1
|
Qi C, Li X, Li Q, Shi X, Xia MC, Chen Y, Wang Z, Abliz Z. Mass Spectrometry Imaging for the Characterization of C═C Localization in Unsaturated Lipid Isomers at the Single-Cell Level. Anal Chem 2024. [PMID: 39269953 DOI: 10.1021/acs.analchem.4c03679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Unsaturated lipids with carbon-carbon double bonds (C═C) have been implicated in the pathogenesis of various diseases. While mass spectrometry imaging (MSI) has been employed to map the distribution of lipid isomers in tissue sections, the identification of lipid C═C positional isomers at the single-cell level using MSI poses a significant challenge. In this study, we developed a novel approach utilizing ToF-SIMS in conjunction with the Paternò-Büchi (P-B) photochemical reaction to characterize the C═C localization in unsaturated lipid isomers at the single-cell level. The P-B reaction was employed to produce adduct products, which were subsequently subjected to collision-induced dissociation by the primary ion beam of ToF-SIMS to generate characteristic ion pairs indicative of the presence of C═C bonds. Utilizing this approach, lipid isomers in brain and skeletal tissues from mice, as well as different cell lines, were visualized at single-cell resolution. Furthermore, distinct variations in the composition of FA 18:1 isomers across different microregions and cell types were revealed. Our P-B ToF-SIMS approach enables the accurate identification and characterization of complex lipid structures with remarkable spatial resolution and can be helpful in understanding the physiological role of these C═C positional isomers.
Collapse
Affiliation(s)
- Chengjian Qi
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaoni Li
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qian Li
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Xiujuan Shi
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Meng-Chan Xia
- National Narcotics Laboratory Beijing Regional Center, Beijing 100164, China
| | - Yanhua Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China
| | - Zhaoying Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China
| | - Zeper Abliz
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China
| |
Collapse
|
2
|
Brydon SC, Poad BLJ, Fang M, Rustam YH, Young RSE, Mouradov D, Sieber OM, Mitchell TW, Reid GE, Blanksby SJ, Marshall DL. Cross-Validation of Lipid Structure Assignment Using Orthogonal Ion Activation Modalities on the Same Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1976-1990. [PMID: 39037040 DOI: 10.1021/jasms.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The onset and progression of cancer is associated with changes in the composition of the lipidome. Therefore, better understanding of the molecular mechanisms of these disease states requires detailed structural characterization of the individual lipids within the complex cellular milieu. Recently, changes in the unsaturation profile of membrane lipids have been observed in cancer cells and tissues, but assigning the position(s) of carbon-carbon double bonds in fatty acyl chains carried by membrane phospholipids, including the resolution of lipid regioisomers, has proven analytically challenging. Conventional tandem mass spectrometry approaches based on collision-induced dissociation of ionized glycerophospholipids do not yield spectra that are indicative of the location(s) of carbon-carbon double bonds. Ozone-induced dissociation (OzID) and ultraviolet photodissociation (UVPD) have emerged as alternative ion activation modalities wherein diagnostic product ions can enable de novo assignment of position(s) of unsaturation based on predictable fragmentation behaviors. Here, for the first time, OzID and UVPD (193 nm) mass spectra are acquired on the same mass spectrometer to evaluate the relative performance of the two modalities for lipid identification and to interrogate the respective fragmentation pathways under comparable conditions. Based on investigations of lipid standards, fragmentation rules for each technique are expanded to increase confidence in structural assignments and exclude potential false positives. Parallel application of both methods to unsaturated phosphatidylcholines extracted from isogenic colorectal cancer cell lines provides high confidence in the assignment of multiple double bond isomers in these samples and cross-validates relative changes in isomer abundance.
Collapse
Affiliation(s)
- Samuel C Brydon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Mengxuan Fang
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yepy H Rustam
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Reuben S E Young
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Dmitri Mouradov
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Oliver M Sieber
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Todd W Mitchell
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gavin E Reid
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
3
|
Ferreira CR, Lima Gomes PCFD, Robison KM, Cooper BR, Shannahan JH. Implementation of multiomic mass spectrometry approaches for the evaluation of human health following environmental exposure. Mol Omics 2024; 20:296-321. [PMID: 38623720 PMCID: PMC11163948 DOI: 10.1039/d3mo00214d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Omics analyses collectively refer to the possibility of profiling genetic variants, RNA, epigenetic markers, proteins, lipids, and metabolites. The most common analytical approaches used for detecting molecules present within biofluids related to metabolism are vibrational spectroscopy techniques, represented by infrared, Raman, and nuclear magnetic resonance (NMR) spectroscopies and mass spectrometry (MS). Omics-based assessments utilizing MS are rapidly expanding and being applied to various scientific disciplines and clinical settings. Most of the omics instruments are operated by specialists in dedicated laboratories; however, the development of miniature portable omics has made the technology more available to users for field applications. Variations in molecular information gained from omics approaches are useful for evaluating human health following environmental exposure and the development and progression of numerous diseases. As MS technology develops so do statistical and machine learning methods for the detection of molecular deviations from personalized metabolism, which are correlated to altered health conditions, and they are intended to provide a multi-disciplinary overview for researchers interested in adding multiomic analysis to their current efforts. This includes an introduction to mass spectrometry-based omics technologies, current state-of-the-art capabilities and their respective strengths and limitations for surveying molecular information. Furthermore, we describe how knowledge gained from these assessments can be applied to personalized medicine and diagnostic strategies.
Collapse
Affiliation(s)
- Christina R Ferreira
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Kiley Marie Robison
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Bruce R Cooper
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN 47907, USA.
| | - Jonathan H Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Bonney JR, Prentice BM. Structural Elucidation and Relative Quantification of Fatty Acid Double Bond Positional Isomers in Biological Tissues Enabled by Gas-Phase Charge Inversion Ion/Ion Reactions. ANALYSIS & SENSING 2024; 4:e202300063. [PMID: 38827423 PMCID: PMC11139046 DOI: 10.1002/anse.202300063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 06/04/2024]
Abstract
Fatty acids (FAs) contain a vast amount of structural diversity, and differences in fatty acid structure have been associated with various disease states. Accurate identification and characterization of fatty acids is critical to fully understand the biochemical roles these compounds play in disease progression. Conventional tandem mass spectrometry (MS/MS) workflows do not provide sufficient structural information, necessitating alternative dissociation methods. Gas-phase charge inversion ion/ion reactions can be used to alter the ion type subjected to activation to provide improved or complementary structural information. Herein, we have used an ion/ion reaction between fatty acid (FA) anions and magnesium tris-phenanthroline [Mg(Phen)3] dications to promote charge remote fragmentation of carbon-carbon bonds along the fatty acid chain, allowing for localization of carbon-carbon double bond (C=C) positions to successfully differentiate monounsaturated fatty acid isomers. Relative quantification was also performed to obtain the relative abundance of fatty acid isomers in different biological tissues. For example, the relative abundance of FA 18:1 (9) was determined to vary across regions of rat brain, rat kidney, and mouse pancreas, and FA 16:1 (9) was found to have a higher relative abundance in the dermis layer compared to the sebaceous glands in human skin tissue.
Collapse
Affiliation(s)
- Julia R Bonney
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
5
|
Guo X, Cao W, Fan X, Chen Q, Wu L, Ma X, Ouyang Z, Zhang W. MS 3 Imaging Enables the Simultaneous Analysis of Phospholipid C═C and sn-Position Isomers in Tissues. Anal Chem 2024; 96:4259-4265. [PMID: 38418962 DOI: 10.1021/acs.analchem.3c05807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Mass spectrometry (MS) imaging of lipids in tissues with high structure specificity is challenging in the effective fragmentation of position-selective structures and the sensitive detection of multiple lipid isomers. Herein, we develop an MS3 imaging method for the simultaneous analysis of phospholipid C═C and sn-position isomers by on-tissue photochemical derivatization, nanospray desorption electrospray ionization (nano-DESI), and a dual-linear ion trap MS system. A novel laser-based sensing probe is developed for the real-time adjustment of the probe-to-surface distance for nano-DESI. This method is validated in mouse brain and kidney sections, showing its capability of sensitive resolving and imaging of the fatty acyl chain composition, the sn-position, and the C═C location of phospholipids in an MS3 scan. MS3 imaging of phospholipids has shown the capability of differentiation of cancerous, fibrosis, and adjacent normal regions in liver cancer tissues.
Collapse
Affiliation(s)
- Xiangyu Guo
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
| | - Wenbo Cao
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
| | - Xiaomin Fan
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
| | - Qinhua Chen
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518101, China
| | - Lun Wu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan 442008, China
| | - Xiaoxiao Ma
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
| | - Zheng Ouyang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
| | - Wenpeng Zhang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Weigand MR, Unsihuay Vila DM, Yang M, Hu H, Hernly E, Muhoberac M, Tichy S, Laskin J. Lipid Isobar and Isomer Imaging Using Nanospray Desorption Electrospray Ionization Combined with Triple Quadrupole Mass Spectrometry. Anal Chem 2024. [PMID: 38321595 DOI: 10.1021/acs.analchem.3c04705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Mass spectrometry imaging (MSI) is widely used for examining the spatial distributions of molecules in biological samples. Conventional MSI approaches, in which molecules extracted from the sample are distinguished based on their mass-to-charge ratio, cannot distinguish between isomeric species and some closely spaced isobars. To facilitate isobar separation, MSI is typically performed using high-resolution mass spectrometers. Nevertheless, the complexity of the mixture of biomolecules observed in each pixel of the image presents a challenge, even for modern mass spectrometers with the highest resolving power. Herein, we implement nanospray desorption electrospray ionization (nano-DESI) MSI on a triple quadrupole (QqQ) mass spectrometer for the spatial mapping of isobaric and isomeric species in biological tissues. We use multiple reaction monitoring acquisition mode (MRM) with unit mass resolution to demonstrate the performance of this new platform by imaging lipids in mouse brain and rat kidney tissues. We demonstrate that imaging in MRM mode may be used to distinguish between isobaric phospholipids requiring a mass resolving power of 3,800,000. Additionally, we have been able to image eicosanoid isomers, a largely unexplored class of signaling molecules present in tissues at low concentrations, in rat kidney tissue. This new capability substantially enhances the specificity and selectivity of MSI, enabling spatial localization of species that remain unresolved in conventional MSI experiments.
