1
|
Abstract
The translation of messenger RNA (mRNA) into proteins represents the culmination of gene expression. Recent technological advances have revolutionized our ability to investigate this process with unprecedented precision, enabling the study of translation at the single-molecule level in real time within live cells. In this review, we provide an overview of single-mRNA translation reporters. We focus on the core technology, as well as the rapid development of complementary probes, tags, and accessories that enable the visualization and quantification of a wide array of translation dynamics. We then highlight notable studies that have utilized these reporters in model systems to address key biological questions. The high spatiotemporal resolution of these studies is shedding light on previously unseen phenomena, uncovering the full heterogeneity and complexity of translational regulation.
Collapse
Affiliation(s)
- Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
| | - O'Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
- Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
2
|
Cui Z, Ayva CE, Liew YJ, Guo Z, Mutschler R, Dreier B, Fiorito MM, Walden P, Howard CB, Ely F, Plückthun A, Pretorius C, Ungerer JPJ, Buckle AM, Alexandrov K. mRNA Display Pipeline for Protein Biosensor Construction. ACS Sens 2024; 9:2846-2857. [PMID: 38807313 PMCID: PMC11218749 DOI: 10.1021/acssensors.3c02471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Despite the significant potential of protein biosensors, their construction remains a trial-and-error process. The most obvious approach for addressing this is to utilize modular biosensor architectures where specificity-conferring modalities can be readily generated to recognize new targets. Toward this goal, we established a workflow that uses mRNA display-based selection of hyper-stable monobody domains for the target of choice or ribosome display to select equally stable DARPins. These binders were integrated into a two-component allosteric biosensor architecture based on a calmodulin-reporter chimera. This workflow was tested by developing biosensors for liver toxicity markers such as cytosolic aspartate aminotransferase, mitochondrial aspartate aminotransferase, and alanine aminotransferase 1. We demonstrate that our pipeline consistently produced >103 unique binders for each target within a week. Our analysis revealed that the affinity of the binders for their targets was not a direct predictor of the binder's performance in a biosensor context. The interactions between the binding domains and the reporter module affect the biosensor activity and the dynamic range. We conclude that following binding domain selection, the multiplexed biosensor assembly and prototyping appear to be the most promising approach for identifying biosensors with the desired properties.
Collapse
Affiliation(s)
- Zhenling Cui
- ARC
Centre of Excellence in Synthetic Biology, Brisbane, Queensland 4001, Australia
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Cagla Ergun Ayva
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Yi Jin Liew
- CSIRO
Health & Biosecurity, Westmead, New South Wales 2145,Australia
| | - Zhong Guo
- ARC
Centre of Excellence in Synthetic Biology, Brisbane, Queensland 4001, Australia
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Roxane Mutschler
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Birgit Dreier
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Maria M Fiorito
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Patricia Walden
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Christopher B Howard
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Andreas Plückthun
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Carel Pretorius
- Department
of Chemical Pathology, Pathology Queensland, Brisbane, Queensland 4006, Australia
- Faculty
of Health and Behavioural Sciences, The
University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jacobus PJ Ungerer
- Department
of Chemical Pathology, Pathology Queensland, Brisbane, Queensland 4006, Australia
- Faculty
of Health and Behavioural Sciences, The
University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Kirill Alexandrov
- ARC
Centre of Excellence in Synthetic Biology, Brisbane, Queensland 4001, Australia
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
3
|
Rimbault C, Breillat C, Compans B, Toulmé E, Vicente FN, Fernandez-Monreal M, Mascalchi P, Genuer C, Puente-Muñoz V, Gauthereau I, Hosy E, Claverol S, Giannone G, Chamma I, Mackereth CD, Poujol C, Choquet D, Sainlos M. Engineering paralog-specific PSD-95 recombinant binders as minimally interfering multimodal probes for advanced imaging techniques. eLife 2024; 13:e69620. [PMID: 38167295 PMCID: PMC10803022 DOI: 10.7554/elife.69620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the constant advances in fluorescence imaging techniques, monitoring endogenous proteins still constitutes a major challenge in particular when considering dynamics studies or super-resolution imaging. We have recently evolved specific protein-based binders for PSD-95, the main postsynaptic scaffold proteins at excitatory synapses. Since the synthetic recombinant binders recognize epitopes not directly involved in the target protein activity, we consider them here as tools to develop endogenous PSD-95 imaging probes. After confirming their lack of impact on PSD-95 function, we validated their use as intrabody fluorescent probes. We further engineered the probes and demonstrated their usefulness in different super-resolution imaging modalities (STED, PALM, and DNA-PAINT) in both live and fixed neurons. Finally, we exploited the binders to enrich at the synapse genetically encoded calcium reporters. Overall, we demonstrate that these evolved binders constitute a robust and efficient platform to selectively target and monitor endogenous PSD-95 using various fluorescence imaging techniques.
