1
|
Wang S, Jiménez-Gracia L, De Amaral AA, Vlachos IS, Plummer J, Heyn H, Martelotto LG. FixNCut: A Practical Guide to Sample Preservation by Reversible Fixation for Single Cell Assays. Bio Protoc 2024; 14:e5063. [PMID: 39315321 PMCID: PMC11417608 DOI: 10.21769/bioprotoc.5063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/25/2024] Open
Abstract
The quality of standard single-cell experiments often depends on the immediate processing of cells or tissues post-harvest to preserve fragile and vulnerable cell populations, unless the samples are adequately fixed and stored. Despite the recent rise in popularity of probe-based and aldehyde-fixed RNA assays, these methods face limitations in species and target availability and are not suitable for immunoprofiling or assessing chromatin accessibility. Recently, a reversible fixation strategy known as FixNCut has been successfully deployed to separate sampling from downstream applications in a reproducible and robust manner, avoiding stress or necrosis-related artifacts. In this article, we present an optimized and robust practical guide to the FixNCut protocol to aid the end-to-end adaptation of this versatile method. This protocol not only decouples tissue or cell harvesting from single-cell assays but also enables a flexible and decentralized workflow that unlocks the potential for single-cell analysis as well as unconventional study designs that were previously considered unfeasible. Key features • Reversible fixation: Preserves cellular and molecular structures with the option to later reverse the fixation for downstream applications, maintaining cell integrity • Compatibility with single-cell assays: Supports single-cell genomic assays such as scRNA-seq and ATAC-seq, essential for high-resolution analysis of cell function and gene expression • Flexibility in sample handling: Allows immediate fixation post-collection, decoupling sample processing from analysis, beneficial in settings where immediate processing is impractical • Preservation of RNA and DNA integrity: Effectively preserves RNA and DNA, reducing degradation to ensure accurate transcriptomic and genomic profiling • Suitability for various biological samples: Applicable to a wide range of biological samples, including tissues and cell suspensions, whether freshly isolated or post-dissociated • Enables multi-center studies: Facilitates collaborative research across multiple centers by allowing sample fixation at the point of collection, enhancing research scale and diversity • Avoidance of artifacts: Minimizes stress or necrosis-related artifacts, preserving the natural cellular physiology for accurate genomic and transcriptomic analysis.
Collapse
Affiliation(s)
- Shuoshuo Wang
- Spatial Technologies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Laura Jiménez-Gracia
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Antonella Arruda De Amaral
- Spatial Technologies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ioannis S. Vlachos
- Spatial Technologies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jasmine Plummer
- Center for Spatial Omics, St Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Cellular and Molecular Biology, St Jude Children’s Research Hospital, Memphis, TN, USA
- Comprehensive Cancer Center, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Holger Heyn
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
- Omniscope, Barcelona, Spain
| | - Luciano G. Martelotto
- Adelaide Centre for Epigenetics (ACE), University of Adelaide, Adelaide, South Australia, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Abdelmoez MN, Shintaku H. A SINC-Seq Protocol for the Analysis of Subcellular Gene Expression in Single Cells. Methods Mol Biol 2023; 2689:179-189. [PMID: 37430055 DOI: 10.1007/978-1-0716-3323-6_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Microfluidic devices offer precise control of single cells and molecules by liquid flows, downsizing tools to allow us to perform single-cell assays at unprecedented resolutions and minimizing contamination. In this chapter, we introduce an approach, called single-cell integrated nuclear and cytoplasmic RNA-sequencing (SINC-seq), which enables precise fractionation of cytoplasmic and nuclear RNA of single cells. This approach uses electric field control in microfluidics to manipulate single cells and RNA sequencing to dissect gene expression and RNA localization in subcellular compartments. The microfluidic system for SINC-seq exploits a hydrodynamic trap (a constriction in a microchannel) to isolate a single cell, selectively lyses its plasma membrane via a focused electric field, and retains the nucleus at the hydrodynamic trap during the electrophoretic extraction of cytoplasmic RNA. Here, we provide a step-by-step protocol from microfluidic RNA fractionation to off-chip preparation of RNA-sequencing libraries for full-length cDNA sequencing using both a short-read sequencer (Illumina) and a long-read sequencer (Oxford Nanopore Technologies).