Collapse
Affiliation(s)
- Miranda R Weigand
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Daisy M Unsihuay Vila
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Manxi Yang
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Hang Hu
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Emerson Hernly
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Matthew Muhoberac
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Shane Tichy
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 95051, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Bonney JR, Kang WY, Specker JT, Liang Z, Scoggins TR, Prentice BM. Relative Quantification of Lipid Isomers in Imaging Mass Spectrometry Using Gas-Phase Charge Inversion Ion/Ion Reactions and Infrared Multiphoton Dissociation. Anal Chem 2023; 95:17766-17775. [PMID: 37991720 PMCID: PMC11161029 DOI: 10.1021/acs.analchem.3c03804] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Accurate structural identification of lipids in imaging mass spectrometry is critical to properly contextualizing spatial distributions with tissue biochemistry. Gas-phase charge inversion ion/ion reactions alter the ion type prior to dissociation to allow for more structurally informative fragmentation and improve lipid identification at the isomeric level. In this work, infrared multiphoton dissociation (IRMPD) was interfaced with a commercial hybrid Qh-FT-ICR mass spectrometer to enable the rapid fragmentation of gas-phase charge inversion ion/ion reaction products at every pixel in imaging mass spectrometry experiments. An ion/ion reaction between phosphatidylcholine (PC) monocations generated from rat brain tissue via matrix-assisted laser desorption/ionization (MALDI) and 1,4-phenylenediproprionic acid reagent dianions generated via electrospray ionization (ESI) followed by IRMPD of the resulting product ion complex produces selective fatty acyl chain cleavages indicative of fatty acyl carbon compositions in the lipid. Ion/ion reaction images using this workflow allow for mapping of the relative spatial distribution of multiple PC isomers under a single sum composition lipid identification. Lipid isomers display significantly different relative spatial distributions within rat brain tissue, highlighting the importance of resolving isomers in imaging mass spectrometry experiments.
Collapse
Affiliation(s)
- Julia R. Bonney
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Woo-Young Kang
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | | | - Zhongling Liang
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Troy R. Scoggins
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Boone M. Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
8
|
Yan T, Liang Z, Prentice BM. Imaging and Structural Characterization of Phosphatidylcholine Isomers from Rat Brain Tissue Using Sequential Collision-Induced Dissociation/Electron-Induced Dissociation. Anal Chem 2023; 95:15707-15715. [PMID: 37818979 PMCID: PMC10639000 DOI: 10.1021/acs.analchem.3c03077] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The chemical complexity of biological tissues creates challenges in the analysis of lipids via imaging mass spectrometry. The presence of isobaric and isomeric compounds introduces chemical noise that makes it difficult to unambiguously identify and accurately map the spatial distributions of these compounds. Electron-induced dissociation (EID) has previously been shown to profile phosphatidylcholine (PCs) sn-isomers directly from rat brain tissue in matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry. However, the acquisition of true pixel-by-pixel images, as opposed to regional profiling measurements, using EID is difficult due to low fragmentation efficiency and precursor ion signal dilution into multiple fragment ion channels, resulting in low sensitivity. In this work, we have developed a sequential collision-induced dissociation (CID)/EID method to visualize the distribution of sn-isomers in MALDI imaging mass spectrometry experiments. Briefly, CID is performed on sodium-adducted PCs, which results in facile loss of the phosphocholine headgroup. This ion is then subjected to an EID analysis. Since the lipid headgroup is removed prior to EID, a major fragmentation pathway common to EID ion activation is eliminated, resulting in a more sensitive analysis. This sequential CID/EID workflow generates sn-specific fragment ions allowing for the assignment of the sn-positions. Carbon-carbon double-bond (C═C) positions are also localized along the fatty acyl tails by the presence of a 2 Da shift pattern in the fragment ions arising from carbon-carbon bond cleavages. Moreover, the integration of the CID/EID method into MALDI imaging mass spectrometry enables the mapping of the absolute and relative distribution of sn-isomers at every pixel. The localized relative abundances of sn-isomers vary throughout brain substructures and likely reflect different biological functions and metabolism.
Collapse
Affiliation(s)
- Tingting Yan
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Zhongling Liang
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Boone M. Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
9
|
Claes BR, Bowman AP, Poad BLJ, Heeren RMA, Blanksby SJ, Ellis SR. Isomer-Resolved Mass Spectrometry Imaging of Acidic Phospholipids. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2269-2277. [PMID: 37581874 PMCID: PMC10557375 DOI: 10.1021/jasms.3c00192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
The biological functions of lipids are entirely dependent on their molecular structures with even small changes in structure─such as different sites of unsaturation─providing critical markers for changes in the underlying metabolism. Conventional mass spectrometry imaging (MSI) approaches, however, face the twin challenges of mixture and structural complexity and are typically unable to differentiate lipid isomers that differ only in the position(s) of carbon-carbon double bonds. Recent coupling of ozone-induced dissociation (OzID) with matrix-assisted laser desorption/ionization (MALDI)-MSI has demonstrated the potential to map changes in individual double-bond isomers, thus enabling visualization of the modulation in lipid desaturation in adjacent tissue types. This has, to date, only been performed in positive-ion mode due to a generally higher abundance of phosphatidylcholines (PC) in mammalian tissues and the efficient desorption/ionization of this lipid subclass. Many other glycerophospholipids (GPLs), however, are better detected in negative-ion mode as deprotonated anions. Recently, OzID has been implemented on a traveling-wave ion-mobility mass spectrometer (Waters, SYNAPT G2-Si) that provides a 50-fold increase in the rate of the gas-phase reaction between ionized lipids and ozone and a commensurate increase in sensitivity for isomer-resolved mass spectrometry. These gains are exploited here to interrogate the distributions of anionic GPL isomers in biological tissues, covering the subclasses phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylglycerol (PG), and phosphatidic acid (PA). Exploiting both ozone- and collision-induced dissociation in a single acquisition simultaneously identifies sites of unsaturation and acyl chain composition from the same mass spectrum.
Collapse
Affiliation(s)
- Britt
S. R. Claes
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Andrew P. Bowman
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Berwyck L. J. Poad
- Central
Analytical Research Facility, Queensland
University of Technology, Brisbane, Queensland 4000, Australia
- School
of Chemistry and Physics, Queensland University
of Technology, Brisbane, Queensland 4000, Australia
| | - Ron M. A. Heeren
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Stephen J. Blanksby
- Central
Analytical Research Facility, Queensland
University of Technology, Brisbane, Queensland 4000, Australia
- School
of Chemistry and Physics, Queensland University
of Technology, Brisbane, Queensland 4000, Australia
| | - Shane R. Ellis
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
10
|
Specker JT, Prentice BM. Separation of Isobaric Lipids in Imaging Mass Spectrometry Using Gas-Phase Charge Inversion Ion/Ion Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1868-1878. [PMID: 37276072 PMCID: PMC10641901 DOI: 10.1021/jasms.3c00081] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The diverse array of chemical compounds present in tissue samples results in many isobaric (i.e., same nominal mass) compounds in imaging mass spectrometry experiments. Adequate separation and differentiation of these compounds is necessary to ensure accurate analyte identification and avoid composite images comprising multiple compounds. High-resolution accurate mass (HRAM) measurements are able to resolve these compounds in some instances, but HRAM measurements are not always feasible depending on the instrument platform and the desired experimental time scale. Alternatively, tandem mass spectrometry (MS/MS) can be used to perform gas-phase transformations that improve molecular specificity. While conventional MS/MS methods employ collision induced dissociation (CID) to fragment compounds of interest and then analyze the product masses, gas-phase ion/ion reactions can be used to instead selectively react with desired classes of analytes. Herein, we have used gas-phase charge inversion ion/ion reactions to selectively resolve phosphatidylcholines (PCs) in isobaric lipid mixtures. A 1,4-phenylenedipropionic acid (PDPA) reagent dianion readily reacts with [M + H]+, [M + Na]+, and [M + K]+ ion types to produce demethylated product anions for each PC, [PC - CH3]-. These product anions are no longer isobaric and now differ in mass by 22 Da (protonated versus sodiated) and 16 Da (sodiated versus potassiated), respectively. This reaction has been used to differentiate isobaric lipids in the imaging mass spectrometry analysis of rat brain tissue.
Collapse
Affiliation(s)
| | - Boone M. Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
11
|
Hormann FL, Sommer S, Heiles S. Formation and Tandem Mass Spectrometry of Doubly Charged Lipid-Metal Ion Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37315187 DOI: 10.1021/jasms.3c00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phospholipids are major components of most eukaryotic cell membranes. Changes in metabolic states are often accompanied by phospholipid structure variations. The structural changes of phospholipids are the hallmark of disease states, or specific lipid structures have been associated with distinct organisms. Prime examples are microorganisms that synthesize phospholipids with, for example, different branched chain fatty acids. Assignment and relative quantitation of structural isomers of phospholipids that arise from attachment of different fatty acids to the glycerophospholipid backbone are difficult with routine tandem mass spectrometry or with liquid chromatography without authentic standards. In this work, we report on the observation that all investigated phospholipid classes form doubly charged lipid-metal ion complexes during electrospray ionization (ESI) and show that these complexes can be used to assign lipid classes and fatty acid moieties, distinguish isomers of branched chain fatty acids, and relatively quantify these isomers in positive-ion mode. Use of water free methanol and addition of divalent metal salts (100 mol %) to ESI spray solutions afford highly abundant doubly charged lipid-metal ion complexes (up to 70 times of protonated compounds). Higher-energy collisional dissociation and collision-induced dissociation of doubly charged complexes yield a diverse set of lipid class-dependent fragment ions. In common for all lipid classes is the liberation of fatty acid-metal adducts that yield fragment ions from the fatty acid hydrocarbon chain upon activation. This ability is used to pinpoint sites of branching in saturated fatty acids and is showcased for free fatty acids as well as glycerophospholipids. The analytical utility of doubly charged phospholipid-metal ion complexes is demonstrated by distinguishing fatty acid branching-site isomers in phospholipid mixtures and relatively quantifying the corresponding isomeric compounds.
