1
|
Caniglia G, Tezcan G, Meloni GN, Unwin PR, Kranz C. Probing and Visualizing Interfacial Charge at Surfaces in Aqueous Solution. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:247-267. [PMID: 35259914 DOI: 10.1146/annurev-anchem-121521-122615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface charge density and distribution play an important role in almost all interfacial processes, influencing, for example, adsorption, colloidal stability, functional material activity, electrochemical processes, corrosion, nanoparticle toxicity, and cellular processes such as signaling, absorption, and adhesion. Understanding the heterogeneity in, and distribution of, surface and interfacial charge is key to elucidating the mechanisms underlying reactivity, the stability of materials, and biophysical processes. Atomic force microscopy (AFM) and scanning ion conductance microscopy (SICM) are highly suitable for probing the material/electrolyte interface at the nanoscale through recent advances in probe design, significant instrumental (hardware and software) developments, and the evolution of multifunctional imaging protocols. Here, we assess the capability of AFM and SICM for surface charge mapping, covering the basic underpinning principles alongside experimental considerations. We illustrate and compare the use of AFM and SICM for visualizing surface and interfacial charge with examples from materials science, geochemistry, and the life sciences.
Collapse
Affiliation(s)
- Giada Caniglia
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany;
| | - Gözde Tezcan
- Department of Chemistry, University of Warwick, Coventry, United Kingdom;
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry, United Kingdom;
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry, United Kingdom;
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany;
| |
Collapse
|
2
|
Unwin P. Concluding remarks: next generation nanoelectrochemistry - next generation nanoelectrochemists. Faraday Discuss 2022; 233:374-391. [PMID: 35229863 DOI: 10.1039/d2fd00020b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this paper is to describe the scientific journey taken to arrive at present-day nanoelectrochemistry and consider how the area might develop in the future, particularly in light of papers presented at this Faraday Discussion. By adopting a generational approach, this brief contribution traces the story of the nanoelectrochemistry family within the broader electrochemistry field, with a focus on scientific capability and themes that were important to each generation. I shall consider research questions and the impact of technology that was developed or available in each period. Nanoelectrochemistry is still somewhat niche, but is attracting increasing numbers of researchers. It is set to become a major part of electrochemistry and interfacial science. It is studied by people with a fairly unique skillset, and I shall speculate on the skills and expertise that will be needed by nanoelectrochemists to address the challenges and opportunities that lie ahead. I conclude by asking: who will be the nanoelectrochemists of the future and what will they do?
Collapse
Affiliation(s)
- Patrick Unwin
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
3
|
Abstract
Scanning ion conductance microscopy (SICM) has emerged as a versatile tool for studies of interfaces in biology and materials science with notable utility in biophysical and electrochemical measurements. The heart of the SICM is a nanometer-scale electrolyte filled glass pipette that serves as a scanning probe. In the initial conception, manipulations of ion currents through the tip of the pipette and appropriate positioning hardware provided a route to recording micro- and nanoscopic mapping of the topography of surfaces. Subsequent advances in instrumentation, probe design, and methods significantly increased opportunities for SICM beyond recording topography. Hybridization of SICM with coincident characterization techniques such as optical microscopy and faradaic electrodes have brought SICM to the forefront as a tool for nanoscale chemical measurement for a wide range of applications. Modern approaches to SICM realize an important tool in analytical, bioanalytical, biophysical, and materials measurements, where significant opportunities remain for further exploration. In this review, we chronicle the development of SICM from the perspective of both the development of instrumentation and methods and the breadth of measurements performed.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kaixiang Huang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Natasha P Siepser
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
4
|