Collapse
Affiliation(s)
- Charlotte Rimbault
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Christelle Breillat
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Benjamin Compans
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Estelle Toulmé
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Filipe Nunes Vicente
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Monica Fernandez-Monreal
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4BordeauxFrance
| | - Patrice Mascalchi
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4BordeauxFrance
| | - Camille Genuer
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Virginia Puente-Muñoz
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Isabel Gauthereau
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Eric Hosy
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | | | - Gregory Giannone
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Ingrid Chamma
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | | | - Christel Poujol
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4BordeauxFrance
| | - Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Matthieu Sainlos
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| |
Collapse
|
4
|
Rani AQ, Zhu B, Ueda H, Kitaguchi T. Recent progress in homogeneous immunosensors based on fluorescence or bioluminescence using antibody engineering. Analyst 2023; 148:1422-1429. [PMID: 36916979 DOI: 10.1039/d2an01913b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Homogeneous immunosensors integrate the advantages of both biosensors and immunoassays; they include speed, high sensitivity, and accuracy. They have been developed rapidly in the past few years and offer a cost-effective alternative technology with rapidity, sensitivity, and user-friendliness, which has been applied in a wide variety of applications. This review introduces the current directions of immunosensor development, focusing on fluorescent and bioluminescent immunosensors and highlighting the advantages, improvements, and key approaches to overcome the limitations of each.
Collapse
Affiliation(s)
- Abdul Qawee Rani
- Moon Creative Lab Inc., 3-10-5 Kitaaoyama, Minato-ku, Tokyo 107-0061, Japan
| | - Bo Zhu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| |
Collapse
|
5
|
Zhu B, Qian C, Tang H, Kitaguchi T, Ueda H. Creating a Thermostable β-Glucuronidase Switch for Homogeneous Immunoassay by Disruption of Conserved Salt Bridges at Diagonal Interfaces. Biochemistry 2023; 62:309-317. [PMID: 35849118 DOI: 10.1021/acs.biochem.2c00165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Escherichia coli β-glucuronidase (GUS) has been used as a reporter enzyme in molecular biology and engineered as an enzyme switch for the development of homogeneous biosensors. In this study, we developed a thermostable GUS enzyme switch based on the thermostable GUS mutant TR3337 by disrupting a conserved salt bridge (H514-E523) between the diagonal subunits of its homotetramer. A combinatorial library (240 variants) was screened using a novel high-throughput strategy, which led to the identification of mutant DLW (H514D/M516L/Y517W) as a functional enzyme switch in a caffeine-recognizing immunosensor. Molecular dynamics simulations were performed to predict the topology change around position 514, and a side-chain flip of D514 (repulsion with E523) was observed in the DLW mutant. Up to 1.8-fold of signal-to-background ratio was confirmed when measured at up to 45 °C, thereby highlighting the DLW mutant as a versatile tool for developing thermostable immunosensors for in vitro and in cellulo applications.
Collapse
Affiliation(s)
- Bo Zhu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Cheng Qian
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Haoxuan Tang
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
6
|
Zorko M, Jones S, Langel Ü. Cell-penetrating peptides in protein mimicry and cancer therapeutics. Adv Drug Deliv Rev 2022; 180:114044. [PMID: 34774552 DOI: 10.1016/j.addr.2021.114044] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022]
Abstract
Extensive research has been undertaken in the pursuit of anticancer therapeutics. Many anticancer drugs require specificity of delivery to cancer cells, whilst sparing healthy tissue. Cell-penetrating peptides (CPPs), now well established as facilitators of intracellular delivery, have in recent years advanced to incorporate target specificity and thus possess great potential for the targeted delivery of anticancer cargoes. Though none have yet been approved for clinical use, this novel technology has already entered clinical trials. In this review we present CPPs, discuss their classification, mechanisms of cargo internalization and highlight strategies for conjugation to anticancer moieties including their incorporation into therapeutic proteins. As the mainstay of this review, strategies to build specificity into tumor targeting CPP constructs through exploitation of the tumor microenvironment and the use of tumor homing peptides are discussed, whilst acknowledging the extensive contribution made by CPP constructs to target specific protein-protein interactions integral to intracellular signaling pathways associated with tumor cell survival and progression. Finally, antibody/antigen CPP conjugates and their potential roles in cancer immunotherapy and diagnostics are considered. In summary, this review aims to harness the potential of CPP-aided drug delivery for future cancer therapies and diagnostics whilst highlighting some of the most recent achievements in selective delivery of anticancer drugs, including cytostatic drugs, to a range of tumor cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Sarah Jones
- University of Wolverhampton, School of Pharmacy, Faculty of Science & Engineering, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden; Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia 50411, Estonia.
| |
Collapse
|
7
|
Genetically encoded intrabodies as high-precision tools to visualize and manipulate neuronal function. Semin Cell Dev Biol 2021; 126:117-124. [PMID: 34782184 DOI: 10.1016/j.semcdb.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022]
Abstract
Basic neuroscience research employs numerous forms of antibodies as key reagents in diverse applications. While the predominant use of antibodies is as immunolabeling reagents, neuroscientists are making increased use of intracellular antibodies or intrabodies. Intrabodies are recombinant antibodies genetically encoded for expression within neurons. These can be used to target various cargo (fluorescent proteins, reporters, enzymes, etc.) to specific molecules and subcellular domains to report on and manipulate neuronal function with high precision. Intrabodies have the advantages inherent in all genetically encoded recombinant antibodies but represent a distinct subclass in that their structure allows for their expression and function within cells. The high precision afforded by the ability to direct their expression to specific cell types, and the selective binding of intrabodies to targets within these allows intrabodies to offer unique advantages for neuroscience research, given the tremendous molecular, cellular and morphological complexity of brain neurons. Intrabodies expressed within neurons have been used for a variety of purposes in basic neuroscience research. Here I provide a general background to intrabodies and their development, and examples of their emerging utility as valuable basic neuroscience research tools.
