1
|
Bezinge L, Shih CJ, Richards DA, deMello AJ. Electrochemical Paper-Based Microfluidics: Harnessing Capillary Flow for Advanced Diagnostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401148. [PMID: 38801400 DOI: 10.1002/smll.202401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Electrochemical paper-based microfluidics has attracted much attention due to the promise of transforming point-of-care diagnostics by facilitating quantitative analysis with low-cost and portable analyzers. Such devices harness capillary flow to transport samples and reagents, enabling bioassays to be executed passively. Despite exciting demonstrations of capillary-driven electrochemical tests, conventional methods for fabricating electrodes on paper impede capillary flow, limit fluidic pathways, and constrain accessible device architectures. This account reviews recent developments in paper-based electroanalytical devices and offers perspective by revisiting key milestones in lateral flow tests and paper-based microfluidics engineering. The study highlights the benefits associated with electrochemical sensing and discusses how the detection modality can be leveraged to unlock novel functionalities. Particular focus is given to electrofluidic platforms that embed electrodes into paper for enhanced biosensing applications. Together, these innovations pave the way for diagnostic technologies that offer portability, quantitative analysis, and seamless integration with digital healthcare, all without compromising the simplicity of commercially available rapid diagnostic tests.
Collapse
Affiliation(s)
- Léonard Bezinge
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Chih-Jen Shih
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Daniel A Richards
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Andrew J deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| |
Collapse
|
2
|
Wirojsaengthong S, Chailapakul O, Tangkijvanich P, Henry CS, Puthongkham P. Size-Dependent Electrochemistry of Laser-Induced Graphene Electrodes. Electrochim Acta 2024; 494:144452. [PMID: 38881690 PMCID: PMC11173329 DOI: 10.1016/j.electacta.2024.144452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Laser-induced graphene (LIG) electrodes have become popular for electrochemical sensor fabrication due to their simplicity for batch production without the use of reagents. The high surface area and favorable electrocatalytic properties also enable the design of small electrochemical devices while retaining the desired electrochemical performance. In this work, we systematically investigated the effect of LIG working electrode size, from 0.8 mm to 4.0 mm diameter, on their electrochemical properties, since it has been widely assumed that the electrochemistry of LIG electrodes is independent of size above the microelectrode size regime. The background and faradaic current from cyclic voltammetry (CV) of an outer-sphere redox probe [Ru(NH3)6]3+ showed that smaller LIG electrodes had a higher electrode roughness factor and electroactive surface ratio than those of the larger electrodes. Moreover, CV of the surface-sensitive redox probes [Fe(CN)6]3- and dopamine revealed that smaller electrodes exhibited better electrocatalytic properties, with enhanced electron transfer kinetics. Scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy showed that the physical and chemical surface structure were different at the electrode center versus the edges, so the electrochemical properties of the smaller electrodes were improved by having rougher surface and more density of the graphitic edge planes, and more oxide-containing groups, leading to better electrochemistry. The difference could be explained by the different photothermal reaction time from the laser scribing process that causes different stable carbon morphology to form on the polymer surface. Our results give a new insight on relationships between surface structure and electrochemistry of LIG electrodes and are useful for designing miniaturized electrochemical devices.
