1
|
Janssens LK, Van Eenoo P, Stove CP. Review on activity-based detection of doping substances and growth promotors in biological matrices: do bioassays deserve a place in control programs? Anal Chim Acta 2025; 1334:343244. [PMID: 39638460 DOI: 10.1016/j.aca.2024.343244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Control programs such as anti-doping control and growth promotor residue surveillance programs are challenged by the emergence of designer drugs and the use of low-level drug cocktails. In order to cope with these challenges, the use of bioassays, measuring biological activity in a matrix, has been explored over the past two decades as a universal means to detect (combinations of) unknown drugs, regardless of their chemical structure. RESULTS This review compiles the experience on the use of activity-based assays to detect doping substances and growth promotors in biological matrices of humans (athletes) or live animals (race and/or food-producing animals). The aim is to learn from the scientific progress, going from initial research to the recent revival of this topic. Bioassay improvements and remaining limitations are discussed, along with a rational evaluation of possible applications of bioassays in control programs at their current functionality. Limitations include the possible interference by endogenous compounds and the challenge to detect metabolically activated (pro-)drugs. Nevertheless, successful validation of bioassays has been achieved, ensuring robust, reliable and valid results. SIGNIFICANCE We conclude by proposing three applications of bioassays that provide added-value to the current testing procedures: (i) characterization of compounds to provide indisputable proof of biological effects and to prioritize legislative (cf. expansion of bans) and research endeavors (cf. method development), (ii) bioassay-based screening of biological samples to direct intelligent sample storage, sample retesting and targeted athlete testing, (iii) bioassay-guided identification of drugs to overcome the challenges of suspicious peak selection, related to high-resolution techniques.
Collapse
Affiliation(s)
- Liesl K Janssens
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, 9000, Ghent, Belgium
| | - Peter Van Eenoo
- Doping Control Laboratory, Department Diagnostic Sciences, Ghent University, 9000, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
2
|
Chen H, He Y, Duan S, Xu A, Li M, Ren Y, Zhang R, Yang X, Wang S, Bai H. Highly-sensitive detection of CP-type synthetic cannabinoids from e-cigarettes by a novel Zn/Bi bimetallic organic framework-derived ZnO-Bi 2O 3 heterojunctions sensing platform. Mikrochim Acta 2024; 191:750. [PMID: 39565474 DOI: 10.1007/s00604-024-06832-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
Synthetic cannabinoids (SCs), often masqueraded in "e-cigarettes," are novel popular psychoactive substances with diverse structures and complex material compositions, making their detection more challenging for prompt intervention. Herein, a novel electrochemical sensing platform based on Zn/Bi bimetallic organic framework-derived ZnO-Bi2O3 heterojunctions was constructed for the detection of cyclohexanylphenol synthetic cannabinoids (CP-type SCs: CP47,497 and CP55,940). The sensing characteristics of ZnO-Bi2O3 were studied under various conditions, including solvent composition, molar ratio of metal, and calcination temperature. The optimized ZnO-Bi2O3 heterojunction exhibited a larger surface area, more active sites, and stronger stability, conducive to enhanced electrochemical catalytic performance. Under optimal conditions, a ZnO-Bi2O3 modified screen-printed electrode (ZnO-Bi2O3/SPE) showed good linear responses toward CP47,497 and CP55,940 within the concentration ranges 7 × 10-9 ~ 5 × 10-6 M and 1 × 10-9 ~ 5 × 10-6 M, with detection limits of 2.3 × 10-9 M and 3.3 × 10-10 M, respectively. The sensor also depicted excellent reliability and can be used for on-site electrochemical detection of target objects in e-cigarettes with high recovery. Finally, the electrochemical oxidation mechanisms of CP47,497 and CP55,940 were studied for the first time, and electrochemical fingerprints of CP-type SCs were speculated.
Collapse
Affiliation(s)
- Haiou Chen
- School of Chemical Science and Engineering, School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Ying He
- School of Chemical Science and Engineering, School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Shimeng Duan
- School of Chemical Science and Engineering, School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Anyun Xu
- School of Chemical Science and Engineering, School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Meng Li
- School of Chemical Science and Engineering, School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Yanming Ren
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, 650050, China
| | - Ruilin Zhang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, 650050, China
| | - Xiangjun Yang
- School of Chemical Science and Engineering, School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Shixiong Wang
- School of Chemical Science and Engineering, School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China.
| | - Huiping Bai
- School of Chemical Science and Engineering, School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
3
|
Janssens LK, Van Uytfanghe K, Williams JB, Hering KW, Iula DM, Stove CP. Investigation of the intrinsic cannabinoid activity of hemp-derived and semisynthetic cannabinoids with β-arrestin2 recruitment assays-and how this matters for the harm potential of seized drugs. Arch Toxicol 2024; 98:2619-2630. [PMID: 38735004 DOI: 10.1007/s00204-024-03769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Cultivation of industrial low-Δ9-tetrahydrocannabinol (Δ9-THC) hemp has created an oversupply of cannabidiol (CBD)-rich products. The fact that phytocannabinoids, including CBD, can be used as precursors to synthetically produce a range of THC variants-potentially located in a legal loophole-has led to a diversification of cannabis recreational drug markets. 'Hemp-compliant', 'hemp-derived' and 'semisynthetic' cannabinoid products are emerging and being advertised as (legal) alternatives for Δ9-THC. This study included a large panel (n = 30) of THC isomers, homologs, and analogs that might be derived via semisynthetic procedures. As a proxy for the abuse potential of these compounds, we assessed their potential to activate the CB1 cannabinoid receptor with a β-arrestin2 recruitment bioassay (picomolar-micromolar concentrations). Multiple THC homologs (tetrahydrocannabihexol, THCH; tetrahydrocannabiphorol, THCP; tetrahydrocannabinol-C8, THC-C8) and THC analogs (hexahydrocannabinol, HHC; hexahydrocannabiphorol, HHCP) were identified that showed higher potential for CB1 activation than Δ9-THC, based on either higher efficacy (Emax) or higher potency (EC50). Structure-activity relationships were assessed for Δ9-THC and Δ8-THC homologs encompassing elongated alkyl chains. Additionally, stereoisomer-specific differences in CB1 activity were established for various THC isomers (Δ7-THC, Δ10-THC) and analogs (HHC, HHCP). Evaluation of the relative abundance of 9(S)-HHC and 9(R)-HHC epimers in seized drug material revealed varying epimeric compositions between batches. Increased abundance of the less active 9(S)-HHC epimer empirically resulted in decreased potency, but sustained efficacy for the resulting diastereomeric mixture. In conclusion, monitoring of semisynthetic cannabinoids is encouraged as the dosing and the relative composition of stereoisomers can impact the harm potential of these drugs, relative to Δ9-THC products.
Collapse
Affiliation(s)
- Liesl K Janssens
- Laboratory of Toxicology, Department of Bioanalysis - Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Katleen Van Uytfanghe
- Laboratory of Toxicology, Department of Bioanalysis - Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Jeffrey B Williams
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI, 48108, USA
| | - Kirk W Hering
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI, 48108, USA
| | - Donna M Iula
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI, 48108, USA
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis - Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Timmerman A, Balcaen M, Coopman V, Degreef M, Pottie E, Stove CP. Activity-based detection of synthetic cannabinoid receptor agonists in plant materials. Harm Reduct J 2024; 21:127. [PMID: 38951904 PMCID: PMC11218095 DOI: 10.1186/s12954-024-01044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Since late 2019, fortification of 'regular' cannabis plant material with synthetic cannabinoid receptor agonists (SCRAs) has become a notable phenomenon on the drug market. As many SCRAs pose a higher health risk than genuine cannabis, recognizing SCRA-adulterated cannabis is important from a harm reduction perspective. However, this is not always an easy task as adulterated cannabis may only be distinguished from genuine cannabis by dedicated, often expensive and time-consuming analytical techniques. In addition, the dynamic nature of the SCRA market renders identification of fortified samples a challenging task. Therefore, we established and applied an in vitro cannabinoid receptor 1 (CB1) activity-based procedure to screen plant material for the presence of SCRAs. METHODS The assay principle relies on the functional complementation of a split-nanoluciferase following recruitment of β-arrestin 2 to activated CB1. A straightforward sample preparation, encompassing methanolic extraction and dilution, was optimized for plant matrices, including cannabis, spiked with 5 µg/mg of the SCRA CP55,940. RESULTS The bioassay successfully detected all samples of a set (n = 24) of analytically confirmed authentic Spice products, additionally providing relevant information on the 'strength' of a preparation and whether different samples may have originated from separate batches or possibly the same production batch. Finally, the methodology was applied to assess the occurrence of SCRA adulteration in a large set (n = 252) of herbal materials collected at an international dance festival. This did not reveal any positives, i.e. there were no samples that yielded a relevant CB1 activation. CONCLUSION In summary, we established SCRA screening of herbal materials as a new application for the activity-based CB1 bioassay. The simplicity of the sample preparation, the rapid results and the universal character of the bioassay render it an effective and future-proof tool for evaluating herbal materials for the presence of SCRAs, which is relevant in the context of harm reduction.
Collapse
Affiliation(s)
- Axelle Timmerman
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Margot Balcaen
- Belgian Early Warning System on Drugs, Unit Illicit drugs, Health information, Sciensano, Brussels, Belgium
| | | | - Maarten Degreef
- Belgian Early Warning System on Drugs, Unit Illicit drugs, Health information, Sciensano, Brussels, Belgium
| | - Eline Pottie
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Deventer MH, Persson M, Norman C, Liu H, Connolly MJ, Daéid NN, McKenzie C, Gréen H, Stove CP. In vitro cannabinoid activity profiling of generic ban-evading brominated synthetic cannabinoid receptor agonists and their analogs. Drug Test Anal 2024; 16:616-628. [PMID: 37903509 DOI: 10.1002/dta.3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023]
Abstract
Following the enactment of a generic ban in China in 2021, the synthetic cannabinoid market has been evolving, now encompassing even wider structural diversity. Compounds carrying a brominated core such as ADB-5'Br-BUTINACA (ADMB-B-5Br-INACA) and tail-less analogs, such as ADB-5'Br-INACA (ADMB-5Br-INACA), MDMB-5'Br-INACA, and ADB-INACA (ADMB-INACA), have been detected since late 2021. This study investigated the cannabinoid receptor (CB) activation potential of synthesized (S)-enantiomers of these substances, as well as of two predicted analogs MDMB-5'Br-BUTINACA (MDMB-B-5Br-INACA) and ADB-5'F-BUTINACA (ADMB-B-5F-INACA), using CB1 and CB2 β-arrestin 2 recruitment assays and a CB1 intracellular calcium release assay. Surprisingly, the tail-less (S)-ADB-5'Br-INACA and (S)-MDMB-5'Br-INACA retained CB activity, albeit with a decreased potency compared to their tailed counterparts (S)-ADB-5'Br-BUTINACA and (S)-MDMB-5'Br-BUTINACA, respectively, which were potent and efficacious CB1 agonists. Also, at CB2, tail-less analogs showed a lower potency but increased efficacy. Removing the bromine substitution ((S)-ADB-INACA) resulted in a reduced activity at CB1; however, this effect was less prominent at CB2. Looking at tailed analogs, replacing the bromine with a fluorine substitution ((S)-ADB-5'F-BUTINACA) resulted in an increased potency and efficacy at both receptors. Furthermore, as ADB-5'Br-INACA and MDMB-5'Br-INACA have been frequently detected together in Scottish prisons, this study also evaluated the CB1 receptor activation potential of different mixtures of their respective reference standards, showing no unexpected cannabimimetic effect of combining both substances. Lastly, two powders seized by Belgian Customs and confirmed to contain ADB-5'Br-INACA and MDMB-5'Br-INACA, respectively, were assessed for CB activity. Based on the comparison with their reference standards, varying degrees of purity were suspected.
