1
|
Barveen NR, Chinnapaiyan S, Zeng CW, Huang CH, Lin YY, Cheng YW. Plasmonic Au-NPs photodecorated on NiCoLDH nanosheets as a flexible SERS sensor for the real-time detection of fipronil. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135907. [PMID: 39326143 DOI: 10.1016/j.jhazmat.2024.135907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Rapid extraction and detection of probe molecules from curved surfaces is critical for on-site and real-time detection. In this study, a flexible platform was developed using carbon cloth (CC) to create honeycomb-like nickel cobalt layered double hydroxides (NiCoLDH) nanosheets via a simple electrodeposition technique, which were then decorated with gold nanoparticles (Au-NPs) via photodeposition process. The Au-NPs/NiCoLDH/CC was designed as a surface-enhanced Raman scattering (SERS) substrate for detecting the broad-spectrum insecticide, Fipronil (FP). The fabricated sensor achieves a superior SERS activity due to the electrodeposited NiCoLDH, which provides the charge-transfer effect, and the photodeposited Au-NPs, which generate efficient SERS hotspots through the electromagnetic effect. The Density Functional Theory (DFT) calculation was used to estimate the optimal geometry and frontier molecular orbital diagrams of the FP molecules. The influence of electrodeposition time on NiCoLDH production and Au-NPs decorating quantity was investigated in detail. Furthermore, the flexible SERS sensor has excellent sensitivity, homogeneity, a low limit of detection (LOD), and high reproducibility for FP detection. Even after 40 cycles of bending and torsion, the SERS substrate maintained excellent mechanical endurance. Through a direct-sampling approach, FP molecules on the surfaces and mesocarp region of grapes and tomatoes were successfully detected with lower LOD. These findings highlight the outstanding potential of the produced flexible SERS sensor for real-time and on-site insecticide detection, making it valuable for food security analysis and monitoring.
Collapse
Affiliation(s)
- Nazar Riswana Barveen
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Sathishkumar Chinnapaiyan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Che-Wei Zeng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Yen-Yu Lin
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Yu-Wei Cheng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; R&D Center of Biochemical Engineering Technology, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| |
Collapse
|
2
|
Liu Q, Zhu J, Wang H, Luan Y, Zhang Z. Porphyrin-based covalent organic framework as oxidase mimic for highly sensitive colorimetric detection of pesticides. Mikrochim Acta 2024; 191:296. [PMID: 38702534 DOI: 10.1007/s00604-024-06371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
A covalent organic framework-based strategy was designed for label-free colorimetric detection of pesticides. Covalent organic framework-based nanoenzyme with excellent oxidase-like catalytic activity was synthesized. Unlike other artificial enzymes, porphyrin-based covalent organic framework (p-COF) as the oxidase mimic showed highly catalytic chromogenic activity and good affinity toward TMB without the presence of H2O2, which can be used as substitute for peroxidase mimics and H2O2 system in the colorimetric reaction. Based on the fact that the pesticide-aptamer complex can inhibit the oxidase activity of p-COF and reduced the absorbance at 650 nm in UV-Vis spectrum, a label-free and facile colorimetric detection of pesticides was designed and fabricated. Under the optimized conditions, the COF-based colorimetric probe for pesticide detection displayed high sensitivity and selectivity. Taking fipronil for example the limit of detection was 2.7 ng/mL and the linear range was 5 -500,000 ng/mL. The strategy was successfully applied to the detection of pesticides with good recovery , which was in accordance with that of HPLC-MS/MS. The COF-based colorimetric detection was free of complicated modification H2O2, which guaranteed the accuracy and reliability of measurements. The COF-based sensing strategy is a potential candidate for the sensitive detection of pesticides of interests.
Collapse
Affiliation(s)
- Qingju Liu
- Institute of Quality Standard and Testing Technology of Beijing Academy of Agriculture and Forestry Sciences, Beijing, 10097, China
| | - Junyi Zhu
- Institute of Quality Standard and Testing Technology of Beijing Academy of Agriculture and Forestry Sciences, Beijing, 10097, China
| | - Hui Wang
- Institute of Quality Standard and Testing Technology of Beijing Academy of Agriculture and Forestry Sciences, Beijing, 10097, China
| | - Yunxia Luan
- Institute of Quality Standard and Testing Technology of Beijing Academy of Agriculture and Forestry Sciences, Beijing, 10097, China.
| | - Zhikun Zhang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| |
Collapse
|
3
|
Li P, Abd El-Aty AM, Jiang H, Shen J, Wang Z, Wen K, Li J, Wang S, Wang J, Hammock BD, Jin M. Immunoassays and Emerging Analytical Techniques of Fipronil and its Metabolites for Food Safety: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2059-2076. [PMID: 38252458 DOI: 10.1021/acs.jafc.3c07428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Fipronil, classified as a phenylpyrazole insecticide, is utilized to control agricultural, public health, and veterinary pests. Notably, its unique ecological fate involves degradation to toxic metabolites, which poses the risk of contamination in water and foodstuffs and potential human exposure through the food chain. In response to these concerns, there is a pressing need to develop analytical methodologies for detecting fipronil and its metabolites. This review provides a concise overview of the mode of action, metabolism, and toxicology of fipronil. Additionally, various detection strategies, encompassing antibody-based immunoassays and emerging analytical techniques, such as fluorescence assays based on aptamer/molecularly imprinted polymer/fluorescent probes, electrochemical sensors, and Raman spectroscopy, are thoroughly reviewed and discussed. The focus extends to detecting fipronil and its metabolites in crops, fruits, vegetables, animal-derived foods, water, and bodily fluids. This comprehensive exploration contributes valuable insights into the field, aiming to foster the development and innovation of more sensitive, rapid, and applicable analytical methods.
Collapse
Affiliation(s)
- Peipei Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Jia Li
- Jinhua Miaozhidizhi Agricultural Technology Co., Ltd., Jinhua 321000, China
| | - Shuting Wang
- Hangzhou Municipal Center for Disease Control and Prevention, Zhejiang Hangzhou 310021, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Bruce D Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
4
|
Ghinaiya NV, Mehta VN, Jha S, Park TJ, Kailasa SK. Synthesis of Greenish-Yellow Fluorescent Copper Nanocluster for the Selective and Sensitive Detection of Fipronil Pesticide in Vegetables and Grain Samples. J Fluoresc 2023:10.1007/s10895-023-03464-0. [PMID: 37843695 DOI: 10.1007/s10895-023-03464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/30/2023] [Indexed: 10/17/2023]
Abstract
In this paper, a new synthetic route is introduced for the synthesis of high-luminescent greenish-yellow fluorescent copper nanoclusters (PVP@A. senna-Cu NCs) using Avaram senna (A. senna) and polyvinylpyrrolidone (PVP) as templates. A. senna plant extract mainly contains variety of phytochemicals including glycosides, sugars, saponins, phenols, and terpenoids that show good pharmacological activities such as anti-inflammatory, antioxidant, and antidiabetic. PVP is a stable and biocompatible polymer that is used as a stabilizing agent for the synthesis of PVP@A. senna-Cu NCs. The size, surface functionality, and element composition of the fabricated Cu NCs were confirmed by various analytical techniques. The as-prepared greenish-yellow fluorescent Cu NCs exhibit significant selectivity towards fipronil, thereby favoring to assay fipronil pesticide with good linearity in the range of 3.0-30 μM with a detection limit of 65.19 nM. More importantly, PVP@A. senna-Cu NCs are successfully applied to assay fipronil in vegetable and grain samples.