Collapse
Affiliation(s)
- Supacha Wirojsaengthong
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Orawon Chailapakul
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Pumidech Puthongkham
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Martinez B, Leroux YR, Hapiot P, Henry CS. Surface Modification of Thermoplastic Electrodes for Biosensing Applications via Copper-Catalyzed Click Chemistry. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37874977 DOI: 10.1021/acsami.3c10013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Cu(I)-catalyzed 1,3-dipolar cycloaddition (CuAAC), also known as click chemistry, has been demonstrated to be highly robust while providing versatile surface chemistry. One specific application is biosensor fabrication. Recently, we developed thermoplastic electrodes (TPEs) as an alternative to traditional carbon composite electrodes in terms of cost, performance, and robustness. However, their applications in biosensing are currently limited due to a lack of facile methods for electrode modification. Here, we demonstrate the feasibility of using CuAAC following the diazonium grafting of TPEs to take advantage of two powerful technologies for developing a customizable and versatile biosensing platform. After a stepwise characterization of the electrode modification procedures was performed, electrodes were modified with model affinity reagents. Streptavidin and streptavidin-conjugated IgG antibodies were successfully immobilized on the TPE surface, as confirmed by electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Brandaise Martinez
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Yann R Leroux
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
4
|
McMahon CJ, Martinez B, Henry CS. Characterization of Factors Affecting Stripping Voltammetry on Thermoplastic Electrodes. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2023; 170:096507. [PMID: 37807977 PMCID: PMC10552556 DOI: 10.1149/1945-7111/acfa68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Thermoplastic carbon electrodes (TPEs) are an alternative form of carbon composite electrodes that have shown excellent electrochemical performance with applications in biological sensing. However, little has been done to apply TPEs to environmental sensing, specifically heavy metal analysis. The work here focuses on lead analysis and based on their electrochemical properties, TPEs are expected to outperform other carbon composite materials; however, despite testing multiple formulations, TPEs showed inferior performance. Detailed electrode characterization was conducted to examine the cause for poor lead sensing behavior. X-Ray photoelectron spectroscopy (XPS) was used to analyze the surface functional groups, indicating that acidic and alkaline functional groups impact lead electrodeposition. Further, scanning electron microscopy (SEM) and electrochemical characterization demonstrated that both the binder and graphite can influence the surface morphology, electroactive area, and electron kinetics.
Collapse
Affiliation(s)
| | | | - Charles S Henry
- Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
5
|
Oliveira LC, Rocha DS, Silva-Neto HA, Silva TAC, Coltro WKT. Polyester resin and graphite flakes: turning conductive ink to a voltammetric sensor for paracetamol sensing. Mikrochim Acta 2023; 190:324. [PMID: 37493852 DOI: 10.1007/s00604-023-05914-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
The development of a disposable electrochemical paper-based analytical device (ePAD) is described using a novel formulation of conductive ink that combines graphite powder, polyester resin, and acetone. As a proof of concept, the proposed sensor was utilized for paracetamol (PAR) sensing. The introduced ink was characterized via morphological, structural, and electrochemical analysis, and the results demonstrated appreciable analytical performance. The proposed ePAD provided linear behavior (R2 = 0.99) in the concentration range between 1 and 60 µmol L-1, a limit of detection of 0.2 µmol L-1, and satisfactory reproducibility (RSD ~ 7.7%, n = 5) applying a potential of + 0.81 V vs Ag at the working electrode. The quantification of PAR was demonstrated in different pharmaceutical formulations. The achieved concentrations revealed good agreement with the labeled values, acceptable accuracy (101% and 106%), and no statistical difference from the data obtained by HPLC at the 95% confidence level. The environmental impact of the new device was assessed using AGREE software, which determined a score of 0.85, indicating that it is eco-friendly. During the pharmacokinetic study of PAR, it was found that the drug has a maximum concentration of 23.58 ± 0.01 µmol L-1, a maximum time of 30 min, and a half-life of 2.15 h. These results are comparable to other studies that utilized HPLC. This suggests that the combination of graphite powder and polyester resin can transform conductive ink into an effective ePAD that can potentially be used in various pharmaceutical applications.
Collapse
Affiliation(s)
- Laísa C Oliveira
- Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Danielly S Rocha
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Habdias A Silva-Neto
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Thaísa A C Silva
- Instituto de Ciências Farmacêuticas, Goiânia, GO, 74175-100, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
- Instituto Nacional de Ciência E Tecnologia de Bioanalítica, Campinas, SP, 13084-971, Brazil.