Collapse
Affiliation(s)
- Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Mattias Persson
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Caitlyn Norman
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | | | | | - Niamh Nic Daéid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Craig McKenzie
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
- Chiron AS, Trondheim, Norway
| | - Henrik Gréen
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Wu Y, Jensen N, Rossner MJ, Wehr MC. Exploiting Cell-Based Assays to Accelerate Drug Development for G Protein-Coupled Receptors. Int J Mol Sci 2024; 25:5474. [PMID: 38791511 PMCID: PMC11121687 DOI: 10.3390/ijms25105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are relevant targets for health and disease as they regulate various aspects of metabolism, proliferation, differentiation, and immune pathways. They are implicated in several disease areas, including cancer, diabetes, cardiovascular diseases, and mental disorders. It is worth noting that about a third of all marketed drugs target GPCRs, making them prime pharmacological targets for drug discovery. Numerous functional assays have been developed to assess GPCR activity and GPCR signaling in living cells. Here, we review the current literature of genetically encoded cell-based assays to measure GPCR activation and downstream signaling at different hierarchical levels of signaling, from the receptor to transcription, via transducers, effectors, and second messengers. Singleplex assay formats provide one data point per experimental condition. Typical examples are bioluminescence resonance energy transfer (BRET) assays and protease cleavage assays (e.g., Tango or split TEV). By contrast, multiplex assay formats allow for the parallel measurement of multiple receptors and pathways and typically use molecular barcodes as transcriptional reporters in barcoded assays. This enables the efficient identification of desired on-target and on-pathway effects as well as detrimental off-target and off-pathway effects. Multiplex assays are anticipated to accelerate drug discovery for GPCRs as they provide a comprehensive and broad identification of compound effects.
Collapse
Affiliation(s)
- Yuxin Wu
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
| | - Niels Jensen
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Moritz J. Rossner
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Michael C. Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
| |
Collapse
|
7
|
Sparkes E, Timmerman A, Markham JW, Boyd R, Gordon R, Walker KA, Kevin RC, Hibbs DE, Banister SD, Cairns EA, Stove C, Ametovski A. Synthesis and Functional Evaluation of Synthetic Cannabinoid Receptor Agonists Related to ADB-HEXINACA. ACS Chem Neurosci 2024; 15:1787-1812. [PMID: 38597712 DOI: 10.1021/acschemneuro.3c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
ADB-HEXINACA has been recently reported as a synthetic cannabinoid receptor agonist (SCRA), one of the largest classes of new psychoactive substances (NPSs). This compound marks the entry of the n-hexyl tail group into the SCRA landscape, which has continued in the market with recent, newly detected SCRAs. As such, a proactive characterization campaign was undertaken, including the synthesis, characterization, and pharmacological evaluation of ADB-HEXINACA and a library of 41 closely related analogues. Two in vitro functional assays were employed to assess activity at CB1 and CB2 cannabinoid receptors, measuring Gβγ-coupled agonism through a fluorescence-based membrane potential assay (MPA) and β-arrestin 2 (βarr2) recruitment via a live cell-based nanoluciferase complementation reporter assay. ADB-HEXINACA was a potent and efficacious CB1 agonist (CB1 MPA pEC50 = 7.87 ± 0.12 M; Emax = 124 ± 5%; βarr2 pEC50 = 8.27 ± 0.14 M; Emax = 793 ± 42.5), as were most compounds assessed. Isolation of the heterocyclic core and alkyl tails allowed for the comprehensive characterization of structure-activity relationships in this compound class, which were rationalized in silico via induced fit docking experiments. Overall, most compounds assessed are possibly emerging NPSs.
Collapse
Affiliation(s)
- Eric Sparkes
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Axelle Timmerman
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jack W Markham
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2050, Australia
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Rochelle Boyd
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Rebecca Gordon
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Katelyn A Walker
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
- School of Psychology, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Richard C Kevin
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital Sydney, Sydney, New South Wales 2010, Australia
- School of Clinical Medicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - David E Hibbs
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Samuel D Banister
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Elizabeth A Cairns
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Adam Ametovski
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2050, Australia
| |
Collapse
|
8
|
Norman C, Deventer MH, Dremann O, Reid R, Van Uytfanghe K, Guillou C, Vinckier IMJ, Nic Daéid N, Krotulski A, Stove CP. In vitro cannabinoid receptor activity, metabolism, and detection in seized samples of CH-PIATA, a new indole-3-acetamide synthetic cannabinoid. Drug Test Anal 2024; 16:380-391. [PMID: 37491777 DOI: 10.1002/dta.3555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
The rapidly evolving synthetic cannabinoid receptor agonist (SCRA) market poses significant challenges for forensic scientists. Since the enactment of a generic ban in China, a variety of new compounds have emerged capable of evading the legislation by carrying new structural features. One recent example of a SCRA with new linker and head moieties is CH-PIATA (CH-PIACA, CHX-PIATA, CHX-PIACA). CH-PIATA bears an additional methylene spacer in the linker moiety between the indole core and the traditional carbonyl component of the linker. This study describes detections in 2022 of this new SCRA in the United States, Belgium, and Scottish prisons. CH-PIATA was detected once in a seized powder by Belgian customs and 12 times in Scottish prisons in infused papers or resin. The metabolites of CH-PIATA were investigated via in vitro human liver microsome (HLM) incubations and eight metabolites were identified, dominated by oxidative biotransformations. A blood sample from the United States was confirmed to contain a mixture of SCRAs including CH-PIATA via presence of the parent and at least five of the metabolites identified from HLM incubations. Furthermore, this paper evaluates the intrinsic in vitro cannabinoid 1 and 2 (CB1 and CB2) receptor activation potential of CH-PIATA reference material and the powder seized by Belgian customs by means of β-arrestin 2 recruitment assays. Both the reference and the seized powder showed a weak activity at both CB receptors with signs of antagonism found. Based on these results, the expected harm potential of this newly emerging substance remains limited.
Collapse
Affiliation(s)
- Caitlyn Norman
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Olivia Dremann
- College of Arts and Sciences, Arcadia University, Glenside, Pennsylvania, USA
| | - Robert Reid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Katleen Van Uytfanghe
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Claude Guillou
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Niamh Nic Daéid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Alex Krotulski
- Center for Forensic Science Research and Education, Frederic Rieders Family Foundation, Willow Grove, Pennsylvania, USA
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Janssens LK, De Wilde L, Van Eenoo P, Stove CP. Untargeted Detection of HIF Stabilizers in Doping Samples: Activity-Based Screening with a Stable In Vitro Bioassay. Anal Chem 2024; 96:238-247. [PMID: 38117670 DOI: 10.1021/acs.analchem.3c03816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Hypoxia-inducible factor (HIF) stabilizers are listed in the World Anti-Doping Agency's prohibited list as they can increase aerobic exercise capacity. The rapid pace of emergence of highly structurally diverse HIF stabilizers could pose a risk to conventional structure-based methods in doping control to detect new investigational drugs. Therefore, we developed a strategy that is capable of detecting the presence of any HIF stabilizer, irrespective of its structure, by detecting biological activity. Previously developed cell-based HIF1/2 assays were optimized to a stable format and evaluated for their screening potential toward HIF stabilizers. Improved pharmacological characterization was established by the stable cell-based formats, and broad specificity was demonstrated by pharmacologically characterizing a diverse set of HIF stabilizers (including enarodustat, IOX2, IOX4, MK-8617, JNJ-42041935). The methodological (in solvent) limit of detection of the optimal HIF1 stable bioassay toward detecting the reference compound roxadustat was 100 nM, increasing to 50-100 ng/mL (corresponding to 617-1233 nM in-well) in matching urine samples, owing to strong matrix effects. In a practical context, a urinary limit of detection of 1.15 μg/mL (95% detection rate) was determined, confirming the matrix-dependent detectability of roxadustat in urine. Pending optimization of a universal sample preparation strategy and/or a methodology to correct for the matrix effects, this untargeted approach may serve as a complementing method in antidoping control, as theoretically, it would be capable of detecting any unknown substance with HIF stabilizing activity.
Collapse
Affiliation(s)
- Liesl K Janssens
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, 9000 Ghent, Belgium
| | - Laurie De Wilde
- Doping Control Laboratory, Department Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Peter Van Eenoo
- Doping Control Laboratory, Department Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
10
|
Trobbiani S, Stockham P, Kostakis C. A method for the sensitive targeted screening of synthetic cannabinoids and opioids in whole blood by LC-QTOF-MS with simultaneous suspect screening using HighResNPS.com. J Anal Toxicol 2023; 47:807-817. [PMID: 37632762 DOI: 10.1093/jat/bkad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 08/28/2023] Open
Abstract
A sensitive method for the qualitative screening of synthetic cannabinoids and opioids in whole blood was developed and validated using alkaline liquid-liquid extraction (LLE) and liquid chromatography-time-of-flight mass spectrometry (LC-QTOF-MS). Estimated limits of detection for validated compounds ranged from 0.03 to 0.29 µg/L (median, 0.04 µg/L) for the 27 opioids and from 0.04 to 0.5 µg/L (median, 0.07 µg/L) for the 23 synthetic cannabinoids. Data processing occurred in two stages; first, a targeted screen was performed using an in-house database containing retention times, accurate masses and MS-MS spectra for 79 cannabinoids and 53 opioids. Suspect screening was then performed using a database downloaded from the crowd sourced NPS data website HighResNPS.com which contains mass, consensus MS-MS data and laboratory-specific predicted retention times for a far greater number of compounds. The method was applied to 61 forensic cases where synthetic cannabinoid or opioid screening was requested by the client or their use was suspected due to case information. CUMYL-PEGACLONE was detected in two cases and etodesnitazine, 5 F-MDMB-PICA, 4-cyano-CUMYL-BUTINACA and carfentanil were detected in one case each. These compounds were within the targeted scope of the method but were also detected through the suspect screening workflow. The method forms a solid base for expansion as more compounds emerge onto the illicit drug market.
Collapse
Affiliation(s)
- Stephen Trobbiani
- Forensic Science SA, GPO Box 2790, Adelaide, South Australia 5001, Australia
| | - Peter Stockham
- Forensic Science SA, GPO Box 2790, Adelaide, South Australia 5001, Australia
- Flinders University of South Australia, Sturt Road, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Chris Kostakis
- Forensic Science SA, GPO Box 2790, Adelaide, South Australia 5001, Australia
- Flinders University of South Australia, Sturt Road, Bedford Park, Adelaide, South Australia 5042, Australia
| |
Collapse
|
11
|
Pottie E, Suresh RR, Jacobson KA, Stove CP. Assay-Dependent Inverse Agonism at the A 3 Adenosine Receptor: When Neutral Is Not Neutral. ACS Pharmacol Transl Sci 2023; 6:1266-1274. [PMID: 37705594 PMCID: PMC10496142 DOI: 10.1021/acsptsci.3c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 09/15/2023]
Abstract
The A3 adenosine receptor (A3AR) is implicated in a variety of (patho)physiological conditions. While most research has focused on agonists and antagonists, inverse agonism at A3AR has been scarcely studied. Therefore, this study aimed at exploring inverse agonism, using two previously engineered cell lines (hA3ARLgBiT-SmBiTβarr2 and hA3ARLgBiT-SmBiTminiGαi), both employing the NanoBiT technology. The previously established inverse agonist PSB-10 showed a decrease in basal signal in the β-arrestin 2 (βarr2) but not the miniGαi recruitment assay, indicative of inverse agonism in the former assay. Control experiments confirmed the specificity and reversibility of this observation. Evaluation of a set of presumed neutral antagonists (MRS7907, MRS7799, XAC, and MRS1220) revealed that all displayed concentration-dependent signal decreases when tested in the A3AR-βarr2 recruitment assay, yielding EC50 and Emax values for inverse agonism. Conversely, in the miniGαi recruitment assay, no signal decreases were observed. To assess whether this observation was caused by the inability of the ligands to induce inverse agonism in the G protein pathway, or rather by a limitation inherent to the employed A3AR-miniGαi recruitment assay, a GloSensor cAMP assay was performed. The outcome of the latter also suggests inverse agonism by the presumed neutral antagonists in this latter assay. These findings emphasize the importance of prior characterization of ligands in the relevant test system. Moreover, it showed the suitability of the NanoBiT βarr2 recruitment and the GloSensor cAMP assays to capture inverse agonism at the A3AR, as opposed to the NanoBiT miniGαi recruitment assay.
Collapse
Affiliation(s)
- Eline Pottie
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| | - R. Rama Suresh
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes & Digestive & Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20802, United States
| | - Kenneth A. Jacobson
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes & Digestive & Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20802, United States
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| |
Collapse
|
12
|
Peters FT, Wissenbach D. Current state-of-the-art approaches for mass spectrometry in clinical toxicology: an overview. Expert Opin Drug Metab Toxicol 2023; 19:487-500. [PMID: 37615282 DOI: 10.1080/17425255.2023.2252324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION Hyphenated mass spectrometry (MS) has evolved into a very powerful analytical technique of high sensitivity and specificity. It is used to analyze a very wide spectrum of analytes in classical and alternative matrices. The presented paper will provide an overview of the current state-of-the-art of hyphenated MS applications in clinical toxicology primarily based on review articles indexed in PubMed (1990 to April 2023). AREAS COVERED A general overview of matrices, sample preparation, analytical systems, detection modes, and validation and quality control is given. Moreover, selected applications are discussed. EXPERT OPINION A more widespread use of hyphenated MS techniques, especially in systematic toxicological analysis and drugs of abuse testing, would help overcome limitations of immunoassay-based screening strategies. This is currently hampered by high instrument cost, qualification requirements for personnel, and less favorable turnaround times, which could be overcome by more user-friendly, ideally fully automated MS instruments. This would help making hyphenated MS-based analysis available in more laboratories and expanding analysis to a large number of organic drugs, poisons, and/or metabolites. Even the most recent novel psychoactive substances (NPS) could be presumptively identified by high-resolution MS methods, their likely presence be communicated to treating physicians, and be confirmed later on.
