1
|
Huang Z, Liu C, Li Z, Chen Q, Li D, Chen X, Chen Q, Wei J. Multiple DNA cycle amplification for highly efficient detection of mercury pollution in food. Food Chem 2024; 460:140714. [PMID: 39111041 DOI: 10.1016/j.foodchem.2024.140714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/16/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
Mercury ion (Hg2+), a highly toxic metal pollutant, is widely found in the environment and can enter the human body through the food chain, causing various health issues. Sensitive and accurate methods for monitoring Hg2+ are highly desirable for ensuring food safety. Herein, we propose a self-sustainable multiple amplification system (MAS) for Hg2+ determination through the reciprocal activation between catalytic hairpin assembly (CHA) and rolling circle amplification (RCA). The thymine-encoded recognition element specifically recognizes Hg2+, triggering the exposure of the initiator. The initiator then motivates the mutual activation of CHA and RCA to accelerate the production of an exponentially amplified signal. The MAS method achieved a low detection limit of 11 pM. Due to its reliable target recognition and robust amplification efficiency, the MAS circuit facilitated the highly efficient and accurate analysis of low-abundance Hg2+ in milk and snakehead samples, thus providing a potentially new tool for food safety control.
Collapse
Affiliation(s)
- Ziling Huang
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
| | - Chuanyi Liu
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
| | - Zhigang Li
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
| | - Dong Li
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China.
| |
Collapse
|
2
|
Saleem M, Hanif M, Rafiq M, Ali A, Raza H, Kim SJ, Lu C. Recent Development on Sensing Strategies for Small Molecules Detections. J Fluoresc 2024; 34:1493-1525. [PMID: 37644375 DOI: 10.1007/s10895-023-03387-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Sensors play a critical role in the detection and monitoring of various substances present in our environment, providing us with valuable information about the world around us. Within the field of sensor development, one area that holds particular importance is the detection of small molecules. Small molecules encompass a wide range of organic or inorganic compounds with low molecular weight, typically below 900 Daltons including gases, volatile organic compounds, solvents, pesticides, drugs, biomarkers, toxins, and pollutants. The accurate and efficient detection of these small molecules has attracted significant interest from the scientific community due to its relevance in diverse fields such as environmental pollutants monitoring, medical diagnostics, industrial optimization, healthcare remedies, food safety, ecosystems, and aquatic and terrestrial life preservation. To meet the demand for precise and efficient monitoring of small molecules, this summary aims to provide an overview of recent advancements in sensing and quantification strategies for various organic small molecules including Hydrazine, Glucose, Morpholine, Ethanol amine, Nitrosamine, Oxygen, Nitro-aromatics, Phospholipids, Carbohydrates, Antibiotics, Pesticides, Drugs, Adenosine Triphosphate, Aromatic Amine, Glutathione, Hydrogen Peroxide, Acetone, Methyl Parathion, and Thiophenol. The focus is on understanding the receptor sensing mechanism, along with the electrical, optical, and electrochemical response. Additionally, the variations in UV-visible spectral properties of the ligands upon treatment with the receptor, fluorescence and absorption titration analysis for limit of detection (LOD) determination, and bioimaging analysis are discussed wherever applicable. It is anticipated that the information gathered from this literature survey will be helpful for the perusal of innovation regarding sensing strategies.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan.
- Department of Chemistry, Thal University Bhakkar, Punjab, 30000, Bhakkar, Pakistan.
| | - Muhammad Hanif
- Department of Chemistry, GC University Faisalabad, Sub Campus Layyah-31200, Layyah, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 6300, Pakistan
| | - Anser Ali
- Department of Zoology, Mirpur University of Science and Technology (MUST), Mirpur, 10250, Pakistan
| | - Hussain Raza
- Department of Biological Sciences, Kongju National University, Kongju, Chungnam, Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, Kongju National University, Kongju, Chungnam, Republic of Korea
| | - Changrui Lu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
3
|
Meng X, Pang X, Yang J, Zhang X, Dong H. Recent Advances in Electrochemiluminescence Biosensors for MicroRNA Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307701. [PMID: 38152970 DOI: 10.1002/smll.202307701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Electrochemiluminescence (ECL) as an analytical technology with a perfect combination of electrochemistry and spectroscopy has received considerable attention in bioanalysis due to its high sensitivity and broad dynamic range. Given the selectivity of bio-recognition elements and the high sensitivity of the ECL analysis technique, ECL biosensors are powerful platforms for the sensitive detection of biomarkers, achieving the accurate prognosis and diagnosis of diseases. MicroRNAs (miRNAs) are crucial biomarkers involved in a variety of physiological and pathological processes, whose aberrant expression is often related to serious diseases, especially cancers. ECL biosensors can fulfill the highly sensitive and selective requirements for accurate miRNA detection, prompting this review. The ECL mechanisms are initially introduced and subsequently categorize the ECL biosensors for miRNA detection in terms of the quenching agents. Furthermore, the work highlights the signal amplification strategies for enhancing ECL signal to improve the sensitivity of miRNA detection and finally concludes by looking at the challenges and opportunities in ECL biosensors for miRNA detection.
Collapse
Affiliation(s)
- Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Xuejiao Pang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Junyan Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, P. R. China
| |
Collapse
|
4
|
He L, Wang Y, Zhang C, Niu Y, Wang Y, Ma H, Li N, Ye J, Ma Y. Self-Assembled Tetraphenylethene-Based Nanoaggregates with Tunable Electrochemiluminescence for the Ultrasensitive Detection of E. coli. Anal Chem 2024; 96:4809-4816. [PMID: 38466895 DOI: 10.1021/acs.analchem.3c04820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
As an effective ECL emitter, tetraphenylethene (TPE)-based molecules have recently been reported with aggregation-induced electrochemiluminescence (AIECL) property, while it is still a big challenge to control its aggregation states and obtain uniform aggregates with intense ECL emission. In this study, we develop three TPE derivatives carrying a pyridinium group, an alkyl chain, and a quaternary ammonium group via the Menschutkin reaction. The resulting molecules exhibit significantly red-shifted FL and enhanced ECL emissions due to the tunable reduction of the energy gap between the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs). More importantly, the amphiphilicity of the as-developed molecules enables their spontaneous self-assembly into well-controlled spherical nanoaggregates, and the ECL intensity of nanoaggregates with 3 -CH2- (named as C3) is 17.0-fold higher compared to that of the original 4-(4-(1,2,2-triphenylvinyl)phenyl)pyridine (TPP) molecule. These cationic nanoaggregates demonstrate a high affinity toward bacteria, and an ECL sensor for the profiling of Escherichia coli (E. coli) was developed with a broad linear range and good selectivity in the presence of an E. coli-specific aptamer. This study provides an effective way to enhance the ECL emission of TPE molecules through their derivatization and a simple way to prepare well-controlled AIECL nanoaggregates for ECL application.
Collapse
Affiliation(s)
- Linli He
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yu Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China
| | - Chunxue Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yibo Niu
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yujie Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China
| | - Huizhen Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China
| | - Nan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Jianshan Ye
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China
| | - Ying Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China
| |
Collapse
|
5
|
Liu G, Gao F, Yang X, Zhang J, Yang S, Li Y, Liu L. Aggregation-induced emission for the detection of peptide ligases with improving ligation efficiency. Anal Chim Acta 2023; 1284:341994. [PMID: 37996157 DOI: 10.1016/j.aca.2023.341994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Monitoring peptide ligase activity is of great significance for biological research, medical diagnosis, and drug discovery. The current methods for the detection of peptide ligases suffer from the limitations of high background signal, elaborate design of substrate, and high reversibility of ligation reaction. In this work, we proposed a simple and sensitive method for ligase detection with reducing ligation reversibility on the basis of aggregation-induced emission (AIE) mechanism. RESULTS The peptide probes labeled with AIE luminogens (AIEgens) were water-soluble and emitted weak fluorescence. After ligation reaction, the enzymatic products with AIEgens showed high hydrophobicity and could readily assembly into aggregates, thus lighting up the fluorescence. More interestingly, the formation of aggregates pushed the equilibrium to the generation of the desired ligation products, thus improving the catalytic efficiency by driving the reaction towards completion. The ligation reaction conversion rate (>80 %) is significantly higher than that without blocking the reversibility with additional treatment. With sortase A (SrtA) as the analyte example, the detection limit of this method was found to be 0.01 nM with a linear range of 0-50 nM. The system was applied to evaluate the inhibition efficiency of berberine chloride and quercetin and determine the activity of SrtA in serum, lysate and Staphylococcus aureus with satisfactory results. SIGNIFICANCE This study indicated that the ligation efficiency and detection sensitivity can be improved by reducing ligation reversibility through AIE phenomenon. The proposed strategy could be used for the detection of other peptide ligases by adopting sequence-specific peptide substrates.