Iwata F, Shirasawa T, Mizutani Y, Ushiki T. Scanning ion-conductance microscopy with a double-barreled nanopipette for topographic imaging of charged chromosomes. Microscopy (Oxf) 2021; 70:423-435. [PMID: 33644794 DOI: 10.1093/jmicro/dfab009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/12/2021] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Scanning ion conductance microscopy (SICM) is useful for imaging soft and fragile biological samples in liquids because it probes the samples' surface topography by detecting ion currents under non-contact and force-free conditions. SICM acquires the surface topographical height by detecting the ion current reduction that occurs when an electrolyte-filled glass nanopipette approaches the sample surface. However, most biological materials have electrically charged surfaces in liquid environments, which sometimes affect the behavior of the ion currents detected by SICM and, especially, make topography measurements difficult. For measuring such charged samples, we propose a novel imaging method that uses a double-barrel nanopipette as an SICM probe. The ion current between the two apertures of the nanopipette desensitizes the surface charge effect on imaging. In this study, metaphase chromosomes of Indian muntjac were imaged by this technique because, owing to their strongly negatively charged surfaces in phosphate-buffered saline, it is difficult to obtain the topography of the chromosomes by the conventional SICM with a single-aperture nanopipette. Using the proposed method with a double-barrel nanopipette, the surfaces of the chromosomes were successfully measured, without any surface charge confounder. Since the detailed imaging of sample topography can be performed in physiological liquid conditions regardless of the sample charge, it is expected to be used for analyzing the high-order structure of chromosomes in relation to their dynamic changes in the cell division.
Collapse
Affiliation(s)
- Futoshi Iwata
- Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan.,Research Institute of Electronics, Shizuoka University, Hamamatsu, Shizuoka 432-8011, Japan
| | - Tatsuru Shirasawa
- Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| | - Yusuke Mizutani
- Office of Institutional Research, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.,Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
5
|
Zhu C, Jagdale G, Gandolfo A, Alanis K, Abney R, Zhou L, Bish D, Raff JD, Baker LA. Surface Charge Measurements with Scanning Ion Conductance Microscopy Provide Insights into Nitrous Acid Speciation at the Kaolin Mineral-Air Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12233-12242. [PMID: 34449200 PMCID: PMC9277718 DOI: 10.1021/acs.est.1c03455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Unique surface properties of aluminosilicate clay minerals arise from anisotropic distribution of surface charge across their layered structures. Yet, a molecular-level understanding of clay mineral surfaces has been hampered by the lack of analytical techniques capable of measuring surface charges at the nanoscale. This is important for understanding the reactivity, colloidal stability, and ion-exchange capacity properties of clay minerals, which constitute a major fraction of global soils. In this work, scanning ion conductance microscopy (SICM) is used for the first time to visualize the surface charge and topography of dickite, a well-ordered member of the kaolin subgroup of clay minerals. Dickite displayed a pH-independent negative charge on basal surfaces whereas the positive charge on edges increased from pH 6 to 3. Surface charges responded to malonate addition, which promoted dissolution/precipitation reactions. Results from SICM were used to interpret heterogeneous reactivity studies showing that gas-phase nitrous acid (HONO) is released from the protonation of nitrite at Al-OH2+ groups on dickite edges at pH well above the aqueous pKa of HONO. This study provides nanoscale insights into mineral surface processes that affect environmental processes on the local and global scale.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Gargi Jagdale
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Adrien Gandolfo
- Paul H. O'Neill School of Public & Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Kristen Alanis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Rebecca Abney
- Paul H. O'Neill School of Public & Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, United States
| | - Lushan Zhou
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - David Bish
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Jonathan D Raff
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
- Paul H. O'Neill School of Public & Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| |
Collapse
|
6
|
Schlotter T, Weaver S, Forró C, Momotenko D, Vörös J, Zambelli T, Aramesh M. Force-Controlled Formation of Dynamic Nanopores for Single-Biomolecule Sensing and Single-Cell Secretomics. ACS NANO 2020; 14:12993-13003. [PMID: 32914961 DOI: 10.1021/acsnano.0c04281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanopore sensing of single nucleotides has emerged as a promising single-molecule technology for DNA sequencing and proteomics. Despite the conceptual simplicity of nanopores, adoption of this technology for practical applications has been limited by a lack of pore size adjustability and an inability to perform long-term recordings in complex solutions. Here we introduce a method for fast and precise on-demand formation of a nanopore with controllable size between 2 and 20 nm through force-controlled adjustment of the nanospace formed between the opening of a microfluidic device (made of silicon nitride) and a soft polymeric substrate. The introduced nanopore system enables stable measurements at arbitrary locations. By accurately positioning the nanopore in the proximity of single neurons and continuously recording single-molecule translations over several hours, we have demonstrated this is a powerful approach for single-cell proteomics and secretomics.