Collapse
Affiliation(s)
- Frank T Peters
- Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Daniela Wissenbach
- Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
13
|
Wang Z, Leow EYQ, Moy HY, Chan ECY. Advances in urinary biomarker research of synthetic cannabinoids. Adv Clin Chem 2023; 115:1-32. [PMID: 37673518 DOI: 10.1016/bs.acc.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
New psychoactive substances (NPS) are chemical compounds designed to mimic the action of existing illicit recreational drugs. Synthetic cannabinoids (SCs) are a subclass of NPS which bind to the cannabinoid receptors, CB1 and CB2, and mimic the action of cannabis. SCs have dominated recent NPS seizure reports worldwide. While urine is the most common matrix for drug-of-abuse testing, SCs undergo extensive Phase I and Phase II metabolism, resulting in almost undetectable parent compounds in urine samples. Therefore, the major urinary metabolites of SCs are usually investigated as surrogate biomarkers to identify their consumption. Since seized urine samples after consuming novel SCs may be unavailable in a timely manner, human hepatocytes, human liver microsomes and human transporter overexpressed cell lines are physiologically-relevant in vitro systems for performing metabolite identification, metabolic stability, reaction phenotyping and transporter experiments to establish the disposition of SC and its metabolites. Coupling these in vitro experiments with in vivo verification using limited authentic urine samples, such a two-pronged approach has proven to be effective in establishing urinary metabolites as biomarkers for rapidly emerging SCs.
Collapse
Affiliation(s)
- Ziteng Wang
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Eric Yu Quan Leow
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Hooi Yan Moy
- Analytical Toxicology Laboratory, Applied Sciences Group, Health Sciences Authority, Singapore, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
14
|
Deventer MH, Persson M, Laus A, Pottie E, Cannaert A, Tocco G, Gréen H, Stove CP. Off-target activity of NBOMes and NBOMe analogs at the µ opioid receptor. Arch Toxicol 2023; 97:1367-1384. [PMID: 36853332 DOI: 10.1007/s00204-023-03465-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
New psychoactive substances (NPS) are introduced on the illicit drug market at a rapid pace. Their molecular targets are often inadequately elucidated, which contributes to the delayed characterization of their pharmacological effects. Inspired by earlier findings, this study set out to investigate the µ opioid receptor (MOR) activation potential of a large set of psychedelics, substances which typically activate the serotonin (5-HT2A) receptor as their target receptor. We observed that some substances carrying the N-benzyl phenethylamine (NBOMe) structure activated MOR, as confirmed by both the NanoBiT® βarr2 recruitment assay and the G protein-based AequoScreen® Ca2+ release assay. The use of two orthogonal systems proved beneficial as some aspecific, receptor independent effects were found for various analogs when using the Ca2+ release assay. The specific 'off-target' effects at MOR could be blocked by the opioid antagonist naloxone, suggesting that these NBOMes occupy the same common opioid binding pocket as conventional opioids. This was corroborated by molecular docking, which revealed the plausibility of multiple interactions of 25I-NBOMe with MOR, similar to those observed for opioids. Additionally, structure-activity relationship findings seen in vitro were rationalized in silico for two 25I-NBOMe isomers. Overall, as MOR activity of these psychedelics was only noticed at high concentrations, we consider it unlikely that for the tested compounds there will be a relevant opioid toxicity in vivo at physiologically relevant concentrations. However, small modifications to the original NBOMe structure may result in a panel of more efficacious and potent MOR agonists, potentially exhibiting a dual MOR/5-HT2A activation potential.
Collapse
Affiliation(s)
- Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Mattias Persson
- Department of Forensic Genetic and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Antonio Laus
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Eline Pottie
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Graziella Tocco
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Henrik Gréen
- Department of Forensic Genetic and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden.,Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
15
|
Bergerhoff M, Moosmann B. Novel Receptor-Binding-Based Assay for the Detection of Opioids in Human Urine Samples. Anal Chem 2023; 95:2723-2731. [PMID: 36706344 DOI: 10.1021/acs.analchem.2c03516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Consumption of opioids is a growing global health problem. The gold standard for drugs of abuse screening is immunochemical assays. However, this method comes with some disadvantages when screening for a wide variety of opioids. Detection of the binding of a compound at the human μ-opioid receptor (MOR) offers a promising alternative target. Here, we set up a urine assay to allow for detection of compounds that bind at the MOR, thus allowing the assay to be utilized as a screening tool for opioid intake. The assay is based on the incubation of MOR-containing cell membranes with the selective MOR-ligand DAMGO and urine. After filtration, the amount of DAMGO in the eluate is analyzed by liquid chromatography tandem mass spectroscopy (LC-MS/MS). The absence of DAMGO in the eluate corresponds to a competing MOR ligand in the urine sample, thus indicating opiate/opioid intake by the suspect. Sensitivity and specificity were determined by the analysis of 200 consecutive forensic routine casework urine samples. A pronounced displacement of DAMGO was observed in 29 of the 35 opiate/opioid-positive samples. Detection of fentanyl intake proved to be the most challenging aspect. Applying a cut-off value of, e.g., 10% DAMGO binding would lead to a sensitivity of 83% and a specificity of 95%. Consequently, the novel assay proved to be a promising screening tool for opiate/opioid presence in urine samples. The nontargeted approach and possible automation of the assay make it a promising alternative to conventional methods.
Collapse
Affiliation(s)
- Maja Bergerhoff
- Institute of Forensic Medicine, Forensic Toxicology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland
| | - Bjoern Moosmann
- Institute of Forensic Medicine, Forensic Toxicology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland
| |
Collapse
|
16
|
Deventer MH, Norman C, Reid R, McKenzie C, Nic Daéid N, Stove CP. In vitro characterization of the pyrazole-carrying synthetic cannabinoid receptor agonist 5F-3,5-AB-PFUPPYCA and its structural analogs. Forensic Sci Int 2023; 343:111565. [PMID: 36640535 DOI: 10.1016/j.forsciint.2023.111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The synthetic cannabinoid receptor agonist (SCRA) market is undergoing important changes since the enactment of the 2021 class-wide generic SCRA ban in China, one of the most important source countries for new psychoactive substances (NPS). Recently, various compounds with new structural features, synthesized to bypass this legislation, have entered the recreational drug market. Certain monocyclic pyrazole-carrying "FUPPYCA" SCRAs have been sporadically detected since 2015 without gaining further popularity. However, as evidenced by their recent detection in Scottish prisons, 5F-3,5-AB-PFUPPYCA and 3,5-ADB-4en-PFUPPYCA have re-emerged, potentially triggered by the new legislative ban. The aim of this study was to characterize the in vitro intrinsic CB1 and CB2 receptor activation potential of 5F-3,5-AB-PFUPPYCA and 3,5-ADB-4en-PFUPPYCA, as well as 4 analogs (5F-3,5-ADB-PFUPPYCA, 3,5-AB-CHMFUPPYCA, 5,3-AB-CHMFUPPYCA and 5,3-ADB-4en-PFUPPYCA) using live cell β-arrestin 2 recruitment assays. Most analogs were essentially inactive at either CB1 or CB2, with only 3,5-AB-CHMFUPPYCA, 5,3-AB-CHMFUPPYCA and 5,3-ADB-4en-PFUPPYCA showing a limited activation potential at CB1. Furthermore, the importance of the position of the tail structure was demonstrated, with 5,3 regioisomers being more active than their 3,5 analogs. Moreover, all compounds exhibited antagonistic behavior at both receptors, which may be associated with their structural resemblance to cannabinoid antagonists and inverse agonists. Although the 3,5 regioisomers of these "FUPPYCA" SCRAs circumvent the Chinese ban, it is unlikely that these SCRAs will pose a major threat to public health, given the lack of pronounced CB receptor activity.
Collapse
Affiliation(s)
- Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Caitlyn Norman
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Robert Reid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Craig McKenzie
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK; Chiron AS, Trondheim, Norway
| | - Niamh Nic Daéid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
17
|
Janssens LK, Ametovski A, Sparkes E, Boyd R, Lai F, Maloney CJ, Rhook D, Gerona RR, Connolly M, Liu H, Hibbs DE, Cairns EA, Banister SD, Stove CP. Comprehensive Characterization of a Systematic Library of Alkyl and Alicyclic Synthetic Cannabinoids Related to CUMYL-PICA, CUMYL-BUTICA, CUMYL-CBMICA, and CUMYL-PINACA. ACS Chem Neurosci 2023; 14:35-52. [PMID: 36530139 DOI: 10.1021/acschemneuro.2c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Over 200 synthetic cannabinoid receptor agonists (SCRAs) have been identified as new psychoactive substances. Effective monitoring and characterization of SCRAs are hindered by the rapid pace of structural evolution. Ahead of possible appearance on the illicit drug market, new SCRAs were synthesized to complete a systematic library of cumyl-indole- (e.g., CUMYL-CPrMICA, CUMYL-CPMICA) and cumyl-indazole-carboxamides (e.g., CUMYL-CPrMINACA, CUMYL-CPMINACA), encompassing butyl, pentyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, and cyclohexylmethyl tails. Comprehensive pharmacological characterization was performed with three assay formats, monitoring the recruitment of either wild-type or C-terminally truncated (βarr2d366) β-arrestin2 to the activated cannabinoid 1 receptor (CB1) or monitoring Gβγ-mediated membrane hyperpolarization. Altered compound characterization was observed when comparing derived potency (EC50) and efficacy (Emax) values from both assays monitoring the same or a different signaling event, whereas ranges and ranking orders were similar. Structure-activity relationships (SAR) were assessed in threefold, resulting in the identification of the pendant tail as a critical pharmacophore, with the optimal chain length for CB1 activation approximating an n-pentyl (e.g., cyclopentylmethyl or cyclohexylmethyl tail). The activity of the SCRAs encompassing cyclic tails decreased with decreasing number of carbons forming the cyclic moiety, with CUMYL-CPrMICA showing the least CB1 activity in all assay formats. The SARs were rationalized via molecular docking, demonstrating the importance of the optimal steric contribution of the hydrophobic tail. While SAR conclusions remained largely unchanged, the differential compound characterization by both similar and different assay designs emphasizes the importance of detailing specific assay characteristics to allow adequate interpretation of potencies and efficacies.
Collapse
Affiliation(s)
- Liesl K Janssens
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Adam Ametovski
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Eric Sparkes
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rochelle Boyd
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.,School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Felcia Lai
- School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Callan J Maloney
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dane Rhook
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Roy R Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, California 94143, United States
| | | | | | - David E Hibbs
- School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth A Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.,School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Samuel D Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
18
|
Wagmann L, Stiller RG, Fischmann S, Westphal F, Meyer MR. Going deeper into the toxicokinetics of synthetic cannabinoids: in vitro contribution of human carboxylesterases. Arch Toxicol 2022; 96:2755-2766. [PMID: 35788413 PMCID: PMC9352624 DOI: 10.1007/s00204-022-03332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
Synthetic cannabinoids (SC) are new psychoactive substances known to cause intoxications and fatalities. One reason may be the limited data available concerning the toxicokinetics of SC, but toxicity mechanisms are insufficiently understood so far. Human carboxylesterases (hCES) are widely known to play a crucial role in the catalytic hydrolysis of drugs (of abuse). The aim of this study was to investigate the in vitro contribution of hCES to the metabolism of the 13 SC 3,5-AB-5F-FUPPYCA, AB-5F-P7AICA, A-CHMINACA, DMBA-CHMINACA, MBA-CHMINACA, MDMB-4F-BINACA, MDMB-4en-PINACA, MDMB-FUBICA, MDMB-5F-PICA, MMB-CHMICA, MMB-4en-PICA, MMB-FUBINACA, and MPhP-5F-PICA. The SC were incubated with recombinant hCES1b, hCES1c, or hCES2 and analyzed by liquid chromatography-ion trap mass spectrometry to assess amide or ester hydrolysis in an initial activity screening. Enzyme kinetic studies were performed if sufficient hydrolysis was observed. No hydrolysis of the amide linker was observed using those experimental conditions. Except for MDMB-5F-PICA, ester hydrolysis was always detected if an ester group was present in the head group. In general, SC with a terminal ester bearing a small alcohol part and a larger acyl part showed higher affinity to hCES1 isozymes. Due to the low hydrolysis rates, enzyme kinetics could not be modeled for the SC with a tert-leucine-derived moiety, but hydrolysis reactions of MPhP-5F-PICA and of those containing a valine-derived moiety followed classic Michaelis-Menten kinetics. In conclusion, drug-drug/drug-food interactions or hCES polymorphisms may prolong the half-life of SC and the current results help to estimate the risk of toxicity in the future after combining them with activity and clinical data.