Collapse
Affiliation(s)
- Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China; College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Jingyi Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Suling Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Yuanyuan Li
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, PR China.
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China.
| |
Collapse
|
6
|
Luo Y, Chen J, Liang J, Liu Y, Liu C, Liu Y, Xu T, Zhang X. Ultrasound-enhanced catalytic hairpin assembly capable of ultrasensitive microRNA biosensing for the early screening of Alzheimer's disease. Biosens Bioelectron 2023; 242:115746. [PMID: 37832346 DOI: 10.1016/j.bios.2023.115746] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Catalytic hairpin assembly (CHA) is a promising enzyme-free, isothermal signal amplification strategy, but the relatively time-consuming strand replacement limits its application scenarios. Here, we developed an ultrasound-enhanced catalytic hairpin assembly (UECHA) biosensing platform for early screening of Alzheimer's disease by introducing a portable acoustic-drive platform with functionalized microspheres for effective biomarkers enrichment and fluorescence enhancement. By constructing a gradient ultrasonic field in a microcavity, the platform concentrates the functionalized microspheres in a central position, accompanied by an enhanced fluorescence signal with a specific release. In addition, the programmable frequency modulation can also modify the acoustic potential well and effectively promote non-equilibrium chemical reactions such as CHA (25 min). Compared with the conventional catalytic hairpin assembly (CHA), UECHA allows for direct and quantitative measurement of AD miRNAs down to 3.55 × 10-15 M in 1 μL samples. This visual analysis of ultra-trace biomarkers based on acoustic enrichment and promotion provides a new perspective for the rapid and highly sensitive clinical detection of Alzheimer's disease.
Collapse
Affiliation(s)
- Yong Luo
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518060, China; Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Jingyu Chen
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Jiahui Liang
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Yizhen Liu
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Conghui Liu
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518060, China.
| | - Yibiao Liu
- Longgang District Central Hospital of Shenzhen, Shenzhen, Guangdong, 518116, PR China.
| | - Tailin Xu
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518060, China.
| | - Xueji Zhang
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518060, China.
| |
Collapse
|
7
|
Ghosh AK, Khan AH, Das PK. Naphthalimide-Based AIEgens for Sensing Protein Disulfide Isomerase through Thiol-Disulfide Redox Exchange. Anal Chem 2023; 95:13638-13648. [PMID: 37651212 DOI: 10.1021/acs.analchem.3c02442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Aggregation-induced emission (AIE)-based fluorescent organic nanoparticles (FONPs) with distinctive characteristics are emerging as superior sensors due to their facile fabrication, high signal-to-noise ratio, and good biocompatibility. The present article delineates the detection and analysis of the redox behavior of the protein disulfide isomerase (PDI) enzyme by exploitation of the AIE of novel naphthalimide (NI) derivatives having thiol (-SH) and disulfide (-S-S-) moieties. Self-aggregated spherical-shaped organic nanoparticles were prepared by synthesized NI-based amphiphiles (NISH, NISS, NINSS, and TNINSH) through J-type aggregation in DMSO-water (fw = 99 vol %). Naphthyl residue containing NI-derived amphiphiles (NINSS and TNINSH) exhibited AIE (blue and yellow) at 470 and 550 nm, respectively, in DMSO-water (fw = 99 vol %). NINSS and TNINSH FONPs were suitably utilized in sensing PDI through their redox nature of thiol-disulfide exchange. Fluorescence quenching of NINSS FONPs was observed due to reduction of disulfide to thiol by PDI, whereas emission intensity was progressively red-shifted and enhanced ("Dual-AIE") for TNINSH (containing ER-targeting N-tosylethylenediamine), owing to oxidation of thiol to disulfide by PDI. NINSS and TNINSH FONPs were found to be highly efficient in sensing PDI through the AIE-based "fluorescence off/on" mechanism having limits of detection of ∼12.6-17.7 and ∼11.7-16.5 ng/mL, respectively. In vitro cell imaging for NIH3T3 (noncancer) and B16F10 (melanoma) cells with NINSS and TNINSH FONPs displayed excellent diagnosis of eukaryotic cells upon interaction with indigenous PDI. Notably, detection of cancer cells was more sensitive over the noncancerous cells by these FONPs due to overexpression of PDI within cancer cells.
Collapse
Affiliation(s)
- Anup Kumar Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| | - Aftab Hossain Khan
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| |
Collapse
|
8
|
Liu L, Chang Y, Lou J, Zhang S, Yi X. Overview on the Development of Alkaline-Phosphatase-Linked Optical Immunoassays. Molecules 2023; 28:6565. [PMID: 37764341 PMCID: PMC10536125 DOI: 10.3390/molecules28186565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The drive to achieve ultrasensitive target detection with exceptional efficiency and accuracy requires the advancement of immunoassays. Optical immunoassays have demonstrated significant potential in clinical diagnosis, food safety, environmental protection, and other fields. Through the innovative and feasible combination of enzyme catalysis and optical immunoassays, notable progress has been made in enhancing analytical performances. Among the kinds of reporter enzymes, alkaline phosphatase (ALP) stands out due to its high catalytic activity, elevated turnover number, and broad substrate specificity, rendering it an excellent candidate for the development of various immunoassays. This review provides a systematic evaluation of the advancements in optical immunoassays by employing ALP as the signal label, encompassing fluorescence, colorimetry, chemiluminescence, and surface-enhanced Raman scattering. Particular emphasis is placed on the fundamental signal amplification strategies employed in ALP-linked immunoassays. Furthermore, this work briefly discusses the proposed solutions and challenges that need to be addressed to further enhance the performances of ALP-linked immunoassays.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiaxin Lou
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Shuo Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
9
|
Deng D, Chang Y, Liu W, Ren M, Xia N, Hao Y. Advancements in Biosensors Based on the Assembles of Small Organic Molecules and Peptides. BIOSENSORS 2023; 13:773. [PMID: 37622859 PMCID: PMC10452798 DOI: 10.3390/bios13080773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Over the past few decades, molecular self-assembly has witnessed tremendous progress in a variety of biosensing and biomedical applications. In particular, self-assembled nanostructures of small organic molecules and peptides with intriguing characteristics (e.g., structure tailoring, facile processability, and excellent biocompatibility) have shown outstanding potential in the development of various biosensors. In this review, we introduced the unique properties of self-assembled nanostructures with small organic molecules and peptides for biosensing applications. We first discussed the applications of such nanostructures in electrochemical biosensors as electrode supports for enzymes and cells and as signal labels with a large number of electroactive units for signal amplification. Secondly, the utilization of fluorescent nanomaterials by self-assembled dyes or peptides was introduced. Thereinto, typical examples based on target-responsive aggregation-induced emission and decomposition-induced fluorescent enhancement were discussed. Finally, the applications of self-assembled nanomaterials in the colorimetric assays were summarized. We also briefly addressed the challenges and future prospects of biosensors based on self-assembled nanostructures.