| |
Collapse
|
6
|
Musile G, Grazioli C, Fornasaro S, Dossi N, De Palo EF, Tagliaro F, Bortolotti F. Application of Paper-Based Microfluidic Analytical Devices (µPAD) in Forensic and Clinical Toxicology: A Review. BIOSENSORS 2023; 13:743. [PMID: 37504142 PMCID: PMC10377625 DOI: 10.3390/bios13070743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
The need for providing rapid and, possibly, on-the-spot analytical results in the case of intoxication has prompted researchers to develop rapid, sensitive, and cost-effective methods and analytical devices suitable for use in nonspecialized laboratories and at the point of need (PON). In recent years, the technology of paper-based microfluidic analytical devices (μPADs) has undergone rapid development and now provides a feasible, low-cost alternative to traditional rapid tests for detecting harmful compounds. In fact, µPADs have been developed to detect toxic molecules (arsenic, cyanide, ethanol, and nitrite), drugs, and drugs of abuse (benzodiazepines, cathinones, cocaine, fentanyl, ketamine, MDMA, morphine, synthetic cannabinoids, tetrahydrocannabinol, and xylazine), and also psychoactive substances used for drug-facilitated crimes (flunitrazepam, gamma-hydroxybutyric acid (GHB), ketamine, metamizole, midazolam, and scopolamine). The present report critically evaluates the recent developments in paper-based devices, particularly in detection methods, and how these new analytical tools have been tested in forensic and clinical toxicology, also including future perspectives on their application, such as multisensing paper-based devices, microfluidic paper-based separation, and wearable paper-based sensors.
Collapse
Affiliation(s)
- Giacomo Musile
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, P.le Scuro 10, 37134 Verona, Italy
| | - Cristian Grazioli
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Cotonificio 108, 33100 Udine, Italy
| | - Stefano Fornasaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgeri 1, 34127 Trieste, Italy
| | - Nicolò Dossi
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Cotonificio 108, 33100 Udine, Italy
| | - Elio Franco De Palo
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, P.le Scuro 10, 37134 Verona, Italy
| | - Franco Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, P.le Scuro 10, 37134 Verona, Italy
- Laboratory of Pharmacokinetics and Metabolomics Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street, 119991 Moscow, Russia
| | - Federica Bortolotti
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, P.le Scuro 10, 37134 Verona, Italy
| |
Collapse
|
7
|
de Lima LF, Lopes Ferreira A, Martinez de Freitas ADS, de Souza Rodrigues J, Lemes AP, Ferreira M, de Araujo WR. Biodegradable and Flexible Thermoplastic Composite Graphite Electrodes: A Promising Platform for Inexpensive and Sensitive Electrochemical Detection of Creatine Kinase at the Point-of-Care. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18694-18706. [PMID: 37014991 DOI: 10.1021/acsami.3c01379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Acute myocardial infarction (AMI) is the main cause of death worldwide, and the time of diagnosis is decisive for the effectiveness of the treatment of patients with AMI. Creatine kinase-myocardial band (CK-MB) has a predominance and high affinity with myocardial tissue, making it considered one of the main biomarkers for the diagnosis of AMI. In this work, we report a novel biodegradable composite material based on a polymer blend of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Poly(butylene adipate-co-terephthalate) (PHBV:Ecoflex) and graphite microparticles for sensitive and selective electrochemical detection of CK-MB. The morphological and physicochemical characterizations of the thermoplastic composite material revealed a homogeneous and synergistic distribution of the graphite microparticles through the blend structure, providing low defects and high electrical conductivity with high electron transfer kinetics (k0 = 3.54 × 10-3 cm s-1) features with adequate flexibility for point-of-care applications. The portable and disposable devices were applied to detect CK-MB using the electrochemical impedance spectroscopy (EIS) technique in a relevant clinical concentration ranging from 5.0 ng mL-1 to 100.0 ng mL-1 and presented a limit of detection of 0.26 ng mL-1 CK-MB. The selectivity of the sensor was confirmed by testing the potential interference of major biomolecules found in biofluids and other relevant macromolecules. The accuracy and robustness were assessed by addition and recovery protocol in urine and saliva samples without sample pretreatment and demonstrated the potential of our method for rapid and decentralized tests of AMI. In addition, the study of the thermal, biological, and photodegradation of the devices after being used was also carried out, aiming at the disposal of the material more sustainably.