Collapse
Affiliation(s)
- Lea Wagmann
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany.
| | - Rebecca G Stiller
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Svenja Fischmann
- State Bureau of Criminal Investigation Schleswig-Holstein, Kiel, Germany
| | - Folker Westphal
- State Bureau of Criminal Investigation Schleswig-Holstein, Kiel, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
19
|
Wagmann L, Jacobs CM, Meyer MR. New Psychoactive Substances: Which Biological Matrix Is the Best for Clinical Toxicology Screening? Ther Drug Monit 2022; 44:599-605. [PMID: 35175247 DOI: 10.1097/ftd.0000000000000974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Every year, more new psychoactive substances (NPSs) emerge in the market of the drugs of abuse. NPSs belong to various chemical classes, such as synthetic cannabinoids, phenethylamines, opioids, and benzodiazepines. The detection of NPSs intake using different types of biological matrices is challenging for clinical toxicologists because of their structural diversity and the lack of information on their toxicokinetics, including their metabolic fate. METHODS PubMed-listed articles reporting mass spectrometry-based bioanalytical approaches for NPSs detection published during the past 5 years were identified and discussed. Furthermore, the pros and cons of using common biological matrices in clinical toxicology (CT) settings to screen for NPSs are highlighted in this review article. RESULTS Twenty-six articles presenting multianalyte screening methods for use in the field of CT were considered. The advantages and disadvantages of different biological matrices are discussed with a particular view of the different analytical tasks in CT, especially emergency toxicology. Finally, an outlook introduces the emerging trends in biosamples used in CT, such as the exhaled breath. CONCLUSIONS Blood and urine represent the most common biological matrices used in a CT setting; however, reports concerning NPSs detection in alternative matrices are also available. Noteworthy, the selection of the biological matrix must depend on the clinician's enquiry because the individual advantages and disadvantages must be considered.
Collapse
Affiliation(s)
- Lea Wagmann
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | | | | |
Collapse
|
20
|
Deventer MH, Van Uytfanghe K, Vinckier IMJ, Reniero F, Guillou C, Stove CP. A new cannabinoid receptor 1 selective agonist evading the 2021 "China ban": ADB-FUBIATA. Drug Test Anal 2022; 14:1639-1644. [PMID: 35570246 DOI: 10.1002/dta.3285] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022]
Abstract
Following the class-wide ban of synthetic cannabinoid receptor agonists (SCRAs) in China, SCRAs carrying new core and linker structures, aimed at circumventing the recent Chinese generic legislation, have appeared on the recreational drug market. A very recent example is (S)-2-(2-(1-(4-fluorobenzyl)-1H-indol-3-yl)acetamido)-3,3-dimethylbutanamide (ADB-FUBIATA), which is structurally closely related to the potent SCRA ADB-FUBICA, but carries an additional methylene in the linker region of the molecule. ADB-FUBIATA has recently been identified in seized materials in China, Russia, the United States, and also Belgium; however, its pharmacological characteristics were unknown. The aim of this study was to evaluate the intrinsic cannabinoid receptor (hCB1 and hCB2 ) activation potential of this previously unknown substance via two distinct yet similar in vitro β-arrestin2 recruitment assays, based on the NanoLuc Binary Technology®. At CB1 , a potency of 635 nM (EC50 ) was found, with an efficacy (Emax ) of 141% relative to the reference compound CP55,940. On the other hand, ADB-FUBIATA had almost no activity at CB2 , indicative of a clear CB1 selectivity. Interestingly, this activation pattern differs markedly from that observed for ADB-FUBICA, which was previously found to be potent and efficacious at both cannabinoid receptors. Additionally, the bioassays were applied to a seized powder containing ADB-FUBIATA, as analytically confirmed by high-performance liquid chromatography coupled to diode-array detection (HLPC-DAD), gas chromatography coupled to mass spectrometry (GC-MS), liquid chromatography couple to time-of-flight mass spectrometry (LC-QTOF-MS), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance (NMR). The EC50 and Emax values obtained for this powder were very similar to those of the ADB-FUBIATA analytical standard, suggesting a high purity of the powder, although analytical techniques did reveal that the sample was not entirely pure.
Collapse
Affiliation(s)
- Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Katleen Van Uytfanghe
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - Fabiano Reniero
- European Commission, Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Ispra, Italy
| | - Claude Guillou
- European Commission, Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Ispra, Italy
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Rodríguez-Soacha DA, Steinmüller SAM, Işbilir A, Fender J, Deventer MH, Ramírez YA, Tutov A, Sotriffer C, Stove CP, Lorenz K, Lohse MJ, Hislop JN, Decker M. Development of an Indole-Amide-Based Photoswitchable Cannabinoid Receptor Subtype 1 (CB 1R) "Cis-On" Agonist. ACS Chem Neurosci 2022; 13:2410-2435. [PMID: 35881914 DOI: 10.1021/acschemneuro.2c00160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Activation of the human cannabinoid receptor type 1 (hCB1R) with high spatiotemporal control is useful to study processes involved in different pathologies related to nociception, metabolic alterations, and neurological disorders. To synthesize new agonist ligands for hCB1R, we have designed different classes of photoswitchable molecules based on an indole core. The modifications made to the central core have allowed us to understand the molecular characteristics necessary to design an agonist with optimal pharmacological properties. Compound 27a shows high affinity for CB1R (Ki (cis-form) = 0.18 μM), with a marked difference in affinity with respect to its inactive "trans-off" form (CB1R Ki trans/cis ratio = 5.4). The novel compounds were evaluated by radioligand binding studies, receptor internalization, sensor receptor activation (GRABeCB2.0), Western blots for analysis of ERK1/2 activation, NanoBiT βarr2 recruitment, and calcium mobilization assays, respectively. The data show that the novel agonist 27a is a candidate for studying the optical modulation of cannabinoid receptors (CBRs), serving as a new molecular tool for investigating the involvement of hCB1R in disorders associated with the endocannabinoid system.
Collapse
Affiliation(s)
- Diego A Rodríguez-Soacha
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sophie A M Steinmüller
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ali Işbilir
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Versbacher Str. 9, D-97078 Würzburg, Germany.,Receptor Signaling Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Julia Fender
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Versbacher Str. 9, D-97078 Würzburg, Germany
| | - Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Yesid A Ramírez
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.,Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Naturales, Universidad Icesi, Valle del Cauca, 760031 Cali, Colombia
| | - Anna Tutov
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christoph Sotriffer
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kristina Lorenz
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Versbacher Str. 9, D-97078 Würzburg, Germany.,Leibniz-Institut für Analytische Wissenschaften─ISAS e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Martin J Lohse
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Versbacher Str. 9, D-97078 Würzburg, Germany.,Receptor Signaling Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.,ISAR Bioscience Institut, 82152 Planegg/Munich, Germany
| | - James N Hislop
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
22
|
Janssens LK, Hudson S, Wood DM, Wolfe C, Dargan PI, Stove CP. Linking in vitro and ex vivo CB 1 activity with serum concentrations and clinical features in 5F-MDMB-PICA users to better understand SCRAs and their metabolites. Arch Toxicol 2022; 96:2935-2945. [PMID: 35962200 DOI: 10.1007/s00204-022-03355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) pose a danger to public health. This study focused on individuals experiencing recreational drug toxicity who had used 5F-MDMB-PICA.Patient records were evaluated regarding vital signs, Glasgow Coma Scale (GCS) and clinical features. Liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) confirmed and quantified the presence of 5F-MDMB-PICA (and/or metabolites) as the only SCRA present in the serum of 71 patients. Cannabinoid activity was evaluated by a cannabinoid receptor (CB1) bioassay, to assess the relationship between serum concentrations and ex vivo human CB1 activation potential. Furthermore, a link with the clinical presentation was appraised.5F-MDMB-PICA and five metabolites were pharmacologically profiled in vitro, revealing theoretically possible contributions of two active in vivo metabolites to overall cannabinoid activity. Serum concentrations of 5F-MDMB-PICA were correlated to the ex vivo cannabinoid activity, revealing a sigmoidal relationship. The latter could also be predicted based on pharmacological characterization of 5F-MDMB-PICA and its metabolites and an in-depth investigation of the bioassay outcome. Clinically, the GCS showed a significant trend (decrease) with increasing ex vivo cannabinoid activity.This is the first study to evaluate possible toxic effects of 5F-MDMB-PICA in a unique large patient cohort. It allows a better understanding of 5F-MDMB-PICA and metabolites in humans, suggesting a negligible contribution by 5F-MDMB-PICA metabolites to the overall cannabinoid activity in serum. Additionally, this work shows that in vitro pharmacological characterization allows close prediction of an individual's ex vivo CB1 activity, the latter showing a relationship with the level of consciousness.
Collapse
Affiliation(s)
- Liesl K Janssens
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Simon Hudson
- LGC Ltd- Sport and Specialised Analytical Services, Cambridge, UK
| | - David M Wood
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Caitlin Wolfe
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Department of Emergency Medicine, Dalhousie University, Halifax, Canada
| | - Paul I Dargan
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
23
|
Detection of the Synthetic Cannabinoids AB-CHMINACA, ADB-CHMINACA, MDMB-CHMICA, and 5F-MDMB-PINACA in Biological Matrices: A Systematic Review. BIOLOGY 2022; 11:biology11050796. [PMID: 35625524 PMCID: PMC9139075 DOI: 10.3390/biology11050796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Synthetic cannabinoids were originally developed for scientific research and potential therapeutic agents. However, clandestine laboratories synthesize them and circumvent legal barriers by falsely marketing them as incense or herbal products. They have serious adverse effects, and new derivatives are continuously found in the market, making their detection difficult due to the lack of comparative standards. Human matrices are used to identify the type of synthetic cannabinoid and the time of its consumption. This review discusses the use of hair, oral fluid, blood, and urine in the detection and quantification of some of the major synthetic cannabinoids. Based on the results, some recommendations can be followed, for example, the use of hair to detect chronic and retrospective consumption (although sensitive to external contamination) and oral fluid or blood for the simultaneous detection of the parent compounds and their metabolites. If longer detection times than blood or oral fluid are needed, urine is the matrix of choice, although its pH may intervene in the analysis. This work highlights the use of new techniques, such as high-resolution mass spectrometry, to avoid the use of previous standards and to monitor new trends in the drug market. Abstract New synthetic cannabinoids (SCs) are emerging rapidly and continuously. Biological matrices are key for their precise detection to link toxicity and symptoms to each compound and concentration and ascertain consumption trends. The objective of this study was to determine the best human biological matrices to detect the risk-assessed compounds provided by The European Monitoring Centre for Drugs and Drug Addiction: AB-CHMINACA, ADB-CHMNACA, MDMB-CHMICA, and 5F-MDMB-PINACA. We carried out a systematic review covering 2015 up to the present date, including original articles assessing detection in antemortem human biological matrices with detailed validation information of the technique. In oral fluid and blood, SC parent compounds were found in oral fluid and blood at low concentrations and usually with other substances; thus, the correlation between SCs concentrations and severity of symptoms could rarely be established. When hair is used as the biological matrix, there are difficulties in excluding passive contamination when evaluating chronic consumption. Detection of metabolites in urine is complex because it requires prior identification studies. LC-MS/MS assays were the most widely used approaches for the selective identification of SCs, although the lack of standard references and the need for revalidation with the continuous emergence of new SCs are limiting factors of this technique. A potential solution is high-resolution mass spectrometry screening, which allows for non-targeted detection and retrospective data interrogation.