Collapse
Affiliation(s)
- Nirav Vajubhai Ghinaiya
- Department of Chemistry, Sardar Vallbhbhai National Institute of Technology, Surat, 395007, Gujarat, India
| | - Vaibhavkumar N Mehta
- ASPEE SHAKILAM Biotechnology Institute, Navsari Agricultural University, Surat, 395007, Gujarat, India
| | - Sanjay Jha
- ASPEE SHAKILAM Biotechnology Institute, Navsari Agricultural University, Surat, 395007, Gujarat, India
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallbhbhai National Institute of Technology, Surat, 395007, Gujarat, India.
| |
Collapse
|
5
|
Dourado PLR, Lima D, Mattos JJ, Bainy ACD, Grott SC, Alves TC, de Almeida EA, da Silva DGH. Fipronil impairs the GABAergic brain responses of Nile Tilapia during the transition from normoxia to acute hypoxia. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:138-152. [PMID: 36216792 DOI: 10.1002/jez.2662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023]
Abstract
γ-aminobutyric acid (GABA) is one of the main neurotransmitters involved in the adaptation processes against the damage that hypoxia can cause to the brain. Due to its antagonist action on GABA receptors, the insecticide fipronil can turn the fish more susceptible to the negative effects of hypoxia. This study aimed to understand better if fipronil affects these GABAergic responses of Tilapia ahead to hypoxia. Oreochromis Niloticus (Nile Tilapia) were exposed for 3 and 8 h to fipronil (0.0, 0.1, and 0.5 µg.L-1 ) under normoxia (dissolved O2 > 6 mg.L-1 ) and moderate hypoxia (dissolved O2 < 2 mg.L-1 ) conditions. Briefly, hypoxia caused opposite effects on the gene transcription of the evaluated ionotropic and metabotropic GABA receptors. Unexpectedly, we obtained reduced HIF1A mRNA and brain GABA levels, mostly in the first 3 h of the experiment, for the hypoxic group compared with the normoxia one. Besides that, we also demonstrated that the insecticide fipronil impairs the brain GABAergic signaling of a hypoxia-tolerant fish during the transition from a normoxic to an acute hypoxic state. Thus, these results predict the relevant impact on the brain metabolic adaptations of fishes exposed to such stressful conditions in an aquatic environment, as well as the effects of fipronil in the GABAergic responses to hypoxia, which in turn may have ecological and physiological significance to hypoxia-tolerant fishes exposed to this insecticide.
Collapse
Affiliation(s)
- Priscila L R Dourado
- Department of Chemistry and Environmental Sciences, São Paulo State University (UNESP), São José do Rio Preto, Brazil
| | - Daína Lima
- Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó J Mattos
- Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Afonso C D Bainy
- Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Suelen C Grott
- Department of Natural Sciences, FURB, Fundação Universidade Regional de Blumenau, Santa Catarina, Brazil
| | - Thiago C Alves
- Department of Natural Sciences, FURB, Fundação Universidade Regional de Blumenau, Santa Catarina, Brazil
| | - Eduardo Alves de Almeida
- Department of Natural Sciences, FURB, Fundação Universidade Regional de Blumenau, Santa Catarina, Brazil
| | - Danilo G Humberto da Silva
- Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Mato Grosso do Sul, Brazil
| |
Collapse
|
6
|
Elmowalid GA, Ghonimi WAM, Abd Allah HM, Abdallah H, El-Murr A, Abdelwahab AM. β-1,3-glucan improved the health and immunity of juvenile African catfish (Clarias gariepinus) and neutralized the histological changes caused by lead and fipronil pollutants. BMC Vet Res 2023; 19:45. [PMID: 36765350 PMCID: PMC9921358 DOI: 10.1186/s12917-023-03585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Water pollutants cause adverse effects in aquatic ecosystems. The immunomodulatory and mitigating effects of dietary 1,3-glucan on fipronil and lead-induced intoxication in African catfish (Clarias gariepinus) were investigated. Two hundred forty catfish were randomly divided into four equal groups: those in the first group were fed basic diet and served as controls; those in the second group were supplemented with β-1,3-glucan (0.1%); those in the third group were exposed to combination of lead nitrate at 0.041 mg/L (1/10 96 h LC50) and fipronil at 2.8 mg/l (1/10 96 h LC50); and those in the fourth group were exposed to combination of fipronil, lead, and β-1,3-glucan. The health status, haematological, immunological, and histological changes were all evaluated. RESULT Swelling on the dorsolateral side, spinal column deviation, sluggish movement, skin bleaching, excessive mucus secretion, significant variations in blood indices-related measures, and a 45% death rate were observed in the third group. There was a significant reduction in interleukin-1 (IL-1) and interleukin-6 (IL-6) and immunoglobulin M (IgM) concentrations, as well as decrease in their corresponding gene expression, indicating that fipronil and lead had immunosuppressive activity. Severe catarrhal enteritis and mucinous degeneration of the lining epithelium, and notable depletion of white pulp, congested red pulp and hemosiderosis were common pathological findings in the spleen. β-1,3-glucan alone or in combination with fipronil and lead provoked physical activity, blood indices, with elevations in IL-1β, IL-2, IL-6, and IgM concentrations, as well as up-regulation in their genes' expression in splenic tissues, when compared to the third group. The spleen and intestine had normal histological architecture with 5% mortalities. There were no fish deaths in the β-1,3-glucan-alone or control groups. CONCLUSION The use of β-1,3-glucan (0.1%) as dietary supplement could be implemented to protect against the toxic effects of fipronil and lead toxicity by improving the health and immunological parameters of intoxicated catfish.