Collapse
Affiliation(s)
- Lucas Felipe de Lima
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas (UNICAMP), 13083-970, Campinas, São Paulo, Brazil
| | - André Lopes Ferreira
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas (UNICAMP), 13083-970, Campinas, São Paulo, Brazil
| | - Amanda de Sousa Martinez de Freitas
- Polymers and Biopolymers Technology Lab. (TecPBio), Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), 12231-280, São José dos Campos, São Paulo, Brazil
| | - Jéssica de Souza Rodrigues
- Center of Science and Technology for Sustainability (CCTS), Federal University of São Carlos (UFSCar), 18052-780, Sorocaba, São Paulo, Brazil
| | - Ana Paula Lemes
- Polymers and Biopolymers Technology Lab. (TecPBio), Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), 12231-280, São José dos Campos, São Paulo, Brazil
| | - Marystela Ferreira
- Center of Science and Technology for Sustainability (CCTS), Federal University of São Carlos (UFSCar), 18052-780, Sorocaba, São Paulo, Brazil
| | - William Reis de Araujo
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas (UNICAMP), 13083-970, Campinas, São Paulo, Brazil
| |
Collapse
|
8
|
Pradela-Filho LA, Veloso WB, Arantes IVS, Gongoni JLM, de Farias DM, Araujo DAG, Paixão TRLC. Paper-based analytical devices for point-of-need applications. Mikrochim Acta 2023; 190:179. [PMID: 37041400 PMCID: PMC10089827 DOI: 10.1007/s00604-023-05764-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
Paper-based analytical devices (PADs) are powerful platforms for point-of-need testing since they are inexpensive devices fabricated in different shapes and miniaturized sizes, ensuring better portability. Additionally, the readout and detection systems can be accomplished with portable devices, allying with the features of both systems. These devices have been introduced as promising analytical platforms to meet critical demands involving rapid, reliable, and simple testing. They have been applied to monitor species related to environmental, health, and food issues. Herein, an outline of chronological events involving PADs is first reported. This work also introduces insights into fundamental parameters to engineer new analytical platforms, including the paper type and device operation. The discussions involve the main analytical techniques used as detection systems, such as colorimetry, fluorescence, and electrochemistry. It also showed recent advances involving PADs, especially combining optical and electrochemical detection into a single device. Dual/combined detection systems can overcome individual barriers of the analytical techniques, making possible simultaneous determinations, or enhancing the devices' sensitivity and/or selectivity. In addition, this review reports on distance-based detection, which is also considered a trend in analytical chemistry. Distance-based detection offers instrument-free analyses and avoids user interpretation errors, which are outstanding features for analyses at the point of need, especially for resource-limited regions. Finally, this review provides a critical overview of the practical specifications of the recent analytical platforms involving PADs, demonstrating their challenges. Therefore, this work can be a highly useful reference for new research and innovation.
Collapse
Affiliation(s)
- Lauro A Pradela-Filho
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| | - William B Veloso
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Iana V S Arantes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Juliana L M Gongoni
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Davi M de Farias
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Diele A G Araujo
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Thiago R L C Paixão
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
9
|
Holman JB, Shi Z, Fadahunsi AA, Li C, Ding W. Advances on microfluidic paper-based electroanalytical devices. Biotechnol Adv 2023; 63:108093. [PMID: 36603801 DOI: 10.1016/j.biotechadv.2022.108093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Since the inception of the first electrochemical devices on paper substrates, many different reports of microfluidic paper-based electroanalytical devices (μPEDs), innovative hydrophobic barriers and electrode fabrication processes have allowed the incorporation of diverse materials, resulting in different applications and a boost in performance. These advancements have led to the creation of paper-based devices with comparable performance to many standard conventional devices, with the added benefits of pumpless fluidic transport, component separation and reagent storage that can be exploited to automate and handle sample preprocessing. Herein, we review μPEDs, summarize the characteristics and functionalities of μPEDs, such as separation, fluid flow control and storage, and outline the conventional and emerging fabrication and modification approaches for μPEDs. We also examine the recent application of μPEDs in biomedicine, the environment, and food and water safety, as well as some limitations and challenges that must be addressed.
