoplastics, and microalgae, is mainly introduced. Finally, the challenges encountered and the future directions of detection methods based on industrial intelligence and microfluidic chips are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China; (Y.Z.); (J.L.); (Y.Z.); (X.Z.)
| |
Collapse
|
2
|
Wong TF, So PK, Yao ZP. Advances in rapid detection of SARS-CoV-2 by mass spectrometry. Trends Analyt Chem 2022; 157:116759. [PMID: 36035092 PMCID: PMC9391230 DOI: 10.1016/j.trac.2022.116759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 12/25/2022]
Abstract
COVID-19 has already been lasting for more than two years and it has been severely affecting the whole world. Still, detection of SARS-CoV-2 remains the frontline approach to combat the pandemic, and the reverse transcription polymerase chain reaction (RT-PCR)-based method is the well recognized detection method for the enormous analytical demands. However, the RT-PCR method typically takes a relatively long time, and can produce false positive and false negative results. Mass spectrometry (MS) is a very commonly used technique with extraordinary sensitivity, specificity and speed, and can produce qualitative and quantitative information of various analytes, which cannot be achieved by RT-PCR. Since the pandemic outbreak, various mass spectrometric approaches have been developed for rapid detection of SARS-CoV-2, including the LC-MS/MS approaches that could allow analysis of several hundred clinical samples per day with one MS system, MALDI-MS approaches that could directly analyze clinical samples for the detection, and efforts for the on-site detection with portable devices. In this review, these mass spectrometric approaches were summarized, and their pros and cons as well as further development were also discussed.
Collapse
Affiliation(s)
- Tsz-Fung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Research Institute for Future Food and Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Pui-Kin So
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Research Institute for Future Food and Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Research Institute for Future Food and Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
3
|
Grossegesse M, Hartkopf F, Nitsche A, Schaade L, Doellinger J, Muth T. Perspective on Proteomics for Virus Detection in Clinical Samples. J Proteome Res 2020; 19:4380-4388. [PMID: 33090795 PMCID: PMC7640980 DOI: 10.1021/acs.jproteome.0c00674] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 12/29/2022]
Abstract
One of the most widely used methods to detect an acute viral infection in clinical specimens is diagnostic real-time polymerase chain reaction. However, because of the COVID-19 pandemic, mass-spectrometry-based proteomics is currently being discussed as a potential diagnostic method for viral infections. Because proteomics is not yet applied in routine virus diagnostics, here we discuss its potential to detect viral infections. Apart from theoretical considerations, the current status and technical limitations are considered. Finally, the challenges that have to be overcome to establish proteomics in routine virus diagnostics are highlighted.
Collapse
Affiliation(s)
- Marica Grossegesse
- Centre
for Biological Threats and Special Pathogens, Highly Pathogenic Viruses
(ZBS 1), Robert Koch Institute, Seestr. 10, Berlin 13353, Germany
| | - Felix Hartkopf
- Microbial
Genomics (NG 1), Robert Koch Institute, Berlin 13353, Germany
- Section
eScience (S.3), Federal Institute for Materials
Research and Testing, Unter den Eichen 87, Berlin 12205, Germany
| | - Andreas Nitsche
- Centre
for Biological Threats and Special Pathogens, Highly Pathogenic Viruses
(ZBS 1), Robert Koch Institute, Seestr. 10, Berlin 13353, Germany
| | - Lars Schaade
- Centre
for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin 13353, Germany
| | - Joerg Doellinger
- Centre
for Biological Threats and Special Pathogens, Proteomics and Spectroscopy
(ZBS 6), Robert Koch Institute, Berlin 13353, Germany
| | - Thilo Muth
- Section
eScience (S.3), Federal Institute for Materials
Research and Testing, Unter den Eichen 87, Berlin 12205, Germany
| |
Collapse
|
4
|
Milewska A, Ner‐Kluza J, Dabrowska A, Bodzon‐Kulakowska A, Pyrc K, Suder P. MASS SPECTROMETRY IN VIROLOGICAL SCIENCES. MASS SPECTROMETRY REVIEWS 2020; 39:499-522. [PMID: 31876329 PMCID: PMC7228374 DOI: 10.1002/mas.21617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/15/2019] [Indexed: 05/24/2023]
Abstract