Collapse
Affiliation(s)
- Gamal A. Elmowalid
- grid.31451.320000 0001 2158 2757Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Wael A. M. Ghonimi
- grid.31451.320000 0001 2158 2757Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hossam M. Abd Allah
- grid.31451.320000 0001 2158 2757Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Haytham Abdallah
- grid.31451.320000 0001 2158 2757Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Abdelhakeem El-Murr
- grid.31451.320000 0001 2158 2757Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ashraf M. Abdelwahab
- grid.31451.320000 0001 2158 2757Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Pan Y, Yang H, Wen K, Ke Y, Shen J, Wang Z. Current advances in immunoassays for quinolones in food and environmental samples. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Liu C, Lin H, Cao L, Wang K, Sui J. Research progress on unique paratope structure, antigen binding modes, and systematic mutagenesis strategies of single-domain antibodies. Front Immunol 2022; 13:1059771. [PMID: 36479130 PMCID: PMC9720397 DOI: 10.3389/fimmu.2022.1059771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Single-domain antibodies (sdAbs) showed the incredible advantages of small molecular weight, excellent affinity, specificity, and stability compared with traditional IgG antibodies, so their potential in binding hidden antigen epitopes and hazard detection in food, agricultural and veterinary fields were gradually explored. Moreover, its low immunogenicity, easy-to-carry target drugs, and penetration of the blood-brain barrier have made sdAbs remarkable achievements in medical treatment, toxin neutralization, and medical imaging. With the continuous development and maturity of modern molecular biology, protein analysis software and database with different algorithms, and next-generation sequencing technology, the unique paratope structure and different antigen binding modes of sdAbs compared with traditional IgG antibodies have aroused the broad interests of researchers with the increased related studies. However, the corresponding related summaries are lacking and needed. Different antigens, especially hapten antigens, show distinct binding modes with sdAbs. So, in this paper, the unique paratope structure of sdAbs, different antigen binding cases, and the current maturation strategy of sdAbs were classified and summarized. We hope this review lays a theoretical foundation to elucidate the antigen-binding mechanism of sdAbs and broaden the further application of sdAbs.
Collapse
|
9
|
Yoo J, Han S, Park B, Sonwal S, Alhammadi M, Kim E, Aliya S, Lee ES, Jeon TJ, Oh MH, Huh YS. Highly Specific Peptide-Mediated Cuvette-Form Localized Surface Plasmon Resonance (LSPR)-Based Fipronil Detection in Egg. BIOSENSORS 2022; 12:914. [PMID: 36354423 PMCID: PMC9687660 DOI: 10.3390/bios12110914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Herein, we have developed peptide-coated gold nanoparticles (AuNPs) based on localized surface plasmon resonance (LSPR) sensor chips that can detect fipronil with high sensitivity and selectivity. The phage display technique has been exploited for the screening of highly specific fipronil-binding peptides for the selective detection of the molecule. LSPR sensor chips are fabricated initially by attaching uniformly synthesized AuNPs on the glass substrate, followed by the addition of screened peptides. The parameters, such as the peptide concentration of 20 µg mL-1 and the reaction time of 30 min, are further optimized to maximize the efficacy of the fabricated LSPR sensor chips. The sensing analysis is performed systematically under standard fipronil solutions and spike samples from eggs. The developed sensor has shown excellent sensitivity towards both standard solutions and spike samples with limit of detection (LOD) values of 0.01 ppb, respectively. Significantly, the developed LSPR sensor chips offer distinct features, such as a facile fabrication approach, on-site sensing, rapid analysis, cost-effectiveness, and the possibility of mass production, in which the chips can be effectively used as a promising and potential on-site detection tool for the estimation of fipronil.
Collapse
Affiliation(s)
- Jingon Yoo
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Soobin Han
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Bumjun Park
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Sonam Sonwal
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Munirah Alhammadi
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Eunsu Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Sheik Aliya
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Eun-Seon Lee
- National Institute of Animal Science, Rural Development Administration, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Mi-Hwa Oh
- National Institute of Animal Science, Rural Development Administration, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| |
Collapse
|
10
|
Xie X, He Z, Qu C, Sun Z, Cao H, Liu X. Nanobody/NanoBiT system-mediated bioluminescence immunosensor for one-step homogeneous detection of trace ochratoxin A in food. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129435. [PMID: 35753304 DOI: 10.1016/j.jhazmat.2022.129435] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Hazardous small molecules in food and environment seriously threatens human health, which requires sensitive and rapid tools for monitoring. Using a previously identified nanobody against ochratoxin A (OTA), we herein proposed a homogeneous sensing platform "nanobody/NanoLuc Binary Technology (NanoBiT) system" and developed a nanobody/NanoBiT system-mediated bioluminescence immunosensor (NBL-Immunosens) for OTA using LgBiT (Lg) and SmBiT (Sm), two subunits of the split nanoluciferase (NanoLuc). The core elements of NBL-Immunosens include Lg-nanobody fusion (NLg) and Sm-labeled OTA-bovine serum albumin conjugate (OSm). The antigen-antibody interaction between NLg and OSm triggers the reconstitution of NanoLuc for generating luminescence signals. Moreover, free OTA can compete with OSm for binding to NLg, resulting the decrease of dose-dependent signals. NBL-Immunosens can detect OTA in a one-step assay of 5 min without washing and exhibit a limit of detection of 0.01 ng/mL with a linear range of 0.04-2.23 ng/mL. It shows high selectivity for OTA and has good accuracy and precision in the spiking-and-recovery experiments. Furthermore, its effectiveness was evaluated with real cereal samples and confirmed by liquid chromatography tandem mass spectrometry and commercial ELISA kits. Hence, the NBL-Immunosens is a very promising tool for rapid, accurate, and selective detection of trace OTA in food.
Collapse
Affiliation(s)
- Xiaoxia Xie
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China
| | - Zhenyun He
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China
| | - Chaoshuang Qu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China
| | - Zhichang Sun
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China
| | - Hongmei Cao
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China
| | - Xing Liu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China.
| |
Collapse
|
11
|
Eads D, Livieri T, Tretten T, Hughes J, Kaczor N, Halsell E, Grassel S, Dobesh P, Childers E, Lucas D, Noble L, Vasquez M, Grady AC, Biggins D. Assembling a safe and effective toolbox for integrated flea control and plague mitigation: Fipronil experiments with prairie dogs. PLoS One 2022; 17:e0272419. [PMID: 35939486 PMCID: PMC9359584 DOI: 10.1371/journal.pone.0272419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022] Open
Abstract
Background Plague, a widely distributed zoonotic disease of mammalian hosts and flea vectors, poses a significant risk to ecosystems throughout much of Earth. Conservation biologists use insecticides for flea control and plague mitigation. Here, we evaluate the use of an insecticide grain bait, laced with 0.005% fipronil (FIP) by weight, with black-tailed prairie dogs (BTPDs, Cynomys ludovicianus). We consider safety measures, flea control, BTPD body condition, BTPD survival, efficacy of plague mitigation, and the speed of FIP grain application vs. infusing BTPD burrows with insecticide dusts. We also explore conservation implications for endangered black-footed ferrets (Mustela nigripes), which are specialized predators of Cynomys. Principal findings During 5- and 10-day laboratory trials in Colorado, USA, 2016–2017, FIP grain had no detectable acute toxic effect on 20 BTPDs that readily consumed the grain. During field experiments in South Dakota, USA, 2016–2020, FIP grain suppressed fleas on BTPDs for at least 12 months and up to 24 months in many cases; short-term flea control on a few sites was poor for unknown reasons. In an area of South Dakota where plague circulation appeared low or absent, FIP grain had no detectable effect, positive or negative, on BTPD survival. Experimental results suggest FIP grain may have improved BTPD body condition (mass:foot) and reproduction (juveniles:adults). During a 2019 plague epizootic in Colorado, BTPDs on 238 ha habitat were protected by FIP grain, whereas BTPDs were nearly eliminated on non-treated habitat. Applications of FIP grain were 2–4 times faster than dusting BTPD burrows. Significance Deltamethrin dust is the most commonly used insecticide for plague mitigation on Cynomys colonies. Fleas on BTPD colonies exhibit the ability to evolve resistance to deltamethrin after repeated annual treatments. Thus, more tools are needed. Accumulating data show orally-delivered FIP is safe and usually effective for flea control with BTPDs, though potential acute toxic effects cannot be ruled out. With continued study and refinement, FIP might be used in rotation with, or even replace deltamethrin, and serve an important role in Cynomys and black-footed ferret conservation. More broadly, our stepwise approach to research on FIP may function as a template or guide for evaluations of insecticides in the context of wildlife conservation.
