1
|
Huang L, Zhang X, Mao Z, Liu S, Li Y, Ren S, Zhou H, Liu B, Gao Z. Ni-Pt nanozyme-mediated relaxation and colorimetric sensor for dual-modality detection of norovirus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169738. [PMID: 38160831 DOI: 10.1016/j.scitotenv.2023.169738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
An NiPt nanozyme-mediated relaxation and colorimetric sensor is developed for dual-modality detection of norovirus (NoV). The relaxation modality is based on the "catalase-like" activity of the NiPt nanozyme, which adjusts the hydrogen peroxide (H2O2) mediated Fe (II)/Fe(III) conversion, thereby changing the relaxation signal. Poly-γ-glutamic acid (MW ≈ 1w) can enhance the relaxivity of Fe(III) (r1 = 7.11 mM-1 s-1; r2 = 8.94 mM-1 s-1). The colorimetric modality exploits the "peroxidase-like" activity of the NiPt nanozyme, which can catalyze the oxidation of colorless 3, 3', 5, 5'-tetramethylbenzidine (TMB) to blue oxTMB in H2O2. Under optimal conditions, the relaxation modality exhibits a wide working range (1.0 × 101-1.0 × 104 fM) and a limit of detection (LOD) of 4.7 fM (equivalent to 2820 copies/μL). The spiked recoveries range from 99.593 to 106.442 %, and the relative standard deviation (RSD) is less than 5.124 %. The colorimetric modality exhibited the same working range with a lower LOD of 2.9 fM (equivalent to 1740 copies/μL) and an RSD of less than 2.611 %. Additionally, the recombinase polymerase amplification reaction enabled the detection of low NoV levels in food samples with a working range of 102-106 copies/mL and LOD of 102 copies/mL. The accuracy of the sensor in the analysis of spiked samples is consistent with the gold standard method (real-time quantitative reverse transcription-polymerase chain reaction), demonstrating the high accuracy and practical utility of the sensor.
Collapse
Affiliation(s)
- Lei Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xue Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zefeng Mao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Sha Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yanchun Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China..
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China..
| |
Collapse
|
2
|
Li DY, Chen L, Li CY, Zhang J, Zhao Y, Yang YH, Yang T. Nanoplasmonic biosensors for multicolor visual analysis of acetylcholinesterase activity and drug inhibitor screening in point-of-care testing. Biosens Bioelectron 2024; 247:115912. [PMID: 38096721 DOI: 10.1016/j.bios.2023.115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 01/02/2024]
Abstract
The monitoring of acetylcholinesterase (AChE) activity and the screening of its inhibitors are significance of the diagnosis and drug therapy of nervous diseases. A metal ions-mediated signal amplification strategy was developed for the highly sensitive and multicolor assay of AChE activity and visually screening its drug inhibitors. After the specific reaction between AChE and acetylthiocholine (ATCh), the hydrolysis product thiocholine (TCh) can directly and decompose the α-FeOOH nanorods (NRs) to release amounts of Fe2+, which was regarded as Fenton reagent to efficiently catalyze H2O2 to produce ·OH. Then, the as-formed ·OH can further largely shorten the gold nanobipyramids (Au NBPs), generating a series of palpable color variations. The linear range for AChE activity was 0.01-500.0 U/L with the limit of detection as low as 0.0074 U/L. The vivid visual effects could be easily distinguished for the multicolor assay of AChE activity by naked eye in visible light. To achieve the point-of-care testing, Au NBPs were further assembled on polymeric electrospun nanofibrous films (ENFs) surface as test strips for the easy-to-use test of AChE activity by RGB values with a smartphone. Fascinatingly, this proposed strategy can be used for the visual screening AChE inhibitors or non-inhibitors. Comparing with the clinical drugs (rivastigmine tartrate, and donepezil), some natural alkaloids such as evodiamine, caffeine, camptothecin, and berberine hydrochloride were selected as inhibitor modes to confirm the drug screening capability of this method. This proposed strategy may have great potential in the other disease-related enzymatic biomarkers assay and the rapid screening of drug therapy.
Collapse
Affiliation(s)
- De Yan Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China
| | - Lu Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China
| | - Cai Yan Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China
| | - Yun Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China.