Collapse
|
8
|
Liu Y, Zhao N, Kanemaki MT, Yamamoto Y, Sadamura Y, Ito Y, Tokunaga M, Stasevich TJ, Kimura H. Visualizing looping of two endogenous genomic loci using synthetic zinc-finger proteins with anti-FLAG and anti-HA frankenbodies in living cells. Genes Cells 2021; 26:905-926. [PMID: 34465007 PMCID: PMC8893316 DOI: 10.1111/gtc.12893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
In eukaryotic nuclei, chromatin loops mediated through cohesin are critical structures that regulate gene expression and DNA replication. Here, we demonstrate a new method to see endogenous genomic loci using synthetic zinc-finger proteins harboring repeat epitope tags (ZF probes) for signal amplification via binding of tag-specific intracellular antibodies, or frankenbodies, fused with fluorescent proteins. We achieve this in two steps: First, we develop an anti-FLAG frankenbody that can bind FLAG-tagged proteins in diverse live-cell environments. The anti-FLAG frankenbody complements the anti-HA frankenbody, enabling two-color signal amplification from FLAG- and HA-tagged proteins. Second, we develop a pair of cell-permeable ZF probes that specifically bind two endogenous chromatin loci predicted to be involved in chromatin looping. By coupling our anti-FLAG and anti-HA frankenbodies with FLAG- and HA-tagged ZF probes, we simultaneously see the dynamics of the two loci in single living cells. This shows a close association between the two loci in the majority of cells, but the loci markedly separate from the triggered degradation of the cohesin subunit RAD21. Our ability to image two endogenous genomic loci simultaneously in single living cells provides a proof of principle that ZF probes coupled with frankenbodies are useful new tools for exploring genome dynamics in multiple colors.
Collapse
Affiliation(s)
- Yang Liu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ning Zhao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan.,Department of Genetics, SOKENDAI, Mishima, Japan
| | - Yotaro Yamamoto
- Life Science Research Laboratories, Fujifilm Wako Pure Chemical, Amagasaki, Japan
| | - Yoshifusa Sadamura
- Life Science Research Laboratories, Fujifilm Wako Pure Chemical, Amagasaki, Japan
| | - Yuma Ito
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Makio Tokunaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.,Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Kimura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
9
|
Sato Y, Nakao M, Kimura H. Live-Cell Imaging Probes to Track Chromatin Modification Dynamics. Microscopy (Oxf) 2021; 70:415-422. [PMID: 34329472 PMCID: PMC8491620 DOI: 10.1093/jmicro/dfab030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
The spatiotemporal organization of chromatin is regulated at different levels in the nucleus. Epigenetic modifications such as DNA methylation and histone modifications are involved in chromatin regulation and play fundamental roles in genome function. While the one-dimensional epigenomic landscape in many cell types has been revealed by chromatin immunoprecipitation and sequencing, the dynamic changes of chromatin modifications and their relevance to chromatin organization and genome function remain elusive. Live-cell probes to visualize chromatin and its modifications have become powerful tools to monitor dynamic chromatin regulation. Bulk chromatin can be visualized by both small fluorescent dyes and fluorescent proteins, and specific endogenous genomic loci have been detected by adapting genome-editing tools. To track chromatin modifications in living cells, various types of probes have been developed. Protein domains that bind weakly to specific modifications, such as chromodomains for histone methylation, can be repeated to create a tighter binding probe that can then be tagged with a fluorescent protein. It has also been demonstrated that antigen-binding fragments and single-chain variable fragments from modification-specific antibodies can serve as binding probes without disturbing cell division, development and differentiation. These modification-binding modules are used in modification sensors based on fluorescence/Förster resonance energy transfer to measure the intramolecular conformational changes triggered by modifications. Other probes can be created using a bivalent binding system, such as fluorescence complementation or luciferase chemiluminescence. Live-cell chromatin modification imaging using these probes will address dynamic chromatin regulation and will be useful for assaying and screening effective epigenome drugs in cells and organisms.
Collapse
Affiliation(s)
- Yuko Sato
- Cell Biology Center, Institute of Innovative Research, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Masaru Nakao
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
10
|
Ohmuro-Matsuyama Y, Kitaguchi T, Kimura H, Ueda H. Simple Fluorogenic Cellular Assay for Histone Deacetylase Inhibitors Based on Split-Yellow Fluorescent Protein and Intrabodies. ACS OMEGA 2021; 6:10039-10046. [PMID: 34056159 PMCID: PMC8153662 DOI: 10.1021/acsomega.0c06281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/31/2021] [Indexed: 05/03/2023]
Abstract
Histone deacetylase (HDAC) inhibitors that regulate the posttranslational modifications of histone tails are therapeutic drugs for many diseases such as cancers, neurodegenerative diseases, and asthma; however, convenient and sensitive methods to measure the effect of HDAC inhibitors in cultured mammalian cells remain limited. In this study, a fluorogenic assay was developed to detect the acetylation of lysine 9 on histone H3 (H3K9ac), which is involved in several cancers, Alzheimer's disease, and autism spectrum disorder. To monitor the changes in H3K9ac levels, an H3K9ac-specific intrabody fused with a small fragment FP11 of the split-yellow fluorescent protein (YFP) (scFv-FP11) was expressed in mammalian cells, together with a larger YFP fragment FP1-10 fused with a nuclear localization signal. When the intranuclear level of H3K9ac is increased, the scFv-FP11 is more enriched in the nucleus via passive diffusion through the nuclear pores from the cytoplasm, which increases the chance of forming a fluorescent complex with the nuclear YFP1-10. The results showed that the YFP fluorescence increased when the cells were treated with HDAC inhibitors. Moreover, the sensitivity of the split YFP reporter system to three HDAC inhibitors was higher than that of a conventional cell viability test. The assay system will be a simple and sensitive detection method to evaluate HDAC inhibitor activities at the levels of both single cells and cell populations.