Collapse
Affiliation(s)
- David Eads
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, United States of America
- * E-mail:
| | - Travis Livieri
- Prairie Wildlife Research, Stevens Point, Wisconsin, United States of America
| | - Tyler Tretten
- U.S. Fish and Wildlife Service, National Black-Footed Ferret Conservation Center, Carr, Colorado, United States of America
| | - John Hughes
- U.S. Fish and Wildlife Service, National Black-Footed Ferret Conservation Center, Carr, Colorado, United States of America
| | - Nick Kaczor
- U.S. Fish and Wildlife Service, Colorado Front Range National Wildlife Refuge Complex, Arvada, Colorado, United States of America
| | - Emily Halsell
- U.S. Fish and Wildlife Service, Colorado Front Range National Wildlife Refuge Complex, Arvada, Colorado, United States of America
| | - Shaun Grassel
- Lower Brule Sioux Tribe, Lower Brule, South Dakota, United States of America
| | - Phillip Dobesh
- U.S. Forest Service, Wall Ranger District, Wall, South Dakota, United States of America
| | - Eddie Childers
- National Park Service, Badlands National Park, Rapid City, South Dakota, United States of America
| | - David Lucas
- U.S. Fish and Wildlife Service, Colorado Front Range National Wildlife Refuge Complex, Arvada, Colorado, United States of America
| | - Lauren Noble
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, United States of America
| | - Michele Vasquez
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, United States of America
| | - Anna Catherine Grady
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, United States of America
| | - Dean Biggins
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, United States of America
| |
Collapse
|
12
|
Wang Y, Xianyu Y. Nanobody and Nanozyme-Enabled Immunoassays with Enhanced Specificity and Sensitivity. SMALL METHODS 2022; 6:e2101576. [PMID: 35266636 DOI: 10.1002/smtd.202101576] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Immunoassay as a rapid and convenient method for detecting a variety of targets has attracted tremendous interest with its high specificity and sensitivity. Among the commonly used immunoassays, enzyme-linked immunosorbent assay has been widely used as a gold standard method in various fields that consists of two main components including a recognition element and an enzyme label. With the rapid advances in nanotechnology, nanobodies and nanozymes enable immunoassays with enhanced specificity and sensitivity compared with conventional antibodies and natural enzymes. This review is focused on the applications of nanobodies and nanozymes in immunoassays. Nanobodies advantage lies in their small size, high specificity, mass expression, and high stability. Nanozymes with peroxidase, phosphatase, and oxidase activities and their applications in immunoassays are highlighted and discussed in detail. In addition, the challenges and outlooks in terms of the use of nanobodies and the development of novel nanozymes in practical applications are discussed.
Collapse
Affiliation(s)
- Yidan Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, 315100, China
| |
Collapse
|
13
|
Su B, Xu H, Xie G, Chen Q, Sun Z, Cao H, Liu X. Generation of a nanobody-alkaline phosphatase fusion and its application in an enzyme cascade-amplified immunoassay for colorimetric detection of alpha fetoprotein in human serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120088. [PMID: 34167066 DOI: 10.1016/j.saa.2021.120088] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/22/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Sensitive detection of liver disease biomarkers can facilitate the diagnosis of primary hepatoma and other benign liver diseases, and the alpha fetoprotein (AFP) was selected as the model macromolecule in this work. Herein an enzyme cascade-amplified immunoassay (ECAIA) based on the nanobody-alkaline phosphatase fusion (Nb-ALP) and MnO2 nanoflakes was developed for detecting AFP. The bifunctional biological macromolecule Nb-ALP serves as the detection antibody and the reporter molecule. The MnO2 nanoflakes mimic the oxidase for catalyzing the 3,3',5,5'-tetramethylbenzidine (TMB) into the blue oxidized TMB, which has a quantitative signal at the wavelength of 650 nm. Moreover, the Nb-ALP could dephosphorylate the ascorbic acid-2-phosphate (AAP) to form the ascorbic acid (AA) that can disintegrate the nanoflakes to reduce their oxidation capacity with the content decrease of the oxidized TMB. Using the constructed TMB-MnO2 colorimetric sensing system for Nb-ALP and the optimized experimental parameters, the ECAIA has a limit of detection (LOD) of 0.148 ng/mL which is 18.7-fold lower than that of the p-nitrophenylphosphate (pNPP)-based method (LOD = 2.776 ng/mL). The ECAIA showed good selectivity for AFP with observed negligible cross-reactions with several common cancer biomarkers. The recovery rate for AFP spiked in human serum ranged from 94.8% to 113% with the relative standard deviation from 0.3% to 6.5%. For analysis of the actual human serum samples, a good linear correlation was found between the results tested by the ECAIA and the automatic chemiluminescence analyzer. Thus, the ECAIA was demonstrated to be a promising tool for highly sensitive and selective detection of AFP, providing a reference for analysis of other macromolecule biomarkers.
Collapse
Affiliation(s)
- Benchao Su
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Huan Xu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Guifang Xie
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qi Chen
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhichang Sun
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hongmei Cao
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
14
|
Dos Santos GCM, Scott FB, Campos DR, Magalhães VDS, Borges DA, Miranda FR, Alves MCC, Pereira GA, Moreira LO, Lima EAS, Rocha MBDS, Cid YP. Oral pharmacokinetic profile of fipronil and efficacy against flea and tick in dogs. J Vet Pharmacol Ther 2021; 45:23-33. [PMID: 34331772 DOI: 10.1111/jvp.13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Fipronil (FIP) is an ectoparasiticide of the phenylpyrazole class, used in veterinary medicine in topical form. Supported by evidence of uncontrolled human exposure to FIP and environmental damage caused by commercially available formulations, its use by oral administration has become promising. The effectiveness of FIP against the flea Ctenocephalides felis felis and the tick Rhipicephalus sanguineus and its pharmacokinetics and main active metabolite, fipronil sulfone (SULF) were evaluated after single oral administration of tablets in three different doses (2, 4, and 6 mg/kg) in dogs. Through the plasma concentration curves, it was possible to observe that the FIP showed rapid absorption and metabolization and slow elimination. The values of Cmax (β = 0.7653) and AUC0- t (β = 0.3209) did not increase proportionally with increasing dose. At 48 h after treatment, doses of 4 mg/kg (AUC0- t = 442.39 ± 137.35 µg/ml*h) and 6 mg/kg (AUC0- t = 421.32 ± 102.84 µg/ml*h) provided 100% and 99% efficacy against fleas, and 95% and 98% against ticks, respectively. The estimated EC90 of FIP +SULF was 1.30 µg/ml against C. felis felis and 2.16 µg/ml against R. sanguineus. The correlation between the FIP pharmacokinetic and efficacy data demonstrated its potential for oral administration in the form of tablets for the control of ectoparasites in dogs, as a safer alternative for animals, humans, and the environment, aligned with the One Health concept.