| |
Collapse
|
3
|
Wang H, Zhang S, Zhang Y, Ma H, Wu D, Gao ZF, Fan D, Ren X, Wei Q. Magnetically Controlled and Addressable Photoelectrochemical Sensor Array with Self-Calibration for the Label-Free Detection of Amyloid β-Proteins. Anal Chem 2023; 95:16169-16175. [PMID: 37878505 DOI: 10.1021/acs.analchem.3c02794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
A label-free addressable photoelectric immunosensor array was designed for the detection of amyloid β-proteins based on magnetic separation and self-calibration strategies. In this paper, Na2Ti6O13 with a flower-like morphology was prepared by the hydrothermal method; after continuously combining Fe3O4 and CdS, it was endowed with magnetism and better photoelectric activity. Subsequently, a series of reactions occurred in the solution, and the magnetic separation method was used to enrich the target. On the other hand, the ITO glass was separated into eight sites (2 × 4) using magnets, and a light shield was utilized to prevent light exposure, resulting in addressable and continuous detection. After the uniform preparation of magnetic photoelectric materials and precise control of testing conditions, the relative errors among different sites have been effectively reduced. Moreover, incorporating a self-calibration strategy has allowed the sensor array to achieve greater accuracy. The proposed photoelectrochemical biosensor exhibits a good relationship with amyloid β-protein ranging from 0.01 to 100 ng mL-1 with a limit of detection of 1.1 pg mL-1 and exhibits excellent specificity, reproducibility, and stability.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Shuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yunfei Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Zhong Feng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Guo Z, Sun HL. A facile and sensitive magnetic relaxation sensing strategy based on the conversion of Fe 3+ ions to Prussian blue precipitates for the detection of alkaline phosphatase and ascorbic acid oxidase. Talanta 2023; 260:124579. [PMID: 37116357 DOI: 10.1016/j.talanta.2023.124579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
Herein, a novel magnetic relaxation sensing strategy based on the change in Fe3+ content has been proposed by utilizing the conversion of Fe3+ ions to Prussian blue (PB) precipitates. Compared with the common detection approach based on the valence state change of Fe3+ ions, our strategy can cause a larger change in the relaxation time of water protons and higher detection sensitivity since PB precipitate can induce a larger change in the Fe3+ ion concentration and has a weaker effect on the relaxation process of water protons relative to Fe2+ ions. Then, we employ alkaline phosphatase (ALP) as a model target to verify the feasibility and detection performance of the as-proposed strategy. Actually, ascorbic acid (AA) generated from the ALP-catalyzed L-ascorbyl-2-phosphate hydrolysis reaction can reduce potassium ferricyanide into potassium ferrocyanide, and potassium ferrocyanide reacts with Fe3+ to form PB precipitates, leading to a higher relaxation time. Under optimum conditions, the method for ALP detection has a wide linear range from 5 to 230 mU/mL, and the detection limit is 0.28 mU/mL, sufficiently demonstrating the feasibility and satisfactory analysis performance of this strategy, which opens up a new path for the construction of magnetic relaxation sensors. Furthermore, this strategy has also been successfully applied to ascorbic acid oxidase detection, suggesting its expansibility in magnetic relaxation detection.
Collapse
Affiliation(s)
- Zhuangzhuang Guo
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing, 100875, PR China
| | - Hao-Ling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
5
|
Wu Y, Jiang X, Chen Y, Liu T, Ni Z, Yi H, Lu R. Rapid estimation approach for glycosylated serum protein of human serum based on the combination of deep learning and TD-NMR technology. ANAL SCI 2023; 39:957-968. [PMID: 36897540 DOI: 10.1007/s44211-023-00303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023]
Abstract
Rapid and precise estimation of glycosylated serum protein (GSP) of human serum is of great importance for the treatment and diagnosis of diabetes mellitus. In this study, we propose a novel method for estimation of GSP level based on the combination of deep learning and time domain nuclear magnetic resonance (TD-NMR) transverse relaxation signal of human serum. Specifically, a principal component analysis (PCA)-enhanced one-dimensional convolutional neural network (1D-CNN) is proposed to analyze the TD-NMR transverse relaxation signal of human serum. The proposed algorithm is proved by accurate estimation of GSP level for the collected serum samples. Furthermore, the proposed algorithm is compared with 1D-CNN without PCA, long short-term memory network (LSTM) and some conventional machine learning algorithms. The results indicate that PCA-enhanced 1D-CNN (PC-1D-CNN) has the minimum error. This study proves that proposed method is feasible and superior to estimate GSP level of human serum using TD-NMR transverse relaxation signals.
Collapse
Affiliation(s)
- Yuchen Wu
- Jiangsu Key Laboratory for Design and Manufacture of Micro Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Xiaowen Jiang
- Jiangsu Key Laboratory for Design and Manufacture of Micro Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yi Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Tingyu Liu
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhonghua Ni
- Jiangsu Key Laboratory for Design and Manufacture of Micro Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Hong Yi
- Jiangsu Key Laboratory for Design and Manufacture of Micro Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Rongsheng Lu
- Jiangsu Key Laboratory for Design and Manufacture of Micro Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
6
|
Jung W, Lee DY, Moon E, Jon S. Nanoparticles derived from naturally occurring metal chelators for theranostic applications. Adv Drug Deliv Rev 2022; 191:114620. [PMID: 36379406 DOI: 10.1016/j.addr.2022.114620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
Abstract
Metals are indispensable for the activities of all living things, from single-celled organisms to higher organisms, including humans. Beyond their intrinsic quality as metal ions, metals help creatures to maintain requisite biological processes by forming coordination complexes with endogenous ligands that are broadly distributed in nature. These types of naturally occurring chelating reactions are found through the kingdoms of life, including bacteria, plants and animals. Mimicking these naturally occurring coordination complexes with intrinsic biocompatibility may offer an opportunity to develop nanomedicine toward clinical applications. Herein, we introduce representative examples of naturally occurring coordination complexes in a selection of model organisms and highlight such bio-inspired metal-chelating nanomaterials for theranostic applications.