Collapse
Affiliation(s)
- Dehua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenjing Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingwei Ren
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yuanqiang Hao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
10
|
Gao F, Chang Y, Zhang J, Wang L, Liu L. Stimuli-responsive aggregation-induced emission of molecular probes by electrostatic and hydrophobic interactions: Effect of organic solvent content and application for probing of alkaline phosphatase activity. Talanta 2023; 265:124923. [PMID: 37433248 DOI: 10.1016/j.talanta.2023.124923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
We suggest that aggregation-induced emission (AIE) molecular probes with single charged/reactive group can exist in the formation of nanostructures but not monomers at extremely low organic solvent content. The nanoaggregates show good dispersivity and emit week emission. Stimuli-responsive assembly of nanoaggregates by electrostatic interactions can turn on the fluorescence, facilitating the design of biosensors with single-charged molecular probes as the AIE fluorogens. To prove the concept, tetraphenylethene-substituted pyridinium salt (TPE-Py) was used as the AIE fluorogen for probing of alkaline phosphatase (ALP) activity with pyrophosphate ion (PPi) as the enzyme substrate. The dynamic light scattering and transmission electron microscope experiments demonstrated that TPE-Py probes existed in aqueous solution at nanometer size and morphology. Stimuli such as the negatively charged PPi, citrate, ATP, ADP, NADP and DNA could trigger the aggregation of the positively charged TPE-Py nanoparticles, thus enhancing the fluorescence via AIE effect. ALP-enzymatic hydrolysis of PPi into two phosphate ions (Pi) limited the aggregation of TPE-Py nanoparticles. The strategy was used for the assay of ALP with a low detection limit (1 U/L) and wide linear range (1-200 U/L). We also investigated the effect of organic solvent content on the AIE process and found that high concentration of organic solvent can prevent the hydrophobic interaction between AIE molecules but show no essential influence on the electrostatic interaction-mediated assembly. The work should be evaluable for understanding AIE phenomenon and developing novel, simple and sensitive biosensors using a molecular probe with single charged/reactive group as the signal reporter.
Collapse
Affiliation(s)
- Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China; School of Chemistry and Materials Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jingyi Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Lingli Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, PR China.
| |
Collapse
|
11
|
Zhu Q, Wang W, Sun G, Albert Aryee A, Wei J, Meng HM, Kong W, Li Z. Red emissive nanocomposite with high quantum yield for ultrasensitive and selective detection of latent fingerprints. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Gao F, Zhao R, Huang L, Yi X. Background-Quenched Aggregation-Induced Emission through Electrostatic Interactions for the Detection of Poly(ADP-ribose) Polymerase-1 Activity. Molecules 2023; 28:4759. [PMID: 37375313 DOI: 10.3390/molecules28124759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP1) is a potential biomarker and therapeutic target for cancers that can catalyze the poly-ADP-ribosylation of nicotinamide adenine dinucleotide (NAD+) onto the acceptor proteins to form long poly(ADP-ribose) (PAR) polymers. Through integration with aggregation-induced emission (AIE), a background-quenched strategy for the detection of PARP1 activity was designed. In the absence of PARP1, the background signal caused by the electrostatic interactions between quencher-labeled PARP1-specitic DNA and tetraphenylethene-substituted pyridinium salt (TPE-Py, a positively charged AIE fluorogen) was low due to the fluorescence resonance energy transfer effect. After poly-ADP-ribosylation, the TPE-Py fluorogens were recruited by the negatively charged PAR polymers to form larger aggregates through electrostatic interactions, thus enhancing the emission. The detection limit of this method for PARP1 detection was found to be 0.006 U with a linear range of 0.01~2 U. The strategy was used to evaluate the inhibition efficiency of inhibitors and the activity of PARP1 in breast cancer cells with satisfactory results, thus showing great potential for clinical diagnostic and therapeutic monitoring.
Collapse
Affiliation(s)
- Fengli Gao
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ruimin Zhao
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Liping Huang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
13
|
Zhang G, Zhang G, Lai X, Su L, He W, Lai W, Deng S. Polyethyleneimine-induced fluorescence enhancement strategy for AIEgen: the mechanism and application. Anal Bioanal Chem 2023; 415:1347-1355. [PMID: 36693956 DOI: 10.1007/s00216-023-04526-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
Aggregation-induced emission luminogens (AIEgens) are attracting extensive research attention in the biosensor fields. Herein, we report a new polyethyleneimine (PEI)-induced strategy for enhancing luminescence of TCBPE (an AIEgen) to promote its development in biosensor. The copolymer dots (TCBPE-PEI) with high quantum yield (39.7%) and outstanding stability were synthesized via a one-pot method. The fluorescence enhancement mechanism based on the PEI strategy originated from the restriction of intramolecular motions of TCBPEs and the form of donor-acceptor structures to decrease the inherent energy bandgap. Benefiting from chelating property of TCBPE-PEI by Cu2+, a fluorescence-quenching sensor for Cu2+ detection was developed based on the fluorescence quenching of the electron transfer effect. Especially, a good linear range of 10-250 nM with a low limit of detection 1.1 nM was achieved, and it was further applied in samples successfully. The current work provides a novel approach to fabricate AIEgen biosensors and shows great potential in Cu2+ detection.
Collapse
Affiliation(s)
- Gan Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Ganggang Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Xiaocui Lai
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Liu Su
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Weihua He
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.
| | - Shengliang Deng
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China.
| |
Collapse
|
14
|
Fu H, Xu Z, Liu T, Lei J. In situ coordination interactions between metal-organic framework nanoemitters and coreactants for enhanced electrochemiluminescence in biosensing. Biosens Bioelectron 2023; 222:114920. [PMID: 36470062 DOI: 10.1016/j.bios.2022.114920] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Coreactant electrochemiluminescence (ECL) is one of the most popular pathways in commercial analysis, which can provide simplicity and convenience for getting intense ECL emission. However, the low efficiency of intermolecular electron transfer could weaken ECL intensity. In this work, we developed an enhanced ECL strategy through in situ coordination interactions between metal-organic framework emitters and coreactants. First, a metal-organic framework (MOF) emitter was synthesized with 1,1,2,2-tetrakis(4-(pyridin-4-yl)phenyl)ethane (TPPE) as aggregation-induced emission linkers and Zn as nodes. Interestingly, compared to TPPE ligand, the resulted MOF nanoemitters demonstrated 49.5 folds enhancement of ECL emission in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) as the coreactant. More significantly, different from the constant ECL intensity using TPrA coreactant, DABCO exhibited time-dependent ECL intensity due to the intrareticular electron transfer through coordination interaction between DABCO and Zn2+, which was confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectral experiments. The enhanced ECL was then applied to construct a sensitive ECL method to detect dopamine in serum samples. The coordination interaction between emitters and coreactants not only provides a universal way to enhance ECL, but also expands the applications of coreactant ECL system in convenience route.
Collapse
Affiliation(s)
- Haomin Fu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhiyuan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tianrui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
15
|
Wang SH, Zhang YW, Wang XD, Zan Q, Yu X, Fan L. An esterase-sensitive AIEgen probe targeting mitochondria and lipid droplets for assessing cell viability. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122122. [PMID: 36427403 DOI: 10.1016/j.saa.2022.122122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
In order to conduct in-depth research on the mechanisms of cancer diagnosis and treatment, it is very important to develop fluorescent probes to study the interactions between different organelles and understand the relationship between various organelles and cell viability. However, the lack of fluorescent probes to visualize two or more targets has resulted in limited studies of intracellular interactions between different organelles. To this end, in this work, we developed a near-infrared (NIR) AIE probe with dual-color emission, NAP-Py-E, for mitochondria and lipid droplets imaging. The probe NAP-Py-E consists of lipophilic fraction, pyridine cation structure and esterase hydrolysis site. Interestingly, NAP-Py-E first targets mitochondria and emits red fluorescence; after partially hydrolyed by esterase in living cells, the hydrolysate NAP-Py accumulates in lipid droplets and emits green fluorescence. The probe has been successfully used to assess cell viability due to its dual-color emission and dual-organelle targeted changes.
Collapse
Affiliation(s)
- Shuo-Hang Wang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, Jilin, China
| | - Yue-Wei Zhang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, Jilin, China.
| | - Xiao-Dong Wang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Qi Zan
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Xue Yu
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, Jilin, China
| | - Li Fan
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, Shanxi, China.
| |
Collapse
|
16
|
Huang L, Zhu L, Su W, Liang X, Li W, Lin W. Novel Polarity Fluorescent Probe for Dual-Color Visualization of Lysosomes and Plasma Membrane during Apoptosis. Anal Chem 2022; 94:11643-11649. [PMID: 35943236 DOI: 10.1021/acs.analchem.2c02207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Apoptosis plays a crucial role in the occurrence of cancer and other diseases. Real-time monitoring of the cell apoptosis process has great significance for cell viability and drug screening. Herein, a novel fluorescent probe was constructed based on the fluorescence resonance energy transfer mechanism, which track the sensitivity of polarity changes, as well as detect the drug-induced cell apoptosis process in a dual-color mode. Importantly, the change of cellular microenvironmental polarity makes it possible to dynamically visualize the process of drug-induced cell apoptosis. More significantly, the designed probe targeted the lysosomes in the living cells to give a blue emission, and it accumulated on the plasma membrane to display red fluorescence during the drug-induced cell apoptosis process. Thus, cell viability could be monitored by both the localization and emission colors of the robust probe. We expect that the unique probe can provide a new blueprint for evaluating and screening apoptosis-related drugs.