Collapse
Affiliation(s)
- Yuki Ohmuro-Matsuyama
- Laboratory
for Chemistry and Life Science, and Cell Biology Center, Institute
of Innovative Research, Tokyo Institute
of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
- Technology
Research Laboratory, Shimadzu Corporation, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Tetsuya Kitaguchi
- Laboratory
for Chemistry and Life Science, and Cell Biology Center, Institute
of Innovative Research, Tokyo Institute
of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Kimura
- Laboratory
for Chemistry and Life Science, and Cell Biology Center, Institute
of Innovative Research, Tokyo Institute
of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Ueda
- Laboratory
for Chemistry and Life Science, and Cell Biology Center, Institute
of Innovative Research, Tokyo Institute
of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
- E-mail:
| |
Collapse
|
11
|
Vigano MA, Ell CM, Kustermann MMM, Aguilar G, Matsuda S, Zhao N, Stasevich TJ, Affolter M, Pyrowolakis G. Protein manipulation using single copies of short peptide tags in cultured cells and in Drosophila melanogaster. Development 2021; 148:dev191700. [PMID: 33593816 PMCID: PMC7990863 DOI: 10.1242/dev.191700] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 02/09/2021] [Indexed: 01/01/2023]
Abstract
Cellular development and function rely on highly dynamic molecular interactions among proteins distributed in all cell compartments. Analysis of these interactions has been one of the main topics in cellular and developmental research, and has been mostly achieved by the manipulation of proteins of interest (POIs) at the genetic level. Although genetic strategies have significantly contributed to our current understanding, targeting specific interactions of POIs in a time- and space-controlled manner or analysing the role of POIs in dynamic cellular processes, such as cell migration or cell division, would benefit from more-direct approaches. The recent development of specific protein binders, which can be expressed and function intracellularly, along with advancement in synthetic biology, have contributed to the creation of a new toolbox for direct protein manipulations. Here, we have selected a number of short-tag epitopes for which protein binders from different scaffolds have been generated and showed that single copies of these tags allowed efficient POI binding and manipulation in living cells. Using Drosophila, we also find that single short tags can be used for POI manipulation in vivo.
Collapse
Affiliation(s)
- M Alessandra Vigano
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Clara-Maria Ell
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
- Institute for Biology I, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| | - Manuela M M Kustermann
- Institute for Biology I, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| | - Gustavo Aguilar
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Shinya Matsuda
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Ning Zhao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Markus Affolter
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - George Pyrowolakis
- Institute for Biology I, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| |
Collapse
|
12
|
“One stroke drawing” of poly(ribonucleic acids) with different aptamer functions for sensing probes. Polym J 2021. [DOI: 10.1038/s41428-020-00454-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Eason MG, Pandelieva AT, Mayer MM, Khan ST, Garcia HG, Chica RA. Genetically Encoded Fluorescent Biosensor for Rapid Detection of Protein Expression. ACS Synth Biol 2020; 9:2955-2963. [PMID: 33044070 DOI: 10.1021/acssynbio.0c00407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescent proteins are widely used as fusion tags to detect protein expression in vivo. To become fluorescent, these proteins must undergo chromophore maturation, a slow process with a half-time of 5 to >30 min that causes delays in real-time detection of protein expression. Here, we engineer a genetically encoded fluorescent biosensor to enable detection of protein expression within seconds in live bacteria. This sensor for transiently expressed proteins (STEP) is based on a fully matured but dim green fluorescent protein in which pre-existing fluorescence increases 11-fold in vivo following the specific and rapid binding of a protein tag (Kd 120 nM, kon 1.7 × 105 M-1 s-1). In live E. coli cells, our STEP biosensor enables detection of protein expression twice as fast as the use of standard fluorescent protein fusions. Our biosensor opens the door to the real-time study of short timescale processes in live cells with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Matthew G. Eason
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Antonia T. Pandelieva
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Marc M. Mayer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Safwat T. Khan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Hernan G. Garcia
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, Berkeley, California 94720, United States
| | - Roberto A. Chica
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
14
|
Qian C, Yang LJ, Cui H. Recent Advances in Nanotechnology for Dendritic Cell-Based Immunotherapy. Front Pharmacol 2020; 11:960. [PMID: 32694998 PMCID: PMC7338589 DOI: 10.3389/fphar.2020.00960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are the most important antigen-presenting cells that determine cancer immune responses by regulating immune activation and tolerance, especially in the initiation stage of specific responses. Manipulation of DCs to enhance specific antitumor immune response is considered to be a powerful tool for tumor eradication. Nanotechnology, which can incorporate multifunction components and show spatiotemporal control properties, is of great interest and is widely investigated for its ability to improve immune response activity against cancer and even for prevention and avoiding recurrence. In this mini-review, we aim to provide a general view of DC-based immunotherapy, including that involving the promising nanotechnology. Particularly we discuss: (1) manipulation or engineering of DCs for adoptive vaccination, (2) employing DCs as a combination to more existing therapeutics in tumor treatment, and (3) direct modulation of DCs in vivo to enhance antigen presentation efficacy and priming T cells subsequently. We comprehensively discuss the updates on the application of nanotechnology in DC-based immunotherapy and provide some insights on the challenges and opportunities of DC-based immunotherapeutics, including the potential of nanotechnology, against cancers.