Collapse
Affiliation(s)
- Wonsik Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Dong Yun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Seoul 05505, Republic of Korea; Translational Biomedical Research Group, Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, 88 Olympic-ro 43-gil, Seoul 05505, Republic of Korea.
| | - Eugene Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea.
| |
Collapse
|
7
|
Wu L, Zeng W, Hu B, Wu T, Zhou M, Xie W. Magnetic relaxation switching immunoassay for chlorpyrifos using enzyme-mediated Fe2+/Fe3+ conversion and magnetic separation. Anal Chim Acta 2022; 1227:340311. [DOI: 10.1016/j.aca.2022.340311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/01/2022]
|
8
|
Chen P, Jiang P, Lin Q, Zeng X, Liu T, Li M, Yuan Y, Song S, Zhang J, Huang J, Ying B, Chen J. Simultaneous Homogeneous Fluorescence Detection of AFP and GPC3 in Hepatocellular Carcinoma Clinical Samples Assisted by Enzyme-Free Catalytic Hairpin Assembly. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28697-28705. [PMID: 35699181 DOI: 10.1021/acsami.2c09135] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Simultaneous sensitive and cost-effective detection of multiple tumor markers has shown great potential for cancer diagnostics. Herein, we reported a simple enzyme-free parallel catalytic hairpin assembly (CHA) amplification strategy with N-methyl mesoporphyrin IX (NMM) and quantum dots (QDs) as signal reporters for the homogeneous fluorescent simultaneous detection of alpha-fetoprotein (AFP) and glypican-3 (GPC3). Upon selective binding, the released single-stranded DNA (ssDNA) from the two-aptamer double-stranded DNA (dsDNA) probes triggers CHA amplification, further releasing the G-quadruplex sequence and Ag+ from the C-Ag+-C structures at the same time. Then, NMM and CdTe QDs selectively recognize G-quadruplex and Ag+, respectively. Under optimized conditions, limits of detections (LODs) as low as 3 fg/mL for AFP and 0.25 fg/mL for GPC3 were achieved using fluorescence readout. Using color- and distance-based visual readouts, an LOD of 1 fg/mL for GPC3 was reached. This method was applied to quantitatively analyze AFP and GPC3 in 41 clinical serum samples of hepatocellular carcinoma (HCC) patients. The quantitative test results for AFP and GPC3 were consistent with those obtained using the electrochemiluminescence immunoassay (ECL-IA) clinical kit and correlated with radiological and pathological findings. The results of clinical tests demonstrated the potential of GPC3 as a tumor biomarker, and we propose a cut-off value of 2 ng/mL GPC3 for HCC.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Pengjun Jiang
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianli Lin
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianghu Zeng
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tangyuheng Liu
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mei Li
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuan Yuan
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siyang Song
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junlong Zhang
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin Huang
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing Department of Radiology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Luo Q, Gao Z, Xiao Q, Song E. One-Step Determination of Alkaline Phosphatase in Human Serum Based on Manganese (IV) Dioxide/Manganese (II)-Mediated Nuclear Magnetic Resonance (NMR) Relaxation. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2076108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Qin Luo
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhenping Gao
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Qinni Xiao
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Feng W, Shi W, Liu S, Liu H, Liu Y, Ge P, Zhang H. Fe(III)-Shikonin Supramolecular Nanomedicine for Combined Therapy of Tumor via Ferroptosis and Necroptosis. Adv Healthc Mater 2022; 11:e2101926. [PMID: 34738742 DOI: 10.1002/adhm.202101926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/26/2021] [Indexed: 01/15/2023]
Abstract
Most of the antitumor chemotherapeutic drugs execute the therapeutic performance upon eliciting tumor cell apoptosis, which may cause chemoresistance of tumors. Design of novel drugs to eradicate apoptosis-resistant tumors via non-apoptotic cell death pathways is promising for improving the long-term chemotherapeutic efficacy. Herein, a Fe(III)-Shikonin metal-polyphenol-coordinated supramolecular nanomedicine for combined therapy of tumor via ferroptosis and necroptosis is designed. The construction of the nanomedicine based on the coordinated self-assembly between Fe3+ and Shikonin not only overcomes the shortcomings of Shikonin including its low bioavailability and high toxicity toward normal tissues, but also integrates the theranostics functions of Fe ions. Under the exposure of the high concentration of glutathione (GSH) in tumor cells, the as-prepared nanomedicine will disassemble into Fe2+ and Shikonin, followed by stimulating the tumor cell death through ferroptosis and necroptosis. In addition, benefiting from the stealth effect of polyethylene glycol (PEG) and the targeting ability of cyclo(Arg-Gly-Asp-d-Phe-Lys) (cRGD) to αv β3 -integrin, NH2 -PEG-cRGD-modified nanomedicine exhibits a GSH-responsive therapy toward 4T1 tumor in vivo and self-enhanced longitudinal relaxation (T1 )-weighted imaging property. Since the self-assembly of natural Shikonin and human body-necessary Fe element is facile and feasible, the work may provide a promising supramolecular nanomedicine for next-generation chemotherapeutic applications.