Collapse
Affiliation(s)
- Felix-Levin Hormann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Straße 6b, 44139 Dortmund, Germany
- Lipidomics, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Simon Sommer
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sven Heiles
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Straße 6b, 44139 Dortmund, Germany
- Lipidomics, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
12
|
Krieger AC, Macias LA, Goodman JC, Brodbelt JS, Eberlin LS. Mass Spectrometry Imaging Reveals Abnormalities in Cardiolipin Composition and Distribution in Astrocytoma Tumor Tissues. Cancers (Basel) 2023; 15:2842. [PMID: 37345179 PMCID: PMC10216144 DOI: 10.3390/cancers15102842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023] Open
Abstract
Cardiolipin (CL) is a mitochondrial lipid with diverse roles in cellular respiration, signaling, and organelle membrane structure. CL content and composition are essential for proper mitochondrial function. Deranged mitochondrial energy production and signaling are key components of glial cell cancers and altered CL molecular species have been observed in mouse brain glial cell xenograft tumors. The objective of this study was to describe CL structural diversity trends in human astrocytoma tumors of varying grades and correlate these trends with histological regions within the heterogeneous astrocytoma microenvironment. To this aim, we applied desorption electrospray ionization coupled with high field asymmetric ion mobility mass spectrometry (DESI-FAIMS-MS) to map CL molecular species in human normal cortex (N = 29), lower-grade astrocytoma (N = 19), and glioblastoma (N = 28) tissues. With this platform, we detected 46 CL species and 12 monolysocardiolipin species from normal cortex samples. CL profiles detected from glioblastoma tissues lacked diversity and abundance of longer chain polyunsaturated fatty acid containing CL species when compared to CL detected from normal and lower-grade tumors. CL profiles correlated with trends in tumor viability and tumor infiltration. Structural characterization of the CL species by tandem MS experiments revealed differences in fatty acid and double bond isomer composition among astrocytoma tissues compared with normal cortex and glioblastoma tissues. The GlioVis platform was used to analyze astrocytoma gene expression data from the CGGA dataset. Decreased expression of several mitochondrial respiratory enzyme encoding-genes was observed for higher-grade versus lower-grade tumors, however no significant difference was observed for cardiolipin synthesis enzyme CRLS1.
Collapse
Affiliation(s)
- Anna C. Krieger
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Luis A. Macias
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - J. Clay Goodman
- Departments of Pathology & Immunology and Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Livia S. Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
13
|
Zhang J, Zang Q, Xu W, Tang F. Rapid imaging of unsaturated lipids at isomer level using photoepoxidation. Talanta 2023; 261:124643. [PMID: 37196400 DOI: 10.1016/j.talanta.2023.124643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Unsaturated lipids play an essential role in living organisms, and their different isomers show significant functional differences. Therefore, in situ characterization of unsaturated lipids in tissues needs to be extended to isomer level. However, the exposure of tissue sections to an open environment for a long time may cause cell autolysis or corruption, and current unsaturated lipid imaging methods still face challenges in efficiency. This paper proposes an imaging method based on photoepoxidation coupled with air-flow-assisted desorption electrospray ionization mass spectrometry (AFADESI-MS) to rapidly realize the spatial characterization of unsaturated lipids at the isomer level. The technique has a fast response speed, high epoxide yield (>80%), and high diagnostic ion abundance. After 0.5 min of photoepoxidation, the derivation product yield ratio reached 24.6%. This method rapidly identified six glycerophospholipid isomers containing an 18:1 acyl chain in normal rat liver tissue. Then the imaging method was applied in nude mice lung cancer tissue and human thyroid cancer tissue, with only 3 min photoepoxidation. Results successfully characterized the location and range of unsaturated lipid isomers and revealed their enrichment in tumor tissue. In addition, the experiment shows that the variational trend of the ratio of unsaturated lipid isomers in different types of tumor samples is different. Based on the advantages of efficiency and convenience, this method is prospective for screening unsaturated lipid markers and pathological research of related diseases.
Collapse
Affiliation(s)
- Jian Zhang
- School of Life Science, Beijing Institute of Technology, No.5 Yard, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Qingce Zang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, A2 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, No.5 Yard, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Fei Tang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Zhongguancun Street, Hai Dian District, Beijing, 100084, China.
| |
Collapse
|
14
|
Choe K, Jindra MA, Hubbard SC, Pfleger BF, Sweedler JV. MALDI-MS screening of microbial colonies with isomer resolution to select fatty acid desaturase variants. Anal Biochem 2023; 672:115169. [PMID: 37146955 DOI: 10.1016/j.ab.2023.115169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
Creating controlled lipid unsaturation locations in oleochemicals can be a key to many bioengineered products. However, evaluating the effects of modifications to the acyl-ACP desaturase on lipid unsaturation is not currently amenable to high-throughput assays, limiting the scale of redesign efforts to <200 variants. Here, we report a rapid MS assay for profiling the positions of double bonds on membrane lipids produced by Escherichia coli colonies after treatment with ozone gas. By MS measurement of the ozonolysis products of Δ6 and Δ8 isomers of membrane lipids from colonies expressing recombinant Thunbergia alata desaturase, we screened a randomly mutagenized library of the desaturase gene at 5 s per sample. Two variants with altered regiospecificity were isolated, indicated by an increase in 16:1 Δ8 proportion. We also demonstrated the ability of these desaturase variants to influence the membrane composition and fatty acid distribution of E. coli strains deficient in the native acyl-ACP desaturase gene, fabA. Finally, we used the fabA deficient chassis to concomitantly express a non-native acyl-ACP desaturase and a medium-chain thioesterase from Umbellularia californica, demonstrating production of only saturated free fatty acids.
Collapse
Affiliation(s)
- Kisurb Choe
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Michael A Jindra
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Susan C Hubbard
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Brian F Pfleger
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Jonathan V Sweedler
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
15
|
Cheng S, Zhang D, Feng J, Hu Q, Tan A, Xie Z, Chen Q, Huang H, Wei Y, Ouyang Z, Ma X. Metabolic Pathway of Monounsaturated Lipids Revealed by In-Depth Structural Lipidomics by Mass Spectrometry. RESEARCH (WASHINGTON, D.C.) 2023; 6:0087. [PMID: 36951803 PMCID: PMC10026824 DOI: 10.34133/research.0087] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The study of lipid metabolism relies on the characterization of the lipidome, which is quite complex due to the structure variations of the lipid species. New analytical tools have been developed recently for characterizing fine structures of lipids, with C=C location identification as one of the major improvements. In this study, we studied the lipid metabolism reprograming by analyzing glycerol phospholipid compositions in breast cancer cell lines with structural specification extended to the C=C location level. Inhibition of the lipid desaturase, stearoyl-CoA desaturase 1, increased the proportion of n-10 isomers that are produced via an alternative fatty acid desaturase 2 pathway. However, there were different variations of the ratio of n-9/n-7 isomers in C18:1-containing glycerol phospholipids after stearoyl-CoA desaturase 1 inhibition, showing increased tendency in MCF-7 cells, MDA-MB-468 cells, and BT-474 cells, but decreased tendency in MDA-MB-231 cells. No consistent change of the ratio of n-9/n-7 isomers was observed in SK-BR-3 cells. This type of heterogeneity in reprogrammed lipid metabolism can be rationalized by considering both lipid desaturation and fatty acid oxidation, highlighting the critical roles of comprehensive lipid analysis in both fundamental and biomedical applications.
Collapse
Affiliation(s)
- Simin Cheng
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument,
Tsinghua University, Beijing 100084, China
| | - Donghui Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument,
Tsinghua University, Beijing 100084, China
| | - Jiaxin Feng
- Department of Chemistry,
Tsinghua University, Beijing 100084, China
| | - Qingyuan Hu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument,
Tsinghua University, Beijing 100084, China
| | - Aolei Tan
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument,
Tsinghua University, Beijing 100084, China
| | - Zhuoning Xie
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument,
Tsinghua University, Beijing 100084, China
| | - Qinhua Chen
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong 518101, China
| | - Huimin Huang
- Sinopharm Dongfeng General Hospital,
Hubei University of Medicine, Experiment center of medicine, Shiyan, Hubei 442008, China
| | - Ying Wei
- Sinopharm Dongfeng General Hospital,
Hubei University of Medicine, Experiment center of medicine, Shiyan, Hubei 442008, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument,
Tsinghua University, Beijing 100084, China
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument,
Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Yan T, Born MEN, Prentice BM. Structural Elucidation and Relative Quantification of Sodium- and Potassium-Cationized Phosphatidylcholine Regioisomers Directly from Tissue Using Electron Induced Dissociation. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2023; 485:116998. [PMID: 37601139 PMCID: PMC10438893 DOI: 10.1016/j.ijms.2022.116998] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Comprehensive structural characterization of phosphatidylcholines (PCs) is essential to understanding their biological functions and roles in metabolism. Electron induced dissociation (EID) of protonated PCs directly generated from biological tissues has previously been shown to provide in-depth structural information on the lipid headgroup, regiosiomerism of fatty acyl tails and double bond positions. Although phosphatidylcholine ions formed via alkali metal cationization (i.e., [M + Na]+ and [M + K]+) are commonly generated during matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry experiments, the gas-phase ion chemistry behavior of EID on sodium- and potassium-cationized phosphatidylcholine ion types has not been studied for ions generated directly from tissue. Herein, we demonstrate EID on [M + Na]+ and [M + K]+ ion types in a MALDI imaging mass spectrometry workflow for lipid structural characterization. Briefly, near-complete structural information can be obtained upon EID of sodium- and potassium-cationized PCs, including diagnostic fragmentation of the lipid headgroup as well as identification of fatty acyl chain positions and double bond position. EID of cationized lipids generates sn-specific glycerol backbone cleavages as well as a favorable combined loss of sn-2 fatty acid with choline over sn-1, allowing for facile differentiation and relative quantification of PC regioisomers. Moreover, relative quantification of sn-positional isomers from biological tissue reveals that the relative percentages of sodium- and potassium-cationized sn-positional isomers varies significantly in different regions of rat brain tissue.