Collapse
Affiliation(s)
| | - Fabio Barbour Scott
- Animal Parasitology Department, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Diefrey Ribeiro Campos
- Post graduation Program of Veterinary Science, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Viviane de Sousa Magalhães
- Animal Parasitology Department, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Debora Azevedo Borges
- Post graduation Program of Veterinary Science, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Fernando Rocha Miranda
- Post graduation Program of Veterinary Science, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Melina Cardilo Campos Alves
- Post graduation Program of Veterinary Science, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Geraldo Augusto Pereira
- Post graduation Program of Veterinary Science, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Leandra Oliveira Moreira
- Post graduation Program of Veterinary Science, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Emily Andressa Santos Lima
- Post graduation Program of Veterinary Science, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Marisa Beatriz da Silva Rocha
- Post graduation Program of Veterinary Science, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Yara Peluso Cid
- Pharmaceutical Science Department, Health and Biological Science Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| |
Collapse
|
15
|
Ba X, Yun G, Hou Y, Zhang W, Zhao W, Yuan H, Zhang S. Covalent Triazine Framework Sorbent for Solid Phase Extraction of Fipronil and its Metabolite in Eggs with Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1495-1505. [PMID: 34157958 DOI: 10.1080/19440049.2021.1934573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A solid-phase extraction (SPE) method was established for fipronil and its metabolite residues (fipronil desulfinyl, fipronil sulphone and fipronil sulphide) in eggs with a covalent triazine framework (CTF) porous material as the adsorbent followed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) detection. Multiple probes and quantum chemistry theory calculations were conducted to describe the versatile adsorption property directly and quantifiably. The conjugated structure of CTF and N-containing triazine generated π-π interactions and hydrogen bonds between the CTF and the targets, which led to high extraction efficiency and recoveries. The solid-phase extraction parameters, including amount of the adsorbent, type of eluent, amount of eluent and loading rate were investigated. Under the optimal experimental conditions, the recoveries of the analytes were between 85.5% and 103.2%, and the RSD (n = 5) was between 1.8% and 3.6%. The LODs and LOQs were 0.13-0.2 ng g-1 and 0.5-0.8 ng g-1, respectively. The sorbent can effectively reduce the interference of the matrix and meet the detection requirements of fipronil and its metabolites in eggs. These results imply that the CTF as adsorbents have great potential in the analysis of trace targets in samples with complex matrices.
Collapse
Affiliation(s)
- Xin Ba
- College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China
| | - Guo Yun
- College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China
| | - Yafei Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China
| | - Wenfen Zhang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, P.R. China
| | - Wuduo Zhao
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, P.R. China
| | - Hang Yuan
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, P.R. China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
16
|
Zhang Z, Su B, Xu H, He Z, Zhou Y, Chen Q, Sun Z, Cao H, Liu X. Enzyme cascade-amplified immunoassay based on the nanobody-alkaline phosphatase fusion and MnO 2 nanosheets for the detection of ochratoxin A in coffee. RSC Adv 2021; 11:21760-21766. [PMID: 35478809 PMCID: PMC9034093 DOI: 10.1039/d1ra03615g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/15/2021] [Indexed: 01/05/2023] Open
Abstract
Ochratoxin A (OTA) is a common food contaminant with multiple toxicities and thus rapid and accurate detection of OTA is indispensable to minimize the threat of OTA to public health. Herein a novel enzyme cascade-amplified immunoassay (ECAIA) based on the mutated nanobody-alkaline phosphatase fusion (mNb-AP) and MnO2 nanosheets was established for detecting OTA in coffee. The detection principle is that the dual functional mNb-AP could specifically recognize OTA and dephosphorylate the ascorbic acid-2-phosphate (AAP) into ascorbic acid (AA), and the MnO2 nanosheets mimicking the oxidase could be reduced by AA into Mn2+ and catalyze the 3,3',5,5'-tetramethyl benzidine into blue oxidized product for quantification. Using the optimal conditions, the ECAIA could be finished within 132.5 min and shows a limit of detection of 3.38 ng mL-1 (IC10) with an IC50 of 7.65 ng mL-1 and a linear range (IC20-IC80) of 4.55-12.85 ng mL-1. The ECAIA is highly selective for OTA. Good recovery rates (84.3-113%) with a relative standard deviation of 1.3-3% were obtained and confirmed by high performance liquid chromatography with a fluorescence detector. The developed ECAIA was demonstrated to be a useful tool for the detection of OTA in coffee which provides a reference for the analysis of other toxic small molecules.
Collapse
Affiliation(s)
- Zeling Zhang
- School of Food Science and Engineering, Hainan University 58 Renmin Avenue Haikou 570228 China
| | - Benchao Su
- School of Food Science and Engineering, Hainan University 58 Renmin Avenue Haikou 570228 China
| | - Huan Xu
- School of Food Science and Engineering, Hainan University 58 Renmin Avenue Haikou 570228 China
| | - Zhenyun He
- Hainan College of Economics and Business Haikou 571129 China
| | - Yuling Zhou
- Hainan Institute for Food Control Haikou 570314 China
| | - Qi Chen
- School of Food Science and Engineering, Hainan University 58 Renmin Avenue Haikou 570228 China
| | - Zhichang Sun
- School of Food Science and Engineering, Hainan University 58 Renmin Avenue Haikou 570228 China
| | - Hongmei Cao
- School of Food Science and Engineering, Hainan University 58 Renmin Avenue Haikou 570228 China
| | - Xing Liu
- School of Food Science and Engineering, Hainan University 58 Renmin Avenue Haikou 570228 China
| |
Collapse
|
17
|
Xu B, Wang K, Vasylieva N, Zhou H, Xue X, Wang B, Li QX, Hammock BD, Xu T. Development of a nanobody-based ELISA for the detection of the insecticides cyantraniliprole and chlorantraniliprole in soil and the vegetable bok choy. Anal Bioanal Chem 2021; 413:2503-2511. [PMID: 33580830 DOI: 10.1007/s00216-021-03205-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Cyantraniliprole and chlorantraniliprole are anthranilic diamide insecticides acting on ryanodine receptors. In this study, two camel-derived nanobodies (Nbs, named C1 and C2) recognizing cyantraniliprole as well as chlorantraniliprole were generated. C1-based enzyme-linked immunosorbent assays (ELISAs) for the detection of the two insecticides were developed. The half-maximum signal inhibition concentrations (IC50) of cyantraniliprole and chlorantraniliprole by ELISA were 1.2 and 1.5 ng mL-1, respectively. This assay was employed to detect these two insecticides in soil and vegetables. The average recoveries of cyantraniliprole from both bok choy (Brassica chinensis L.) and soil samples were 90-129%, while those of chlorantraniliprole were in a range of 89-120%. The insecticide residues in soil and bok choy, which were collected from plots sprayed with cyantraniliprole and chlorantraniliprole, were simultaneously detected by the resulting ELISA and a high-performance liquid chromatography (HPLC) method, showing a satisfactory correlation. Higher concentrations of chlorantraniliprole than cyantraniliprole were detected in soil and vegetables, which indicates the longer persistence of chlorantraniliprole in the environment.