Collapse
Affiliation(s)
- Wenjie Feng
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Wanrui Shi
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Shuwei Liu
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Huiwen Liu
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Pengfei Ge
- Department of Neurosurgery The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
| |
Collapse
|
11
|
Yin B, Yue W, Sohan ASMM, Zhou T, Qian C, Wan X. Micromixer with Fine-Tuned Mathematical Spiral Structures. ACS OMEGA 2021; 6:30779-30789. [PMID: 34805706 PMCID: PMC8600618 DOI: 10.1021/acsomega.1c05024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Micromixers with the microchannel structure can enable rapid and efficient mixing of multiple types of fluids on a microfluidic chip. Herein, we report the mixing performance of three passive micromixers based on the different mathematical spiral structures. We study the fluid flow characteristics of Archimedes spiral, Fermat spiral, and hyperbolic spiral structures with various channel widths and Reynolds number (Re) ranging from 0 to 10 via numerical simulation and visualization experiments. In addition, we analyze the mechanism of streamlines and Dean vortices at different cross sections during fluid flows. As the fluid flows in the Fermat spiral channel, the centrifugal force induces the Dean vortex to form a chaotic advection, enhancing the fluid mixing performance. By integrating the Fermat spiral channel into a microfluidic chip, we successfully detect acute myocardial infarction (AMI) marker with the double-antibody sandwich method and reduce the detection time to 10 min. This method has a low reagent consumption and a high reaction efficiency and demonstrates great potential in point-of-care testing (POCT).
Collapse
Affiliation(s)
- Binfeng Yin
- School
of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Wenkai Yue
- School
of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | | | - Teng Zhou
- Mechanical
and Electrical Engineering College, Hainan
University, Haikou 570228, China
| | - Changcheng Qian
- School
of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xinhua Wan
- School
of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
12
|
Hong F, Huang C, Wu L, Wang M, Chen Y, She Y. Highly sensitive magnetic relaxation sensing method for aflatoxin B1 detection based on Au NP-assisted triple self-assembly cascade signal amplification. Biosens Bioelectron 2021; 192:113489. [PMID: 34293688 DOI: 10.1016/j.bios.2021.113489] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Highly sensitive detection of aflatoxin B1 (AFB1) is of great significance because of its high toxicity and carcinogenesis. We propose a magnetic relaxation sensing method based on gold nanoparticles (Au NPs)-assisted triple self-assembly cascade signal amplification for highly sensitive detection of AFB1. Both AFB1 antibody and initiator DNA (iDNA) are labeled on Au NPs to form Ab-Au-iDNA probe. iDNA is enriched by Au NPs to achieve first signal amplification. Different amounts of Ab-Au-iDNA were bound with AFB1 antigen by indirect competitive immunoassay, and then hybridization chain reaction event was initiated by iDNA to produce long hybridization chain reaction products to enrich more horseradish peroxidase-streptavidin for the second signal amplification. Dopamine could be rapidly converted to polydopamine by HRP catalysis, which is used as the third signal amplification. The Fe3+ solution, providing paramagnetic ions with a strong magnetic signal, could be adsorbed by the polydopamine due to the formation of coordination bonds of phenolic hydroxyl groups with Fe3+. This effective interaction between polydopamine and Fe3+ significantly changes the transverse relaxation time signal of Fe3+ supernatant solution, which can be used as a magnetic probe for highly sensitive detection of AFB1. The sensor exhibited high specificity and sensitivity with a detection limit of 0.453 pg/mL owing to the Au NP-assisted triple self-assembly cascade signal amplification strategy. It has been successfully employed for AFB1 detection in animal feed samples with consistent results of enzyme linked immune sorbent assay and high-performance liquid chromatography.
Collapse
Affiliation(s)
- Feng Hong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Chenxi Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Long Wu
- College of Food Science and Engineering, Hainan University, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, 570228, PR China
| | - Miao Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science/Key Laboratory of Agro-Products Quality and Safety of MOA, Beijing, 100081, PR China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China.