Collapse
Affiliation(s)
- Joseph Benjamin Holman
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhengdi Shi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Adeola A Fadahunsi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Weiping Ding
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
10
|
Khosla NK, Lesinski JM, Colombo M, Bezinge L, deMello AJ, Richards DA. Simplifying the complex: accessible microfluidic solutions for contemporary processes within in vitro diagnostics. LAB ON A CHIP 2022; 22:3340-3360. [PMID: 35984715 PMCID: PMC9469643 DOI: 10.1039/d2lc00609j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/15/2022] [Indexed: 05/02/2023]
Abstract
In vitro diagnostics (IVDs) form the cornerstone of modern medicine. They are routinely employed throughout the entire treatment pathway, from initial diagnosis through to prognosis, treatment planning, and post-treatment surveillance. Given the proven links between high quality diagnostic testing and overall health, ensuring broad access to IVDs has long been a focus of both researchers and medical professionals. Unfortunately, the current diagnostic paradigm relies heavily on centralized laboratories, complex and expensive equipment, and highly trained personnel. It is commonly assumed that this level of complexity is required to achieve the performance necessary for sensitive and specific disease diagnosis, and that making something affordable and accessible entails significant compromises in test performance. However, recent work in the field of microfluidics is challenging this notion. By exploiting the unique features of microfluidic systems, researchers have been able to create progressively simple devices that can perform increasingly complex diagnostic assays. This review details how microfluidic technologies are disrupting the status quo, and facilitating the development of simple, affordable, and accessible integrated IVDs. Importantly, we discuss the advantages and limitations of various approaches, and highlight the remaining challenges within the field.
Collapse
Affiliation(s)
- Nathan K Khosla
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| | - Jake M Lesinski
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| | - Monika Colombo
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| | - Léonard Bezinge
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| | - Daniel A Richards
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland.
| |
Collapse
|
11
|
Oliveira ACM, Araújo DAG, Pradela-Filho LA, Takeuchi RM, Trindade MAG, Dos Santos AL. Threads in tubing: an innovative approach towards improved electrochemical thread-based microfluidic devices. LAB ON A CHIP 2022; 22:3045-3054. [PMID: 35833547 DOI: 10.1039/d2lc00387b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thread-based microfluidic analytical devices have received growing attention since threads have some advantages over other materials. Compared to paper, threads are also capable of spontaneously transporting fluid due to capillary action, but they have superior mechanical strength and do not require hydrophobic barriers. Therefore, thread-based microfluidic devices can be inexpensively fabricated with no need for external pumps or sophisticated microfabrication apparatus. Despite these outstanding features, achieving a controlled and continuous flow rate is still a challenging task, mainly due to fluid evaporation. Here, we overcome this challenge by inserting a cotton thread into a polyethylene tube aiming to minimize fluid evaporation. Also, a cotton piece was inserted into the outlet reservoir to improve the wicking ability of the device. This strategy enabled the fabrication of an innovative electrochemical thread in a tubing microfluidic device that was capable to hold a consistent flow rate (0.38 μL s-1) for prolonged periods, allowing up to 100 injections in a single device by simply replacing the cotton piece in the outlet reservoir. The proposed device displayed satisfactory analytical performance for selected model analytes (dopamine, hydrogen peroxide, and tert-butylhydroquinone), in addition to being successfully used for quantification of nitrite in spiked artificial saliva samples. Beyond the flow rate improvement, this "thread-in-tube" strategy ensured the protection of the fluid from external contamination while making it easier to connect the electrode array to the microchannels. Thus, we envision that the thread in a tube strategy could bring interesting improvements to thread-based microfluidic analytical devices.
Collapse
Affiliation(s)
- Ana Clara Maia Oliveira
- Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia, 38304-402, Ituiutaba, Brazil.
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Brazil
| | - Diele Aparecida Gouveia Araújo
- Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia, 38304-402, Ituiutaba, Brazil.