Collapse
Affiliation(s)
| | | | - Hong Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Moeyaert B, Dedecker P. Genetically encoded biosensors based on innovative scaffolds. Int J Biochem Cell Biol 2020; 125:105761. [PMID: 32504671 DOI: 10.1016/j.biocel.2020.105761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
Genetically encoded biosensors are indispensable tools for visualizing the spatiotemporal dynamics of analytes or processes in living cells in vitro and in vivo. Their widespread adaptation has gone hand in hand with the development of sensors for new analytes or processes and improved functionality and robustness. In this review, we highlight some of the recent advances in genetically encoded biosensor development, with a special focus on novel and innovative scaffolds that will lead to new possibilities in the future.
Collapse
Affiliation(s)
- Benjamien Moeyaert
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Heverlee, Belgium
| | - Peter Dedecker
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Heverlee, Belgium.
| |
Collapse
|
16
|
Kanai Y, Ohmuro-Matsuyama Y, Tanioku M, Ushiba S, Ono T, Inoue K, Kitaguchi T, Kimura M, Ueda H, Matsumoto K. Graphene Field Effect Transistor-Based Immunosensor for Ultrasensitive Noncompetitive Detection of Small Antigens. ACS Sens 2020; 5:24-28. [PMID: 31922395 DOI: 10.1021/acssensors.9b02137] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Due to its high carrier mobility, graphene is considered a suitable material for use in field-effect transistors. However, its application to immunosensing of small molecules is still elusive. To investigate the potential of graphene field effect transistors (G-FET) as a sensor for small molecules with small or no charge, we applied the open-sandwich immunoassay (OS-IA), which detects low-molecular-weight antigens noncompetitively, to G-FET. Using an antibody variable fragment VL immobilized on graphene and a hyperacidic region of amyloid precursor protein fused to the other variable fragment VH, we successfully detected a small antigen peptide consisting of 7 amino acids (BGP-C7), with a more than 100-fold increase in sensitivity compared with that measured by enzyme-linked OS-IA. Furthermore, we succeeded in detecting BGP-C7 in the presence of human serum with similar sensitivity, suggesting its potential application in clinical diagnostics.
Collapse
Affiliation(s)
- Yasushi Kanai
- Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Yuki Ohmuro-Matsuyama
- Laboratory for Chemistry and Life Sciences, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Masami Tanioku
- Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Shota Ushiba
- Murata Manufacturing Co. Ltd., Higashikotari, Nagaokakyo-shi, Kyoto 617-8555, Japan
| | - Takao Ono
- Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Koichi Inoue
- Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Sciences, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Masahiko Kimura
- Murata Manufacturing Co. Ltd., Higashikotari, Nagaokakyo-shi, Kyoto 617-8555, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Sciences, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Kazuhiko Matsumoto
- Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
17
|
Pouvreau B, Blundell C, Vohra H, Zwart AB, Arndell T, Singh S, Vanhercke T. A Versatile High Throughput Screening Platform for Plant Metabolic Engineering Highlights the Major Role of ABI3 in Lipid Metabolism Regulation. FRONTIERS IN PLANT SCIENCE 2020; 11:288. [PMID: 32256511 PMCID: PMC7090168 DOI: 10.3389/fpls.2020.00288] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/26/2020] [Indexed: 05/16/2023]
Abstract
Traditional functional genetic studies in crops are time consuming, complicated and cannot be readily scaled up. The reason is that mutant or transformed crops need to be generated to study the effect of gene modifications on specific traits of interest. However, many crop species have a complex genome and a long generation time. As a result, it usually takes several months to over a year to obtain desired mutants or transgenic plants, which represents a significant bottleneck in the development of new crop varieties. To overcome this major issue, we are currently establishing a versatile plant genetic screening platform, amenable to high throughput screening in almost any crop species, with a unique workflow. This platform combines protoplast transformation and fluorescence activated cell sorting. Here we show that tobacco protoplasts can accumulate high levels of lipid if transiently transformed with genes involved in lipid biosynthesis and can be sorted based on lipid content. Hence, protoplasts can be used as a predictive tool for plant lipid engineering. Using this newly established strategy, we demonstrate the major role of ABI3 in plant lipid accumulation. We anticipate that this workflow can be applied to numerous highly valuable metabolic traits other than storage lipid accumulation. This new strategy represents a significant step toward screening complex genetic libraries, in a single experiment and in a matter of days, as opposed to years by conventional means.