Collapse
Affiliation(s)
- Mahmoud N Abdelmoez
- Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
- Department of Mechanical Power Engineering, Faculty of Engineering, Assiut University, Assiut, Egypt
| | | |
Collapse
|
3
|
Malá Z, Gebauer P. Analytical isotachophoresis 1967–2022: From standard analytical technique to universal on-line concentration tool. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Abstract
Electroporation (EP) is a commonly used strategy to increase cell permeability for intracellular cargo delivery or irreversible cell membrane disruption using electric fields. In recent years, EP performance has been improved by shrinking electrodes and device structures to the microscale. Integration with microfluidics has led to the design of devices performing static EP, where cells are fixed in a defined region, or continuous EP, where cells constantly pass through the device. Each device type performs superior to conventional, macroscale EP devices while providing additional advantages in precision manipulation (static EP) and increased throughput (continuous EP). Microscale EP is gentle on cells and has enabled more sensitive assaying of cells with novel applications. In this Review, we present the physical principles of microscale EP devices and examine design trends in recent years. In addition, we discuss the use of reversible and irreversible EP in the development of therapeutics and analysis of intracellular contents, among other noteworthy applications. This Review aims to inform and encourage scientists and engineers to expand the use of efficient and versatile microscale EP technologies.
Collapse
Affiliation(s)
- Sung-Eun Choi
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Harrison Khoo
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Oncology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 401 North Broadway, Baltimore, Maryland 21231, United States
| |
Collapse
|
5
|
Kleino I, Nowlan K, Kotimaa J, Kekäläinen E. Optimising protein detection with fixable custom oligo-labelled antibodies for single-cell multi-omics approaches. Biotechnol J 2022; 17:e2100213. [PMID: 35174641 DOI: 10.1002/biot.202100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND AIM Single-cell RNA sequencing (scRNA-seq) is a powerful method utilising transcriptomic data for detailed characterisation of heterogeneous cell populations. The use of oligonucleotide-labelled antibodies for targeted proteomics addresses the shortcomings of the scRNA-seq-only based approach by improving detection of low expressing targets. However, optimisation of large antibody panels is challenging and depends on the availability of co-functioning oligonucleotide-labelled antibodies. MAIN METHODS AND RESULTS We present here a simple adjustable oligonucleotide-antibody conjugation method which enables desired level of oligo-conjugation per antibody. The mean labelling in the produced antibody batches varied from 1 to 6 oligos per antibody. In the scRNA-seq multimodal experiment, the highest sensitivity was seen with moderate antibody labelling as the high activation and/or labelling was detrimental to antibody performance. The conjugates were also tested for compatibility with the fixation and freeze storage protocols. The oligo-antibody signal was stable in fixed cells indicating feasibility of the stain, fix, store, and analyse later type of workflow for multimodal scRNA-seq. CONCLUSIONS AND IMPLICATIONS Optimised oligo-labelling will improve detection of weak protein targets in scRNA-seq multimodal experiments and reduce sequencing costs due to a more balanced amplification of different antibody signals in CITE-seq libraries. Furthermore, the use of a pre-stain, fix, run later protocol will allow for flexibility, facilitate sample pooling, and ease logistics in scRNA-seq multimodal experiments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Iivari Kleino
- Translational Immunology Research Program, University of Helsinki
| | - Kirsten Nowlan
- Doctoral Programme in Biomedicine, University of Helsinki
| | - Juha Kotimaa
- Complement Group, University of Helsinki, Department of Bacteriology and Immunology
| | - Eliisa Kekäläinen
- Dept. of Bacteriology and Immunology, University of Helsinki, and Helsinki University Hospital
| |
Collapse
|
6
|
Oguchi Y, Ozaki Y, Abdelmoez MN, Shintaku H. NanoSINC-seq dissects the isoform diversity in subcellular compartments of single cells. SCIENCE ADVANCES 2021; 7:7/15/eabe0317. [PMID: 33827812 PMCID: PMC8026137 DOI: 10.1126/sciadv.abe0317] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Alternative mRNA isoforms play a key role in generating diverse protein isoforms. To dissect isoform usage in the subcellular compartments of single cells, we introduced an novel approach, nanopore sequencing coupled with single-cell integrated nuclear and cytoplasmic RNA sequencing, that couples microfluidic fractionation, which separates cytoplasmic RNA from nuclear RNA, with full-length complementary DNA (cDNA) sequencing using a nanopore sequencer. Leveraging full-length cDNA reads, we found that the nuclear transcripts are notably more diverse than cytoplasmic transcripts. Our findings also indicated that transcriptional noise emanating from the nucleus is regulated across the nuclear membrane and then either attenuated or amplified in the cytoplasm depending on the function involved. Overall, our results provide the landscape that shows how the transcriptional noise arising from the nucleus propagates to the cytoplasm.