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Brazil
| | - Lauro Antonio Pradela-Filho
- Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia, 38304-402, Ituiutaba, Brazil.
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Brazil
| | - Regina Massako Takeuchi
- Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia, 38304-402, Ituiutaba, Brazil.
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Brazil
| | - Magno Aparecido Gonçalves Trindade
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, km 12, 79804-970 Dourados, Mato Grosso do Sul, Brazil
| | - André Luiz Dos Santos
- Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia, 38304-402, Ituiutaba, Brazil.
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Brazil
| |
Collapse
|
12
|
Zhang H, Li X, Zhu Q, Wang Z. The recent development of nanomaterials enhanced paper-based electrochemical analytical devices. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Ozer T, Henry CS. All-solid-state potassium-selective sensor based on carbon black modified thermoplastic electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
Couple batch-injection analysis and microfluidic paper-based analytical device: A simple and disposable alternative to conventional BIA apparatus. Talanta 2021; 240:123201. [PMID: 34998146 DOI: 10.1016/j.talanta.2021.123201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/18/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022]
Abstract
Under controlled dispersion conditions, sample injection towards a detector opened essential fields for the Analytical Chemistry fast development methods. Flow injection analysis (FIA) and batch injection analysis (BIA) systems are crucial for injecting the sample in these analytical methods. The BIA system eliminated the flow manifold, with samples injected directly onto the detector inside the batch injection cell. Paper was slightly evaluated coupled to FIA, and no reports were found associated with BIA. Still, it can potentially reduce the BIA manifold by removing the batch injection cell based on the capillarity properties to disperse the injected solution over the detection system. Hence, this article reported the first work coupling batch-injection analysis and microfluidic paper-based analytical device (BIA-μPAD) with pencil-drawn electrodes directly attached to the paper using a CO2 laser pre-treated chromatographic paper. The laser pretreatment of the paper (optimized conditions: 6.5% laser power, 12 mm s-1 scan rate, and 12 mm output distance) was essential to enhance the electrochemical response for ferri/ferrocyanide redox couple and paracetamol (PAR), as shown by spectroscopic and electrochemical techniques. The proposed BIA-μPAD was evaluated using pharmaceutical paracetamol samples as proof-of-concept (optimized conditions: 15 μL injected volume and 6.4 μL s-1 dispensing rate), obtaining good linearity (R = 0.9961) and recovery values ranging from 95 to 103%. Repeatability (n = 16) and reproducibility (n = 9) tests with 1 mmol L-1 PAR also presented well relative standard deviation (RSD) results of 5.1% and 6.6%, respectively. A sampling frequency of 76 h-1 was obtained, which is a similar value compared with conventional BIA apparatus. Limits of detection and quantification were estimated in 0.046 and 0.154 mmol L-1, respectively. Additionally, an improvement in the current response and the sample throughput was observed when comparing FIA and BIA-μPADs, attesting the applicability of the proposed device and opening for new possibilities related to paper-based devices coupled with flow techniques.