Collapse
Affiliation(s)
- Bojie Xu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Kai Wang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Natalia Vasylieva
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, California, 95616, USA
| | - Hang Zhou
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xianle Xue
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Baomin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, Hawaii, 96822, USA
| | - Bruce D Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, California, 95616, USA
| | - Ting Xu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Wu S, Ma F, He J, Li QX, Hammock BD, Tian J, Xu T. Fusion expression of nanobodies specific for the insecticide fipronil on magnetosomes in Magnetospirillum gryphiswaldense MSR-1. J Nanobiotechnology 2021; 19:27. [PMID: 33468141 PMCID: PMC7816308 DOI: 10.1186/s12951-021-00773-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Magnetic nanoparticles such as magnetosomes modified with antibodies allow a high probability of their interaction with targets of interest. Magnetosomes biomineralized by magnetotactic bacteria are in homogeneous nanoscale size and have crystallographic structure, and high thermal and colloidal stability. Camelidae derived nanobodies (Nbs) are small in size, thermal stable, highly water soluble, easy to produce, and fusible with magnetosomes. We aimed to functionalize Nb-magnetosomes for the analysis of the insecticide fipronil. RESULTS Three recombinant magnetotactic bacteria (CF, CF+ , and CFFF) biomineralizing magnetosomes with different abundance of Nbs displayed on the surface were constructed. Compared to magnetosomes from the wild type Magnetospirillum gryphiswaldense MSR-1, all of the Nb-magnetosomes biosynthesized by strains CF, CF+ , and CFFF showed a detectable level of binding capability to fipronil-horseradish peroxidase (H2-HRP), but none of them recognized free fipronil. The Nb-magnetosomes from CFFF were oxidized with H2O2 or a glutathione mixture consisting of reduced glutathione and oxidized glutathione in vitro and their binding affinity to H2-HRP was decreased, whereas that to free fipronil was enhanced. The magnetosomes treated with the glutathione mixture were employed to develop an enzyme-linked immunosorbent assay for the detection of fipronil in water samples, with average recoveries in a range of 78-101%. CONCLUSIONS The economical and environmental-friendly Nb-magnetosomes biomineralized by the bacterial strain MSR-1 can be potentially applied to nanobody-based immunoassays for the detection of fipronil or nanobody-based assays in general.
Collapse
Affiliation(s)
- Sha Wu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.,Suzhou Vicheck Biotechnology Co. Ltd, Suzhou, 215128, China
| | - Fengfei Ma
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.,Suzhou Vicheck Biotechnology Co. Ltd, Suzhou, 215128, China
| | - Jinxin He
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.,Suzhou Vicheck Biotechnology Co. Ltd, Suzhou, 215128, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii At Manoa, 1955 East-West Road, Honolulu, HI, 96822, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| | - Jiesheng Tian
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Ting Xu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China. .,Suzhou Vicheck Biotechnology Co. Ltd, Suzhou, 215128, China.
| |
Collapse
|
19
|
Abstract
Unique, functional, homodimeric heavy chain-only antibodies, devoid of light chains, are circulating in the blood of Camelidae. These antibodies recognize their cognate antigen via one single domain, known as VHH or Nanobody. This serendipitous discovery made three decades ago has stimulated a growing number of researchers to generate highly specific Nanobodies against a myriad of targets. The small size, strict monomeric state, robustness, and easy tailoring of these Nanobodies have inspired many groups to design innovative Nanobody-based multi-domain constructs to explore novel applications. As such, Nanobodies have been employed as an exquisite research tool in structural, cell, and developmental biology. Furthermore, Nanobodies have demonstrated their benefit for more sensitive diagnostic tests. Finally, several Nanobody-based constructs have been designed to develop new therapeutic products.
Collapse
Affiliation(s)
- Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium; .,Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, Liaoning, People's Republic of China
| |
Collapse
|
20
|
Han C, Hu B, Li Z, Liu C, Wang N, Fu C, Shen Y. Determination of Fipronil and Four Metabolites in Foodstuffs of Animal Origin Using a Modified QuEChERS Method and GC–NCI–MS/MS. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01872-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Li D, Cui Y, Morisseau C, Wagner KM, Cho YS, Hammock BD. Development of a Highly Sensitive Enzyme-Linked Immunosorbent Assay for Mouse Soluble Epoxide Hydrolase Detection by Combining a Polyclonal Capture Antibody with a Nanobody Tracer. Anal Chem 2020; 92:11654-11663. [PMID: 32786492 DOI: 10.1021/acs.analchem.0c01511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enzyme-linked immunosorbent assays (ELISA) for the detection of soluble epoxide hydrolase (sEH), a key enzyme in the metabolism of fatty acids and a biomarker, may increasingly represent an important diagnostic tool. However, there is a lack of ELISAs for mouse sEH quantification, thus resulting in a bottleneck in understanding the pathogenesis of many diseases related to sEH based on mouse models. In this work, nanobodies recognizing mouse sEH were obtained through rebiopanning against mouse sEH in the previous phage display library of human sEH. Later, we developed four ELISAs involving a combination of anti-mouse sEH polyclonal antibodies (pAbs) and nanobodies. It was found that the double antibodies worked as dual filters and had a huge impact on both the sensitivity and selectivity of sandwich immunoassays. The switch from anti-human sEH pAbs to anti-mouse sEH pAbs led to over a 100-fold increase in the sensitivity and a dramatic decrease of the limit of detection to a picogram per milliliter range in format B (pAb/biotin-VHH/streptavidin-poly-horseradish peroxidase). Moreover, we found that the four sandwich ELISAs might demonstrate excellent selectivities to mouse sEH, despite the antibodies alone showing significant cross-reactivity to the matrix, indicating the enhanced selectivity of double antibodies as dual filters. Eventually, for the first time, the ELISA (format B) was successfully used to measure the mouse sEH level in cancer cells with ultralow abundances. The ELISAs proposed here represent a sensitive tool for tracking sEH in various biological processes and also provide deep insights into developing sandwich immunoassays against various targets in terms of both the sensitivity and selectivity.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Entomology and Nematology, University of California, Davis, Comprehensive Cancer Center, University of California, Davis, Davis, California 95616, United States
| | - Yongliang Cui
- Department of Entomology and Nematology, University of California, Davis, Comprehensive Cancer Center, University of California, Davis, Davis, California 95616, United States.,Citrus Research Institute, Southwest University and National Citrus Engineering Research Center, Chongqing 400712, China
| | - Christophe Morisseau
- Department of Entomology and Nematology, University of California, Davis, Comprehensive Cancer Center, University of California, Davis, Davis, California 95616, United States
| | - Karen M Wagner
- Department of Entomology and Nematology, University of California, Davis, Comprehensive Cancer Center, University of California, Davis, Davis, California 95616, United States
| | - Young Sik Cho
- Department of Entomology and Nematology, University of California, Davis, Comprehensive Cancer Center, University of California, Davis, Davis, California 95616, United States.,Department of Pharmacy, Keimyung University, Daegu 42601, South Korea
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, Comprehensive Cancer Center, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
22
|
Eads DA, Yashin AC, Noble LE, Vasquez MC, Huang MHJ, Livieri TM, Dobesh P, Childers E, Biggins DE. Managing plague on prairie dog colonies: insecticides as ectoparasiticides. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2020; 45:82-88. [PMID: 32492281 DOI: 10.1111/jvec.12375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Human health practitioners and wildlife biologists use insecticides to manage plague by suppressing fleas (Siphonaptera), but insecticides can also kill other ectoparasites. We investigated effects of deltamethrin and fipronil on ectoparasites from black-tailed prairie dogs (Cynomys ludovicianus, BTPDs). In late July, 2018, we treated three sites with 0.05% deltamethrin dust and 5 sites with host-fed 0.005% fipronil grain. Three non-treated sites functioned as experimental baselines. We collected ectoparasites before treatments (June-July, 2018) and after treatments (August-October, 2018, June-July, 2019). Both deltamethrin and fipronil suppressed fleas for at least 12 months. Deltamethrin had no detectable effect on mites (Arachnida). Fipronil suppressed mites for at least 12 months. Lice (Phthiraptera) were scarce on non-treated sites throughout the study, complicating interpretation. Concentrating on eight sites where all three ectoparasites where found in June-July, 2018 (before treatments), flea intensity was greatest on BTPDs carrying many lice and mites. These three ectoparasites co-occurred at high numbers, which might facilitate plague transmission in some cases. Lethal effects of insecticides on ectoparasite communities are potentially advantageous in the context of plague management.