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science/Key Laboratory of Agro-Products Quality and Safety of MOA, Beijing, 100081, PR China.
| |
Collapse
|
13
|
Chen Y, Jiang X, Wang J, Wu Z, Wu Y, Ni Z, Yi H, Lu R. Sensitive Oxidation of Sorbitol-Mediated Fe 2+ by H 2O 2: A Reliable TD-NMR Method for Clinical Blood Glucose Detection. Anal Chem 2021; 93:14153-14160. [PMID: 34637275 DOI: 10.1021/acs.analchem.1c02616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The clinical challenge of high-accuracy blood glucose detection schemes is to overcome the detection error caused by the background interferences in different individuals. H2O2 as the specific product of glucose oxidation can be involved in the Fe2+/Fe3+ conversion and detected by the time-domain nuclear magnetic resonance (TD-NMR) method sensitively. But, in clinical applications, the oxidation of Fe2+ is susceptible to the complex sample substrates. In this work, we sorted out two kinds of possible interference mechanisms of Fe2+ oxidation in the NMR blood glucose detection method and proposed a feasible scheme that uses sorbitol to weaken the adverse effects of interference. We found that sorbitol-mediated Fe2+ can greatly enhance the sensitivity of the T2 value to H2O2. The chain reaction caused by sorbitol can significantly amplify the efficiency of Fe2+ oxidation at the same concentration of H2O2. Thereby, we can achieve the higher dilution multiple of serum samples to reduce the amount of interfering substances involved in the Fe2+/Fe3+ conversion. We justified the accuracy and availability of our method by successfully detecting and confirming the correlation between the T2 decrease and glucose concentration of the serum samples collected from 16 subjects. The sorbitol-Fe2+ glucose detection method with high sensitivity can be further combined with miniature NMR analyzers to satisfy the calibration requirements of glucose monitoring in diabetic patients instead of frequent medical visits.
Collapse
Affiliation(s)
- Yi Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Xiaowen Jiang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Junnan Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Zhengxiu Wu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Yuchen Wu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Zhonghua Ni
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Hong Yi
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Rongsheng Lu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China.,National Key Laboratory of Bioelectronics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
14
|
Yin B, Wan X, Qian C, Sohan ASMMF, Wang S, Zhou T. Point-of-Care Testing for Multiple Cardiac Markers Based on a Snail-Shaped Microfluidic Chip. Front Chem 2021; 9:741058. [PMID: 34671590 PMCID: PMC8521045 DOI: 10.3389/fchem.2021.741058] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022] Open
Abstract
Existing methods for detecting cardiac markers are difficult to be applied in point-of-care testing (POCT) due to complex operation, long time consumption, and low sensitivity. Here, we report a snail-shaped microfluidic chip (SMC) for the multiplex detection of cTnI, CK-MB, and Myo with high sensitivity and a short detection time. The SMC consists of a sandwich structure: a channel layer with a mixer and reaction zone, a reaction layer coated with capture antibodies, and a base layer. The opening or closing of the microchannels is realized by controlling the downward movement of the press-type mechanical valve. The chemiluminescence method was used as a signal readout, and the experimental conditions were optimized. SMC could detect cTnI, CK-MB, and Myo at concentrations as low as 1.02, 1.37, and 4.15. The SMC will be a promising platform for a simultaneous determination of multianalytes and shows a potential application in POCT.
Collapse
Affiliation(s)
- Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou, China
| | - Xinhua Wan
- School of Mechanical Engineering, Yangzhou University, Yangzhou, China
| | - Changcheng Qian
- School of Mechanical Engineering, Yangzhou University, Yangzhou, China
| | | | - Songbai Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Teng Zhou
- Mechanical and Electrical Engineering College, Hainan University, Haikou, China
| |
Collapse
|
15
|
Jin X, Yang W, Xu Y, Bian K, Zhang B. Emerging strategies of activatable MR imaging probes and their advantages for biomedical applications. VIEW 2021. [DOI: 10.1002/viw.20200141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xiao Jin
- Institute of Photomedicine Shanghai Skin Disease Hospital, Tongji University Cancer Center The Institute for Biomedical Engineering & Nano Science Tongji University School of Medicine Shanghai China
| | - Weitao Yang
- Institute of Photomedicine Shanghai Skin Disease Hospital, Tongji University Cancer Center The Institute for Biomedical Engineering & Nano Science Tongji University School of Medicine Shanghai China
| | - Yan Xu
- Institute of Photomedicine Shanghai Skin Disease Hospital, Tongji University Cancer Center The Institute for Biomedical Engineering & Nano Science Tongji University School of Medicine Shanghai China
| | - Kexin Bian
- Institute of Photomedicine Shanghai Skin Disease Hospital, Tongji University Cancer Center The Institute for Biomedical Engineering & Nano Science Tongji University School of Medicine Shanghai China
| | - Bingbo Zhang
- Institute of Photomedicine Shanghai Skin Disease Hospital, Tongji University Cancer Center The Institute for Biomedical Engineering & Nano Science Tongji University School of Medicine Shanghai China
| |
Collapse
|
16
|
Yin B, Qian C, Wang S, Wan X, Zhou T. A Microfluidic Chip-Based MRS Immunosensor for Biomarker Detection via Enzyme-Mediated Nanoparticle Assembly. Front Chem 2021; 9:688442. [PMID: 34124008 PMCID: PMC8193930 DOI: 10.3389/fchem.2021.688442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/04/2021] [Indexed: 01/29/2023] Open
Abstract
Conventional immunoassay methods have their common defects, such as tedious processing steps and inadequate sensitivity, in detecting whole blood. To overcome the above problems, we report a microfluidic chip-based magnetic relaxation switching (MRS) immunosensor via enzyme-mediated nanoparticles to simplify operation and amplify the signal in detecting whole blood samples. In the silver mirror reaction with catalase (CAT) as the catalyst, H2O2 can effectively control the production of Ag NPs. The amount of Ag NPs formed further affects the degree of aggregation of magnetic nanoparticles (MNPS), which gives rise to the changes of transverse relaxation time (T2). Both sample addition and reagent reaction are carried out in the microfluidic chip, thereby saving time and reagent consumption. We also successfully apply the sensor to detect alpha-fetoprotein (AFP) in real samples with a satisfied limit of detection (LOD = 0.56 ng/ml), which is superior to the conventional ELISA.