Collapse
Affiliation(s)
- Tingting Yan
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | | | - Boone M. Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
17
|
Guo X, Cao W, Fan X, Guo Z, Zhang D, Zhang H, Ma X, Dong J, Wang Y, Zhang W, Ouyang Z. Tandem Mass Spectrometry Imaging Enables High Definition for Mapping Lipids in Tissues. Angew Chem Int Ed Engl 2023; 62:e202214804. [PMID: 36575135 DOI: 10.1002/anie.202214804] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Mass spectrometry imaging (MSI) of lipids in biological tissues is useful for correlating molecular distribution with pathological results, which could provide useful information for both biological research and disease diagnosis. It is well understood that the lipidome could not be clearly deciphered without tandem mass spectrometry analysis, but this is challenging to achieve in MSI due to the limitation in sample amount at each image spot. Here we develop a multiplexed MS2 imaging (MS2 I) method that can provide MS2 images for 10 lipid species or more for each sampling spot, providing spatial structural lipidomic information. Coupling with on-tissue photochemical derivatization, imaging of 20 phospholipid C=C location isomers is also realized, showing enhanced molecular images with high definition in structure for mouse brain and human liver cancer tissue sections. Spatially mapped t-distributed stochastic neighbor embedding has also been adopted to visualize the tumor margin with enhancement by structural lipidomic information.
Collapse
Affiliation(s)
- Xiangyu Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Wenbo Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Xiaomin Fan
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Zhiying Guo
- Hepato-pancreato-biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Donghui Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Haoyue Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Jiahong Dong
- Hepato-pancreato-biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Yunfang Wang
- Hepato-pancreato-biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
18
|
Xia F, Wan JB. Chemical derivatization strategy for mass spectrometry-based lipidomics. MASS SPECTROMETRY REVIEWS 2023; 42:432-452. [PMID: 34486155 DOI: 10.1002/mas.21729] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Lipids, serving as the structural components of cellular membranes, energy storage, and signaling molecules, play the essential and multiple roles in biological functions of mammals. Mass spectrometry (MS) is widely accepted as the first choice for lipid analysis, offering good performance in sensitivity, accuracy, and structural characterization. However, the untargeted qualitative profiling and absolute quantitation of lipids are still challenged by great structural diversity and high structural similarity. In recent decade, chemical derivatization mainly targeting carboxyl group and carbon-carbon double bond of lipids have been developed for lipidomic analysis with diverse advantages: (i) offering more characteristic structural information; (ii) improving the analytical performance, including chromatographic separation and MS sensitivity; (iii) providing one-to-one chemical isotope labeling internal standards based on the isotope derivatization regent in quantitative analysis. Moreover, the chemical derivatization strategy has shown great potential in combination with ion mobility mass spectrometry and ambient mass spectrometry. Herein, we summarized the current states and advances in chemical derivatization-assisted MS techniques for lipidomic analysis, and their strengths and challenges are also given. In summary, the chemical derivatization-based lipidomic approach has become a promising and reliable technique for the analysis of lipidome in complex biological samples.
Collapse
Affiliation(s)
- Fangbo Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| |
Collapse
|
19
|
Computational mass spectrometry accelerates C = C position-resolved untargeted lipidomics using oxygen attachment dissociation. Commun Chem 2022; 5:162. [PMID: 36698019 PMCID: PMC9814143 DOI: 10.1038/s42004-022-00778-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Mass spectrometry-based untargeted lipidomics has revealed the lipidome atlas of living organisms at the molecular species level. Despite the double bond (C = C) position being a crucial factor in biological system, the C = C defined structures have not yet been characterized comprehensively. Here, we present an approach for C = C position-resolved untargeted lipidomics using a combination of oxygen attachment dissociation and computational mass spectrometry to increase the annotation rate. We validated the accuracy of our platform as per the authentic standards of 85 lipids and the biogenic standards of 52 molecules containing polyunsaturated fatty acids (PUFAs) from the cultured cells fed with various fatty acid-enriched media. By analyzing human and mice-derived samples, we characterized 648 unique lipids with the C = C position-resolved level encompassing 24 lipid subclasses defined by LIPIDMAPS. Our platform also illuminated the unique profiles of tissue-specific lipids containing n-3 and/or n-6 very long-chain PUFAs (carbon [Formula: see text] 28 and double bonds [Formula: see text] 4) in the eye, testis, and brain of the mouse.
Collapse
|
20
|
Hou JJ, Zhang ZJ, Wu WY, He QQ, Zhang TQ, Liu YW, Wang ZJ, Gao L, Long HL, Lei M, Wu WY, Guo DA. Mass spectrometry imaging: new eyes on natural products for drug research and development. Acta Pharmacol Sin 2022; 43:3096-3111. [PMID: 36229602 PMCID: PMC9712638 DOI: 10.1038/s41401-022-00990-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Natural products (NPs) and their structural analogs represent a major source of novel drug development for disease prevention and treatment. The development of new drugs from NPs includes two crucial aspects. One is the discovery of NPs from medicinal plants/microorganisms, and the other is the evaluation of the NPs in vivo at various physiological and pathological states. The heterogeneous spatial distribution of NPs in medicinal plants/microorganisms or in vivo can provide valuable information for drug development. However, few molecular imaging technologies can detect thousands of compounds simultaneously on a label-free basis. Over the last two decades, mass spectrometry imaging (MSI) methods have progressively improved and diversified, thereby allowing for the development of various applications of NPs in plants/microorganisms and in vivo NP research. Because MSI allows for the spatial mapping of the production and distribution of numerous molecules in situ without labeling, it provides a visualization tool for NP research. Therefore, we have focused this mini-review on summarizing the applications of MSI technology in discovering NPs from medicinal plants and evaluating NPs in preclinical studies from the perspective of new drug research and development (R&D). Additionally, we briefly reviewed the factors that should be carefully considered to obtain the desired MSI results. Finally, the future development of MSI in new drug R&D is proposed.
Collapse
Affiliation(s)
- Jin-Jun Hou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Jia Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Yong Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Qing-Qing He
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Teng-Qian Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Wen Liu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao-Jun Wang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Gao
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua-Li Long
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Lei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Ying Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - De-An Guo
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Chen Y, Xie C, Wang X, Cao G, Ru Y, Song Y, Iyaswamy A, Li M, Wang J, Cai Z. 3-Acetylpyridine On-Tissue Paternò–Büchi Derivatization Enabling High Coverage Lipid C═C Location-Resolved MS Imaging in Biological Tissues. Anal Chem 2022; 94:15367-15376. [DOI: 10.1021/acs.analchem.2c03089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yanyan Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
| | - Chengyi Xie
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
| | - Xiaoxiao Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
| | - Yi Ru
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
| | - Jianing Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon999077, Hong Kong SAR, China
| |
Collapse
|
22
|
Hu H, Helminiak D, Yang M, Unsihuay D, Hilger RT, Ye DH, Laskin J. High-Throughput Mass Spectrometry Imaging with Dynamic Sparse Sampling. ACS MEASUREMENT SCIENCE AU 2022; 2:466-474. [PMID: 36281292 PMCID: PMC9585637 DOI: 10.1021/acsmeasuresciau.2c00031] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 05/25/2023]
Abstract
Mass spectrometry imaging (MSI) enables label-free mapping of hundreds of molecules in biological samples with high sensitivity and unprecedented specificity. Conventional MSI experiments are relatively slow, limiting their utility for applications requiring rapid data acquisition, such as intraoperative tissue analysis or 3D imaging. Recent advances in MSI technology focus on improving the spatial resolution and molecular coverage, further increasing the acquisition time. Herein, a deep learning approach for dynamic sampling (DLADS) was employed to reduce the number of required measurements, thereby improving the throughput of MSI experiments in comparison with conventional methods. DLADS trains a deep learning model to dynamically predict molecularly informative tissue locations for active mass spectra sampling and reconstructs high-fidelity molecular images using only the sparsely sampled information. Experimental hardware and software integration of DLADS with nanospray desorption electrospray ionization (nano-DESI) MSI is reported for the first time, which demonstrates a 2.3-fold improvement in throughput for a linewise acquisition mode. Meanwhile, simulations indicate that a 5-10-fold throughput improvement may be achieved using the pointwise acquisition mode.
Collapse
Affiliation(s)
- Hang Hu
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - David Helminiak
- Electrical
and Computer Engineering, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Manxi Yang
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daisy Unsihuay
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ryan T. Hilger
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dong Hye Ye
- Electrical
and Computer Engineering, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Julia Laskin
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
23
|
Liu X, Jiao B, Cao W, Ma X, Xia Y, Blanksby SJ, Zhang W, Ouyang Z. Development of a Miniature Mass Spectrometry System for Point-of-Care Analysis of Lipid Isomers Based on Ozone-Induced Dissociation. Anal Chem 2022; 94:13944-13950. [PMID: 36176011 DOI: 10.1021/acs.analchem.2c03112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Disorder of lipid homeostasis is closely associated with a variety of diseases. Although mass spectrometry (MS) approaches have been well developed for the characterization of lipids, it still lacks an integrated and compact MS system that is capable of rapid and detailed lipid structural characterization and can be conveniently transferred into different laboratories. In this work, we describe a novel miniature MS system with the capability of both ozone-induced dissociation (OzID) and collision-induced dissociation (CID) for the assignment of sites of unsaturation and sn-positions in glycerolipids. A miniature ozone generator was developed, which can be operated at a relatively high pressure. By maintaining high-concentration ozone inside the linear ion trap, OzID efficiency was significantly improved for the identification of C═C locations in unsaturated lipids, with reaction times as short as 10 ms. Finally, the miniature OzID MS system was applied to the analysis of C═C locations and sn-positions of lipids from biological samples. Direct sampling and fast detection of changes in phospholipid isomers were demonstrated for the rapid discrimination of breast cancer tissue samples, showing the potential of the miniature OzID MS system for point-of-care analysis of lipid isomer biomarkers in complex samples.