Virology, as a branch of the life sciences, discovered mass spectrometry (MS) to be the pivotal tool around two decades ago. The technique unveiled the complex network of interactions between the living world of pro- and eukaryotes and viruses, which delivered "a piece of bad news wrapped in protein" as defined by Peter Medawar, Nobel Prize Laureate, in 1960. However, MS is constantly evolving, and novel approaches allow for a better understanding of interactions in this micro- and nanoworld. Currently, we can investigate the interplay between the virus and the cell by analyzing proteomes, interactomes, virus-cell interactions, and search for the compounds that build viral structures. In addition, by using MS, it is possible to look at the cell from the broader perspective and determine the role of viral infection on the scale of the organism, for example, monitoring the crosstalk between infected tissues and the immune system. In such a way, MS became one of the major tools for the modern virology, allowing us to see the infection in the context of the whole cell or the organism. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Aleksandra Milewska
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
| | - Joanna Ner‐Kluza
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| | - Agnieszka Dabrowska
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
- Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityGronostajowa 730‐387KrakowPoland
| | - Anna Bodzon‐Kulakowska
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| | - Krzysztof Pyrc
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
| | - Piotr Suder
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| |
Collapse
|
5
|
Sheele JM, Ferrari B, Goddard J, Schlatzer D, Lundberg KC, Guinto K, Embers ME, Young AB, Ridge GE, Damiani G, McCormick TS. Human immunoglobulin G responses to Cimex lectularius L. saliva. Parasite Immunol 2020; 42:e12764. [PMID: 32516446 DOI: 10.1111/pim.12764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
AIMS To investigate the immunoglobulin (Ig) G response after being fed upon by Cimex lectularius L. METHODS AND RESULTS Participants were fed upon by three male C lectularius insects weekly for a month. Blood was obtained before the feeding and at the last feeding, which was used for immunoblots against bed bug salivary gland extract, with antihuman Immunoglobulin G (IgG) secondary antibodies. No consistent IgG changes developed in 11 humans serially fed upon by C lectularius. Two participants had new IgG responses to proteins at molecular weights of approximately 12-13 kDa, and one had an IgG response to a protein at approximately 40 kDa. At the last study visit, more intense IgG bands to proteins at molecular weights of 12-13 kDa had developed in 55% of participants (6/11) and at molecular weights of ≈30, ≈40 and ≈70 kDa in 45% (5/11) compared with the first study visit. Nitrophorin and apyrase were the most common C lectularius proteins identified with liquid chromatography-tandem mass spectrometry in both crushed bed bug salivary gland extract and post-bed bug feeding extract. CONCLUSIONS Human participants did not have consistent IgG responses to crushed C lectularius salivary gland extract.
Collapse
Affiliation(s)
- Johnathan M Sheele
- Department of Emergency Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Brian Ferrari
- Immune Function Core Facility, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jerome Goddard
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, Mississippi, USA
| | - Danie Schlatzer
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kathleen C Lundberg
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Monica E Embers
- Division of Immunology, Tulane University National Primate Research Center, Covington, Louisiana, USA
| | - Andrew B Young
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gale E Ridge
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Giovanni Damiani
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Nouri R, Jiang Y, Lian XL, Guan W. Sequence-Specific Recognition of HIV-1 DNA with Solid-State CRISPR-Cas12a-Assisted Nanopores (SCAN). ACS Sens 2020; 5:1273-1280. [PMID: 32370494 DOI: 10.1021/acssensors.0c00497] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nucleic acid detection methods are crucial for many fields such as pathogen detection and genotyping. Solid-state nanopore sensors represent a promising platform for nucleic acid detection due to its unique single molecule sensitivity and label-free electronic sensing. Here, we demonstrated the use of the glass nanopore for highly sensitive quantification of single-stranded circular DNAs (reporters), which could be degraded under the trans-cleavage activity of the target-specific CRISPR-Cas12a. We developed and optimized the Cas12a assay for HIV-1 analysis. We validated the concept of the solid-state CRISPR-Cas12a-assisted nanopores (SCAN) to specifically detect the HIV-1 DNAs. We showed that the glass nanopore sensor is effective in monitoring the cleavage activity of the target DNA-activated Cas12a. We developed a model to predict the total experimental time needed for making a statistically confident positive/negative call in a qualitative test. The SCAN concept combines the much-needed specificity and sensitivity into a single platform, and we anticipate that the SCAN would provide a compact, rapid, and low-cost method for nucleic acid detection at the point of care.