Collapse
Affiliation(s)
- Yusuke Oguchi
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yuka Ozaki
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
| | | | - Hirofumi Shintaku
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan.
| |
Collapse
|
7
|
Subramanian Parimalam S, Abdelmoez MN, Tsuchida A, Sotta N, Tanaka M, Kuromori T, Fujiwara T, Hirai MY, Yokokawa R, Oguchi Y, Shintaku H. Targeted permeabilization of the cell wall and extraction of charged molecules from single cells in intact plant clusters using a focused electric field. Analyst 2021; 146:1604-1611. [PMID: 33624642 DOI: 10.1039/d0an02163f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The extraction of cellular contents from plant cells covered with cell walls remains a challenge, as it is physically hindered by the cell wall. We present a new microfluidic approach that leverages an intense pulsed electric field for permeabilizing the cell wall and a focused DC electric field for extracting the cellular contents selectively from a few targeted cells in a cluster of intact plant cells. We coupled the approach with on-chip fluorescence quantification of extracted molecules leveraging isotachophoresis as well as off-chip reverse transcription-quantitative polymerase chain reaction detecting extracted mRNA molecules. Our approach offers a workflow of about 5 min, isolating a cluster of intact plant cells, permeabilizing the cell wall, selectively extracting cytosolic molecules from a few targeted cells in the cluster, and outputting them to off-chip analyses without any enzymatic reactions. We anticipate that this approach will create a new opportunity to explore plant biology through less biased data realized by the rapid extraction of molecules from intact plant clusters.
Collapse
|
8
|
Ji T, Liu Z, Wang G, Guo X, Akbar Khan S, Lai C, Chen H, Huang S, Xia S, Chen B, Jia H, Chen Y, Zhou Q. Detection of COVID-19: A review of the current literature and future perspectives. Biosens Bioelectron 2020; 166:112455. [PMID: 32739797 PMCID: PMC7371595 DOI: 10.1016/j.bios.2020.112455] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the coronavirus disease 2019 (COVID-19) worldwide pandemic. This unprecedented situation has garnered worldwide attention. An effective strategy for controlling the COVID-19 pandemic is to develop highly accurate methods for the rapid identification and isolation of SARS-CoV-2 infected patients. Many companies and institutes are therefore striving to develop effective methods for the rapid detection of SARS-CoV-2 ribonucleic acid (RNA), antibodies, antigens, and the virus. In this review, we summarize the structure of the SARS-CoV-2 virus, its genome and gene expression characteristics, and the current progression of SARS-CoV-2 RNA, antibodies, antigens, and virus detection. Further, we discuss the reasons for the observed false-negative and false-positive RNA and antibody detection results in practical clinical applications. Finally, we provide a review of the biosensors which hold promising potential for point-of-care detection of COVID-19 patients. This review thereby provides general guidelines for both scientists in the biosensing research community and for those in the biosensor industry to develop a highly sensitive and accurate point-of-care COVID-19 detection system, which would be of enormous benefit for controlling the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Tianxing Ji
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Zhenwei Liu
- Guangzhou Institute of Respiratory Medicine Company Limited, Guangzhou, 510535, PR China
| | - GuoQiang Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Xuguang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Shahzad Akbar Khan
- Laboratory of Pathology, Department of Pathobiology, University of Poonch Rawalakot, Rawala Kot, 12350, Pakistan
| | - Changchun Lai
- Department of Clinical Laboratory, Maoming People's Hospital, Maoming, 525000, PR China
| | - Haoyu Chen
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Shiwen Huang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Shaomei Xia
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Bo Chen
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Hongyun Jia
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, HongKong, PR China.