Collapse
Affiliation(s)
- Xinwei Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Bin Jiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Wenbo Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Stephen J Blanksby
- Central Analytical Research Facility and School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Yang T, Tang S, Kuo S, Freitas D, Edwards M, Wang H, Sun Y, Yan X. Lipid Mass Tags via Aziridination for Probing Unsaturated Lipid Isomers and Accurate Relative Quantification**. Angew Chem Int Ed Engl 2022; 61:e202207098. [DOI: 10.1002/anie.202207098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Tingyuan Yang
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Shuli Tang
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Syuan‐Ting Kuo
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Dallas Freitas
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Madison Edwards
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Hongying Wang
- Department of Nutrition Texas A&M University 373 Olsen Blvd. College Station TX 77845 USA
| | - Yuxiang Sun
- Department of Nutrition Texas A&M University 373 Olsen Blvd. College Station TX 77845 USA
| | - Xin Yan
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| |
Collapse
|
25
|
Blevins MS, Shields SWJ, Cui W, Fallatah W, Moser AB, Braverman NE, Brodbelt JS. Structural Characterization and Quantitation of Ether-Linked Glycerophospholipids in Peroxisome Biogenesis Disorder Tissue by Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2022; 94:12621-12629. [PMID: 36070546 PMCID: PMC9631334 DOI: 10.1021/acs.analchem.2c01274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biological impact of ether glycerophospholipids (GP) in peroxisomal disorders and other diseases makes them significant targets as biomarkers for diagnostic assays or deciphering pathology of the disorders. Ether lipids include both plasmanyl and plasmenyl lipids, which each contain an ether or a vinyl ether bond at the sn-1 linkage position, respectively. This linkage, in contrast to traditional diacyl GPs, precludes their detailed characterization by mass spectrometry via traditional collisional-based MS/MS techniques. Additionally, the isomeric nature of plasmanyl and plasmenyl pairs of ether lipids introduces a further level of complexity that impedes analysis of these species. Here, we utilize 213 nm ultraviolet photodissociation mass spectrometry (UVPD-MS) for detailed characterization of phosphatidylethanolamine (PE) and phosphatidylcholine (PC) plasmenyl and plasmanyl lipids in mouse brain tissue. 213 nm UVPD-MS enables the successful differentiation of these four ether lipid subtypes for the first time. We couple this UVPD-MS methodology to reversed-phase liquid chromatography (RPLC) for characterization and relative quantitation of ether lipids from normal and diseased (Pex7 deficiency modeling the peroxisome biogenesis disorder, RCDP) mouse brain tissue, highlighting the ability to pinpoint specific structural features of ether lipids that are important for monitoring aberrant lipid metabolism in peroxisomal disorders.
Collapse
Affiliation(s)
- Molly S Blevins
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Samuel W J Shields
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Wedad Fallatah
- Department of Medical Genetics, King Abdul-Aziz University, Jeddah, 21423, Saudi Arabia
| | - Ann B Moser
- Kennedy Krieger Institute, Baltimore, Maryland 21205, United States
- School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | | | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
26
|
Harkin C, Smith KW, Cruickshank FL, Logan Mackay C, Flinders B, Heeren RMA, Moore T, Brockbank S, Cobice DF. On-tissue chemical derivatization in mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2022; 41:662-694. [PMID: 33433028 PMCID: PMC9545000 DOI: 10.1002/mas.21680] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 05/04/2023]
Abstract
Mass spectrometry imaging (MSI) combines molecular and spatial information in a valuable tool for a wide range of applications. Matrix-assisted laser desorption/ionization (MALDI) is at the forefront of MSI ionization due to its wide availability and increasing improvement in spatial resolution and analysis speed. However, ionization suppression, low concentrations, and endogenous and methodological interferences cause visualization problems for certain molecules. Chemical derivatization (CD) has proven a viable solution to these issues when applied in mass spectrometry platforms. Chemical tagging of target analytes with larger, precharged moieties aids ionization efficiency and removes analytes from areas of potential isobaric interferences. Here, we address the application of CD on tissue samples for MSI analysis, termed on-tissue chemical derivatization (OTCD). MALDI MSI will remain the focus platform due to its popularity, however, alternative ionization techniques such as liquid extraction surface analysis and desorption electrospray ionization will also be recognized. OTCD reagent selection, application, and optimization methods will be discussed in detail. MSI with OTCD is a powerful tool to study the spatial distribution of poorly ionizable molecules within tissues. Most importantly, the use of OTCD-MSI facilitates the analysis of previously inaccessible biologically relevant molecules through the adaptation of existing CD methods. Though further experimental optimization steps are necessary, the benefits of this technique are extensive.
Collapse
Affiliation(s)
- Carla Harkin
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| | - Karl W. Smith
- National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility (ICR)Florida State UniversityTallahasseeFloridaUSA
| | - Faye L. Cruickshank
- Scottish Instrumentation and Research Centre for Advanced Mass Spectrometry (SIRCAMS), EaStCHEM School of ChemistryUniversity of EdinburghScotlandUK
| | - C. Logan Mackay
- Scottish Instrumentation and Research Centre for Advanced Mass Spectrometry (SIRCAMS), EaStCHEM School of ChemistryUniversity of EdinburghScotlandUK
| | - Bryn Flinders
- Screening Division, Mass Spectrometry, Hair DiagnostixDutch Screening GroupMaastrichtThe Netherlands
| | - Ron M. A. Heeren
- Maastricht Multimodal Molecular Imaging Institute (M4I)University of MaastrichtMaastrichtThe Netherlands
| | - Tara Moore
- Genomic Medicine, Biomedical Sciences Research Institute (BMSRI), School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| | | | - Diego F. Cobice
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| |
Collapse
|
27
|
Yang T, Tang S, Kuo ST, Freitas D, Edwards M, Wang H, Sun Y, Yan X. Lipid Mass Tags via Aziridination for Probing Unsaturated Lipid Isomers and Accurate Relative Quantification. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Shuli Tang
- Texas A&M University Chemistry UNITED STATES
| | | | | | | | - Hongying Wang
- Texas A&M University Department of Nutrition UNITED STATES
| | - Yuxiang Sun
- Texas A&M University Department of Nutrition UNITED STATES
| | - Xin Yan
- Texas A&M University Chemistry 580 Ross St 77840 College Station UNITED STATES
| |
Collapse
|
28
|
Koktavá M, Valášek J, Bezdeková D, Prysiazhnyi V, Adamová B, Beneš P, Navrátilová J, Hendrych M, Vlček P, Preisler J, Bednařík A. Metal Oxide Laser Ionization Mass Spectrometry Imaging of Fatty Acids and Their Double Bond Positional Isomers. Anal Chem 2022; 94:8928-8936. [PMID: 35713244 DOI: 10.1021/acs.analchem.2c00551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a novel combination of a metal oxide laser ionization mass spectrometry imaging (MOLI MSI) technique with off-line lipid derivatization by ozone for the detection of fatty acids (FA) and their carbon-carbon double bond (C═C) positional isomers in biological tissues. MOLI MSI experiments were realized with CeO2 and TiO2 nanopowders using a vacuum matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometer in the negative mode. The catalytic properties of these metal oxides allow FA cleavage from phospholipids under UV laser irradiation. At the same time, fragile ozonides produced at the sites of unsaturation decomposed, yielding four diagnostic ions specific for the C═C positions. Advantageously, two MOLI MSI runs from a single tissue sprayed with the metal oxide suspension were performed. The first run prior to ozone derivatization revealed the distribution of FAs, while the second run after the reaction with ozone offered additional information about FA C═C isomers. The developed procedure was demonstrated on MSI of a normal mouse brain and human colorectal cancer tissues uncovering the differential distribution of FAs down to the isomer level. Compared to the histological analysis, MOLI MSI showed the distinct distribution of specific FAs in different functional parts of the brain and in healthy and cancer tissues pointing toward its biological relevance. The developed technique can be directly adopted by laboratories with MALDI TOF analyzers and help in the understanding of the local FA metabolism in tissues.
Collapse
Affiliation(s)
- Monika Koktavá
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jan Valášek
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Dominika Bezdeková
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Vadym Prysiazhnyi
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Barbora Adamová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Jarmila Navrátilová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Michal Hendrych
- First Department of Pathology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Petr Vlček
- First Department of Surgery, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Jan Preisler
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Antonín Bednařík
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
29
|
Dong Y, Aharoni A. Image to insight: exploring natural products through mass spectrometry imaging. Nat Prod Rep 2022; 39:1510-1530. [PMID: 35735199 DOI: 10.1039/d2np00011c] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2017 to 2022Mass spectrometry imaging (MSI) has become a mature molecular imaging technique that is well-matched for natural product (NP) discovery. Here we present a brief overview of MSI, followed by a thorough discussion of different MSI applications in NP research. This review will mainly focus on the recent progress of MSI in plants and microorganisms as they are the main producers of NPs. Specifically, the opportunity and potential of combining MSI with other imaging modalities and stable isotope labeling are discussed. Throughout, we focus on both the strengths and weaknesses of MSI, with an eye on future improvements that are necessary for the progression of MSI toward routine NP studies. Finally, we discuss new areas of research, future perspectives, and the overall direction that the field may take in the years to come.
Collapse
Affiliation(s)
- Yonghui Dong
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
30
|
Zhang W, Jian R, Zhao J, Liu Y, Xia Y. Deep-lipidotyping by mass spectrometry: recent technical advances and applications. J Lipid Res 2022; 63:100219. [PMID: 35489417 PMCID: PMC9213770 DOI: 10.1016/j.jlr.2022.100219] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/18/2022] Open
Abstract
In-depth structural characterization of lipids is an essential component of lipidomics. There has been a rapid expansion of mass spectrometry methods that are capable of resolving lipid isomers at various structural levels over the past decade. These developments finally make deep-lipidotyping possible, which provides new means to study lipid metabolism and discover new lipid biomarkers. In this review, we discuss recent advancements in tandem mass spectrometry (MS/MS) methods for identification of complex lipids beyond the species (known headgroup information) and molecular species (known chain composition) levels. These include identification at the levels of carbon-carbon double bond (C=C) location and sn-position as well as characterization of acyl chain modifications. We also discuss the integration of isomer-resolving MS/MS methods with different lipid analysis workflows and their applications in lipidomics. The results showcase the distinct capabilities of deep-lipidotyping in untangling the metabolism of individual isomers and sensitive phenotyping by using relative fractional quantitation of the isomers.