Collapse
Affiliation(s)
- Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Lin Zhu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wanting Su
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Xing Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wenxiu Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
17
|
Wang Y, Huo T, Du Y, Qian M, Lin C, Nie H, Li W, Hao T, Zhang X, Lin N, Huang R. Sensitive CTC analysis and dual-mode MRI/FL diagnosis based on a magnetic core-shell aptasensor. Biosens Bioelectron 2022; 215:114530. [PMID: 35839621 DOI: 10.1016/j.bios.2022.114530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022]
Abstract
Synergizing the sensitive circulating tumor cell (CTC) capture, detection, release and the specific magnetic resonance/fluorescence (MR/FL) imaging for accurate cancer diagnosis is of great importance for cancer treatment. Herein, EcoR1-responsive complementary pairing of two ssDNA with a fluorescent P0 aptamer, which can specifically bind with the overexpressed MUC1 protein on cancer cells, was covalently modified to SiO2@C-coated magnetic nanoparticles for preparing a special nanoparticle-mediated FL turn-on aptasensor (FSC-D-P0). This aptasensor can selectively capture/enrich CTC and thus achieve sensitive CTC detection/imaging in even the blood due to its stable targeting, unique magnetic properties and the regulated interactions between the quencher and the fluorescent groups. Meanwhile, FSC-D-P0 can release the captured CTC for further downstream analysis upon the EcoR1 enzyme-triggered cleavage of the double-stranded DNA (dsDNA). Most importantly, this aptasensor can distinctly avoid false positivity of MRI via multiple targeting mechanisms. Thus, the sensitive CTC capture, detection, release and accurate MR/FL imaging were synergistically combined into a single platform with good biocompatibility, promising a robust pattern for clinical tumor diagnosis in vitro and in vivo.
Collapse
Affiliation(s)
- Yi Wang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201600, China
| | - Taotao Huo
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yilin Du
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Min Qian
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Chenteng Lin
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Huifang Nie
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Wenshuai Li
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Tingting Hao
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Xiaoyi Zhang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, 239001, China
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
18
|
Yu G, Sun Z, Wu Y, Sai N. Dual-QDs ratios fluorescent probe for sensitive and stable detection of insulin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120641. [PMID: 34865977 DOI: 10.1016/j.saa.2021.120641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
In this work, immune modified graphene quantum dot (GQD) and semiconductor quantum dot (SQD) with blue and red emission respectively were synthesized to assemble a dual-QDs ratios fluorescent probe, which could be efficient used for insulin determination. There may be the dynamic equilibrium of förster resonance energy transfer (FRET) and aggregation-induced emission (AIE) in the internal of the probe, thus emitted special dual fluorescent lights. However, this sate of probe was cleaved upon exposure to target insulin, resulting in changing of the dual fluorescent lights. The resulting ratios response can be correlated quantitatively to the concentration of insulin, and was found to have a detection limit (as low as 0.045 ng mL-1) and rapid response time (as short as 5 min). It has been preliminarily used for ratiometric sensing of insulin in biological samples and exhibited consistency of the insulin detected results and higher stability compared with conventional ELISA. Therefore, this sensitive, rapid and stable detection system has great potential for next generation of the bioassay platform for clinical diagnosis and other applications.
Collapse
Affiliation(s)
- Guanggui Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhong Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yuntang Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Na Sai
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
19
|
Niu CP, Zhang CR, Cui WR, Yi SM, Liang RP, Qiu JD. A conveniently synthesized redox-active fluorescent covalent organic framework for selective detection and adsorption of uranium. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127951. [PMID: 34894515 DOI: 10.1016/j.jhazmat.2021.127951] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/19/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Uranium is a key element in the nuclear industry and also a global environmental contaminant with combined highly toxic and radioactive. Currently, the materials based on post-modification of amidoxime have been developed for uranium detection and adsorption. However, the affinity of amidoxime group for vanadium is stronger than that of uranium, which is the main challenge hindering the practical application of amidoxime-based adsorbents. Herein, we synthesized a fluorescent covalent organic framework (TFPPy-BDOH) through integrating biphenyl diamine and pyrene unit into the π-conjugated framework. TFPPy-BDOH has an excellent selectivity to uranium due to the synergistic effect of nitrogen atom in the imine bond and hydroxyl groups in conjugated framework. It can achieve ultra-fast fluorescence response time (2 s) and ultra-low detection limit (8.8 nM), which may be attributed to its intrinsic regular porous channel structures and excellent hydrophilicity. More excitingly, TFPPy-BDOH can chemically reduce soluble U (VI) to insoluble U (IV), and release the binding site to adsorb additional U (VI), achieving high adsorption capacity of 982.6 ± 49.1 mg g-1. Therefore, TFPPy-BDOH can overcome the challenges faced by current amidoxime-based adsorbents, making it as a potential adsorbent in practical applications.
Collapse
Affiliation(s)
- Cheng-Peng Niu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Cheng-Rong Zhang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Wei-Rong Cui
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Shun-Mo Yi
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang 330031, China; Engineering Technology Research Center for Environmental Protection Materials and Equipment of Jiangxi Province, Pingxiang University, Pingxiang 337055, China.
| |
Collapse
|
20
|
Guo Y, Zheng Y, Liu Y, Feng X, Dong Q, Li J, Wang J, Zhao C. A concise detection strategy of Staphylococcus aureus using N-Succinyl-Chitosan-dopped bacteria-imprinted composite film and AIE fluorescence sensor. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126934. [PMID: 34464860 DOI: 10.1016/j.jhazmat.2021.126934] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Staphylococcus aureus is one of the major foodborne pathogens. Efficient detection and isolation of Staphylococcus aureus from complex samples are crucial. Herein, we report a concise strategy to detect of Staphylococcus aureus with high sensitivity and specificity, based on N-Succinyl-Chitosan doping bacteria-imprinted composite film and aggregation-induced emission (AIE)-featuring fluorescence sensor. The good shaping and mechanical properties of polydimethylsiloxane provide a specific recognition site suitable for Staphylococcus aureus. For the first time, chitosan derivatives is combined with polydimethylsiloxane to prepare a two-component composite film, which possesses a remarkable absorption performance of Staphylococcus aureus using the natural excellent absorption property of chitosan. The positive charged AIE-featuring Au(I)-disulfide nanoparticles realized the quantitative characterization of Staphylococcus aureus without cooperation with bio-recognition elements. To conclude, this study provides new possibilities for the manufacture of highly efficient bacterial separators with superior performance and facilitates the application of unlabeled nanoparticles in quantitative analysis.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun 130021, China
| | - Yan Zheng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| | - Yajuan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Xiaopeng Feng
- State Key Laboratory for Supramolecular Strucuture and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qinghai Dong
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Juan Li
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun 130021, China.
| | - Juan Wang
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun 130021, China.
| | - Chao Zhao
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
21
|
Halder D, Mallick A, Purkayastha P. DNA-flavonoid pH sensitive host-guest mechanism to sense fluoride ions and construction of molecular logic gates. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Fluorescence imaging for visualizing the bioactive molecules of lipid peroxidation within biological systems. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Liu J, Zheng X, Dong Y, Li W, Yin M, Song Q, Zhang C. Novel A–D–A structural imidazole derivatives with charge transfer excited states: importance of molecular structure design in obtaining a “turn-on” type fluorescence probe. NEW J CHEM 2022. [DOI: 10.1039/d2nj02013k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two A–D–A structural triphenylamine-imidazole derivatives were designed to provide a potential strategy for the development of turn-on type Fe3+ fluorescent probes.