| | - Qiang Zhou
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| |
Collapse
|
9
|
Khnouf R, Han C. Isotachophoresis-Enhanced Immunoassays: Challenges and opportunities. IEEE NANOTECHNOLOGY MAGAZINE 2020. [DOI: 10.1109/mnano.2020.2966028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Gallion LA, Anttila MM, Abraham DH, Proctor A, Allbritton NL. Preserving Single Cells in Space and Time for Analytical Assays. Trends Analyt Chem 2020; 122:115723. [PMID: 32153309 PMCID: PMC7061724 DOI: 10.1016/j.trac.2019.115723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Analytical assays performed within clinical laboratories influence roughly 70% of all medical decisions by facilitating disease detection, diagnosis, and management. Both in clinical and academic research laboratories, single-cell assays permit measurement of cell diversity and identification of rare cells, both of which are important in the understanding of disease pathogenesis. For clinically utility, the single-cell assays must be compatible with the clinical workflow steps of sample collection, sample transportation, pre-analysis processing, and single-cell assay; therefore, it is paramount to preserve cells in a state that resembles that in vivo rather than measuring signaling behaviors initiated in response to stressors such as sample collection and processing. To address these challenges, novel cell fixation (and more broadly, cell preservation) techniques incorporate programmable fixation times, reversible bond formation and cleavage, chemoselective reactions, and improved analyte recovery. These technologies will further the development of individualized, precision therapies for patients to yield improved clinical outcomes.
Collapse
Affiliation(s)
- Luke A. Gallion
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Matthew M. Anttila
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David H. Abraham
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Angela Proctor
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
11
|
Abdelmoez MN, Oguchi Y, Ozaki Y, Yokokawa R, Kotera H, Shintaku H. Distinct Kinetics in Electrophoretic Extraction of Cytoplasmic RNA from Single Cells. Anal Chem 2019; 92:1485-1492. [PMID: 31805233 DOI: 10.1021/acs.analchem.9b04739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The physical fractionation of cytoplasmic versus nuclear components of cells is a key step for studying the subcellular localization of molecules. The application of an electric field is an emerging method for subcellular fractionation of proteins and nucleic acids from single cells. However, the multibiophysical process that involves electrical lysis of cytoplasmic membranes, electrophoresis, and diffusion of charged molecules remains unclear. Here we study RNA dynamics in single cells during the electrophoretic extraction via a microfluidic system that enables stringent fractionation of the subcellular components leveraging a focused electric field. We identified two distinct kinetics in the extraction of RNA molecules, which were respectively associated with soluble RNA and mitochondrial RNA. We show that the extraction kinetics of soluble RNA is dominated by electrophoresis over diffusion and has a time constant of 0.15 s. Interestingly, the extraction of mitochondrial RNA showed unexpected heterogeneity in the extraction with slower kinetics (3.8 s), while reproducibly resulting in the extraction of 98.9% ± 2% after 40 s. Together, we uncover that the microfluidic system uniquely offers length bias-free fractionation of RNA molecules for quantitative analysis of correlations among subcellular compartments by exploiting the homogeneous electrophoretic properties of RNA.