Collapse
Affiliation(s)
- David A Eads
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, 80526, U.S.A
| | - Alexis C Yashin
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, 80526, U.S.A
| | - Lauren E Noble
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, 80526, U.S.A
| | - Michele C Vasquez
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, 80526, U.S.A
| | - Miranda H J Huang
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, 80526, U.S.A
| | | | - Phillip Dobesh
- U.S. Forest Service, Wall Ranger District, Wall, SD, 57790, U.S.A
| | - Eddie Childers
- National Park Service, Badlands National Park, Interior, SD, 57750, U.S.A
| | - Dean E Biggins
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, 80526, U.S.A
| |
Collapse
|
23
|
Li D, Morisseau C, McReynolds CB, Duflot T, Bellien J, Nagra RM, Taha AY, Hammock BD. Development of Improved Double-Nanobody Sandwich ELISAs for Human Soluble Epoxide Hydrolase Detection in Peripheral Blood Mononuclear Cells of Diabetic Patients and the Prefrontal Cortex of Multiple Sclerosis Patients. Anal Chem 2020; 92:7334-7342. [PMID: 32253910 PMCID: PMC7744119 DOI: 10.1021/acs.analchem.0c01115] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanobodies have been progressively replacing traditional antibodies in various immunological methods. However, the use of nanobodies as capture antibodies is greatly hampered by their poor performance after passive adsorption to polystyrene microplates, and this restricts the full use of double nanobodies in sandwich enzyme-linked immunosorbent assays (ELISAs). Herein, using the human soluble epoxide hydrolase (sEH) as a model analyte, we found that both the immobilization format and the blocking agent have a significant influence on the performance of capture nanobodies immobilized on polystyrene and the subsequent development of double-nanobody sandwich ELISAs. We first conducted epitope mapping for pairing nanobodies and then prepared a horseradish-peroxidase-labeled nanobody using a mild conjugation procedure as a detection antibody throughout the work. The resulting sandwich ELISA using a capture nanobody (A9, 1.25 μg/mL) after passive adsorption and bovine serum albumin (BSA) as a blocking agent generated a moderate sensitivity of 0.0164 OD·mL/ng and a limit of detection (LOD) of 0.74 ng/mL. However, the introduction of streptavidin as a linker to the capture nanobody at the same working concentration demonstrated a dramatic 16-fold increase in sensitivity (0.262 OD·mL/ng) and a 25-fold decrease in the LOD for sEH (0.03 ng/mL). The streptavidin-bridged double-nanobody ELISA was then successfully applied to tests for recovery, cross-reactivity, and real samples. Meanwhile, we accidentally found that blocking with skim milk could severely damage the performance of the capture nanobody by an order of magnitude compared with BSA. This work provides guidelines to retain the high effectiveness of the capture nanobody and thus to further develop the double-nanobody ELISA for various analytes.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Cindy B. McReynolds
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Thomas Duflot
- Department of Clinical Pharmacology, Rouen University Hospital & Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Normandie University, UNIROUEN, Rouen, France
| | - Jérémy Bellien
- Department of Clinical Pharmacology, Rouen University Hospital & Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Normandie University, UNIROUEN, Rouen, France
| | - Rashed M. Nagra
- Neurology Research, West Los Angeles VA Medical Center, Los Angeles, California 90073, United States
| | - Ameer Y. Taha
- Department of Food Science and Technology, University of California, Davis, California 95616, United States
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| |
Collapse
|
24
|
Wang X, Chen Q, Sun Z, Wang Y, Su B, Zhang C, Cao H, Liu X. Nanobody affinity improvement: Directed evolution of the anti-ochratoxin A single domain antibody. Int J Biol Macromol 2020; 151:312-321. [DOI: 10.1016/j.ijbiomac.2020.02.180] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 01/17/2023]
|
25
|
Tang Z, Liu X, Su B, Chen Q, Cao H, Yun Y, Xu Y, Hammock BD. Ultrasensitive and rapid detection of ochratoxin A in agro-products by a nanobody-mediated FRET-based immunosensor. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121678. [PMID: 31753666 PMCID: PMC7990105 DOI: 10.1016/j.jhazmat.2019.121678] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 05/04/2023]
Abstract
Ochratoxin A (OTA) is a major concern for public health and the rapid detection of trace OTA in food is always a challenge. To minimize OTA exposure to consumers, a nanobody (Nb)-mediated förster resonance energy transfer (FRET)-based immunosensor using quantum dots (Nb-FRET immunosensor) was proposed for ultrasensitive, single-step and competitive detection of OTA in agro-products at present work. QDs of two sizes were covalently labeled with OTA and Nb, acting as the energy donor and acceptor, respectively. The free OTA competed with the donor to bind to acceptor, thus the FRET efficiency increased with the decrease of OTA concentration. The single-step assay could be finished in 5 min with a limit of detection of 5 pg/mL, which was attributed to the small size of Nb for shortening the effective FRET distance and improving the FRET efficiency. The Nb-FRET immunosensor exhibited high selectivity for OTA. Moreover, acceptable accuracy and precision were obtained in the analysis of cereals and confirmed by the liquid chromatography-tandem mass spectrometry. Thus the developed Nb-FRET immunosensor was demonstrated to be an efficient tool for ultrasensitive and rapid detection of OTA in cereals and provides a detection model for other toxic small molecules in food and environment.