Collapse
Affiliation(s)
- Benjamin Pouvreau
- Agriculture and Food, CSIRO, Canberra, ACT, Australia
- Synthetic Biology Future Science Platform, CSIRO, Canberra, ACT, Australia
- *Correspondence: Benjamin Pouvreau,
| | - Cheryl Blundell
- Agriculture and Food, CSIRO, Canberra, ACT, Australia
- Synthetic Biology Future Science Platform, CSIRO, Canberra, ACT, Australia
| | - Harpreet Vohra
- The John Curtin School of Medical Research, Australian National University College of Health and Medicine, Canberra, ACT, Australia
| | | | - Taj Arndell
- Agriculture and Food, CSIRO, Canberra, ACT, Australia
| | | | | |
Collapse
|
18
|
Deng H, Yan S, Huang Y, Lei C, Nie Z. Design strategies for fluorescent proteins/mimics and their applications in biosensing and bioimaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Eggenstein E, Richter A, Skerra A. FluoroCalins: engineered lipocalins with novel binding functions fused to a fluorescent protein for applications in biomolecular imaging and detection. Protein Eng Des Sel 2019; 32:289-296. [PMID: 31927584 DOI: 10.1093/protein/gzz047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 11/14/2022] Open
Abstract
FluoroCalins represent novel bifunctional protein reagents derived from engineered lipocalins fused to a fluorescent reporter protein, here the enhanced green fluorescent protein (eGFP). We demonstrate the construction, facile bacterial production and broad applicability of FluoroCalins using two Anticalin® molecules directed against the tumor vasculature-associated extra domain B of fibronectin (ED-B) and the vascular endothelial growth factor receptor 3, a marker of tumor and lymphangiogenesis. FluoroCalins were prepared with two different spacers: (i) a short Ser3Ala linker and (ii) a long hydrophilic and conformationally unstructured PASylation® polypeptide comprising 200 Pro, Ala and Ser residues. These FluoroCalins were applied for direct target quantification in enzyme-linked immunosorbent assay as well as target detection by flow cytometry and fluorescence microscopy of live and fixed cells, respectively, demonstrating high specificity and signal-to-noise ratio. Hence, FluoroCalins offer a promising alternative to antibody-based reagents for state of the art fluorescent in vitro detection and biomolecular imaging.
Collapse
Affiliation(s)
- Evelyn Eggenstein
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Antonia Richter
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| |
Collapse
|
20
|
Zhao N, Kamijo K, Fox PD, Oda H, Morisaki T, Sato Y, Kimura H, Stasevich TJ. A genetically encoded probe for imaging nascent and mature HA-tagged proteins in vivo. Nat Commun 2019; 10:2947. [PMID: 31270320 PMCID: PMC6610143 DOI: 10.1038/s41467-019-10846-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/29/2019] [Indexed: 01/07/2023] Open
Abstract
To expand the toolbox of imaging in living cells, we have engineered a single-chain variable fragment binding the linear HA epitope with high affinity and specificity in vivo. The resulting probe, called the HA frankenbody, can light up in multiple colors HA-tagged nuclear, cytoplasmic, membrane, and mitochondrial proteins in diverse cell types. The HA frankenbody also enables state-of-the-art single-molecule experiments in living cells, which we demonstrate by tracking single HA-tagged histones in U2OS cells and single mRNA translation dynamics in both U2OS cells and neurons. Together with the SunTag, we also track two mRNA species simultaneously to demonstrate comparative single-molecule studies of translation can now be done with genetically encoded tools alone. Finally, we use the HA frankenbody to precisely quantify the expression of HA-tagged proteins in developing zebrafish embryos. The versatility of the HA frankenbody makes it a powerful tool for imaging protein dynamics in vivo.
Collapse
Affiliation(s)
- Ning Zhao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Kouta Kamijo
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Philip D Fox
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Haruka Oda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Yuko Sato
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Hiroshi Kimura
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
| |
Collapse
|
21
|
Aguilar G, Vigano MA, Affolter M, Matsuda S. Reflections on the use of protein binders to study protein function in developmental biology. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e356. [PMID: 31265212 PMCID: PMC6851689 DOI: 10.1002/wdev.356] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/01/2023]
Abstract
Studies in the field of developmental biology aim to unravel how a fertilized egg develops into an adult organism and how proteins and other macromolecules work together during this process. With regard to protein function, most of the developmental studies have used genetic and RNA interference approaches, combined with biochemical analyses, to reach this goal. However, there always remains much room for interpretation on how a given protein functions, because proteins work together with many other molecules in complex regulatory networks and it is not easy to reveal the function of one given protein without affecting the networks. Likewise, it has remained difficult to experimentally challenge and/or validate the proposed concepts derived from mutant analyses without tools that directly manipulate protein function in a predictable manner. Recently, synthetic tools based on protein binders such as scFvs, nanobodies, DARPins, and others have been applied in developmental biology to directly manipulate target proteins in a predicted manner. Although such tools would have a great impact in filling the gap of knowledge between mutant phenotypes and protein functions, careful investigations are required when applying functionalized protein binders to fundamental questions in developmental biology. In this review, we first summarize how protein binders have been used in the field, and then reflect on possible guidelines for applying such tools to study protein functions in developmental biology. This article is categorized under: Technologies > Analysis of Proteins Establishment of Spatial and Temporal Patterns > Gradients Invertebrate Organogenesis > Flies.