Collapse
Affiliation(s)
- Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou, China
| | - Changcheng Qian
- School of Mechanical Engineering, Yangzhou University, Yangzhou, China
| | - Songbai Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Xinhua Wan
- School of Mechanical Engineering, Yangzhou University, Yangzhou, China
| | - Teng Zhou
- Mechanical and Electrical Engineering College, Hainan University, Haikou, China
| |
Collapse
|
17
|
Wei L, Wang Z, Feng C, Xianyu Y, Chen Y. Direct Transverse Relaxation Time Biosensing Strategy for Detecting Foodborne Pathogens through Enzyme-Mediated Sol-Gel Transition of Hydrogels. Anal Chem 2021; 93:6613-6619. [PMID: 33886309 DOI: 10.1021/acs.analchem.0c03968] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, we develop a direct transverse relaxation time (T2) biosensing strategy and employ it for assaying foodborne pathogens relying on the alkaline phosphatase (ALP)-mediated sol-gel transition of hydrogels. ALP can catalyze the reaction to generate an acidic environment to transform the sol-state alginate solution to hydrogel, and this hydrogelation process can directly regulate the diffusion rate of water protons that results in a T2 change of water molecules. By means of enzyme-modulated sol-gel transition and antigen-antibody interactions, this T2 biosensor displays high sensitivity for detecting 50 CFU/mL S. enteritidis within 2 h. This biosensing strategy directly modulates the water molecules rather than magnetic probes in traditional methods, offering a straightforward, novel, and sensitive platform for pathogen detection.
Collapse
Affiliation(s)
- Luyu Wei
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Zhilong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Caiwei Feng
- Beijing Kwinbon Biotechnology Co., Ltd., Gaoxin 4th Street, Changping District Beijing 100190, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou 310058, Zhejiang, China.,Ningbo Research Institute, Zhejiang University, No. 1 Qianhu South Road, Ningbo 315100, Zhejiang, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| |
Collapse
|
18
|
Wu L, Zhou M, Liu C, Chen X, Chen Y. Double-enzymes-mediated Fe 2+/Fe 3+ conversion as magnetic relaxation switch for pesticide residues sensing. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123619. [PMID: 32827859 DOI: 10.1016/j.jhazmat.2020.123619] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 05/25/2023]
Abstract
It is a great challenge to develop a newly rapid and accurate detection method for pesticide residues. In this work, based on acetylcholinesterase (AChE) and choline oxidase (CHO), a double-enzymes-mediated Fe2+/Fe3+ conversion as magnetic relaxation switch was explored for the measurement of acetamiprid residue. In the double-enzymes reactions, acetylcholine chloride (ACh) can be catalyzed to produce choline by AChE, which is successively hydrolyzed to betaine and hydrogen peroxide (H2O2) by CHO. According to the enzyme inhibition principle, AChE activity will be inactivated in the presence of acetamiprid, thus leading to the less production of H2O2. Wherein, Fe2+, ACh, AChE and CHO were optimized as the reaction substrates. In the reaction system, acetamiprid can be reflected by the transverse relaxation time (T2) that related with H2O2 mediated Fe2+ variations, which was further developed as an enzyme cascade amplification method. The detection linear range is 0.01∼1000 μg mL-1 (R2 = 0.99), and the limit of detection (LOD) is 2.66 ng mL-1 (S/N = 3, n = 3), behaving a 335-fold improvement in LOD than that of traditional enzyme inhibition method (0.89 μg mL-1). This method can realize "one-step mixing" detection of acetamiprid, which makes it a promising analytical tool for monitoring pesticide residue in complicated samples.