Collapse
Affiliation(s)
- Mahmoud N Abdelmoez
- RIKEN Cluster for Pioneering Research , Wako , Saitama , 351-0198 Japan.,Department of Micro Engineering, Graduate School of Engineering , Kyoto University , Kyoto , 606-8501 Japan
| | - Yusuke Oguchi
- RIKEN Cluster for Pioneering Research , Wako , Saitama , 351-0198 Japan
| | - Yuka Ozaki
- RIKEN Cluster for Pioneering Research , Wako , Saitama , 351-0198 Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Graduate School of Engineering , Kyoto University , Kyoto , 606-8501 Japan
| | - Hidetoshi Kotera
- Department of Micro Engineering, Graduate School of Engineering , Kyoto University , Kyoto , 606-8501 Japan
| | - Hirofumi Shintaku
- RIKEN Cluster for Pioneering Research , Wako , Saitama , 351-0198 Japan
| |
Collapse
|
12
|
Han CM, Catoe D, Munro SA, Khnouf R, Snyder MP, Santiago JG, Salit ML, Cenik C. Simultaneous RNA purification and size selection using on-chip isotachophoresis with an ionic spacer. LAB ON A CHIP 2019; 19:2741-2749. [PMID: 31328753 PMCID: PMC7272188 DOI: 10.1039/c9lc00311h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We present an on-chip method for the extraction of RNA within a specific size range from low-abundance samples. We use isotachophoresis (ITP) with an ionic spacer and a sieving matrix to enable size-selection with a high yield of RNA in the target size range. The spacer zone separates two concentrated ITP peaks, the first containing unwanted single nucleotides and the second focusing RNA of the target size range (2-35 nt). Our ITP method excludes >90% of single nucleotides and >65% of longer RNAs (>35 nt). Compared to size selection using gel electrophoresis, ITP-based size-selection yields a 2.2-fold increase in the amount of extracted RNAs within the target size range. We also demonstrate compatibility of the ITP-based size-selection with downstream next generation sequencing. On-chip ITP-prepared samples reveal higher reproducibility of transcript-specific measurements compared to samples size-selected by gel electrophoresis. Our method offers an attractive alternative to conventional sample preparation for sequencing with shorter assay time, higher extraction efficiency and reproducibility. Potential applications of ITP-based size-selection include sequencing-based analyses of small RNAs from low-abundance samples such as rare cell types, samples from fluorescence activated cell sorting (FACS), or limited clinical samples.
Collapse
Affiliation(s)
- Crystal M Han
- Department of Mechanical Engineering, San Jose State University, San Jose, CA 95192, USA and Joint Initiative for Metrology in Biology, National Institute of Standards and Technology, Stanford, CA, USA.
| | - David Catoe
- Joint Initiative for Metrology in Biology, National Institute of Standards and Technology, Stanford, CA, USA.
| | - Sarah A Munro
- Joint Initiative for Metrology in Biology, National Institute of Standards and Technology, Stanford, CA, USA. and Minnesota Supercomputing Institute, University of Minnesota, MN 55455, USA
| | - Ruba Khnouf
- Department of Biomedical Engineering, Jordan University of Science and Technology, Irbid, Jordan and Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Marc L Salit
- Joint Initiative for Metrology in Biology, National Institute of Standards and Technology, Stanford, CA, USA.
| | - Can Cenik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78705, USA.
| |
Collapse
|
13
|
Hiramoto K, Ino K, Nashimoto Y, Ito K, Shiku H. Electric and Electrochemical Microfluidic Devices for Cell Analysis. Front Chem 2019; 7:396. [PMID: 31214576 PMCID: PMC6557978 DOI: 10.3389/fchem.2019.00396] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/16/2019] [Indexed: 11/24/2022] Open
Abstract
Microfluidic devices are widely used for cell analysis, including applications for single-cell analysis, healthcare, environmental monitoring, and organs-on-a-chip that mimic organs in microfluidics. Moreover, to enable high-throughput cell analysis, real-time monitoring, and non-invasive cell assays, electric and electrochemical systems have been incorporated into microfluidic devices. In this mini-review, we summarize recent advances in these systems, with applications from single cells to three-dimensional cultured cells and organs-on-a-chip. First, we summarize microfluidic devices combined with dielectrophoresis, electrophoresis, and electrowetting-on-a-dielectric for cell manipulation. Next, we review electric and electrochemical assays of cells to determine chemical section activity, and oxygen and glucose consumption activity, among other applications. In addition, we discuss recent devices designed for the electric and electrochemical collection of cell components from cells. Finally, we highlight the future directions of research in this field and their application prospects.
Collapse
Affiliation(s)
- Kaoru Hiramoto
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Kosuke Ino
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Yuji Nashimoto
- Graduate School of Engineering, Tohoku University, Sendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Kentaro Ito
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|