Collapse
|
22
|
Ren W, Li Z, Xu Y, Wan D, Barnych B, Li Y, Tu Z, He Q, Fu J, Hammock BD. One-Step Ultrasensitive Bioluminescent Enzyme Immunoassay Based on Nanobody/Nanoluciferase Fusion for Detection of Aflatoxin B 1 in Cereal. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5221-5229. [PMID: 30883117 PMCID: PMC7792509 DOI: 10.1021/acs.jafc.9b00688] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nanoluciferase (Nluc), the smallest luciferase known, was used as the fusion partner with a nanobody against aflatoxin B1 to develop a bioluminescent enzyme immunoassay (BLEIA) for detection of the aflatoxin B1 in cereal. Nanobody (clone G8) against aflatoxin B1 was fused with nanoluciferase and cloned into a pET22b expression vector, and then transformed into Escherichia coli. The nanobody fusion gene contained a hexahistidine tag for purification by immobilized metal affinity chromatography, yielding a biologically active fusion protein. The fusion protein G8-Nluc retained binding properties of the original nanobody. Concentration of the coelenterazine substrate and buffer composition were also optimized to provide high intensity and long half-life of the luminescent signal. The G8-Nluc was used as a detection antibody to establish a competitive bioluminescent ELISA for the detection of aflatoxin B1 in cereals successfully. Compared to classical ELISA, this novel assay showed more than 20-fold improvement in detection sensitivity, with an IC50 value of 0.41 ng/mL and linear range from 0.10 to 1.64 ng/mL. In addition, the entire BLEIA detection procedure can be completed in one step within 2 h, from sample preparation to data analysis. These results suggest that nanobody fragments fused with nanoluciferase might serve as useful and highly sensitive dual functional reagents for the development of rapid and highly sensitive immunoanalytical methods.
Collapse
Affiliation(s)
- Wenjie Ren
- Key Laboratory of Food Science and Technology, and Sino–German Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Zhenfeng Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Yang Xu
- Key Laboratory of Food Science and Technology, and Sino–German Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
- Corresponding author (Tel: +86-791-88329479; Fax: +86-791-88333708; ), (Tel: 5307520492; Fax: 5307521537; )
| | - Debin Wan
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Bogdan Barnych
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Yanping Li
- Key Laboratory of Food Science and Technology, and Sino–German Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Zhui Tu
- Key Laboratory of Food Science and Technology, and Sino–German Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qinghua He
- Key Laboratory of Food Science and Technology, and Sino–German Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jinheng Fu
- Key Laboratory of Food Science and Technology, and Sino–German Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
- Corresponding author (Tel: +86-791-88329479; Fax: +86-791-88333708; ), (Tel: 5307520492; Fax: 5307521537; )
| |
Collapse
|
23
|
Mita M, Ito M, Harada K, Sugawara I, Ueda H, Tsuboi T, Kitaguchi T. Green Fluorescent Protein-Based Glucose Indicators Report Glucose Dynamics in Living Cells. Anal Chem 2019; 91:4821-4830. [PMID: 30869867 DOI: 10.1021/acs.analchem.9b00447] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucose is the most important energy source for living animals. Here, we developed a series of single fluorescent protein (FP)-based glucose indicators, named as "Green Glifons", to understand the hierarchal and mutual relationships between molecules involved in energy metabolism. Three indicators showed a different EC50 for glucose (50, 600, and 4000 μM), producing a ∼7-fold change in fluorescence intensity in response to glucose. The indicators could visualize glucose dynamics in the cytoplasm, plasma membrane, nucleus and mitochondria of living HeLa cells and in vivo, in the pharyngeal muscle of C. elegans and could measure murine blood glucose levels. Finally, the indicators were applicable to dual-color imaging, revealing the dynamic interplay between glucose and Ca2+ in mouse pancreatic MIN6 m9 β cells. We propose that these indicators will facilitate and contribute to in vivo and multicolor imaging of energy metabolism.