Collapse
Affiliation(s)
- Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Ruijun Jian
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yikun Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
31
|
Zhou X, Zhang W, Ouyang Z. Recent advances in on-site mass spectrometry analysis for clinical applications. Trends Analyt Chem 2022; 149:116548. [PMID: 35125564 PMCID: PMC8802081 DOI: 10.1016/j.trac.2022.116548] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, mass spectrometry (MS) is increasingly attracting interests for clinical applications, which also calls for technical innovations to make a transfer of MS from conventional analytical laboratories to clinics. The system design and analysis procedure should be friendly for novice users and appliable for on-site clinical diagnosis. In addition, the analysis result should be auto-interpreted and reported in formats much simpler than mass spectra. This motivates new ideas for developments in all the aspects of MS. In this review, we report recent advances of direct sampling ionization and miniature MS system, which have been developed targeting clinical and even point-of-care analysis. We also discuss the trend of the development and provide perspective on the technical challenges raised by diseases such as coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
32
|
Mass Spectrometry Imaging Techniques Enabling Visualization of Lipid Isomers in Biological Tissues. Anal Chem 2022; 94:4889-4900. [PMID: 35303408 DOI: 10.1021/acs.analchem.1c05108] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This Feature focuses on a review of recent developments in mass spectrometry imaging (MSI) of lipid isomers in biological tissues. The tandem MS techniques utilizing online and offline chemical derivatization procedures, ion activation techniques such as ozone-induced dissociation (OzID), ultraviolet photodissociation (UVPD), or electron-induced dissociation (EID), and other techniques such as coupling of ion mobility with MSI are discussed. The importance of resolving lipid isomers in diseases is highlighted.
Collapse
|
33
|
Wang HYJ, Hsu FF. Structural characterization of phospholipids and sphingolipids by in-source fragmentation MALDI/TOF mass spectrometry. Anal Bioanal Chem 2022; 414:2089-2102. [PMID: 35013808 PMCID: PMC8882230 DOI: 10.1007/s00216-021-03843-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Phospholipids (PLs) and sphingolipids (SLs) perform critical structural and biological functions in cells. The structure of these lipids, including the stereospecificity and double-bond position of fatty acyl (FA) chains, is critical in decoding lipid biology. In this study, we presented a simple in-source fragmentation (ISF) MALDI/TOF mass spectrometry method that affords complete structural characterization of PL and SL molecules. We analyzed several representative unsaturated lipid species including phosphatidylcholine (PC), plasmalogen PC (pPC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), cardiolipin (CL), sphingomyelin (SM), and ceramide (Cer). Fragment ions reflecting the FA chains at sn-1 and sn-2 position, and those characteristics of the head groups of different PL classes, are readily identified. Specific fragment ions from cleavages of the C-C bond immediately adjacent to the cis C=C double-bond position(s) of FA chains and the trans C=C double bond of the sphingosine constituents allow precise localization of double bonds. The identities of the exemplary product ions from vinylic, allylic, and double-bond cleavages were also verified by LIFT-TOF/TOF. Identification of individual PL species in the lipid mixture was also carried out with ISF-MALDI/TOF. Together, this approach provides a simple yet effective method for structural characterization of PLs and SLs without the additional modification on the instrument hardware, and serves as a simple tool for the identification of lipids.
Collapse
Affiliation(s)
- Hay-Yan J Wang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Washington University School of Medicine, Box 8127, St. Louis, MO, 63110, USA.
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Washington University School of Medicine, Box 8127, St. Louis, MO, 63110, USA
| |
Collapse
|
34
|
Macias LA, Brodbelt JS. Enhanced Characterization of Cardiolipins via Hybrid 193 nm Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2022; 94:3268-3277. [PMID: 35135194 PMCID: PMC9284920 DOI: 10.1021/acs.analchem.1c05071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiolipins (CLs) constitute a structurally complex class of glycerophospholipids with a unique tetraacylated structure accompanied by distinctive functional roles. Aberrations in the composition of this lipid class have been associated with disease states, spurring interest in the development of new approaches to differentiate the structures of diverse CLs in complex mixtures. The structural characterization of these complex lipids using conventional methods, however, suffers from limited resolution and frequently proves unable to discern subtle yet biologically significant features such as unsaturation sites or acyl chain position assignments. Here, we describe the synergistic use of chemical derivatization and hybrid dissociation techniques to characterize CL from complex biological mixtures with both double bond and sn positional isomer resolution in a shotgun mass spectrometry strategy. Utilizing (trimethylsilyl)diazomethane (TMSD), CL phosphate groups were methylated to promote positive-mode ionization by the production of metal-cationized lipids, enabling structural interrogation via hybrid higher-energy collisional activation/ultraviolet photodissociation (HCD/UVPD). This combination of TMSD derivatization and HCD/UVPD fragmentation results in diagnostic product ions that permit distinction and relative quantitation of sn-stereoisomers and the localization of double bonds. Applying this strategy to a total lipid extract from a thyroid carcinoma revealed a previously unreported 18:2/18:1 motif, elucidating a structural feature unique to the lipid class.
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
35
|
Review of Recent Advances in Lipid Analysis of Biological Samples via Ambient Ionization Mass Spectrometry. Metabolites 2021; 11:metabo11110781. [PMID: 34822439 PMCID: PMC8623600 DOI: 10.3390/metabo11110781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022] Open
Abstract
The rapid and direct structural characterization of lipids proves to be critical for studying the functional roles of lipids in many biological processes. Among numerous analytical techniques, ambient ionization mass spectrometry (AIMS) allows for a direct molecular characterization of lipids from various complex biological samples with no/minimal sample pretreatment. Over the recent years, researchers have expanded the applications of the AIMS techniques to lipid structural elucidation via a combination with a series of derivatization strategies (e.g., the Paternò–Büchi (PB) reaction, ozone-induced dissociation (OzID), and epoxidation reaction), including carbon–carbon double bond (C=C) locations and sn-positions isomers. Herein, this review summarizes the reaction mechanisms of various derivatization strategies for C=C bond analysis, typical instrumental setup, and applications of AIMS in the structural elucidation of lipids from various biological samples (e.g., tissues, cells, and biofluids). In addition, future directions of AIMS for lipid structural elucidation are discussed.
Collapse
|
36
|
Recent Advances of Ambient Mass Spectrometry Imaging and Its Applications in Lipid and Metabolite Analysis. Metabolites 2021; 11:metabo11110780. [PMID: 34822438 PMCID: PMC8625079 DOI: 10.3390/metabo11110780] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
Ambient mass spectrometry imaging (AMSI) has attracted much attention in recent years. As a kind of unlabeled molecular imaging technique, AMSI can enable in situ visualization of a large number of compounds in biological tissue sections in ambient conditions. In this review, the developments of various AMSI techniques are discussed according to one-step and two-step ionization strategies. In addition, recent applications of AMSI for lipid and metabolite analysis (from 2016 to 2021) in disease diagnosis, animal model research, plant science, drug metabolism and toxicology research, etc., are summarized. Finally, further perspectives of AMSI in spatial resolution, sensitivity, quantitative ability, convenience and software development are proposed.
Collapse
|
37
|
Plant monounsaturated fatty acids: Diversity, biosynthesis, functions and uses. Prog Lipid Res 2021; 85:101138. [PMID: 34774919 DOI: 10.1016/j.plipres.2021.101138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
Abstract
Monounsaturated fatty acids are straight-chain aliphatic monocarboxylic acids comprising a unique carbon‑carbon double bond, also termed unsaturation. More than 50 distinct molecular structures have been described in the plant kingdom, and more remain to be discovered. The evolution of land plants has apparently resulted in the convergent evolution of non-homologous enzymes catalyzing the dehydrogenation of saturated acyl chain substrates in a chemo-, regio- and stereoselective manner. Contrasted enzymatic characteristics and different subcellular localizations of these desaturases account for the diversity of existing fatty acid structures. Interestingly, the location and geometrical configuration of the unsaturation confer specific characteristics to these molecules found in a variety of membrane, storage, and surface lipids. An ongoing research effort aimed at exploring the links existing between fatty acid structures and their biological functions has already unraveled the importance of several monounsaturated fatty acids in various physiological and developmental contexts. What is more, the monounsaturated acyl chains found in the oils of seeds and fruits are widely and increasingly used in the food and chemical industries due to the physicochemical properties inherent in their structures. Breeders and plant biotechnologists therefore develop new crops with high monounsaturated contents for various agro-industrial purposes.
Collapse
|
38
|
Heiles S. Advanced tandem mass spectrometry in metabolomics and lipidomics-methods and applications. Anal Bioanal Chem 2021; 413:5927-5948. [PMID: 34142202 PMCID: PMC8440309 DOI: 10.1007/s00216-021-03425-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
Metabolomics and lipidomics are new drivers of the omics era as molecular signatures and selected analytes allow phenotypic characterization and serve as biomarkers, respectively. The growing capabilities of untargeted and targeted workflows, which primarily rely on mass spectrometric platforms, enable extensive charting or identification of bioactive metabolites and lipids. Structural annotation of these compounds is key in order to link specific molecular entities to defined biochemical functions or phenotypes. Tandem mass spectrometry (MS), first and foremost collision-induced dissociation (CID), is the method of choice to unveil structural details of metabolites and lipids. But CID fragment ions are often not sufficient to fully characterize analytes. Therefore, recent years have seen a surge in alternative tandem MS methodologies that aim to offer full structural characterization of metabolites and lipids. In this article, principles, capabilities, drawbacks, and first applications of these "advanced tandem mass spectrometry" strategies will be critically reviewed. This includes tandem MS methods that are based on electrons, photons, and ion/molecule, as well as ion/ion reactions, combining tandem MS with concepts from optical spectroscopy and making use of derivatization strategies. In the final sections of this review, the first applications of these methodologies in combination with liquid chromatography or mass spectrometry imaging are highlighted and future perspectives for research in metabolomics and lipidomics are discussed.
Collapse
Affiliation(s)
- Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392, Giessen, Germany.
| |
Collapse
|
39
|
Macias LA, Garza KY, Feider CL, Eberlin LS, Brodbelt JS. Relative Quantitation of Unsaturated Phosphatidylcholines Using 193 nm Ultraviolet Photodissociation Parallel Reaction Monitoring Mass Spectrometry. J Am Chem Soc 2021; 143:14622-14634. [PMID: 34486374 PMCID: PMC8579512 DOI: 10.1021/jacs.1c05295] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Structural characterization of glycerophospholipids beyond the fatty acid level has become a major endeavor in lipidomics, presenting an opportunity to advance the understanding of the intricate relationship between lipid metabolism and disease state. Distinguishing subtle lipid structural features, however, remains a major challenge for high-throughput workflows that implement traditional tandem mass spectrometry (MS/MS) techniques, stunting the molecular depth of quantitative strategies. Here, reversed phase liquid chromatography is coupled to parallel reaction mass spectrometry utilizing the double bond localization capabilities of ultraviolet photodissociation (UVPD) mass spectrometry to produce double bond isomer specific responses that are leveraged for relative quantitation. The strategy provides lipidomic characterization at the double bond level for phosphatidylcholine phospholipids from biological extracts. In addition to quantifying monounsaturated lipids, quantitation of phospholipids incorporating isomeric polyunsaturated fatty acids is also achieved. Using this technique, phosphatidylcholine isomer ratios are compared across human normal and tumor breast tissue to reveal significant structural alterations related to disease state.