Collapse
Affiliation(s)
- Jin Liu
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaolong Zheng
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yujie Dong
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Weijun Li
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Maoxing Yin
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qingbao Song
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Cheng Zhang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
24
|
Chen H, Zhou Z, Li Z, He X, Shen J. Highly sensitive fluorescent sensor based on coumarin organic dye for pyrophosphate ion turn-on biosensing in synovial fluid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119792. [PMID: 33887510 DOI: 10.1016/j.saa.2021.119792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Highly sensitive fluorescence detection of pyrophosphate ion (PPi) is in urgent demand but remains a great obstacle, ascribing to scarcity of high-performance materials with promising optical property and high affinity. Herein, we report the design and fabrication of a coumarin-based organic dye (DCCH-TPD) containing both hydrazide group and terpyridine moiety for PPi biosensing through Cu2+-induced photo-electron transfer (PET) effect and target analyte-switched competitive coordination reaction. Individual DCCH-TPD was found to be highly emissive, and displayed a turn-off response toward Cu2+ due to formation of Cu2+@DCCH-TPD and PET effect. The recognition of Cu2+@DCCH-TPD by PPi leads to generation of Cu2+@PPi complex, which greatly reduces the amount of Cu2+ coordinated with DCCH-TPD, subsequently decreasing PET effect. Significantly enhanced fluorescence is recorded and the fluorescence intensity is closely relied on PPi concentration. Thus, highly sensitive detection of PPi is achieved, and the detection limit was calculated to be 0.075 μM. Furthermore, the proposed sensor presented good selectivity, and excellent practical ability for application in arthritic fluid.
Collapse
Affiliation(s)
- Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, PR China.
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Ziyong Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, PR China
| | - Xiaojun He
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, PR China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou 325001, PR China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, PR China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou 325001, PR China.
| |
Collapse
|
25
|
Li Y, Zhang Y, Wang M, Wang D, Chen K, Lin P, Ge Y, Liu W, Wu J. Highly selective fluorescence probe with peptide backbone for imaging mercury ions in living cells based on aggregation-induced emission effect. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125712. [PMID: 34088194 DOI: 10.1016/j.jhazmat.2021.125712] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Mercury is an anthropogenic toxic heavy metal found in the environment. It is highly desirable to develop a fluorescence probe that can selectively and sensitively detect mercury ions using a turn-on response. This paper reports the successful development of a peptide fluorescence probe, TP-2 (TPE-Trp-Pro-Gln-His-Glu-NH2), which uses aggregation-induced emission effects and high selectivity to detect Hg2+. After fluorescence was activated, Hg2+ was efficiently detected using the change in fluorescence intensity. The detection limit for Hg2+ in the buffer solution was 41 nM (R2 = 0.9952). Owing to its high sensitivity, high cell permeability, and low biotoxicity, the probe could perform live cell imaging under biological conditions. This study demonstrated that TP-2 can detect Hg2+ in complex biological environments.
Collapse
Affiliation(s)
- Yongxin Li
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| | - Yaoling Zhang
- Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, PR China
| | - Min Wang
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining 810007, PR China
| | - Daojiong Wang
- Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences, University of Science and Technology of China, Hefei 230027, PR China
| | - Kai Chen
- Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences, University of Science and Technology of China, Hefei 230027, PR China
| | - Pengcheng Lin
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining 810007, PR China
| | - Yushu Ge
- Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences, University of Science and Technology of China, Hefei 230027, PR China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| | - Jiang Wu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences, University of Science and Technology of China, Hefei 230027, PR China.
| |
Collapse
|
26
|
Chen J, Chen X, Wang P, Liu S, Chi Z. Aggregation-induced emission luminogen@manganese dioxide core-shell nanomaterial-based paper analytical device for equipment-free and visual detection of organophosphorus pesticide. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125306. [PMID: 33588332 DOI: 10.1016/j.jhazmat.2021.125306] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Organophosphorus pesticide (OP) residues have gathered considerable attention because of their significant threat to society development and healthy life. Developing a sensitive and practical OPs sensor is highly urgent, whereas remains a huge challenge. To this end, we fabricated a high-performance fluorescence paper analytical device (PAD) for apparatus-free and visual sensing of OPs based on aggregation-induced emission (AIE) luminogen's bright emission in aggregated state, unique response of MnO2 to thiol compounds, and difference of MnO2 and Mn2+ in quenching fluorescence. AIE nanoparticles PTDNPs-0.10 and MnO2 respectively acted as core and shell to prepare PTDNPs@MnO2, which possessed high stability and were dripped on cellulose paper's surface to fabricate AIE-PAD. The sensing mechanism is that OPs-treated acetylcholinesterase (AChE) prevents the formation of thiocholine, thereby minimizing the reduction of MnO2 into Mn2+ and changing the output signal. As a result, equipment-free and visual sensing of OPs was acquired with limit of detection of 1.60 ng/mL. This work justifies the feasibility of applying core-shell material to develop high-performance sensor and substituting complex/expensive solution-phase sensor with PAD, providing a new avenue to bring OPs analysis out of the lab and into the world.
Collapse
Affiliation(s)
- Jianling Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaojie Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Siwei Liu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhenguo Chi
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
27
|
Palladium-Catalyzed Direct Mono- and Diarylation of Diphenydithienylethenes: A Useful Method for Enhancing Fluorescence Intensity and Aggregation-Induced Emission. MOLBANK 2021. [DOI: 10.3390/m1210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study we report efficient method for the syntheses of mono- and diarylated diphenyldithienylethene (DPDTE) via a palladium-catalyzed C–H arylation reaction. These new derivatives showed amplified luminescent properties thanks to a change in polarity, particularly in the presence of an electron-withdrawing groups (EWG). Moreover, the arylated DPDTEs showed dual-emissive phenomena, including fluorescence in organic solvents and aggregation-induced emission.
Collapse
|
28
|
Zhang H, Hu X, Zhu H, Shen L, Liu C, Zhang X, Gao X, Li L, Zhu YP, Li Z. A Solid-State Fluorescence Switch Based on Triphenylethene-Functionalized Dithienylethene With Aggregation-Induced Emission. Front Chem 2021; 9:665880. [PMID: 33996756 PMCID: PMC8113874 DOI: 10.3389/fchem.2021.665880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022] Open
Abstract
The development of novel dithienylethene-based fluorescence switches in the aggregated state, and the solid state is highly desirable for potential application in the fields of optoelectronics and photopharmacology. In this contribution, three novel triphenylethene-functionalized dithienylethenes (1-3) have been designed and prepared by appending triphenylethene moieties at one end of dithienylethene unit. Their chemical structures are confirmed by 1H NMR, 13C NMR, and HRMS (ESI). They display good photochromic behaviors with excellent fatigue resistance upon irradiation with UV or visible light in Tetrahydrofuran (THF) solution. Before irradiation with UV light, they exhibit Aggregation Induced Emission (AIE) properties and luminescence behaviors in the solid state. Moreover, upon alternating irradiation with UV/visible light, they display effective fluorescent switching behaviors in the aggregated state and the solid state. The experimental results have been validated by the Density Functional Theory (DFT) calculations. Thus, they can be utilized as novel fluorescence switches integrated in smart, solid-state optoelectronic materials and photopharmacology.
Collapse
Affiliation(s)
- Haining Zhang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Xiaoxiao Hu
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Huijuan Zhu
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Limin Shen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Congmin Liu
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Xiaoman Zhang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Xinyu Gao
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Lingmei Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Yan-Ping Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China
| | - Ziyong Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| |
Collapse
|
29
|
Munzi G, Failla S, Di Bella S. Highly selective and sensitive colorimetric/fluorometric dual mode detection of relevant biogenic amines. Analyst 2021; 146:2144-2151. [PMID: 33538722 DOI: 10.1039/d0an02336a] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biogenic amines are involved in physiological roles in living organisms, but their excessive production or intake can induce undesired toxicological effects. As biogenic amines can be found in the process of food spoilage, they are considered an indicator of food quality and freshness, and their detection is of crucial importance in food safety. In this contribution, we report the fast and direct colorimetric and fluorometric sensing of biogenic amines by means of a dinuclear Zn(ii) Schiff-base complex. The selective and sensitive detection involves the formation of stable adducts between the dinuclear complex, acting as the Lewis acidic molecular tweezer, and biogenic di- or polyamines. The selectivity towards biogenic amines, even in the presence of common aliphatic, primary, secondary, or tertiary monoamines, heterocyclic amines, and amino acids, is demonstrated by competitive experiments. The quantitation of histamine in a fish matrix is easily achieved using a standard extraction procedure followed by simple colorimetric or fluorometric measurements.