Collapse
Affiliation(s)
- Marie Mita
- Department of Life Sciences, Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro , Tokyo 153-8902 , Japan
| | - Motoki Ito
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo , Tokyo 113-0033 , Japan
| | - Kazuki Harada
- Department of Life Sciences, Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro , Tokyo 153-8902 , Japan
| | - Izumi Sugawara
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo , Tokyo 113-0033 , Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku , Yokohama , Kanagawa 226-8503 , Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro , Tokyo 153-8902 , Japan.,Department of Biological Sciences, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo , Tokyo 113-0033 , Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku , Yokohama , Kanagawa 226-8503 , Japan
| |
Collapse
|
24
|
Sana B, Chee SMQ, Wongsantichon J, Raghavan S, Robinson RC, Ghadessy FJ. Development and structural characterization of an engineered multi-copper oxidase reporter of protein-protein interactions. J Biol Chem 2019; 294:7002-7012. [PMID: 30770473 PMCID: PMC6497955 DOI: 10.1074/jbc.ra118.007141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/10/2019] [Indexed: 12/13/2022] Open
Abstract
Protein–protein interactions (PPIs) are ubiquitous in almost all biological processes and are often corrupted in diseased states. A detailed understanding of PPIs is therefore key to understanding cellular physiology and can yield attractive therapeutic targets. Here, we describe the development and structural characterization of novel Escherichia coli CueO multi-copper oxidase variants engineered to recapitulate protein–protein interactions with commensurate modulation of their enzymatic activities. The fully integrated single-protein sensors were developed through modular grafting of ligand-specific peptides into a highly compliant and flexible methionine-rich loop of CueO. Sensitive detection of diverse ligand classes exemplified by antibodies, an E3 ligase, MDM2 proto-oncogene (MDM2), and protease (SplB from Staphylococcus aureus) was achieved in a simple mix and measure homogeneous format with visually observable colorimetric readouts. Therapeutic antagonism of MDM2 by small molecules and peptides in clinical development for treatment of cancer patients was assayed using the MDM2-binding CueO enzyme. Structural characterization of the free and MDM2-bound CueO variant provided functional insight into signal-transducing mechanisms of the engineered enzymes and highlighted the robustness of CueO as a stable and compliant scaffold for multiple applications.
Collapse
Affiliation(s)
- Barindra Sana
- From the p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Sharon M Q Chee
- From the p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Jantana Wongsantichon
- the Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok 10400, Thailand, and.,the Institute of Molecular and Cellular Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Sarada Raghavan
- From the p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Robert C Robinson
- the Institute of Molecular and Cellular Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Farid J Ghadessy
- From the p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore,
| |
Collapse
|
25
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
26
|
Wang S, Ding M, Xue B, Hou Y, Sun Y. Spying on protein interactions in living cells with reconstituted scarlet light. Analyst 2018; 143:5161-5169. [PMID: 30255175 DOI: 10.1039/c8an01223g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The BiFC (bimolecular fluorescence complementation) assay and BiFC combined with FRET (fluorescence resonance energy transfer) technique have become important tools for molecular interaction studies in live cells. However, the real detection and cellular imaging performances of most existing red fluorescent protein-derived BiFC assays still suffer from relatively low ensemble brightness, high cytotoxicity, the red fluorescent proteins being prone-to-aggregation or severe residual dimerization, inefficient complementation and slow maturation at 37 °C physiological temperature in live mammalian cells. We developed a BiFC assay based on a recently evolved truly monomeric red fluorescent protein (FP) mScarlet-I with excellent cellular performances such as low cytotoxicity, fast and efficient chromophore maturation and the highest in-cell brightness among all previously reported monomeric red fluorescent proteins. In this work, a classic β-Fos/β-Jun constitutive heterodimerization model and a rapamycin-inducible FRB/FKBP interaction system were used to establish and test the performance of the mScarlet-I-based BiFC assay in live mammalian cells. Furthermore, simply by adopting the large-Stokes-shift fluorescent protein mAmetrine as the donor, β-Jun-β-Fos-NFAT1 ternary protein complex formation could be readily and efficiently detected and visualized with minimal spectral cross-talk in live HeLa cells by combining live-cell sensitized-emission FRET measurement with the mScarlet-I-based BiFC assay. The currently established BiFC assay in this work was also shown to be able to detect and visualize various protein-protein interactions (PPIs) at different subcellular compartments with high specificity and sensitivity at 37 °C physiological temperature in live mammalian cells.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Membrane Biology, Biomedical pioneering innovation center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.
| | | | | | | | | |
Collapse
|
27
|
Sotnikov DV, Zherdev AV, Dzantiev BB. Mathematical Modeling of Bioassays. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523069 DOI: 10.1134/s0006297917130119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The high affinity and specificity of biological receptors determine the demand for and the intensive development of analytical systems based on use of these receptors. Therefore, theoretical concepts of the mechanisms of these systems, quantitative parameters of their reactions, and relationships between their characteristics and ligand-receptor interactions have become extremely important. Many mathematical models describing different bioassay formats have been proposed. However, there is almost no information on the comparative characteristics of these models, their assumptions, and predictive insights. In this review we suggested a set of criteria to classify various bioassays and reviewed classical and contemporary publications on these bioassays with special emphasis on immunochemical analysis systems as the most common and in-demand techniques. The possibilities of analytical and numerical modeling are discussed, as well as estimations of the minimum concentrations that may be detected in bioassays and recommendations for the choice of assay conditions.
Collapse
Affiliation(s)
- D V Sotnikov
- Bach Institute of Biochemistry, Research Center for Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
28
|
Su J, Dong J, Kitaguchi T, Ohmuro-Matsuyama Y, Ueda H. Noncompetitive homogeneous immunodetection of small molecules based on beta-glucuronidase complementation. Analyst 2018; 143:2096-2101. [DOI: 10.1039/c8an00074c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small molecules can be sensitively detected with a positive signal by just mixing and measuring the β-glucuronidase activity within 20 min.
Collapse
Affiliation(s)
- Jiulong Su
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
| | - Jinhua Dong
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
- Key Laboratory of Biological Medicine in Universities of Shandong Province
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
| | - Yuki Ohmuro-Matsuyama
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
| |
Collapse
|