Collapse
Affiliation(s)
- Long Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Min Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Chen Liu
- Leibniz Institute of Photonic Technology, Jena-Member of the research alliance Leibniz Health Technologies, Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Albert-Einstein-Street 9, 07745, Jena, Germany; Leibniz Institute of Photonic Technology Jena - Member of the research alliance, Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Xiaoqiang Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, PR China.
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
19
|
Shi X, Zhan Q, Yan X, Zhou J, Zhou L, Wei S. Oxyhemoglobin nano-recruiter preparation and its application in biomimetic red blood cells to relieve tumor hypoxia and enhance photodynamic therapy activity. J Mater Chem B 2021; 8:534-545. [PMID: 31853528 DOI: 10.1039/c8tb02430h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Photodynamic therapy (PDT) is strongly O2 dependent. Therefore, its therapeutic effects are seriously hindered in hypoxic tumors. Red blood cells are responsible for delivering O2 in the blood. In this manuscript, biomimetic red blood cells (BRBCs) were exploited using a layer-by-layer assembly method, using Fe3O4@CuO, oxyhemoglobin (OxyHb), a photosensitizer and a photo-cross linked acrylate modified hyaluronic acid (HA) gel shell. The Fe3O4@CuO core has very high OxyHb loading efficiency (the adsorption capacity of Fe3O4@CuO for OxyHb is derived to be 0.99 mg mg-1) to ensure a sufficient O2 supply. OxyHb was protected well by the HA shell in order to avoid O2 release during the delivery process in blood before arrival at the tumor tissue. The HA shell protection can be eliminated in position at the tumor to trigger O2 release through hyaluronidase (HAase) triggered HA degradation. Furthermore, Fe3O4 in the nanosystem can provide magnetic field assisted tumor targeting and magnetic resonance imaging of the tumor. Therefore, this work presents a highly efficient all-in-one biomimetic nanomedicine approach to overcome hypoxia and achieve tumor targeting theranostics.
Collapse
Affiliation(s)
- Xianqing Shi
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road, Nanjing, Jiangsu 210023, P. R. China.
| | | | | | | | | | | |
Collapse
|
20
|
Zhang C, Liu X, Xu Z, Liu D. Multichannel Stimulus-Responsive Nanoprobes for H2O2 Sensing in Diverse Biological Milieus. Anal Chem 2020; 92:12639-12646. [DOI: 10.1021/acs.analchem.0c02769] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cai Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Xinzhuo Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Zhiwen Xu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Wang L, Lin J. Recent advances on magnetic nanobead based biosensors: From separation to detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115915] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Liu H, Wei L, Hua J, Chen D, Meng H, Li Z, Xiao L. Enzyme activity-modulated etching of gold nanobipyramids@MnO 2 nanoparticles for ALP assay using surface-enhanced Raman spectroscopy. NANOSCALE 2020; 12:10390-10398. [PMID: 32373822 DOI: 10.1039/d0nr01837f] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The detection of enzyme activity can provide valuable insights into clinical diagnosis. Herein, we synthesize gold nanobipyramids@MnO2 nanoparticles (AMNS) as the surface-enhanced Raman spectroscopy (SERS) substrate for the first time and design a "turn-on" SERS strategy for the detection of enzyme activity without the need for a complicated SERS nanotag preparation process. In the presence of alkaline phosphatase (ALP), 2-phosphate-l-ascorbic acid trisodium salt (AAP) can be hydrolyzed to ascorbic acid (AA), which can etch the shell of AMNS by reducing MnO2 to Mn2+. The cracked MnO2 shell-caused electromagnetic field enhancement from AMNS can give rise to a significant increase in the Raman intensity of the adsorbed molecules (i.e., crystal violet, CV) on the surfaces of nanobipyramids. Thus, the ALP activity can be accurately quantified based on the MnO2 shell thickness dependent Raman signal output from CV. A linear dynamic range from 0.4 to 20 mU mL-1 with a detection limit of 0.04 mU mL-1 is achieved, which is more sensitive than other spectroscopic methods for ALP detection. Because of its advantages of sensitivity, convenience and versatility, this approach provides a new perspective to disease-related biomolecular detection in the future.
Collapse
Affiliation(s)
- Hua Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Wang Z, Xianyu Y, Zhang Z, Guo A, Li X, Dong Y, Chen Y. Background Signal-Free Magnetic Bioassay for Food-Borne Pathogen and Residue of Veterinary Drug via Mn(VII)/Mn(II) Interconversion. ACS Sens 2019; 4:2771-2777. [PMID: 31593439 DOI: 10.1021/acssensors.9b01349] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Paramagnetic ion-mediated sensors can greatly simplify current magnetic sensors for biochemical assays, but it remains challenging because of the limited sensitivity. Herein, we report a magnetic immunosensor relying on Mn(VII)/Mn(II) interconversion and the corresponding change in the low-field nuclear magnetic resonance (LF-NMR) of the transverse relaxation rate (R2). The fact that the NMR R2 of the water protons detected in Mn(II) aqueous solution is much stronger than Mn(VII) aqueous solution enables the modulation of the LF-NMR signal intensity of R2. By employing immunomagnetic separation and enzyme-catalyzed reaction, this Mn(VII)/Mn(II) interconversion allows the development of a background signal-free magnetic immunosensor with a high signal-to-background ratio that enables detection of ractopamine and Salmonella with high sensitivity (the limits of detection for ractopamine and Salmonella are 8.1 pg/mL and 20 cfu/mL, respectively). This Mn-mediated magnetic immunosensor not only retains the good stability but also greatly improves the sensitivity of conventional paramagnetic ion-mediated magnetic sensors, offering a promising platform for sensitive, stable, and convenient bioanalysis.