Collapse
Affiliation(s)
- Gabriella Munzi
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | | | | |
Collapse
|
30
|
Dong L, Peng HQ, Niu LY, Yang QZ. Modulation of Aggregation-Induced Emission by Excitation Energy Transfer: Design and Application. Top Curr Chem (Cham) 2021; 379:18. [PMID: 33825076 DOI: 10.1007/s41061-021-00330-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Excitation energy transfer (EET) as a fundamental photophysical process is well-explored for developing functional materials with tunable photophysical properties. Compared to traditional fluorophores, aggregation-induced emission luminogens (AIEgens) exhibit unique advantages for building EET systems, especially serving as energy donors, due to their outstanding photophysical properties such as bright fluorescence in aggregation state, broad absorption and emission spectra, large Stokes shift, and high photobleaching resistance. In addition, the photophysical properties of AIEgens can be modulated by energy transfer for improved luminescence performance. Therefore, a variety of EET systems based on AIEgens have been constructed and their applications in different areas have been explored. In this review, we summarize recent progress in the design strategy of AIE-based energy transfer systems for light-harvesting, fluorescent probes and theranostic systems, with an emphasis on design strategies to achieve desirable properties. The limitations, challenges and future opportunities of AIE-EET systems are briefly outlined. Design strategies and applications (light-harvesting, fluorescent probe and theranostics) of AIEgen-based excitation energy systems are discussed in this review.
Collapse
Affiliation(s)
- Lei Dong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Hui-Qing Peng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
31
|
Sun Y, Qi T, Jin Y, Liang L, Zhao J. A signal-on fluorescent aptasensor based on gold nanoparticles for kanamycin detection. RSC Adv 2021; 11:10054-10060. [PMID: 35423483 PMCID: PMC8695508 DOI: 10.1039/d0ra10602j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
This study describes the development, verification and practical application of an aptasensor for the fluorometric detection of kanamycin. Using the nucleic acid aptamer with FAM fluorescent group as the conjugate, using gold nanoparticles as the fluorescence dynamic quenching source, a fluorescence sensor was fabricated through the signal-on method for the micro-detection of kanamycin. The nucleic acid chimera is connected to the fluorophore, and the gold nanoparticles are used as the fluorescence dynamic quenching source under actual conditions. The detection limit of kanamycin is 0.1 pM, and the detection range is 0.1 pM to 0.1 μM. This biosensor works satisfactorily in complex samples with no impurities, which gives this method an obvious advantage over other analytical methods. In addition, the mechanism of action between gold nanoparticles/FAM-aptamer/kanamycin is discussed and studied in depth here. It provides a more thorough analysis and more application possibilities for fluorescence-aptamer biosensing.
Collapse
Affiliation(s)
- Yimeng Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences Shanghai 200050 China
| | - Tong Qi
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences Shanghai 200050 China
| | - Yan Jin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences Shanghai 200050 China
- College of Sciences, Shanghai Institute of Technology Shanghai 201418 China
| | - Lijuan Liang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences Shanghai 200050 China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences Shanghai 200050 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
32
|
Sun Y, Geng X, Wang Y, Su X, Han R, Wang J, Li X, Wang P, Zhang K, Wang X. Highly Efficient Water-Soluble Photosensitizer Based on Chlorin: Synthesis, Characterization, and Evaluation for Photodynamic Therapy. ACS Pharmacol Transl Sci 2021; 4:802-812. [PMID: 33860203 DOI: 10.1021/acsptsci.1c00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 01/10/2023]
Abstract
The clinical applications of many photosensitizers (PSs) are limited because of their poor water solubility, weak tissue penetration, low chemical purity, and severe toxicity in the absence of light. We designed a novel chlorin-based PS (designated as HPS) to achieve fluorescence image-guided photodynamic therapy (PDT) with efficient ROS generation. In addition to its simple fabrication process, HPS has other advantages such as excellent water solubility, strong NIR absorption, and high biocompatibility upon chemical functionalization for enhanced phototherapy. HPS exhibited high photodynamic performance against lung cancer and breast cancer cells by generating a large amount of singlet oxygen (1O2) under 654 nm laser irradiation. HPS accumulated into multiple organelles such as mitochondria and the endoplasmic reticulum and triggered cell apoptosis by laser exposure. In the tumor-bearing mice, in vivo, HPS showed an optimal half-life in circulation and achieved fluorescence-image-guided PDT within the irradiation window, resulting in effective tumor growth inhibition and the prolonged survival of animals. Moreover, the antitumor PDT effect of HPS was close to the clinical trial phase II stage of HPPH even at the low dosage of 0.32 mg/kg (under 75 J/cm2 laser), while the systemic safety of HPS was much higher. In conclusion, HPS is a novel water-soluble chlorin derivative with excellent PDT potential for clinical transformation.
Collapse
Affiliation(s)
- Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Xiaorui Geng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Yihui Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Xiaomin Su
- Shannxi Blood Center, Xi'an 710061, The People's Republic of China
| | - Ruyin Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Jiangyue Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Xinyan Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| |
Collapse
|
33
|
Zou R, Wang S, Chen C, Chen X, Gong H, Cai C. An enzyme-free DNA circuit-assisted MoS2 nanosheet enhanced fluorescence assay for label-free DNA detection. Talanta 2021; 222:121505. [DOI: 10.1016/j.talanta.2020.121505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022]
|
34
|
Chen J, Yan J, Feng Q, Miao X, Dou B, Wang P. Label-free and enzyme-free fluorescence detection of microRNA based on sulfydryl-functionalized carbon dots via target-initiated hemin/G-quadruplex-catalyzed oxidation. Biosens Bioelectron 2021; 176:112955. [PMID: 33412427 DOI: 10.1016/j.bios.2020.112955] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Carbon dots (CDs)-based biosensors have attracted considerable interest in reliable and sensitive detection of microRNA (miRNA) because of their merits of ultra-small size, excellent biosafety and tunable emission, whereas complicated labeling procedure and expensive bioenzyme associated with current strategies significantly limit their practical application. Herein, we developed a label-free and enzyme-free fluorescence strategy based on strand displaced amplification (SDA) for highly sensitive detection of miRNA using sulfydryl-functionalized CDs (CDs-SH) as probe. CDs-SH displayed excellent response to G-quadruplex DNA against other DNAs based on based on the catalytic oxidation of -SH into -S-S- by hemin/G-quadruplex. Further, CDs-SH were employed to detect miRNA, using miRNA-21 as target model, which triggered the SDA reaction of P1 and P2 to generate hemin/G-quadruplex, subsequently making CDs-SH transform from dot to aggresome along with the quenched fluorescence. Therefore, label-free, enzyme-free, and highly sensitive analysis of miRNA-21 was readily acquired with a limit of detection at 0.03 pM. This proposed biosensor couples the advantages of CDs and label-free/enzyme-free strategy, and thus has a significant potential to be used in early and accurate diagnosis of cancer.
Collapse
Affiliation(s)
- Jianling Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China; School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ji Yan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Xiangmin Miao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Baoting Dou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
35
|
Cui J, Kan L, Li Z, Yang L, Wang M, He L, Lou Y, Xue Y, Zhang Z. Porphyrin-based covalent organic framework as bioplatfrom for detection of vascular endothelial growth factor 165 through fluorescence resonance energy transfer. Talanta 2020; 228:122060. [PMID: 33773722 DOI: 10.1016/j.talanta.2020.122060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023]
Abstract
A fluorescent aptasensor based on porphyrin-based covalent organic framework (p-COF) and carbon dots (CDs) was constructed for detecting vascular endothelial growth factor 165 (VEGF165) and for imaging of the breast cancer cell line Michigan cancer foundation-7 (MCF-7). CDs synthesized with strong photoluminescence at λ∼380 nm were used as donors to label the VEGF165-targeted aptamers (AptVEGF/CDs). Additionally, the p-COF nanostructure comprised rich functional groups of CN on the surface and π-stacking planar nanostructure, resulting in the CDs adsorption via weakly π-π stacking, hydrogen bond and the Van der Waals force. Thereby, the fluorescence resonance energy transfer (FRET) occurred due to the close distance between the p-COF network and CDs, leading to the quenching of the fluorescence feature of CDs and p-COF. In the presence of VEGF165, the G-quadruplex was formed via the specific binding between VEGF165 and aptamer. It impelled that the release of partial VEGF165-AptVEGF/CDs complex, affording the fluorescence recovery of the sensing system to some extent. Consequently, the proposed AptVEGF/CDs/p-COF fluorescence biosensor offered excellent analytical performances for the VEGF165 detection, displaying a detection limit of 20.9 fg mL-1 within a wide linear range of the VEGF165 concentration of 1.0 pg mL-1-100 ng mL-1. The developed fluorescence biosensor was also used to determine VEGF165-overexpressed in MCF-7 cancer cells. Thereby, the present work can greatly widen the application of COFs in the development of aptasensors and cancer diagnosis.