Collapse
Affiliation(s)
- Zongwen Tang
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China.
| | - Benchao Su
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Qi Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Hongmei Cao
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Yonghuan Yun
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Yang Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, PR China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, United States
| |
Collapse
|
26
|
Li X, Ma W, Li H, Zhang Q, Ma Z. Determination of residual fipronil and its metabolites in food samples: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Yang C, Wang L, Zhang Z, Chen Y, Deng Q, Wang S. Fluorometric determination of fipronil by integrating the advantages of molecularly imprinted silica and carbon quantum dots. Mikrochim Acta 2019; 187:12. [DOI: 10.1007/s00604-019-4005-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
|
28
|
El-Murr AEI, Abd El Hakim Y, Neamat-Allah ANF, Baeshen M, Ali HA. Immune-protective, antioxidant and relative genes expression impacts of β-glucan against fipronil toxicity in Nile tilapia, Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2019; 94:427-433. [PMID: 31536766 DOI: 10.1016/j.fsi.2019.09.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Our study is considered to attempt reducing the immune-toxic and antioxidant impacts of exposure to fipronil (FP) on Nile tilapia, Oreochromis niloticus using the β-glucan (βG). Two hundred and seventy fingerlings of Nile tilapia were divided randomly into six groups (45 tilapias of each, in 3 replicates): group I control (CT) group nourished on a basal diet. Group II (βG) nourished a basal diet supplemented with 0.4% βG. Groups III (1/20 FP) and V (1/10 FP) was exposed to 1/20 and 1/10 of the 96 h LC50 of FP in water and nourished the basal diet respectively. Groups IV (1/20 FP+ βG) and VI (1/10 FP+ βG) were exposed to 1/20 and 1/10 FP concomitantly with 0.4% βG supplementation for 90 successive days. Growth performance metrics were higher in βG group than CT. While those metrics were fallen at exposure to 1/20 or 1/10 FP. Supplementation with βG elevated the IgM and lysozyme levels.Whereas, tilapias exposed to FP only at different concentration showed lowering of those compared to CT. Supplementation with βG was effectively augmented IgM and lysozyme in 1/20 FP exposed tilapias. Furthermore, in a minor grade at 1/10 FP exposed tilapias. Exposure to FP increased the activities of hepatic markers chiefly at 1/10, however the βG supplementation was successfully improved these markers. There was imbalance of cortisol level at FP exposure where, βG combining to FP alleviate this disparity. There was fallen in LDH, MDH and FDPase in βG tilapias where continuing raise in 1/10 FP followed by 1/20 FP. βG supplementation raise the level of GSH, without significant variations in MDA conversely occurs in FP alone. Genes expression of βG caused raise of both GPx and GR, without fluctuations in CAT and SOD. Exposure to FP diminishes all evaluated antioxidant genes. It could fulfilled that supplementation with βG successfully alleviated the immune-toxic and antioxidant impact of FP in tilapias.
Collapse
Affiliation(s)
- Abd Elhakeem I El-Murr
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Yasser Abd El Hakim
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Ahmed N F Neamat-Allah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, 1 Alzeraa Street Postal Code 44511, Zagazig City, Sharkia Province, Egypt.
| | - Mohammed Baeshen
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Haytham A Ali
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Egypt; Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Zhang JR, Wang Y, Dong JX, Yang JY, Zhang YQ, Wang F, Si R, Xu ZL, Wang H, Xiao ZL, Shen YD. Development of a Simple Pretreatment Immunoassay Based on an Organic Solvent-Tolerant Nanobody for the Detection of Carbofuran in Vegetable and Fruit Samples. Biomolecules 2019; 9:biom9100576. [PMID: 31591300 PMCID: PMC6843801 DOI: 10.3390/biom9100576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Nanobodies are one-tenth the size of conventional antibodies and are naturally obtained from the atypical heavy-chain-only antibodies present in camelids. Their small size, high solubility, high stability, and strong resilience to organic solvents facilitate their use as novel analytical reagents in immunochemistry. In this study, specific nanobodies against pesticide carbofuran were isolated and characterized from an immunized library via phage display platform. We further established an indirect competitive enzyme-linked immunosorbent assay (ELISA) using nanobody Nb316 to detect carbofuran in vegetable and fruit samples. The results showed a half-maximal inhibitory concentration (IC50) of 7.27 ng/mL and a detection limit of 0.65 ng/mL. A simplified sample pretreatment procedure omitting the evaporation of organic solvent was used. The averaged recovery rate of spiked samples ranged between 82.3% and 103.9%, which correlated with that of standard UPLC–MS/MS method. In conclusion, a nanobody with high specificity for carbofuran was characterized, and a nanobody-based sensitive immunoassay for simple and rapid detection of carbofuran in real samples was validated.
Collapse
Affiliation(s)
- Jin-ru Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| | - Yu Wang
- Guangzhou Institute of Food Inspection, Guangzhou 510080, China;
| | - Jie-xian Dong
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA;
- Neurobiology, Physiology & Behavior, University of California, Davis, CA 95616, USA
| | - Jin-yi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| | - Yu-qi Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| | - Feng Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| | - Rui Si
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| | - Zhen-lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
- Correspondence: (Z.-l.X.); (H.W.); Tel.: +86-20-85283448 (H.W.); Fax: +86-20-85280270 (H.W.)
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
- Correspondence: (Z.-l.X.); (H.W.); Tel.: +86-20-85283448 (H.W.); Fax: +86-20-85280270 (H.W.)
| | - Zhi-li Xiao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| | - Yu-dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| |
Collapse
|
30
|
Surface-Enhanced Raman Scattering Detection of Fipronil Pesticide Adsorbed on Silver Nanoparticles. SENSORS 2019; 19:s19061355. [PMID: 30889914 PMCID: PMC6471083 DOI: 10.3390/s19061355] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 02/05/2023]
Abstract
This work presents a surface-enhanced Raman scattering (SERS) and density functional theory (DFT) study of a fipronil adsorbed on colloidal silver nanoparticles (AgNPs). A standard curve was established to quantify fipronil within a range of 0.0001⁻0.1 ppm (r² ≥ 0.985), relying on the unique fipronil Raman shift at ~2236 cm-1 adsorbed on AgNPs. DFT calculations suggest that the nitrile moiety (C≡N) binding should be slightly more favorable, by 1.92 kcal/mol, than those of the nitrogen atom of the pyrazole in fipronil and Ag₆ atom clusters. The characteristic peaks of the SERS spectrum were identified, and both the calculated vibrational wavenumbers and the Raman intensity pattern were considered. The vibrational spectra of fipronil were obtained from the potential energy distribution (PED) analysis and selective Raman band enhancement.
Collapse
|