Collapse
Affiliation(s)
- Tilman Schlotter
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Sean Weaver
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Dmitry Momotenko
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Morteza Aramesh
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
- Laboratory of Applied Mechanobiology, Department for Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
7
|
Holub M, Adobes-Vidal M, Frutiger A, Gschwend PM, Pratsinis SE, Momotenko D. Single-Nanoparticle Thermometry with a Nanopipette. ACS NANO 2020; 14:7358-7369. [PMID: 32426962 DOI: 10.1021/acsnano.0c02798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thermal measurements at the nanoscale are key for designing technologies in many areas, including drug delivery systems, photothermal therapies, and nanoscale motion devices. Herein, we present a nanothermometry technique that operates in electrolyte solutions and, therefore, is applicable for many in vitro measurements, capable of measuring and mapping temperature with nanoscale spatial resolution and sensitive to detect temperature changes down to 30 mK with 43 μs temporal resolution. The methodology is based on local measurements of ionic conductivity confined at the tip of a pulled glass capillary, a nanopipettete, with opening diameters as small as 6 nm. When scanned above a specimen, the measured ion flux is converted into temperature using an extensive theoretical support given by numerical and analytical modeling. This allows quantitative thermal measurements with a variety of capillary dimensions and is applicable to a range of substrates. We demonstrate the capabilities of this nanothermometry technique by simultaneous mapping of temperature and topography on sub-micrometer-sized aggregates of thermoplasmonic nanoparticles heated by a laser and observe the formation of micro- and nanobubbles upon plasmonic heating. Furthermore, we perform quantitative thermometry on a single-nanoparticle level, demonstrating that the temperature at an individual nanoheater of 25 nm in diameter can reach an increase of about 3 K.
Collapse
Affiliation(s)
- Martin Holub
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Maria Adobes-Vidal
- Wood Materials Science Group, Institute for Building Materials, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Pascal M Gschwend
- Particle Technology Laboratory, Institute of Process Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Sotiris E Pratsinis
- Particle Technology Laboratory, Institute of Process Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Dmitry Momotenko
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, CH-8092, Switzerland
| |
Collapse
|
8
|
Mark A, Helfricht N, Rauh A, Xue J, Knödler P, Schumacher T, Karg M, Du B, Lippitz M, Papastavrou G. Electrokinetics in Micro-channeled Cantilevers: Extending the Toolbox for Reversible Colloidal Probes and AFM-Based Nanofluidics. Sci Rep 2019; 9:20294. [PMID: 31889103 PMCID: PMC6937245 DOI: 10.1038/s41598-019-56716-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/04/2019] [Indexed: 11/23/2022] Open
Abstract
The combination of atomic force microscopy (AFM) with nanofluidics, also referred to as FluidFM, has facilitated new applications in scanning ion conductance microscopy, direct force measurements, lithography, or controlled nanoparticle deposition. An essential element of this new type of AFMs is its cantilever, which bears an internal micro-channel with a defined aperture at the end. Here, we present a new approach for in-situ characterization of the internal micro-channels, which is non-destructive and based on electrochemical methods. It allows for probing the internal environment of a micro-channeled cantilever and the corresponding aperture, respectively. Acquiring the streaming current in the micro-channel allows to determine not only the state of the aperture over a wide range of ionic strengths but also the surface chemistry of the cantilever’s internal channel. The high practical applicability of this method is demonstrated by detecting the aspiration of polymeric, inorganic and hydrogel particles with diameters ranging from several µm down to 300 nm. By verifying in-situ the state of the aperture, i.e. open versus closed, electrophysiological or nano-deposition experiments will be significantly facilitated. Moreover, our approach is of high significance for direct force measurements by the FluidFM-technique and sub-micron colloidal probes.