Collapse
|
24
|
Deventer MH, Van Uytfanghe K, Vinckier IMJ, Reniero F, Guillou C, Stove CP. Cannabinoid receptor activation potential of the next generation, generic ban evading OXIZID synthetic cannabinoid receptor agonists. Drug Test Anal 2022; 14:1565-1575. [PMID: 35560866 DOI: 10.1002/dta.3283] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/07/2022]
Abstract
In recent years, several nations have implemented various measures to control the surge of new synthetic cannabinoid receptor agonists (SCRAs) entering the recreational drug market. In July 2021, China put into effect a new generic legislation, banning SCRAs containing one of 7 general core scaffolds. However, this has driven manufacturers towards the synthesis of SCRAs with alternative core structures, exemplified by the recent emergence of "OXIZID SCRAs". Here, using in vitro β-arrestin2 recruitment assays, we report on the CB1 and CB2 potency and efficacy of five members of this new class of SCRAs: BZO-HEXOXIZID, BZO-POXIZID, 5-fluoro BZO-POXIZID, BZO-4en-POXIZID and BZO-CHMOXIZID. All compounds behaved as full agonists at CB1 and partial agonists at CB2 . Potencies ranged from 84.6 - 721 nM at CB1 and 2.21 - 25.9 nM at CB2 . Shortening the n-hexyl tail to a pentyl tail enhanced activity at both receptors. Fluorination of this pentyl analog did not yield a higher receptor activation potential, whereas an unsaturated tail resulted in decreased potency and efficacy at CB1 . The cyclohexyl methyl analog BZO-CHMOXIZID was the most potent compound at both receptors, with EC50 values of 84.6 and 2.21 nM at CB1 and CB2 , respectively. Evaluation of the activity of a seized powder containing BZO-4en-POXIZID suggested a high purity, in line with HPLC-DAD, GC-MS, LC-QTOF-MS and FTIR and NMR analysis. Furthermore, all tested compounds showed a preference for CB2 , except for BZO-POXIZID. Overall, these findings inform public health officials, law enforcement agencies and clinicians on these newly emerging SCRAs.
Collapse
Affiliation(s)
- M H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - K Van Uytfanghe
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - F Reniero
- European Commission, Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Ispra, VA, Italy
| | - C Guillou
- European Commission, Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Ispra, VA, Italy
| | - C P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Fabregat-Safont D, Mata-Pesquera M, Barneo-Muñoz M, Martinez-Garcia F, Mardal M, Davidsen AB, Sancho JV, Hernández F, Ibáñez M. In-depth comparison of the metabolic and pharmacokinetic behaviour of the structurally related synthetic cannabinoids AMB-FUBINACA and AMB-CHMICA in rats. Commun Biol 2022; 5:161. [PMID: 35210552 PMCID: PMC8873228 DOI: 10.1038/s42003-022-03113-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
Synthetic cannabinoids receptor agonists (SCRAs) are often almost completely metabolised, and hence their pharmacokinetics should be carefully evaluated for determining the most adequate biomarker in toxicological analysis. Two structurally related SCRAs, AMB-FUBINACA and AMB-CHMICA, were selected to evaluate their in vivo metabolism and pharmacokinetics using male Sprague-Dawley rats. Brain, liver, kidney, blood (serum) and urine samples were collected at different times to assess the differences in metabolism, metabolic reactions, tissue distribution and excretion. Both compounds experimented O-demethyl reaction, which occurred more rapidly for AMB-FUBINACA. The parent compounds and O-demethyl metabolites were highly bioaccumulated in liver, and were still detected in this tissue 48 h after injection. The different indazole/indole N-functionalisation produced diverse metabolic reactions in this moiety and thus, different urinary metabolites were formed. Out of the two compounds, AMB-FUBINACA seemed to easily cross the blood-brain barrier, presenting higher brain/serum concentrations ratio than AMB-CHMICA. Synthetic cannabinoids are amongst the most widely used psychoactive drugs which are tightly controlled by government agencies around the world. Here, pharmacokinetics of two synthetic cannabinoids in rats are evaluated along with their metabolites and tissue distribution, aiding in identifying distinct biomarkers that reflect the consumption of synthetic cannabinoids based on the tissue.
Collapse
Affiliation(s)
- David Fabregat-Safont
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - María Mata-Pesquera
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Manuela Barneo-Muñoz
- Predepartmental Unit of Medicine, Unitat Mixta de Neuroanatomia Funcional NeuroFun-UVEG-UJI, University Jaume I, Castellón, Spain
| | - Ferran Martinez-Garcia
- Predepartmental Unit of Medicine, Unitat Mixta de Neuroanatomia Funcional NeuroFun-UVEG-UJI, University Jaume I, Castellón, Spain
| | - Marie Mardal
- Section of Forensic Chemistry, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anders B Davidsen
- Section of Forensic Chemistry, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Juan V Sancho
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - María Ibáñez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| |
Collapse
|
26
|
Sparkes E, Cairns EA, Kevin RC, Lai F, Grafinger KE, Chen S, Deventer MH, Ellison R, Boyd R, Martin LJ, McGregor IS, Gerona RR, Hibbs DE, Auwärter V, Glass M, Stove C, Banister SD. Structure-activity relationships of valine, tert-leucine, and phenylalanine amino acid-derived synthetic cannabinoid receptor agonists related to ADB-BUTINACA, APP-BUTINACA, and ADB-P7AICA. RSC Med Chem 2022; 13:156-174. [PMID: 35308023 PMCID: PMC8864554 DOI: 10.1039/d1md00242b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/14/2021] [Indexed: 11/01/2023] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) remain one the most prevalent classes of new psychoactive substances (NPS) worldwide, and examples are generally poorly characterised at the time of first detection. We have synthesised a systematic library of amino acid-derived indole-, indazole-, and 7-azaindole-3-carboxamides related to recently detected drugs ADB-BUTINACA, APP-BUTINACA and ADB-P7AICA, and characterised these ligands for in vitro binding and agonist activity at cannabinoid receptor subtypes 1 and 2 (CB1 and CB2), and in vivo cannabimimetic activity. All compounds showed high affinity for CB1 (K i 0.299-538 nM) and most at CB2 (K i = 0.912-2190 nM), and most functioned as high efficacy agonists of CB1 and CB2 in a fluorescence-based membrane potential assay and a βarr2 recruitment assay (NanoBiT®), with some compounds being partial agonists in the NanoBiT® assay. Key structure-activity relationships (SARs) were identified for CB1/CB2 binding and CB1/CB2 functional activities; (1) for a given core, affinities and potencies for tert-leucinamides (ADB-) > valinamides (AB-) ≫ phenylalaninamides (APP-); (2) for a given amino acid side-chain, affinities and potencies for indazoles > indoles ≫ 7-azaindoles. Radiobiotelemetric evaluation of ADB-BUTINACA, APP-BUTINACA and ADB-P7AICA in mice demonstrated that ADB-BUTINACA and ADB-P7AICA were cannabimimetic at 0.1 mg kg-1 and 10 mg kg-1 doses, respectively, as measured by pronounced decreases in core body temperature. APP-BUTINACA failed to elicit any hypothermic response up to the maximally tested 10 mg kg-1 dose, yielding an in vivo potency ranking of ADB-BUTINACA > ADB-P7AICA > APP-BUTINACA.
Collapse
Affiliation(s)
- Eric Sparkes
- School of Chemistry, The University of Sydney NSW 2006 Australia
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney NSW 2050 Australia
| | - Elizabeth A Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney NSW 2050 Australia
- School of Psychology, The University of Sydney NSW 2050 Australia
| | - Richard C Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney NSW 2050 Australia
- School of Psychology, The University of Sydney NSW 2050 Australia
| | - Felcia Lai
- School of Pharmacy, The University of Sydney NSW 2006 Australia
| | - Katharina Elisabeth Grafinger
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg 79104 Freiburg Germany
| | - Shuli Chen
- Department of Pharmacology and Toxicology, University of Otago Dunedin 9016 New Zealand
| | - Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University Ottergemsesteenweg 460 9000 Ghent Belgium
| | - Ross Ellison
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California San Francisco CA 94143 USA
| | - Rochelle Boyd
- School of Chemistry, The University of Sydney NSW 2006 Australia
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney NSW 2050 Australia
| | - Lewis J Martin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney NSW 2050 Australia
- School of Psychology, The University of Sydney NSW 2050 Australia
| | - Iain S McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney NSW 2050 Australia
- School of Psychology, The University of Sydney NSW 2050 Australia
| | - Roy R Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California San Francisco CA 94143 USA
| | - David E Hibbs
- School of Pharmacy, The University of Sydney NSW 2006 Australia
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg 79104 Freiburg Germany
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago Dunedin 9016 New Zealand
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University Ottergemsesteenweg 460 9000 Ghent Belgium
| | - Samuel D Banister
- School of Chemistry, The University of Sydney NSW 2006 Australia
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney NSW 2050 Australia
| |
Collapse
|
27
|
|
28
|
OUP accepted manuscript. Clin Chem 2022; 68:848-855. [DOI: 10.1093/clinchem/hvac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/22/2022] [Indexed: 11/12/2022]
|
29
|
Ametovski A, Cairns EA, Grafinger KE, Cannaert A, Deventer MH, Chen S, Wu X, Shepperson CE, Lai F, Ellison R, Gerona R, Blakey K, Kevin R, McGregor IS, Hibbs DE, Glass M, Stove C, Auwärter V, Banister SD. NNL-3: A Synthetic Intermediate or a New Class of Hydroxybenzotriazole Esters with Cannabinoid Receptor Activity? ACS Chem Neurosci 2021; 12:4020-4036. [PMID: 34676751 DOI: 10.1021/acschemneuro.1c00348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) remain a prolific class of new psychoactive substances (NPS) and continue to expand rapidly. Despite the recent identification of hydroxybenzotriazole (HOBt) containing SCRAs in synthetic cannabis samples, there is currently no information regarding the pharmacological profile of these NPS with respect to human CB1 and CB2 receptors. In the current study, a series consisting of seven HOBt indole-, indazole-, and 7-azaindole-carboxylates bearing a range of N-alkyl substituents were synthesized and pharmacologically evaluated. Competitive binding assays at CB1 and CB2 demonstrated that all analogues except a 2-methyl-substituted derivative had low affinity for CB1 (Ki = 3.80-43.7 μM) and CB2 (Ki = 2.75-18.2 μM). A fluorometric functional assay revealed that 2-methylindole- and indole-derived HOBt carboxylates were potent and efficacious agonists of CB1 (EC50 = 12.0 and 63.7 nM; Emax = 118 and 120%) and CB2 (EC50 = 10.9 and 321 nM; Emax = 91 and 126%). All other analogues incorporating indazole and 7-azaindole cores and bearing a range of N1-substituents showed relatively low potency for CB1 and CB2. Additionally, a reporter assay monitoring β-arrestin 2 (βarr2) recruitment to the receptor revealed that the 2-methylindole example was the most potent and efficacious at CB1 (EC50 = 131 nM; Emax = 724%) and the most potent at CB2 (EC50 = 38.2 nM; Emax = 51%). As with the membrane potential assay, the indazole and other indole HOBt carboxylates were considerably less potent at both receptors, and analogues comprising a 7-azaindole core showed little activity. Taken together, these data suggest that NNL-3 demonstrates little CB1 receptor activity and is unlikely to be psychoactive in humans. NNL-3 is likely an unintended SCRA manufacturing byproduct. However, the synthesis of NNL-3 analogues proved simple and general, and some of these showed potent cannabimetic profiles in vitro, indicating that HOBt esters of this type may represent an emerging class of SCRA NPS.
Collapse
Affiliation(s)
- Adam Ametovski
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth A. Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Katharina Elisabeth Grafinger
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Marie H. Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Shuli Chen
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Xinyi Wu
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Caitlin E. Shepperson
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Felcia Lai
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Ross Ellison
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, California 94143, United States
| | - Roy Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, California 94143, United States
| | - Karen Blakey
- Illicit Drug Group, Forensic Chemistry, QHFSS, Queensland Health, Coopers Plains, Brisbane, QLD 4108, Australia
| | - Richard Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Iain S. McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - David E. Hibbs
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Samuel D. Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
30
|
Wille SMR, Elliott S. The Future of Analytical and Interpretative Toxicology: Where are We Going and How Do We Get There? J Anal Toxicol 2021; 45:619-632. [PMID: 33245325 DOI: 10.1093/jat/bkaa133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/02/2020] [Accepted: 11/18/2020] [Indexed: 01/26/2023] Open
Abstract
(Forensic) toxicology has faced many challenges, both analytically and interpretatively, especially in relation to an increase in potential drugs of interest. Analytical toxicology and its application to medicine and forensic science have progressed rapidly within the past centuries. Technological innovations have enabled detection of more substances with increasing sensitivity in a variety of matrices. Our understanding of the effects (both intended and unintended) have also increased along with determination and degree of toxicity. However, it is clear there is even more to understand and consider. The analytical focus has been on typical matrices such as blood and urine but other matrices could further increase our understanding, especially in postmortem (PM) situations. Within this context, the role of PM changes and potential redistribution of drugs requires further research and identification of markers of its occurrence and extent. Whilst instrumentation has improved, in the future, nanotechnology may play a role in selective and sensitive analysis as well as bioassays. Toxicologists often only have an advisory impact on pre-analytical and pre-interpretative considerations. The collection of appropriate samples at the right time in an appropriate way as well as obtaining sufficient circumstance background is paramount in ensuring an effective analytical strategy to provide useful results that can be interpreted within context. Nevertheless, key interpretative considerations such as pharmacogenomics and drug-drug interactions as well as determination of tolerance remain and in the future, analytical confirmation of an individual's metabolic profile may support a personalized medicine and judicial approach. This should be supported by the compilation and appropriate application of drug data pursuant to the situation. Specifically, in PM circumstances, data pertaining to where a drug was not/may have been/was contributory will be beneficial with associated pathological considerations. This article describes the challenges faced within toxicology and discusses progress to a future where they are being addressed.