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyana Y Garza
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Clara L Feider
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
40
|
Freeman C, Hynds HM, Carpenter JM, Appala K, Bimpeh K, Barbarek S, Gatto C, Wilkinson BJ, Hines KM. Revealing Fatty Acid Heterogeneity in Staphylococcal Lipids with Isotope Labeling and RPLC-IM-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2376-2385. [PMID: 34014662 PMCID: PMC10227724 DOI: 10.1021/jasms.1c00092] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Up to 80% of the fatty acids in Staphylococcus aureus membrane lipids are branched, rather than straight-chain, fatty acids. The branched fatty acids (BCFAs) may have either an even or odd number of carbons, and the branch position may be at the penultimate carbon (iso) or the antepenultimate (anteiso) carbon of the tail. This results in two sets of isomeric fatty acid species with the same number of carbons that cannot be resolved by mass spectrometry. The isomer/isobar challenge is further complicated when the mixture of BCFAs and straight-chain fatty acids (SCFAs) are esterified into diacylated lipids such as the phosphatidylglycerol (PG) species of the S. aureus membrane. No conventional chromatographic method has been able to resolve diacylated lipids containing mixtures of SCFAs, anteiso-odd, iso-odd, and iso-even BCFAs. A major hurdle to method development in this area is the lack of relevant analytical standards for lipids containing BCFA isomers. The diversity of the S. aureus lipidome and its naturally high levels of BCFAs present an opportunity to explore the potential of resolving diacylated lipids containing BCFAs and SFCAs. Using our knowledge of lipid and fatty acid biosynthesis in S. aureus, we have used a stable-isotope-labeling strategy to develop and validate a 30 min C18 reversed-phase liquid chromatography method combined with traveling-wave ion mobility-mass spectrometry to provide resolution of diacylated lipids based on the number of BCFAs that they contain.
Collapse
Affiliation(s)
- Christian Freeman
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Hannah M Hynds
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Jana M Carpenter
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Keerthi Appala
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Kingsley Bimpeh
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Shannon Barbarek
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790, United States
| | - Craig Gatto
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790, United States
| | - Brian J Wilkinson
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790, United States
| | - Kelly M Hines
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
41
|
Claes BR, Bowman AP, Poad BLJ, Young RSE, Heeren RMA, Blanksby SJ, Ellis SR. Mass Spectrometry Imaging of Lipids with Isomer Resolution Using High-Pressure Ozone-Induced Dissociation. Anal Chem 2021; 93:9826-9834. [PMID: 34228922 PMCID: PMC8295983 DOI: 10.1021/acs.analchem.1c01377] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
Mass spectrometry imaging (MSI) of lipids within tissues has significant potential for both biomolecular discovery and histopathological applications. Conventional MSI technologies are, however, challenged by the prevalence of phospholipid regioisomers that differ only in the location(s) of carbon-carbon double bonds and/or the relative position of fatty acyl attachment to the glycerol backbone (i.e., sn position). The inability to resolve isomeric lipids within imaging experiments masks underlying complexity, resulting in a critical loss of metabolic information. Herein, ozone-induced dissociation (OzID) is implemented on a mobility-enabled quadrupole time-of-flight (Q-TOF) mass spectrometer capable of matrix-assisted laser desorption/ionization (MALDI). Exploiting the ion mobility region in the Q-TOF, high number densities of ozone were accessed, leading to ∼1000-fold enhancement in the abundance of OzID product ions compared to earlier MALDI-OzID implementations. Translation of this uplift into imaging resulted in a 50-fold improvement in acquisition rate, facilitating large-area mapping with resolution of phospholipid isomers. Mapping isomer distributions across rat brain sections revealed distinct distributions of lipid isomer populations with region-specific associations of isomers differing in double bond and sn positions. Moreover, product ions arising from sequential ozone- and collision-induced dissociation enabled double bond assignments in unsaturated fatty acyl chains esterified at the noncanonical sn-1 position.
Collapse
Affiliation(s)
- Britt
S. R. Claes
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Andrew P. Bowman
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Berwyck L. J. Poad
- Central
Analytical Research Facility, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Chemistry and Physics, Queensland University
of Technology, Brisbane, Queensland 4001, Australia
| | - Reuben S. E. Young
- School
of Chemistry and Physics, Queensland University
of Technology, Brisbane, Queensland 4001, Australia
| | - Ron M. A. Heeren
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Stephen J. Blanksby
- Central
Analytical Research Facility, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Chemistry and Physics, Queensland University
of Technology, Brisbane, Queensland 4001, Australia
| | - Shane R. Ellis
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- llawarra
Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
42
|
Non-covalent double bond sensors for gas-phase infrared spectroscopy of unsaturated fatty acids. Anal Bioanal Chem 2021; 413:3643-3653. [PMID: 33956167 PMCID: PMC8141490 DOI: 10.1007/s00216-021-03334-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022]
Abstract
The position and configuration of carbon-carbon double bonds in unsaturated fatty acids is crucial for their biological functions and influences health and disease. However, double bond isomers are not routinely distinguished by classical mass spectrometry workflows. Instead, they require sophisticated analytical approaches usually based on chemical derivatization and/or instrument modification. In this work, a novel strategy to investigate fatty acid double bond isomers (18:1) without prior chemical treatment or modification of the ion source was implemented by non-covalent adduct formation in the gas phase. Fatty acid adducts with sodium, pyridinium, trimethylammonium, dimethylammonium, and ammonium cations were characterized by a combination of cryogenic gas-phase infrared spectroscopy, ion mobility-mass spectrometry, and computational modeling. The results reveal subtle differences between double bond isomers and confirm three-dimensional geometries constrained by non-covalent ion-molecule interactions. Overall, this study on fatty acid adducts in the gas phase explores new avenues for the distinction of lipid double bond isomers and paves the way for further investigations of coordinating cations to increase resolution.
Collapse
|
43
|
Bonney JR, Prentice BM. Perspective on Emerging Mass Spectrometry Technologies for Comprehensive Lipid Structural Elucidation. Anal Chem 2021; 93:6311-6322. [PMID: 33856206 PMCID: PMC8177724 DOI: 10.1021/acs.analchem.1c00061] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lipids and metabolites are of interest in many clinical and research settings because it is the metabolome that is increasingly recognized as a more dynamic and sensitive molecular measure of phenotype. The enormous diversity of lipid structures and the importance of biological structure-function relationships in a wide variety of applications makes accurate identification a challenging yet crucial area of research in the lipid community. Indeed, subtle differences in the chemical structures of lipids can have important implications in cellular metabolism and many disease pathologies. The speed, sensitivity, and molecular specificity afforded by modern mass spectrometry has led to its widespread adoption in the field of lipidomics on many different instrument platforms and experimental workflows. However, unambiguous and complete structural identification of lipids by mass spectrometry remains challenging. Increasingly sophisticated tandem mass spectrometry (MS/MS) approaches are now being developed and seamlessly integrated into lipidomics workflows to meet this challenge. These approaches generally either (i) alter the type of ion that is interrogated or (ii) alter the dissociation method in order to improve the structural information obtained from the MS/MS experiment. In this Perspective, we highlight recent advances in both ion type alteration and ion dissociation methods for lipid identification by mass spectrometry. This discussion is aimed to engage investigators involved in fundamental ion chemistry and technology developments as well as practitioners of lipidomics and its many applications. The rapid rate of technology development in recent years has accelerated and strengthened the ties between these two research communities. We identify the common characteristics and practical figures of merit of these emerging approaches and discuss ways these may catalyze future directions of lipid structural elucidation research.
Collapse
Affiliation(s)
- Julia R Bonney
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
44
|
Unsihuay D, Su P, Hu H, Qiu J, Kuang S, Li Y, Sun X, Dey SK, Laskin J. Imaging and Analysis of Isomeric Unsaturated Lipids through Online Photochemical Derivatization of Carbon–Carbon Double Bonds**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Daisy Unsihuay
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Pei Su
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Hang Hu
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Jiamin Qiu
- Department of Animal Sciences Purdue University 270 Russel Street West Lafayette IN 47907 USA
| | - Shihuan Kuang
- Department of Animal Sciences Purdue University 270 Russel Street West Lafayette IN 47907 USA
| | - Yingju Li
- Division of Reproductive Sciences Cincinnati Children's Hospital Medical Centre and Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH 45229 USA
| | - Xiaofei Sun
- Division of Reproductive Sciences Cincinnati Children's Hospital Medical Centre and Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH 45229 USA
| | - Sudhansu K. Dey
- Division of Reproductive Sciences Cincinnati Children's Hospital Medical Centre and Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH 45229 USA
| | - Julia Laskin
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| |
Collapse
|
45
|
Unsihuay D, Su P, Hu H, Qiu J, Kuang S, Li Y, Sun X, Dey SK, Laskin J. Imaging and Analysis of Isomeric Unsaturated Lipids through Online Photochemical Derivatization of Carbon-Carbon Double Bonds*. Angew Chem Int Ed Engl 2021; 60:7559-7563. [PMID: 33460514 PMCID: PMC8815435 DOI: 10.1002/anie.202016734] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 01/09/2023]
Abstract
Unraveling the complexity of the lipidome requires the development of novel approaches for the structural characterization of lipid species with isomer-level discrimination. Herein, we introduce an online photochemical approach for lipid isomer identification through selective derivatization of double bonds by reaction with singlet oxygen. Lipid hydroperoxide products are generated promptly after laser irradiation. Fragmentation of these species in a mass spectrometer produces diagnostic fragments revealing the C=C locations in the unreacted lipids. This approach uses an inexpensive light source and photosensitizer making it easy to incorporate into any lipidomics workflow. We demonstrate the utility of this approach for the shotgun profiling of C=C locations in different lipid classes present in tissue extracts using electrospray ionization (ESI) and ambient imaging of lipid species differing only by the location of C=C bonds using nanospray desorption electrospray ionization (nano-DESI).