Collapse
Affiliation(s)
- Jing Cui
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, China
| | - Lun Kan
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, China
| | - Zhenzhen Li
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, China
| | - Longyu Yang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, China
| | - Minghua Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, China
| | - Linghao He
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, China
| | - Yafei Lou
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, China
| | - Yulin Xue
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, China
| | - Zhihong Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
36
|
Monodentate AIEgen Anchored on Metal‐Organic Framework for Fast Fluorescence Sensing of Phosphate. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Yang X, Luo Y, Li S, Xu X, Bao Y, Yang J, Ouyang D, Fan X, Gong P, Cai L. Small Molecular Prodrug Amphiphile Self-Assembled AIE Dots for Cancer Theranostics. Front Bioeng Biotechnol 2020; 8:903. [PMID: 33117772 PMCID: PMC7566912 DOI: 10.3389/fbioe.2020.00903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
A simple and facile one-step method was developed to construct a small molecular prodrug amphiphile self-assembled organic dots CPPG with aggregation-induced emission (AIE) characteristics. Diphenylalanine peptide (FF), which is the essential moiety of the self-assembling peptide-drug conjugate and as its core recognition motifs for molecular self-assembly. In addition, the D-glucose transported protein (GLUT), which is one of the important nutrient transporters and is overexpressed in cancer cells. The conjugation of glycosyl further endues the nanoparticle with good biocompatibility and tumor-targeting ability. Taking advantages of both the cancer cell-targeting capability of small molecular prodrug amphiphile CPPG and the AIE aggregates with strong emission, the prepared CPPG AIE dots can target cancer cells specifically and inhibit the proliferation of cancer cells with good biocompatibility and photostability. Based on the general approach, types of universal organic fluorescent nanoprobes could be facilely constructed for imaging applications and biological therapeutics, which possess the properties of specific recognition and high brightness.
Collapse
Affiliation(s)
- Xing Yang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Luo
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sanpeng Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiuli Xu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Nano Science and Technology Institute, University of Science and Technology of China, Hefei, China
| | - Yingxia Bao
- Guangzhou Baiyunshan Pharmaceutical Co., Ltd., Baiyunshan Pharmaceutical General Factory, Guangzhou, China
| | | | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Xingxing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
38
|
Instrument-free and visual detection of organophosphorus pesticide using a smartphone by coupling aggregation-induced emission nanoparticle and two-dimension MnO 2 nanoflake. Biosens Bioelectron 2020; 170:112668. [PMID: 33032200 DOI: 10.1016/j.bios.2020.112668] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
Given the importance of food safety, it is highly desirable to develop a convenient, low-cost, and practical sensor for organophosphorus pesticides (OPs) detection. Here, a fluorescent paper analytical device (FPAD) based on aggregation-induced emission (AIE) nanoparticles (PTDNPs-0.10) and two-dimension MnO2 nanoflakes (2D-MnNFs) was developed for instrument-free and naked-eye analysis of OPs. PTDNP-MnNFs composites were obtained through 2D-MnNFs and PTDNPs-0.10 by electrostatic interaction and the fluorescence emission of PTDNPs-0.10 was quenched through fluorescence resonance energy transfer (FRET). When acetylcholinesterase (AChE) was present, acetylthiocholine (ATCh) was catalytically hydrolyzed into thiocholine, which reduced MnO2 of PTDNP-MnNFs into Mn2+, subsequently blocking the FRET and enhancing the fluorescence. Upon the addition of OP, AChE activity was depressed and thus the FRET between 2D-MnNFs and PTDNPs-0.10 was not affected, resulting in a slight change in fluorescence. On the basis of the variation in fluorescence intensity, highly sensitive detection of OP was readily achieved with a detection limit of 0.027 ng/mL; on the basis of the variation in brightness of FPAD, instrument-free and visual detection of OP was realized using a smartphone with a detection limit of 0.73 ng/mL. The application of FPAD has significantly simplified the detection procedure and decreased the test cost, supplying a new approach for on-site detection of OPs.
Collapse
|
39
|
Lin H, Wang X, Wu J, Li H, Li F. Equipment-free and visualized biosensor for transcription factor rapid assay based on dopamine-functionalized cellulose paper. J Mater Chem B 2020; 7:5461-5464. [PMID: 31490496 DOI: 10.1039/c9tb01455a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A cellulose paper-based biosensor was developed for the equipment-free and naked-eye detection of a transcription factor (TF) using dopamine as the signal-responsive material based on exonuclease III-assisted cycling amplification. Compared with other TF biosensors, the proposed biosensor demonstrates low-cost, portable, disposable, and naked-eye detection features.
Collapse
Affiliation(s)
- Haiyang Lin
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
| | | | | | | | | |
Collapse
|
40
|
Lv W, Yang Q, Li Q, Li H, Li F. Quaternary Ammonium Salt-Functionalized Tetraphenylethene Derivative Boosts Electrochemiluminescence for Highly Sensitive Aqueous-Phase Biosensing. Anal Chem 2020; 92:11747-11754. [DOI: 10.1021/acs.analchem.0c01796] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Wenxin Lv
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Qiaoting Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Qian Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| |
Collapse
|
41
|
Dembska A, Świtalska A, Fedoruk-Wyszomirska A, Juskowiak B. Development of fluorescence oligonucleotide probes based on cytosine- and guanine-rich sequences. Sci Rep 2020; 10:11006. [PMID: 32620895 PMCID: PMC7335195 DOI: 10.1038/s41598-020-67745-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
The properties of cytosine- and guanine-rich oligonucleotides contributed to employing them as sensing elements in various biosensors. In this paper, we report our current development of fluorescence oligonucleotide probes based on i-motif or G-quadruplex forming oligonucleotides for cellular measurements or bioimaging applications. Additionally, we also focus on the spectral properties of the new fluorescent silver nanoclusters based system (ChONC12-AgNCs) that is able to anchor at the Langmuir monolayer interface, which is mimicking the surface of living cells membrane.
Collapse
Affiliation(s)
- Anna Dembska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland.
| | - Angelika Świtalska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland.
| | | | - Bernard Juskowiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| |
Collapse
|
42
|
Chen H, He X, Yu Y, Qian Y, Shen J, Zhao S. Execution of aggregation-induced emission as nano-sensors for hypochlorite detection and application for bioimaging in living cells and zebrafish. Talanta 2020; 214:120842. [PMID: 32278426 DOI: 10.1016/j.talanta.2020.120842] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023]
Abstract
Hypochlorite (ClO-) could be used as a diagnostic marker for inflammation and related diseases. Although there have been many reports on probes for ClO- imaging, there was still a lack of specificity and anti-interference ability. Herein, carbazole (NEC) and tetraphenylethylene (TPE) equipped with thiobarbituric acid (TBA), NEC-TBA and TPE-TBA, were synthesized and used as a fluorescence biosensor for monitoring ClO- with aggregation-induced emission (AIE) effect. we identified that TPE-TBA, with formed nanoparticles in the mean grain size at 76 nm (5 μM), was a superior probe to target ClO- over other analytes with fluorescence "turn off" strategy. Subsequently, to explore the bioimaging application, TPE-TBA was able to sense exogenous ClO- in living HeLa cells through fluorescence imaging. In zebrafish model, TPE-TBA effectively captured exogenous ClO- in the entire organization of zebrafish. Overall, these AIE-based probes merit further development as organism targeting ClO- sensors.