Collapse
Affiliation(s)
- Sarah M R Wille
- Department of Toxicology, National Institute for Criminalistics and Criminology, Brussels, Belgium
| | - Simon Elliott
- Elliott Forensic Consulting Ltd, Birmingham, UK.,Department Analytical, Environmental & Forensic Science, King's College London, London, UK
| |
Collapse
|
31
|
Grafinger KE, Vandeputte MM, Cannaert A, Ametovski A, Sparkes E, Cairns E, Juchli PO, Haschimi B, Pulver B, Banister SD, Stove CP, Auwärter V. Systematic evaluation of a panel of 30 synthetic cannabinoid receptor agonists structurally related to MMB-4en-PICA, MDMB-4en-PINACA, ADB-4en-PINACA, and MMB-4CN-BUTINACA using a combination of binding and different CB1 receptor activation assays. Part III: The G protein pathway and critical comparison of different assays. Drug Test Anal 2021; 13:1412-1429. [PMID: 33908179 DOI: 10.1002/dta.3054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023]
Abstract
The present work is the last of a three-part study investigating a panel of 30 systematically designed synthetic cannabinoid receptor agonists (SCRAs) including features such as the 4-pentenyl tail and varying head groups including amides and esters of l-valine (MMB, AB), l-tert-leucine (ADB), and l-phenylalanine (APP), as well as adamantyl (A) and cumyl moieties (CUMYL). Here, we evaluated these SCRAs for their capacity to activate the human cannabinoid receptor 1 (CB1 ) via indirect measurement of G protein recruitment. Furthermore, we comparatively evaluated the results obtained from three in vitro assays, based on the recruitment of β-arrestin 2 (βarr2 assay) or Gαi protein (mini-Gαi assay), or binding of [35 S]-GTPγS. The observed efficacies (Emax ) varied depending on the conducted assay. Statistical analysis suggests that the population means of the relative intrinsic activity (RAi ) significantly differ for the [35 S]-GTPγS assay and the other two assays, but the population means of the βarr2 and mini-Gαi assays were not statistically different. Our data suggest that differences observed between the βarr2 and mini-Gαi assays are the best predictor for 'biased agonism' towards βarr or G protein recruitment in our study. SCRAs carrying an ADB or MPP moiety as a head group tended to produce elevated Emax values in the βarr2 assay, which might result in a tendency of these compounds to cause pronounced tolerance in users-a hypothesis that should be evaluated further by future studies. In general, a comparison of efficacies derived from different assays is difficult and should only be conducted very cautiously.
Collapse
Affiliation(s)
- Katharina Elisabeth Grafinger
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Marthe M Vandeputte
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Adam Ametovski
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Eric Sparkes
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Elizabeth Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | | | - Belal Haschimi
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Hermann Staudinger Graduate School, University of Freiburg, Freiburg, Germany
| | - Benedikt Pulver
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Hermann Staudinger Graduate School, University of Freiburg, Freiburg, Germany
| | - Samuel D Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
32
|
Grafinger KE, Cannaert A, Ametovski A, Sparkes E, Cairns E, Banister SD, Auwärter V, Stove CP. Systematic evaluation of a panel of 30 synthetic cannabinoid receptor agonists structurally related to MMB-4en-PICA, MDMB-4en-PINACA, ADB-4en-PINACA, and MMB-4CN-BUTINACA using a combination of binding and different CB 1 receptor activation assays-Part II: Structure activity relationship assessment via a β-arrestin recruitment assay. Drug Test Anal 2021; 13:1402-1411. [PMID: 33769699 DOI: 10.1002/dta.3035] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are the second largest class of new psychoactive substances (NPS) and are associated with serious adverse effects and even death. Despite this, little pharmacological data are available for many of the most recent SCRAs. This study consists of three different parts, aiming to systematically evaluate a panel of 30 SCRAs using binding and different in vitro human cannabinoid 1 receptor (CB1 ) activation assays. The present Part II investigated the SCRA analogs for their CB1 activation via a β-arrestin recruitment assay. The panel was systematically designed to include key structural sub-features of recent SCRAs. Thus, the 4-pentenyl tail of MMB-4en-PICA and MDMB-4en-PINACA was retained while incorporating varying head groups from other prevalent SCRAs, including amides and esters of L-valine, L-tert-leucine, and L-phenylalanine, and adamantyl and cumyl moieties. All 30 SCRAs activated CB1 , with indazoles generally showing the greatest potency (EC50 = 1.88-281 nM), followed by indoles (EC50 = 11.5-2293 nM), and the corresponding 7-azaindoles (EC50 = 62.4-9251 nM). Several subunit-linked structure-activity relationships were identified: (i) tert-leucine-functionalized SCRAs were more potent than the corresponding valine derivatives; (ii) no major difference in potency or efficacy was observed between tert-leucine/valine-derived amides and the corresponding methyl esters; however, phenylalanine analogs were affected by this change; and (iii) minor structural changes to the 4-pentenyl substituent had little influence on activity. These findings elucidate structural features that modulate the CB1 activation potential of currently prevalent SCRAs and a systematic panel of analogs, some of which may appear in NPS markets in future.
Collapse
Affiliation(s)
- Katharina Elisabeth Grafinger
- Laboratory of Toxicology Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.,Institute of Forensic Medicine, Forensic Toxicology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annelies Cannaert
- Laboratory of Toxicology Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Adam Ametovski
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia.,School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
| | - Eric Sparkes
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia.,School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
| | - Elizabeth Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Samuel D Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia.,School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christophe P Stove
- Laboratory of Toxicology Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
33
|
Cannaert A, Sparkes E, Pike E, Luo JL, Fang A, Kevin RC, Ellison R, Gerona R, Banister SD, Stove CP. Synthesis and in Vitro Cannabinoid Receptor 1 Activity of Recently Detected Synthetic Cannabinoids 4F-MDMB-BICA, 5F-MPP-PICA, MMB-4en-PICA, CUMYL-CBMICA, ADB-BINACA, APP-BINACA, 4F-MDMB-BINACA, MDMB-4en-PINACA, A-CHMINACA, 5F-AB-P7AICA, 5F-MDMB-P7AICA, and 5F-AP7AICA. ACS Chem Neurosci 2020; 11:4434-4446. [PMID: 33253529 DOI: 10.1021/acschemneuro.0c00644] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are an evolving class of new psychoactive substances (NPS) with structurally diverse compounds emerging each year. Due to the rapid pace at which these drugs enter the market, there is often little or nil information regarding the pharmacology of these substances despite widespread human use. In this study, 12 recently emerged SCRAs (reported between 2018 and 2020) were synthesized, analytically characterized, and pharmacologically evaluated using a live cell-based nanoluciferase complementation reporter assay that monitors in vitro cannabinoid receptor type 1 (CB1) activation via its interaction with β-arrestin 2 (βarr2). All synthesized SCRAs acted as agonists of CB1, although differences in potency (EC50 = 2.33-5475 nM) and efficacy (Emax = 37-378%) were noted, and several structure-activity relationships were identified. SCRAs featuring indazole cores (EC50 = 2.33-159 nM) were generally of equal or greater potency than indole analogues (EC50 = 32.9-330 nM) or 7-azaindole derivatives (EC50 = 64.0-5475 nM). Interestingly, with the exception of APP-BINACA (Emax = 75.7%) and 5F-A-P7AICA (Emax = 37.4%), all SCRAs showed greater efficacy than the historical SCRA JWH-018 to which responses were normalized (Emax = 142-378%). The most potent CB1 agonists in the study were ADB-BINACA (EC50 = 6.36 nM), 4F-MDMB-BINACA (EC50 = 7.39 nM), and MDMB-4en-PINACA (EC50 = 2.33 nM). Notably, all of these SCRAs featured an indazole core as well as a "bulky" tert-butyl moiety in the pendant amino acid side chain. This study confirms that recently detected SCRAs 4F-MDMB-BICA, 5F-MPP-PICA, MMB-4en-PICA, CUMYL-CBMICA, ADB-BINACA, APP-BINACA, 4F-MDMB-BINACA, MDMB-4en-PINACA, A-CHMINACA, 5F-AB-P7AICA, 5F-MDMB-P7AICA, and 5F-AP7AICA were all able to activate the CB1 receptor in vitro, albeit to different extents, and are potentially psychoactive in vivo. These results indicate that further evaluation of these widely used NPS is warranted to better understand the risks associated with human consumption of these drugs.
Collapse
Affiliation(s)
- Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent B-9000, Belgium
| | - Eric Sparkes
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia
- School of Chemistry, The University of Sydney, Sydney 2006, Australia
| | - Edward Pike
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia
- School of Chemistry, The University of Sydney, Sydney 2006, Australia
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Jia Lin Luo
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia
- School of Psychology, The University of Sydney, Sydney 2006, Australia
| | - Ada Fang
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia
- School of Chemistry, The University of Sydney, Sydney 2006, Australia
| | - Richard C. Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia
- School of Psychology, The University of Sydney, Sydney 2006, Australia
| | - Ross Ellison
- Clinical Toxicology and Environmental Biomonitoring Laboratory, School of Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Roy Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, School of Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Samuel D. Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia
- School of Chemistry, The University of Sydney, Sydney 2006, Australia
| | - Christophe P. Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent B-9000, Belgium
| |
Collapse
|
34
|
Antonides LH, Cannaert A, Norman C, NicDáeid N, Sutcliffe OB, Stove CP, McKenzie C. Shape matters: The application of activity-based in vitro bioassays and chiral profiling to the pharmacological evaluation of synthetic cannabinoid receptor agonists in drug-infused papers seized in prisons. Drug Test Anal 2020; 13:628-643. [PMID: 33161649 DOI: 10.1002/dta.2965] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) elicit many of their psychoactive effects via type-1 human cannabinoid (CB1 ) receptors. Enantiomer pairs of eight tert-leucinate or valinate indole- and indazole-3-carboxamide SCRAs were synthesized and their CB1 potency and efficacy assessed using an in vitro β-arrestin recruitment assay in a HEK239T stable cell system. A chiral high-performance liquid chromatography method with photodiode array and/or quadrupole time-of-flight-mass spectrometry detection (HPLC-PDA and HPLC-PDA-QToF-MS) was applied to 177 SCRA-infused paper samples seized in Scottish prisons between 2018 and 2020. In most samples, SCRAs were almost enantiopure (S)-enantiomer (>98% of total chromatographic peak area), although in some (n = 18), 2% to 16% of the (R)-enantiomer was detected. (S)-enantiomers are consistently more potent than (R)-enantiomers and often more efficacious. The importance of SCRA-CB1 receptor interactions in the "head" or "linked group" moiety is demonstrated, with the conformation of the "bulky" tert-leucinate group greatly affecting potency (by up to a factor of 374), significantly greater than the difference observed between valinate SCRA enantiomers. (S)-MDMB-4en-PINACA, (S)-4F-MDMB-BINACA, and (S)-5F-MDMB-PICA are currently the most prevalent SCRAs in Scottish prisons, and all have similar high potency (EC50 , 1-5 nM) and efficacy. Infused paper samples were compared using estimated intrinsic efficacy at the CB1 receptor (EIECB1 ) to evaluate samples with variable SCRA content. Given their similar potency and efficacy, any variation in CB1 receptor-mediated psychoactive effects are likely to derive from variation in dose, mode of use, pharmacokinetic differences, and individual factors affecting the user, rather than differences in the specific SCRA present.