Collapse
Affiliation(s)
- Zhilong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Zhuo Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ailing Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiujuan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhen Dong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
24
|
Chen P, Huang K, Dai R, Sawyer E, Sun K, Ying B, Wei X, Geng J. Sensitive CVG-AFS/ICP-MS label-free nucleic acid and protein assays based on a selective cation exchange reaction and simple filtration separation. Analyst 2019; 144:2797-2802. [PMID: 30882111 DOI: 10.1039/c8an01926f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nowadays, label-free atomic spectrometric bioassays are attracting great research interest because of their advantages of low cost, simple design and operation, etc. Herein, a novel and simple chemical vapor generation-atomic fluorescence spectrometry (CVG-AFS)/inductively coupled plasma-mass spectrometry (ICP-MS) label-free detection method is presented for highly sensitive and selective assay of DNA and proteins. This work mainly combined a phenomenon that CdTe quantum dots (QDs) can be used to selectively differentiate free Hg2+ and the T-Hg2+-T complex, with the use of simple membrane filtration separation to improve the performance of the label-free bioassay methods. Upon hybridization with the DNA/protein (carcinoembryonic antigen, CEA) target, the T-Hg2+-T hairpin structure was opened and Hg2+ was released; this initiated the cation exchange reaction between Hg2+ and CdTe QDs which released Cd2+ simultaneously. Subsequently, the free Cd2+ was separated by the filtration membrane without separating the CdTe QDs, which could then be separated from the sample matrices for the CVG-AFS/ICP-MS assay. Under the optimal conditions, this method possessed high sensitivity for DNA and CEA determination with limits of detection (LODs) of 0.2 nM and 0.2 ng mL-1, and linear dynamic ranges of 1-160 nM and 0.5-20 ng mL-1, respectively, and exhibited excellent DNA sequence specificity and protein selectivity. This method preserves the advantages of the label-free atomic spectrometric bioassay, and combined with the selective cation exchange reaction and simple filtration separation to improve the performance.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Dong M, Zheng W, Chen Y, Xianyu Y, Ran B, Qian Z, Jiang X. Fe-T 1 Sensor Based on Coordination Chemistry for Sensitive and Versatile Bioanalysis. Anal Chem 2018; 90:9148-9155. [PMID: 30016870 DOI: 10.1021/acs.analchem.8b01577] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The main challenge of paramagnetic ions-mediated magnetic sensors is their relatively low sensitivity. In this study, we observe the amplification of longitudinal relaxation time (T1) signal when Fe2+ transforms into Fe3+ followed by the coordination of potassium thiocyanate (KSCN) and develop a sensitive Fe-T1 sensor based on the coordination chemistry between KSCN and Fe3+ to amplify the T1 signal for detecting a series of targets, such as hydrogen peroxide, glucose, and antigen/antibody. We justify the practicability of our assay by successfully detecting tetracycline in milk samples and hepatitis C virus in clinical samples with satisfactory accuracy. This KSCN-mediated Fe-T1 sensor not only realizes biochemical analysis and immunoassay with higher sensitivity but also retains many advantages of paramagnetic ions-mediated magnetic sensors (good stability and straightforward operation), which holds great promise for the detection of a range of targets of interest in complex samples.
Collapse
Affiliation(s)
- Mingling Dong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University and Collaborative Innovation Center , Chengdu , Sichuan , 610041 , People's Republic of China.,Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing , 100190 , People's Republic of China
| | - Wenshu Zheng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing , 100190 , People's Republic of China
| | - Yiping Chen
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing , 100190 , People's Republic of China
| | - Yunlei Xianyu
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing , 100190 , People's Republic of China
| | - Bei Ran
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University and Collaborative Innovation Center , Chengdu , Sichuan , 610041 , People's Republic of China.,Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing , 100190 , People's Republic of China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University and Collaborative Innovation Center , Chengdu , Sichuan , 610041 , People's Republic of China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology , No. 11 Zhongguancun Beiyitiao , Beijing , 100190 , People's Republic of China.,The University of Chinese Academy of Sciences , 19 A Yuquan Road , Shijingshan District, Beijing , 100049 , People's Republic of China
| |
Collapse
|