Collapse
Affiliation(s)
- Reza Nouri
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yuqian Jiang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
7
|
O'Connor CM, Leonard D, Wiredja D, Avelar RA, Wang Z, Schlatzer D, Bryson B, Tokala E, Taylor SE, Upadhyay A, Sangodkar J, Gingras AC, Westermarck J, Xu W, DiFeo A, Brautigan DL, Haider S, Jackson M, Narla G. Inactivation of PP2A by a recurrent mutation drives resistance to MEK inhibitors. Oncogene 2020; 39:703-717. [PMID: 31541192 PMCID: PMC6980487 DOI: 10.1038/s41388-019-1012-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/26/2019] [Accepted: 08/09/2019] [Indexed: 12/27/2022]
Abstract
The serine/threonine Protein Phosphatase 2A (PP2A) functions as a tumor suppressor by negatively regulating multiple oncogenic signaling pathways. The canonical PP2A holoenzyme comprises a scaffolding subunit (PP2A Aα/β), which serves as the platform for binding of both the catalytic C subunit and one regulatory B subunit. Somatic heterozygous missense mutations in PPP2R1A, the gene encoding the PP2A Aα scaffolding subunit, have been identified across multiple cancer types, but the effects of the most commonly mutated residue, Arg-183, on PP2A function have yet to be fully elucidated. In this study, we used a series of cellular and in vivo models and discovered that the most frequent Aα R183W mutation formed alternative holoenzymes by binding of different PP2A regulatory subunits compared with wild-type Aα, suggesting a rededication of PP2A functions. Unlike wild-type Aα, which suppressed tumorigenesis, the R183W mutant failed to suppress tumor growth in vivo through activation of the MAPK pathway in RAS-mutant transformed cells. Furthermore, cells expressing R183W were less sensitive to MEK inhibitors. Taken together, our results demonstrate that the R183W mutation in PP2A Aα scaffold abrogates the tumor suppressive actions of PP2A, thereby potentiating oncogenic signaling and reducing drug sensitivity of RAS-mutant cells.
Collapse
Affiliation(s)
- Caitlin M O'Connor
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Daniel Leonard
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Danica Wiredja
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA
| | - Rita A Avelar
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Zhizhi Wang
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Daniela Schlatzer
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin Bryson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Eesha Tokala
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah E Taylor
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Aditya Upadhyay
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jaya Sangodkar
- Department of Internal Medicine: Genetic Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Analisa DiFeo
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - David L Brautigan
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London, London, UK
| | - Mark Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Goutham Narla
- Department of Internal Medicine: Genetic Medicine, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Cook KC, Cristea IM. Location is everything: protein translocations as a viral infection strategy. Curr Opin Chem Biol 2019; 48:34-43. [PMID: 30339987 PMCID: PMC6382524 DOI: 10.1016/j.cbpa.2018.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/16/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022]
Abstract
Protein movement between different subcellular compartments is an essential aspect of biological processes, including transcriptional and metabolic regulation, and immune and stress responses. As obligate intracellular parasites, viruses are master manipulators of cellular composition and organization. Accumulating evidences have highlighted the importance of infection-induced protein translocations between organelles. Both directional and temporal, these translocation events facilitate localization-dependent protein interactions and changes in protein functions that contribute to either host defense or virus replication. The discovery and characterization of protein movement is technically challenging, given the necessity for sensitive detection and subcellular resolution. Here, we discuss infection-induced translocations of host and viral proteins, and the value of integrating quantitative proteomics with advanced microscopy for understanding the biology of human virus infections.