Collapse
Affiliation(s)
- Hong Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, 471934, China
| | - Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuzhong Yu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuna Qian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| | - Shanchao Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
43
|
Liao N, Liu JL, Chai YQ, Yuan R, Zhuo Y. DNA Structure Transition-Induced Affinity Switch for Biosensing Based on the Strong Electrochemiluminescence Platform from Organic Microcrystals. Anal Chem 2020; 92:3940-3948. [DOI: 10.1021/acs.analchem.9b05433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ni Liao
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China
| | - Jia-Li Liu
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ya-Qin Chai
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ruo Yuan
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ying Zhuo
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
44
|
Tu TT, Lei YM, Chai YQ, Zhuo Y, Yuan R. Organic Dots Embedded in Mesostructured Silica Xerogel as High-Performance ECL Emitters: Preparation and Application for MicroRNA-126 Detection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3945-3952. [PMID: 31877251 DOI: 10.1021/acsami.9b17751] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Unlike the organic micro/nanocrystals prepared using an emerging reprecipitation method, a novel method of embedding 1-pyrenecarboxaldehyde dots (PycDs) into a mesostructured silica xerogel (PycDs@MSX) for use as electrochemiluminescence (ECL) emitters was first proposed to achieve an extremely strong ECL response, with peroxydisulfate (S2O82-) used as a coreactant. In this method, (i) PycDs@MSX could ensure the reversal of the PycDs environment from hydrophobic to hydrophilic and (ii) PycDs@MSX could provide massive porous channels, allowing for access of hydrophilic reactive intermediates (i.e., sulfate anion radicals, SO4•-), which could accelerate the rate of mass transfer and electron transfer between S2O82- and PycDs. Using Ag nanoparticles as a coreaction accelerator and a 3D DNA nanomachine as a signal amplification strategy, the proposed ECL biosensing platform was constructed and achieved ultrasensitive detection of microRNA-126 with an excellent linear range (from 100 aM to 100 pM) and a low detection limit (13.0 aM). More importantly, this work not only developed an innovative avenue to improve the ECL efficiency of organic emitters in aqueous phases but also provided a powerful strategy for biochemical analysis and disease diagnosis applications.
Collapse
Affiliation(s)
- Ting-Ting Tu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Yan-Mei Lei
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China
| |
Collapse
|
45
|
He J, Zhang Y, Hu J, Li Y, Zhang Q, Qu W, Yao H, Wei T, Lin Q. Novel fluorescent supramolecular polymer metallogel based on Al
3+
coordinated cross‐linking of quinoline functionalized‐ pillar[5]arene act as multi‐stimuli‐responsive materials. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun‐Xia He
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - You‐Ming Zhang
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
- Natural Energy Research Institute Lanzhou Gansu 730046 P. R. China
| | - Jian‐Peng Hu
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Ying‐Jie Li
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Qi Zhang
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Wen‐Juan Qu
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Hong Yao
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Tai‐Bao Wei
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Qi Lin
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| |
Collapse
|
46
|
Chen H, Yang P, Li Y, Zhang L, Ding F, He X, Shen J. Insight into triphenylamine and coumarin serving as copper (II) sensors with "OFF" strategy and for bio-imaging in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117384. [PMID: 31336321 DOI: 10.1016/j.saa.2019.117384] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Chemosensing is one of the widest and powerful techniques for response to anions and cations in living systems serving as bio-probes. Meanwhile, copper(II) (Cu(II)) widely exists in the environment and the human body as a common trace element, which plays an necessary role in most physiological processes. Thus, it is extremely urgent to explore means for effective, rapid and convenient detection of Cu(II) in living cells. Herein, we introduce a novel strategy for designing triphenylamine (TS) and coumarin-based (CS) functional sensors for Cu(II) detection with fluorescence "OFF" switching mechanism by blocking intramolecular charge transfer (ICT). Based on this design strategy, we have demonstrated two kinds of fluorophores sensors with aunique new fluorescent dye and excellent photophysical properties, which have shown rapid recognition of Cu(II) via a stoichiometric ratio of 2:1 and the proposed binding mode was confirmed by the single-crystal structure of CS-Cu(II) complex. In addition, we have carried out density functional theory (DFT) calculation with the B3LYP exchange functional employing RB3LYP/6-31G basis sets to get insight into the mechanism of Cu(II)-sensors alongside their optical properties. Furthermore, the sensors were capable of bio-imaging Cu(II) in living cancer cells (HepG2, A549 and Hela) with low cytotoxicity and good biocompatibility shown. Taken together, We expect that this novel strategy would provide new insight into the development of Cu(II) detection techniques and could be used more for biomedical applications.
Collapse
Affiliation(s)
- Hong Chen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Ping Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Yahui Li
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lilei Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Feng Ding
- Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
47
|
Khanra S, Ta S, Ghosh M, Chatterjee S, Mukherjee P, Das D. Al3+ triggered aggregation induced emission of an anthracence based azine derivative in SDS medium. NEW J CHEM 2020. [DOI: 10.1039/d0nj00968g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single crystal X-ray structurally characterized anthracene appended unsymmetrical azine derivative, viz. 4-(anthracen-9-ylmethylene-hydrazonomethyl)-2-methoxy-phenol (L5) shows Al3+ assisted aggregation induced emission in SDS medium.
Collapse
Affiliation(s)
- Somnath Khanra
- Department of Chemistry
- The University of Burdwan
- Burdwan
- India
| | - Sabyasachi Ta
- Department of Chemistry
- The University of Burdwan
- Burdwan
- India
| | - Milan Ghosh
- Department of Chemistry
- The University of Burdwan
- Burdwan
- India
| | | | | | - Debasis Das
- Department of Chemistry
- The University of Burdwan
- Burdwan
- India
| |
Collapse
|
48
|
Wang X, Zha J, Zhang W, Zhang W, Tang B. In vivo pharmacodynamic evaluation of antidepressants based on flux mitochondrial Cys in living mice via near infrared fluorescence imaging. Analyst 2020; 145:6119-6124. [DOI: 10.1039/d0an01364a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We proposed a new strategy for in vivo evaluation of antidepressants through NIRF imaging for mitochondrial Cys in the mouse brain.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- People's Republic of China
| | | | - Wei Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Wen Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- People's Republic of China
| |
Collapse
|
49
|
|
50
|
Li H, Lin H, Wang X, Lv W, Li F. Dopamine-Based Paper Analytical Device for Truly Equipment-Free and Naked-Eye Biosensing Based on the Target-Initiated Catalyzed Oxidation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36469-36475. [PMID: 31544453 DOI: 10.1021/acsami.9b14859] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The development of low cost, portable, and disposable biosensors for equipment-free and naked-eye biosensing is in eager demand for their widespread application in biomedical field, but it is still a challenge. Herein, we propose a novel paper analytical device (PAD) for truly equipment-free and naked-eye biosensing using dopamine as the chromogenic agent based on target-initiated catalyzed oxidation reaction. The dopamine-functionalized PAD (DPAD) possesses a significant three-dimensional net structure, excellent hydrophilicity, and unique response toward G-quadruplex DNAs against other DNAs, benefiting the bio/chemo reaction occurrence to assay target biomolecules. In light of the exceptional properties, the fabricated DPAD was applied in the analysis of Dam MTase through target-triggered exponential isothermal amplification. The recognition and methylation of H1 by Dam MTase contribute to formation of abundant hemin/G-quadruplexes, which catalyze oxidation of dopamine into dopachrome and reduce the dopamine amount on the DPAD surface. In comparison with the case in which Dam MTase is absent, an evident deep pink signal originating from dopachrome is observed directly by the naked eye and relied on Dam MTase concentrations. Therefore, truly equipment-free and naked-eye detection of Dam MTase is achieved with a detection limit of 1.46 U/mL. The fabricated DPAD not only achieves Dam MTase-visualized detection but also permits the accurate determination of other analytes by varying recognizable DNA's sequences, thus offering a universal biosensor and depicting significant potential for widespread applications in biomedical field.
Collapse
Affiliation(s)
- Haiyin Li
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| | - Haiyang Lin
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| | - Xin Wang
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| | - Wenxin Lv
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| |
Collapse
|