Collapse
Affiliation(s)
- Daisy Unsihuay
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Pei Su
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Hang Hu
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, 270 Russel Street, West Lafayette, IN, 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, 270 Russel Street, West Lafayette, IN, 47907, USA
| | - Yingju Li
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Centre and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Xiaofei Sun
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Centre and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Centre and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Julia Laskin
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| |
Collapse
|
46
|
Zhang J, Huo X, Guo C, Ma X, Huang H, He J, Wang X, Tang F. Rapid Imaging of Unsaturated Lipids at an Isomeric Level Achieved by Controllable Oxidation. Anal Chem 2021; 93:2114-2124. [PMID: 33445862 DOI: 10.1021/acs.analchem.0c03888] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lipid imaging plays an important role in the research of some diseases, such as cancers. Unsaturated lipids are often present as isomers that can have different functions; however, traditional tandem mass spectrometry imaging (MSI) cannot differentiate between different isomers, which presents difficulties for the pathological study of lipids. Herein, we propose a method for the MSI of the C═C double-bond isomers of unsaturated lipids based on oxidative reactions coupled with air flow-assisted desorption electrospray ionization, which can conveniently achieve rapid MSI of unsaturated lipids at an isomeric level. Using this method, tissue sections can be scanned directly with MSI after only 10 min of accelerated oxidation. This method was used for the imaging of mouse lung cancer tissues, revealing a distributional difference in the unsaturated lipid isomers of normal and pathological regions. Through the MSI of unsaturated lipids at an isomeric level in tissues infected with cancer cells, the regions where the isomers were enriched were exhibited, indicating that these regions were the most concentrated regions of cancer cells. This method provides a convenient platform for studying the functional effects of the isomers of unsaturated lipids in pathological tissues.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Zhongguancun Street, Hai Dian District, Beijing 100084, China
| | - Xinming Huo
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Zhongguancun Street, Hai Dian District, Beijing 100084, China.,Tsinghua Shenzhen International Graduate School, Shenzhen University Town, Lishui Road, Xili Town, Nanshan District, Shenzhen 518055, China
| | - Chengan Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Zhongguancun Street, Hai Dian District, Beijing 100084, China
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Zhongguancun Street, Hai Dian District, Beijing 100084, China
| | - Hanxi Huang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Zhongguancun Street, Hai Dian District, Beijing 100084, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, A2 Nanwei Road, Xicheng District, Beijing 100050, China
| | - Xiaohao Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Zhongguancun Street, Hai Dian District, Beijing 100084, China
| | - Fei Tang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Zhongguancun Street, Hai Dian District, Beijing 100084, China
| |
Collapse
|
47
|
Lillja J, Duncan KD, Lanekoff I. Determination of Monounsaturated Fatty Acid Isomers in Biological Systems by Modeling MS 3 Product Ion Patterns. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2479-2487. [PMID: 32677833 DOI: 10.1021/jasms.0c00194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Unsaturated free fatty acids are natively present in biological samples as isomers, where double bonds can be situated on different carbons in the acyl chain. While these isomers can have different actions and impacts on biological systems, they are inherently difficult to identify and differentiate by mass spectrometry alone. To address this challenge, several techniques for derivatization of the double bond or metal cationization at the carboxylic group have yielded diagnostic product ions for the respective isomer in tandem mass spectrometry. However, diagnostic product ions do not necessarily reflect quantitative isomeric ratios since fatty acid isomers have different ionization and fragmentation efficiencies. Here, we introduce a simple and rapid approach to predict the quantitative ratio of isomeric monounsaturated fatty acids. Specifically, empirically derived MS3 product ion patterns from fatty acid silver adducts are modeled using a stepwise linear model. This model is then applied to predict the proportion oleic and vaccenic acid in chemically complex samples at individual concentrations between 0.45 and 5.25 μM, with an average accuracy and precision below 2 and 5 mol %, respectively. We show that by simply including silver ions in the electrospray solvent, isomeric ratios are rapidly predicted in neat standards, rodent plasma, and tissue extract. Furthermore, we use the method to directly map isomeric ratios in tissue sections using nanospray desorption electrospray ionization MS3 imaging without any sample preparation or modification to the instrumental setup. Ultimately, this approach provides a simple and rapid solution to differentiate monounsaturated fatty acids using commonly available commercial mass spectrometers without any instrumental modifications.
Collapse
Affiliation(s)
- Johan Lillja
- Department of Chemistry - BMC, Uppsala University, 751 24 Uppsala, Sweden
| | - Kyle D Duncan
- Department of Chemistry - BMC, Uppsala University, 751 24 Uppsala, Sweden
| | - Ingela Lanekoff
- Department of Chemistry - BMC, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
48
|
West H, Reid GE. Hybrid 213 nm photodissociation of cationized Sterol lipid ions yield [M] +. Radical products for improved structural characterization using multistage tandem mass spectrometry. Anal Chim Acta 2020; 1141:100-109. [PMID: 33248642 DOI: 10.1016/j.aca.2020.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Sterols are a class of lipid molecules that include cholesterol, oxysterols, and sterol esters. Sterol lipids play critical functional roles in mammalian biology, including the dynamic regulation of cell membrane fluidity, as precursors for the synthesis of bile acids, steroid hormones and vitamin D, as regulators of gene expression in lipid metabolism, and for cholesterol transport and storage. The most common method employed for sterol analysis is high performance liquid chromatography coupled with tandem mass spectrometry (MS/MS). However, conventional collision induced dissociation (CID) methods used for ion activation during MS/MS typically fail to provide sufficient structural information for unambiguous assignment of sterol species based on their fragmentation behaviour alone. This places a significant burden on the efficiency of the chromatographic separation methods for the effective separation of isomeric sterols. Here, toward developing an improved analysis strategy for sterol lipids, we have explored the novel use of 213 nm photodissociation MS/MS and hybrid multistage-MS/MS (i.e., MSn) data acquisition approaches for the improved structural characterization of cholesterol, representative isomeric oxysterols, and cholesteryl esters. Most notably, UVPD-MS/MS of ammoniated, lithiated and sodiated adducts of cholesterol, several representative oxysterol species, and an oxosterol lipid, are shown to give rise to abundant [M]+. radical cation products, that subsequently fragment during collision induced MS3 to yield extensive structurally informative product ions, similar to those observed by Electron Ionization, and that enable their unambiguously assignment, including isomeric differentiation of oxysterols. For cholesterol esters, a reversed hybrid collision induced-MS/MS and UVPD-MS3 approach is shown to enable assignment of the sterol backbone, and localization of the site(s) of unsaturation within esterified fatty acyl chains.
Collapse
Affiliation(s)
- Henry West
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia; Bio 21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
49
|
Zemaitis KJ, Wood TD. Integration of 3D-printing for a desorption electrospray ionization source for mass spectrometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:104102. [PMID: 33138599 PMCID: PMC7538165 DOI: 10.1063/5.0004626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The field of ambient ionization mass spectrometry has witnessed the development of many novel and capable methods for the analysis and imaging of surfaces, with desorption electrospray ionization being a prominent technique that has been commercialized. The adaptation of this technique to existing mass spectrometry platforms requires a laboratory-built solution manufactured with the capability of fine, stable adjustments of the electrospray emitter for liquid or solid sampling purposes. The development, fabrication, and machining require tens of hours of labor for many custom solutions. Herein described is a highly modifiable alternative approach for the fabrication of a desorption electrospray ionization source, using computer-aided design and fused deposition modeling to three-dimensionally print a source platform that utilizes standard accessories of a commercial Bruker Daltonics mass spectrometer. Three-dimensional printing allows for the inexpensive, rapid development of highly modifiable plastic parts, with the total printing time of the apparatus requiring a singular day and only a few dollars of material using a consumer grade printer. To demonstrate the utility of this printed desorption electrospray ionization source, it was fitted on an unmodified Fourier transform ion cyclotron resonance mass spectrometer for a lipid fingerprint analysis in serial sections of rat brain tissue, with the acquisition of line scans of dye-coated slides for the demonstration of serial acquisition.
Collapse
Affiliation(s)
| | - Troy D. Wood
- Author to whom correspondence should be addressed:
| |
Collapse
|
50
|
Wäldchen F, Mohr F, Wagner AH, Heiles S. Multifunctional Reactive MALDI Matrix Enabling High-Lateral Resolution Dual Polarity MS Imaging and Lipid C═C Position-Resolved MS 2 Imaging. Anal Chem 2020; 92:14130-14138. [PMID: 32924439 DOI: 10.1021/acs.analchem.0c03150] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Local lipid variations in tissues are readily revealed with mass spectrometry imaging (MSI) methods, and the resulting lipid distributions serve as bioanalytical signatures to reveal cell- or tissue-specific lipids. Comprehensive MSI lipid mapping requires measurements in both ion polarities. Additionally, structural lipid characterization is necessary to link the lipid structure to lipid function. Whereas some structural elements of lipids are readily derived from high-resolution mass spectrometry (MS) and tandem-MS (MSn), the localization of C═C double bonds (DBs) requires specialized fragmentation and/or functionalization methods. In this work, we identify a multifunctional matrix-assisted laser desorption/ionization (MALDI) matrix for spatially resolved lipidomics investigations that reacts with lipids in Paternò-Büchi (PB) reactions during laser irradiation facilitating DB-position assignment and allows dual-polarity high-resolution MALDI-MSI and MALDI MS2I studies. By screening 12 compounds for improved ionization efficiency in positive-/negative-ion mode and the functionalization yield compared to the previously introduced reactive MALDI matrix benzophenone, 2-benzoylpyridine (BzPy) is identified as the best candidate. The new matrix enables DB localization of authentic standards belonging to 12 lipid classes and helps to assign 133/58 lipid features in positive-/negative-ion mode from mouse cerebellum tissue. The analytical capabilities of BzPy as a multifunctional MALDI-MSI matrix are demonstrated by imaging endogenous and PB-functionalized lipids in mouse kidney sections with 7 μm lateral resolution in both ion modes. Tracking diagnostic lipid DB-position fragment ions in mouse pancreatic tissue with down to 10 μm pixel size allows us to identify the islets of Langerhans associated with lipid isomer upregulation and depletion.
Collapse
Affiliation(s)
- Fabian Wäldchen
- Institute of Inorganic and Analytical Chemistry, Analytical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany
| | - Franziska Mohr
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Andreas H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Analytical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany
| |
Collapse
|