Collapse
Affiliation(s)
- Katelyn C Cook
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
9
|
Tsang HF, Chan LWC, Tong JCH, Wong HT, Lai CKC, Au TCC, Chan AKC, Ng LPW, Cho WCS, Wong SCC. Implementation and new insights in molecular diagnostics for HIV infection. Expert Rev Mol Diagn 2018; 18:433-441. [PMID: 29641941 DOI: 10.1080/14737159.2018.1464393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Acquired immunodeficiency syndrome (AIDS) is a kind of acquired disease that breaks down the immune system. Human immunodeficiency virus (HIV) is the causative agent of AIDS. By the end of 2016, there were 36.7 million people living with HIV worldwide. Early diagnosis can alert infected individuals to risk behaviors in order to control HIV transmission. Infected individuals are also benefited from proper treatment and management upon early diagnosis. Thanks to the public awareness of the disease, the annual increase of new HIV infections has been slowly declining over the past decades. The advent of molecular diagnostics has allowed early detection and better management of HIV infected patients. Areas covered: In this review, the authors summarized and discussed the current and future technologies in molecular diagnosis as well as the biomarkers developed for HIV infection. Expert Commentary: A simple and rapid detection of viral load is important for patients and doctors to monitor HIV progression and antiretroviral treatment efficiency. In the near future, it is expected that new technologies such as digital PCR and CRISPR-based technology will play more important role in HIV detection and patient management.
Collapse
Affiliation(s)
- Hin-Fung Tsang
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , The Hong Kong Polytechnic University , Kowloon , Hong Kong Special Administrative Region , China
| | - Lawrence Wing-Chi Chan
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , The Hong Kong Polytechnic University , Kowloon , Hong Kong Special Administrative Region , China
| | - Jennifer Chiu-Hung Tong
- b School of Medical and Health Sciences , Tung Wah College , Kowloon , Hong Kong Special Administrative Region , China
| | - Heong-Ting Wong
- c Department of Pathology , Kiang Wu Hospital , Macau Special Administrative Region , China
| | - Christopher Koon-Chi Lai
- d Department of Pathology , Queen Elizabeth Hospital , Kowloon , Hong Kong Special Administrative Region , China
| | - Thomas Chi-Chuen Au
- e State Key Laboratory in Oncology in South China, Sir Y K Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Prince of Wales Hospital, Shatin , The Chinese University of Hong Kong , Hong Kong Special Administrative Region , China
| | - Amanda Kit-Ching Chan
- d Department of Pathology , Queen Elizabeth Hospital , Kowloon , Hong Kong Special Administrative Region , China
| | - Lawrence Po-Wah Ng
- d Department of Pathology , Queen Elizabeth Hospital , Kowloon , Hong Kong Special Administrative Region , China
| | - William Chi-Shing Cho
- f Department of Clinical Oncology , Queen Elizabeth Hospital , Kowloon , Hong Kong Special Administrative Region , China
| | - Sze-Chuen Cesar Wong
- a Department of Health Technology and Informatics, Faculty of Health and Social Sciences , The Hong Kong Polytechnic University , Kowloon , Hong Kong Special Administrative Region , China.,d Department of Pathology , Queen Elizabeth Hospital , Kowloon , Hong Kong Special Administrative Region , China.,e State Key Laboratory in Oncology in South China, Sir Y K Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Prince of Wales Hospital, Shatin , The Chinese University of Hong Kong , Hong Kong Special Administrative Region , China
| |
Collapse
|