Collapse
Affiliation(s)
- Andreas Mark
- Physical Chemistry II, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Nicolas Helfricht
- Physical Chemistry II, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany.,Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Astrid Rauh
- Physical Chemistry I, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40204, Düsseldorf, Germany
| | - Jinqiao Xue
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Patrick Knödler
- Experimental Physics III, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Thorsten Schumacher
- Experimental Physics III, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Matthias Karg
- Physical Chemistry I, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40204, Düsseldorf, Germany
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Markus Lippitz
- Experimental Physics III, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Georg Papastavrou
- Physical Chemistry II, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany. .,Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany.
| |
Collapse
|
9
|
Aramesh M, Forró C, Dorwling-Carter L, Lüchtefeld I, Schlotter T, Ihle SJ, Shorubalko I, Hosseini V, Momotenko D, Zambelli T, Klotzsch E, Vörös J. Localized detection of ions and biomolecules with a force-controlled scanning nanopore microscope. NATURE NANOTECHNOLOGY 2019; 14:791-798. [PMID: 31308500 DOI: 10.1038/s41565-019-0493-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Proteins, nucleic acids and ions secreted from single cells are the key signalling factors that determine the interaction of cells with their environment and the neighbouring cells. It is possible to study individual ion channels by pipette clamping, but it is difficult to dynamically monitor the activity of ion channels and transporters across the cellular membrane. Here we show that a solid-state nanopore integrated in an atomic force microscope can be used for the stochastic sensing of secreted molecules and the activity of ion channels in arbitrary locations both inside and outside a cell. The translocation of biomolecules and ions through the nanopore is observed in real time in live cells. The versatile nature of this approach allows us to detect specific biomolecules under controlled mechanical confinement and to monitor the ion-channel activities of single cells. Moreover, the nanopore microscope was used to image the surface of the nuclear membrane via high-resolution scanning ion conductance measurements.
Collapse
Affiliation(s)
- Morteza Aramesh
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.
- Laboratory of Applied Mechanobiology, Department for Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Livie Dorwling-Carter
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Ines Lüchtefeld
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Tilman Schlotter
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Stephan J Ihle
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Ivan Shorubalko
- Laboratory for Transport at Nanoscale Interfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
| | - Vahid Hosseini
- Laboratory of Applied Mechanobiology, Department for Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Dmitry Momotenko
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Enrico Klotzsch
- Laboratory of Applied Mechanobiology, Department for Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Institute for Biology, Experimental Biophysics/ Mechanobiology, Humboldt University of Berlin, Berlin, Germany
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
10
|
|
11
|
Hui J, Gossage ZT, Sarbapalli D, Hernández-Burgos K, Rodríguez-López J. Advanced Electrochemical Analysis for Energy Storage Interfaces. Anal Chem 2018; 91:60-83. [PMID: 30428255 DOI: 10.1021/acs.analchem.8b05115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jingshu Hui
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Zachary T Gossage
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Dipobrato Sarbapalli
- Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , 1304 West Green Street , Urbana , Illinois 61801 , United States
| | - Kenneth Hernández-Burgos
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , 405 North Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Joaquín Rodríguez-López
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States.,Beckman Institute for Advanced Science and Technology , 405 North Mathews Avenue , Urbana , Illinois 61801 , United States
| |
Collapse
|
12
|
Bentley CL, Edmondson J, Meloni GN, Perry D, Shkirskiy V, Unwin PR. Nanoscale Electrochemical Mapping. Anal Chem 2018; 91:84-108. [PMID: 30500157 DOI: 10.1021/acs.analchem.8b05235] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|