Collapse
Affiliation(s)
- Lysbeth H Antonides
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Caitlyn Norman
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Niamh NicDáeid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Oliver B Sutcliffe
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Craig McKenzie
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| |
Collapse
|
35
|
Esteve-Turrillas FA, Armenta S, de la Guardia M. Sample preparation strategies for the determination of psychoactive substances in biological fluids. J Chromatogr A 2020; 1633:461615. [DOI: 10.1016/j.chroma.2020.461615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/31/2022]
|
36
|
Åstrand A, Guerrieri D, Vikingsson S, Kronstrand R, Green H. In vitro characterization of new psychoactive substances at the μ-opioid, CB1, 5HT1A, and 5-HT2A receptors—On-target receptor potency and efficacy, and off-target effects. Forensic Sci Int 2020; 317:110553. [DOI: 10.1016/j.forsciint.2020.110553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 11/28/2022]
|
37
|
Lie W, Cheong EJY, Goh EML, Moy HY, Cannaert A, Stove CP, Chan ECY. Diagnosing intake and rationalizing toxicities associated with 5F-MDMB-PINACA and 4F-MDMB-BINACA abuse. Arch Toxicol 2020; 95:489-508. [PMID: 33236189 DOI: 10.1007/s00204-020-02948-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/05/2020] [Indexed: 11/25/2022]
Abstract
5F-MDMB-PINACA and 4F-MDMB-BINACA are synthetic cannabinoids (SCs) that elicit cannabinoid psychoactive effects. Defining pharmacokinetic-pharmacodynamic (PK-PD) relationships governing SCs and their metabolites are paramount to investigating their in vivo toxicological outcomes. However, the disposition kinetics and cannabinoid receptor (CB) activities of the primary metabolites of SCs are largely unknown. Additionally, reasons underlying the selection of ester hydrolysis metabolites (EHMs) as urinary biomarkers are often unclear. Here, metabolic reaction phenotyping was performed to identify key metabolizing enzymes of the parent SCs. Hepatic clearances of parent SCs and their EHMs were estimated from microsomal metabolic stability studies. Renal clearances were simulated using a mechanistic kidney model incorporating in vitro permeability and organic anionic transporter 3 (OAT3)-mediated uptake data. Overall clearances were considered in tandem with estimated volumes of distribution for in vivo biological half-lives (t1/2) predictions. Interactions of the compounds with CB1 and CB2 were investigated using a G-protein coupled receptor activation assay. We demonstrated that similar enzymatic isoforms were implicated in the metabolism of 5F-MDMB-PINACA and 4F-MDMB-BINACA. Our in vivo t1/2 determinations verified the rapid elimination of parent SCs and suggest prolonged circulation of their EHMs. The pronounced attenuation of the potencies and efficacies of the metabolites against CB1 and CB2 further suggests how toxic manifestations of SC abuse are likely precipitated by augmented exposure to parent SCs. Notably, basolateral OAT3-mediated uptake of the EHMs substantiates their higher urinary abundance. These novel insights underscore the importance of mechanistic, quantitative and systematic characterization of PK-PD relationships in rationalizing the toxicities of SCs.
Collapse
Affiliation(s)
- Wen Lie
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Eleanor Jing Yi Cheong
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Evelyn Mei Ling Goh
- Analytical Toxicology Laboratory, Applied Sciences Group, Health Sciences Authority, 11 Outram Road, Singapore, 169078, Singapore
| | - Hooi Yan Moy
- Analytical Toxicology Laboratory, Applied Sciences Group, Health Sciences Authority, 11 Outram Road, Singapore, 169078, Singapore
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
38
|
Krotulski AJ, Cannaert A, Stove C, Logan BK. The next generation of synthetic cannabinoids: Detection, activity, and potential toxicity of pent-4en and but-3en analogues including MDMB-4en-PINACA. Drug Test Anal 2020; 13:427-438. [PMID: 32997377 DOI: 10.1002/dta.2935] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/12/2022]
Abstract
A new class of synthetic cannabinoids has emerged as new psychoactive substances (NPS). Similar in structure to JWH-022, these substances contain alkene modifications to the tail region of the synthetic cannabinoid core structure, and nomenclature denotes these new analogues as pent-4en or but-3en species. Internationally, two analogues from this new series recently emerged: MDMB-4en-PINACA and MMB-4en-PICA. Previously, data regarding activity and potential toxicity were not available. In vitro assessment of cannabinoid receptor 1 (CB1) activation via the β-arrestin 2 recruitment was studied for three (3) pent-4en analogues, one (1) but-3en analogue, and one (1) principal metabolite. MDMB-4en-PINACA (2.47 nM, 239%), MDMB-4en-PICA (11.5 nM, 302%), and MDMB-3en-BINACA (14.3 nM, 286%) were highly potent and efficacious (comparison: JWH-018, 25.3 nM, 100%), while the potencies of MMB-4en-PICA and MDMB-4en-PINACA 3,3-dimethylbutanoic acid were markedly lower. Modifications to core and tail structural features (i.e., indole vs. indazole) led to relatively small differences in potency, while changes among the head region led to larger differences. Sample-mining and data-mining conducted on toxicology samples led to the identification of MDMB-4en-PINACA in 25 forensic toxicology cases, including postmortem and impaired driving investigations, with case details and limited histories described herein. Moderate geographical distribution of MDMB-4en-PINACA was noted in the United States with emergence in the Northeast, Midwest, South, and West regions. Results from toxicology testing paired with case history show the potential for MDMB-4en-PINACA to cause or contribute to impairment or death. Forensic scientists, public health and public safety officials, law enforcement, clinicians, medical examiners, and coroners should consider involvement of emergent synthetic cannabinoids in their work and that new analogues containing an alkene tail can retain similar or increased potency and toxicity.
Collapse
Affiliation(s)
- Alex J Krotulski
- Center for Forensic Science Research and Education, Fredric Rieders Family Foundation, Willow Grove, PA, USA
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Barry K Logan
- Center for Forensic Science Research and Education, Fredric Rieders Family Foundation, Willow Grove, PA, USA.,Toxicology Department, NMS Labs, Horsham, PA, USA
| |
Collapse
|
39
|
Walsh KB, Andersen HK. Molecular Pharmacology of Synthetic Cannabinoids: Delineating CB1 Receptor-Mediated Cell Signaling. Int J Mol Sci 2020; 21:E6115. [PMID: 32854313 PMCID: PMC7503917 DOI: 10.3390/ijms21176115] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Synthetic cannabinoids (SCs) are a class of new psychoactive substances (NPSs) that exhibit high affinity binding to the cannabinoid CB1 and CB2 receptors and display a pharmacological profile similar to the phytocannabinoid (-)-trans-Δ9-tetrahydrocannabinol (THC). SCs are marketed under brand names such as K2 and Spice and are popular drugs of abuse among male teenagers and young adults. Since their introduction in the early 2000s, SCs have grown in number and evolved in structural diversity to evade forensic detection and drug scheduling. In addition to their desirable euphoric and antinociceptive effects, SCs can cause severe toxicity including seizures, respiratory depression, cardiac arrhythmias, stroke and psychosis. Binding of SCs to the CB1 receptor, expressed in the central and peripheral nervous systems, stimulates pertussis toxin-sensitive G proteins (Gi/Go) resulting in the inhibition of adenylyl cyclase, a decreased opening of N-type Ca2+ channels and the activation of G protein-gated inward rectifier (GIRK) channels. This combination of signaling effects dampens neuronal activity in both CNS excitatory and inhibitory pathways by decreasing action potential formation and neurotransmitter release. Despite this knowledge, the relationship between the chemical structure of the SCs and their CB1 receptor-mediated molecular actions is not well understood. In addition, the potency and efficacy of newer SC structural groups has not been determined. To address these limitations, various cell-based assay technologies are being utilized to develop structure versus activity relationships (SAR) for the SCs and to explore the effects of these compounds on noncannabinoid receptor targets. This review focuses on describing and evaluating these assays and summarizes our current knowledge of SC molecular pharmacology.
Collapse
Affiliation(s)
- Kenneth B. Walsh
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina, School of Medicine, Columbia, SC 29208, USA;
| | | |
Collapse
|
40
|
Presley BC, Castaneto MS, Logan BK, Jansen-Varnum SA. Assessment of synthetic cannabinoid FUB-AMB and its ester hydrolysis metabolite in human liver microsomes and human blood samples using UHPLC-MS/MS. Biomed Chromatogr 2020; 34:e4884. [PMID: 32415732 DOI: 10.1002/bmc.4884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022]
Abstract
FUB-AMB, an indazole carboxamide synthetic cannabinoid recreational drug, was one of the compounds most frequently reported to governmental agencies worldwide between 2016 and 2019. It has been implicated in intoxications and fatalities, posing a risk to public health. In the current study, FUB-AMB was incubated with human liver microsomes (HLM) to assess its metabolic fate and stability and to determine if its major ester hydrolysis metabolite (M1) was present in 12 authentic forensic human blood samples from driving under the influence of drug cases and postmortem investigations using UHPLC-MS/MS. FUB-AMB was rapidly metabolized in HLM, generating M1 that was stable through a 120-min incubation period, a finding that indicates a potential long detection window in human biological samples. M1 was identified in all blood samples, and no parent drug was detected. The authors propose that M1 is a reliable marker for inclusion in laboratory blood screens for FUB-AMB; this metabolite may be pharmacologically active like its precursor FUB-AMB. M1 frequently appears in samples in which the parent drug is undetectable and can point to the causative agent. The results suggest that it is imperative that synthetic cannabinoid laboratory assay panels include metabolites, especially known or potential pharmacologically active metabolites, particularly for compounds with short half-lives.
Collapse
Affiliation(s)
- Brandon C Presley
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | | | - Barry K Logan
- The Center for Forensic Science Research and Education at the Fredric Rieders Family Foundation, Willow Grove, Pennsylvania, USA
| | | |
Collapse
|
41
|
Pottie E, Cannaert A, Stove CP. In vitro structure-activity relationship determination of 30 psychedelic new psychoactive substances by means of β-arrestin 2 recruitment to the serotonin 2A receptor. Arch Toxicol 2020; 94:3449-3460. [PMID: 32627074 DOI: 10.1007/s00204-020-02836-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Serotonergic psychedelics, substances exerting their effects primarily through the serotonin 2A receptor (5-HT2AR), continue to comprise a substantial portion of reported new psychoactive substances (NPS). The exact mechanisms of action of psychedelics still remain to be elucidated further, and certain pathways remain largely unexplored on a molecular level for this group of compounds. A systematic comparison of substances belonging to different subclasses, monitoring the receptor-proximal β-arrestin 2 recruitment, is lacking. Based on a previously reported in vitro bioassay employing functional complementation of a split nanoluciferase to monitor β-arrestin 2 recruitment to the 5-HT2AR, we here report on the setup of a stable HEK 293 T cell-based bioassay. Following verification of the performance of this new stable cell system as compared to a system based on transient transfection, the stable expression system was deemed suitable for the pharmacological characterization of psychedelic NPS. Subsequently, it was applied for the in vitro assessment of the structure-activity relationship of a set of 30 substances, representing different subclasses of phenylalkylamine psychedelics, among which 12 phenethylamine derivatives (2C-X), 7 phenylisopropylamines (DOx) and 11 N-benzylderivatives (25X-NB). The resulting potency and efficacy values provide insights into the structure-activity relationship of the tested compounds, overall confirm findings observed with other reported in vitro assays, and even show a significant correlation with estimated common doses. This approach, in which a large series of psychedelic NPS belonging to different subclasses is comparatively tested, using a same assay setup, monitoring a receptor-proximal event, not only gives pharmacological insights, but may also allow prioritization of legal actions related to the most potent -and potentially dangerous- compounds.
Collapse
Affiliation(s)
- Eline Pottie
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
42
|
Janssens L, Cannaert A, Connolly MJ, Liu H, Stove CP. In vitro
activity profiling of Cumyl‐PEGACLONE variants at the CB
1
receptor: Fluorination
versus
isomer exploration. Drug Test Anal 2020; 12:1336-1343. [DOI: 10.1002/dta.2870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Liesl Janssens
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| | | | | | - Christophe P. Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| |
Collapse
|
43
|
Presley BC, Logan BK, Jansen-Varnum SA. In Vitro Metabolic Profile Elucidation of Synthetic Cannabinoid APP-CHMINACA (PX-3). J Anal Toxicol 2020; 44:226-236. [PMID: 31665324 DOI: 10.1093/jat/bkz086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 11/13/2022] Open
Abstract
Indazole carboxamide synthetic cannabinoids remain the most prevalent subclass of new psychoactive substances (NPS) reported internationally. However, the metabolic and pharmacological properties of many of these compounds remain unknown. Elucidating these characteristics allows members of the clinical and forensic communities to identify causative agents in patient samples, as well as render conclusions regarding their toxic effects. This work presents a detailed report on the in vitro phase I metabolism of indazole carboxamide synthetic cannabinoid APP-CHMINACA (PX-3). Incubation of APP-CHMINACA with human liver microsomes, followed by analysis of extracts via high-resolution mass spectrometry, yielded 12 metabolites, encompassing 7 different metabolite classes. Characterization of the metabolites was achieved by evaluating the product ion spectra, accurate mass and chemical formula generated for each metabolite. The predominant biotransformations observed were hydrolysis of the distal amide group and hydroxylation of the cyclohexylmethyl (CHM) substituent. Nine metabolites were amide hydrolysis products, of which five were monohydroxylated, one dihydroxylated and two were ketone products. The metabolites in greatest abundance in the study were products of amide hydrolysis with no further biotransformation (M1), followed by amide hydrolysis with monohydroxylation (M2.1). Three APP-CHMINACA-specific metabolites were generated, all of which were hydroxylated on the CHM group; one mono-, di- and tri-hydroxylated metabolite each was produced, with dihydroxylation (M6) present in the greatest abundance. The authors propose that metabolites M1, M2.1 and M6 are the most appropriate markers to determine consumption of APP-CHMINACA. The methods used in the current study have broad applicability and have been used to determine the in vitro metabolic profiles of multiple synthetic cannabinoids and other classes of NPS. This research can be used to guide analytical scientists in method development, synthesis of reference material, pharmacological testing of proposed metabolites and prediction of metabolic processes of compounds yet to be studied.
Collapse
Affiliation(s)
- Brandon C Presley
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA 19122, USA
| | - Barry K Logan
- The Center for Forensic Science Research and Education, Fredric Rieders Family Foundation, 2300 Stratford Ave., Willow Grove, PA 19090, USA
| | - Susan A Jansen-Varnum
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA 19122, USA
| |
Collapse
|
44
|
Santillo MF. Trends using biological target-based assays for drug detection in complex sample matrices. Anal Bioanal Chem 2020; 412:3975-3982. [PMID: 32372275 DOI: 10.1007/s00216-020-02681-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022]
Abstract
In vivo, drug molecules interact with their biological targets (e.g., enzymes, receptors, ion channels, transporters), thereby eliciting therapeutic effects. Assays that measure the interaction between drugs and bio-targets may be used as drug biosensors, which are capable of broadly detecting entire drug classes without prior knowledge of their chemical structure. This Trends article covers recent developments in bio-target-based screening assays for detecting drugs associated with the following areas: illicit products marketed as dietary supplements, food-producing animals, and bodily fluids. General challenges and considerations associated with using bio-target assays are also presented. Finally, future applications of these assays for drug detection are suggested based upon current needs.
Collapse
Affiliation(s)
- Michael F Santillo
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration (FDA), 8301 Muirkirk Rd, Laurel, MD, 20708, USA.
| |
Collapse
|
45
|
Gampfer TM, Wagmann L, Park YM, Cannaert A, Herrmann J, Fischmann S, Westphal F, Müller R, Stove CP, Meyer MR. Toxicokinetics and toxicodynamics of the fentanyl homologs cyclopropanoyl-1-benzyl-4´-fluoro-4-anilinopiperidine and furanoyl-1-benzyl-4-anilinopiperidine. Arch Toxicol 2020; 94:2009-2025. [PMID: 32249346 PMCID: PMC7303074 DOI: 10.1007/s00204-020-02726-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022]
Abstract
The two fentanyl homologs cyclopropanoyl-1-benzyl-4´-fluoro-4-anilinopiperidine (4F-Cy-BAP) and furanoyl-1-benzyl-4-anilinopiperidine (Fu-BAP) have recently been seized as new psychoactive substances (NPS) on the drugs of abuse market. As their toxicokinetic and toxicodynamic characteristics are completely unknown, this study focused on elucidating their in vitro metabolic stability in pooled human liver S9 fraction (pHLS9), their qualitative in vitro (pHLS9), and in vivo (zebrafish larvae) metabolism, and their in vitro isozyme mapping using recombinant expressed isoenzymes. Their maximum-tolerated concentration (MTC) in zebrafish larvae was studied from 0.01 to 100 µM. Their µ-opioid receptor (MOR) activity was analyzed in engineered human embryonic kidney (HEK) 293 T cells. In total, seven phase I and one phase II metabolites of 4F-Cy-BAP and 15 phase I and four phase II metabolites of Fu-BAP were tentatively identified by means of liquid chromatography high-resolution tandem mass spectrometry, with the majority detected in zebrafish larvae. N-Dealkylation, N-deacylation, hydroxylation, and N-oxidation were the most abundant metabolic reactions and the corresponding metabolites are expected to be promising analytical targets for toxicological analysis. Isozyme mapping revealed the main involvement of CYP3A4 in the phase I metabolism of 4F-Cy-BAP and in terms of Fu-BAP additionally CYP2D6. Therefore, drug-drug interactions by CYP3A4 inhibition may cause elevated drug levels and unwanted adverse effects. MTC experiments revealed malformations and changes in the behavior of larvae after exposure to 100 µM Fu-BAP. Both substances were only able to produce a weak activation of MOR and although toxic effects based on MOR activation seem unlikely, activity at other receptors cannot be excluded.
Collapse
Affiliation(s)
- Tanja M Gampfer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421, Homburg, Germany
| | - Lea Wagmann
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421, Homburg, Germany
| | - Yu Mi Park
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, 66123, Saarbrücken, Germany
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, 66123, Saarbrücken, Germany
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Jennifer Herrmann
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, 66123, Saarbrücken, Germany
| | - Svenja Fischmann
- State Bureau of Criminal Investigation Schleswig-Holstein, 24116, Kiel, Germany
| | - Folker Westphal
- State Bureau of Criminal Investigation Schleswig-Holstein, 24116, Kiel, Germany
| | - Rolf Müller
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, 66123, Saarbrücken, Germany
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
46
|
Pottie E, Tosh DK, Gao ZG, Jacobson KA, Stove CP. Assessment of biased agonism at the A 3 adenosine receptor using β-arrestin and miniGα i recruitment assays. Biochem Pharmacol 2020; 177:113934. [PMID: 32224136 DOI: 10.1016/j.bcp.2020.113934] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
The A3 adenosine receptor (A3AR) is a G protein-coupled receptor that is involved in a wide variety of physiological and pathological processes, such as cancer. However, the use of compounds pharmacologically targeting this receptor remains limited in clinical practice, despite extensive efforts for compound synthesis. Moreover, the possible occurrence of biased agonism further complicates the interpretation of the functional characteristics of compounds. Hence the need for simple assays, which are comparable in terms of the used cell lines and read-out technique. We previously established a stable β-arrestin 2 (βarr2) bioassay, employing a simple, luminescent read-out via functional complementation of a split nanoluciferase enzyme. Here, we developed a complementary, new bioassay in which coupling of an engineered miniGαi protein to activated A3AR is monitored using a similar approach. Application of both bioassays for the concurrent determination of the potencies and efficacies of a set of 19 N6-substituted adenosine analogues not only allowed for the characterization of structure-activity relationships, but also for the quantification of biased agonism. Although a broad distribution in potency and efficacy values was obtained within the test panel, no significant bias was observed toward either the βarr2 or miniGαi pathway.
Collapse
Affiliation(s)
- Eline Pottie
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Dilip K Tosh
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20802, USA
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20802, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20802, USA
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
47
|
Cannaert A, Ramírez Fernández MDM, Theunissen EL, Ramaekers JG, Wille SMR, Stove CP. Semiquantitative Activity-Based Detection of JWH-018, a Synthetic Cannabinoid Receptor Agonist, in Oral Fluid after Vaping. Anal Chem 2020; 92:6065-6071. [DOI: 10.1021/acs.analchem.0c00484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Maria del Mar Ramírez Fernández
- Laboratory of Toxicology, National Institute of Criminalistics and Criminology, Vilvoordsesteenweg 98, 1120 Brussels, Belgium
| | - Eef L. Theunissen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 Maastricht, The Netherlands
| | - Johannes G. Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 Maastricht, The Netherlands
| | - Sarah M. R. Wille
- Laboratory of Toxicology, National Institute of Criminalistics and Criminology, Vilvoordsesteenweg 98, 1120 Brussels, Belgium
| | - Christophe P. Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
48
|
Assessment of structure-activity relationships and biased agonism at the Mu opioid receptor of novel synthetic opioids using a novel, stable bio-assay platform. Biochem Pharmacol 2020; 177:113910. [PMID: 32179045 DOI: 10.1016/j.bcp.2020.113910] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/10/2020] [Indexed: 11/20/2022]
Abstract
Fentanyl and morphine are agonists of the Mu opioid receptor (MOR), which is a member of the GPCR family. Their analgesic effects are associated with unwanted side effects. On a signaling level downstream from MOR, it has been hypothesized that analgesia may be mediated through the G protein pathway, whereas the undesirable effects of opioids have been linked to the β-arrestin (βarr) pathway. Despite being an increasingly debated subject, little is known about a potential 'bias' (i.e. the preferential activation of one pathway over the other) of the novel synthetic opioids (NSO) - including fentanyl analogs - that have emerged on the illegal drug market. We have therefore developed and applied a novel, robust bio-assay platform to study the activity of 21 NSO, to evaluate to what extent these MOR agonists show biased agonism and to investigate the potential correlation with their structure. In addition, we evaluated the functional selectivity of TRV130, a purported G protein-biased agonist. We applied newly established stable bio-assays in HEK293T cells, based on the principle of functional complementation of a split nanoluciferase, to assess MOR activation via recruitment of a mini-Gi protein (GTPase domain of Gαi subunit) or βarr2. All but two of the tested NSO demonstrated a concentration-dependent response at MOR in both bio-assays. The developed bio-assays allow to gain insight into the βarr2 or G protein recruitment potential of NSO, which may eventually help to better understand why certain opioids are associated with higher toxicity. Adding to the recent discussion about the relevance of the biased agonism concept for opioids, we did not observe a significant bias for any of the evaluated compounds, including TRV130.
Collapse
|
49
|
Salomone A, Palamar JJ, Vincenti M. Should NPS be included in workplace drug testing? Drug Test Anal 2020; 12:191-194. [PMID: 31840414 DOI: 10.1002/dta.2749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Alberto Salomone
- Dipartimento di Chimica, Università di Torino, Turin, Italy.,Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", , Orbassano, Turin, Italy
| | - Joseph J Palamar
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Marco Vincenti
- Dipartimento di Chimica, Università di Torino, Turin, Italy.,Centro Regionale Antidoping e di Tossicologia "A. Bertinaria", , Orbassano, Turin, Italy
| |
Collapse
|
50
|
Presley BC, Logan BK, Jansen-Varnum SA. Phase I metabolism of synthetic cannabinoid receptor agonist PX-1 (5F-APP-PICA) via incubation with human liver microsomes and UHPLC-HRMS. Biomed Chromatogr 2020; 34:e4786. [PMID: 31863591 DOI: 10.1002/bmc.4786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/22/2019] [Accepted: 12/16/2019] [Indexed: 01/06/2023]
Abstract
Studies of the metabolic and pharmacological profiles of indole carboxamide synthetic cannabinoids (a prevalent class of new psychoactive substances) are critical in ensuring that their use can be detected through bioanalytical testing. We have determined the in vitro Phase I metabolism of one such compound, PX-1 (5F-APP-PICA), and appropriate markers to demonstrate human consumption. PX-1 was incubated with human liver microsomes, followed by analysis of the extracts via high-resolution mass spectrometry. A total of 10 metabolites were identified, with simultaneous defluorination and monohydroxylation of the pentyl side chain as the primary biotransformation product (M1). Additional metabolites formed were hydroxylation products of the indole and benzyl moieties, distal amide hydrolysis, N-desfluoropentyl, and carboxypentyl metabolites. Three monohydroxylated metabolites specific to PX-1 were identified and are reported for the first time in this study. The primary metabolite, M1, was further oxidized to M5, a carboxypentyl metabolite. M8 is PX-1 specific, possessing an intact fluoropentyl side chain. These three metabolites are the most suitable for implementation into bioanalytical assays for demonstrating PX-1 consumption. The findings of this study can be used by analytical scientists and medical professionals to determine PX-1 ingestion and predict the metabolites of synthetic cannabinoids sharing structural elements.
Collapse
Affiliation(s)
| | - Barry K Logan
- The Center for Forensic Science Research and Education at the Fredric Rieders Family Foundation, Willow Grove, PA, USA
| | | |
Collapse
|