Collapse
|
15
|
Clark KM, Henry CS. Thermoplastic Electrode (TPE)‐based Enzymatic Glucose Sensor Using Polycaprolactone‐graphite Composites. ELECTROANAL 2021. [DOI: 10.1002/elan.202100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kaylee M. Clark
- Department of Chemistry Colorado State University 1872 Campus Delivery Fort Collins 80523 Colorado USA
| | - Charles S. Henry
- Department of Chemistry Colorado State University 1872 Campus Delivery Fort Collins 80523 Colorado USA
- School of Biomedical Engineering Colorado State University Fort Collins 80523 Colorado USA
| |
Collapse
|
16
|
Rahbar M, Zou S, Baharfar M, Liu G. A Customized Microfluidic Paper-Based Platform for Colorimetric Immunosensing: Demonstrated via hCG Assay for Pregnancy Test. BIOSENSORS 2021; 11:bios11120474. [PMID: 34940231 PMCID: PMC8699738 DOI: 10.3390/bios11120474] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 05/14/2023]
Abstract
Over the past decades, paper-based lateral flow immunoassays (LFIAs) have been extensively developed for rapid, facile, and low-cost detection of a wide array of target analytes in a point-of-care manner. Conventional home pregnancy tests are the most significant example of LFAs, which detect elevated concentrations of human chorionic gonadotrophin (hCG) in body fluids to identify early pregnancy. In this work, we have upgraded these platforms to a higher version by developing a customized microfluidic paper-based analytical device (μPAD), as the new generation of paper-based point-of-care platforms, for colorimetric immunosensing. This will offer a cost-efficient and environmentally friendly alternative platform for paper-based immunosensing, eliminating the need for nitrocellulose (NC) membrane as the substrate material. The performance of the developed platform is demonstrated by detection of hCG (as a model case) in urine samples and subsequently indicating positive or negative pregnancy. A dual-functional silane-based composite was used to treat filter paper in order to enhance the colorimetric signal intensity in the detection zones of μPADs. In addition, microfluidic pathways were designed in a manner to provide the desired regulated fluid flow, generating sufficient incubation time (delays) at the designated detection zones, and consequently enhancing the obtained signal intensity. The presented approaches allow to overcome the existing limitations of μPADs in immunosensing and will broaden their applicability to a wider range of assays. Although, the application of the developed hCG μPAD assay is mainly in qualitative (i.e., positive or negative) detection of pregnancy, the semi-quantitative measurement of hCG was also investigated, indicating the viability of this assay for sensitive detection of the target hCG analyte within the related physiological range (i.e., 10-500 ng/mL) with a LOD value down to 10 ng/mL.
Collapse
Affiliation(s)
- Mohammad Rahbar
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; (M.R.); (M.B.)
| | - Siyi Zou
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China;
| | - Mahroo Baharfar
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; (M.R.); (M.B.)
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; (M.R.); (M.B.)
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China;
- Correspondence:
| |
Collapse
|
17
|
McCord CP, Ozer T, Henry CS. Synthesis and grafting of diazonium tosylates for thermoplastic electrode immunosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5056-5064. [PMID: 34651620 PMCID: PMC8628260 DOI: 10.1039/d1ay00965f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
For electrochemical immunosensors, inexpensive electrodes with fast redox kinetics, and simple stable methods of electrode functionalization are vital. However, many inexpensive and easy to fabricate electrodes suffer from poor redox kinetics, and functionalization can often be difficult and/or unstable. Diazonium tosylates are particularly stable soluble salts that can be useful for electrode functionalization. Recently developed thermoplastic electrodes (TPEs) have been inexpensive, moldable, and highly electroactive carbon composite materials. Herein, the synthesis and grafting of diazonium tosylate salts were optimized for modification of TPEs and used to develop the first TPE immunosensors. With diazonium tosylates, TPEs were amine functionalized either directly through grafting of p-aminophenyl diazonium salt or indirectly through grafting p-nitrophenyl diazonium salt followed by electrochemical reduction to an amine. Diazonium tosylates were synthesized in situ as a paste in 6 min. Once the reaction paste was spread over the electrodes, near monolayer coverage (1.0 ± 0.2 nmol cm-2) was achieved for p-nitrophenyl diazonium salt within 5 min. Amine functionalized electrodes were conjugated to C-reactive protein (CRP) antibodies. Antibody-modified TPEs were applied for the sensitive detection of CRP, a biomarker of cardiovascular disease using electrochemical enzyme-linked immunosorbent assays (ELISA). LODs were determined to be 2 ng mL-1 in buffer, with high selectivity against interfering species for both functionalization methods. The direct p-aminophenyl modification method had the highest sensitivity to CRP and was further tested in spiked serum with an LOD of 10 ng mL-1. This low-cost and robust TPE immunosensor platform can be easily adapted for other analytes and multiplexed detection.
Collapse
Affiliation(s)
- Cynthia P McCord
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Tugba Ozer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34220, Turkey
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
18
|
McCord CP, Summers B, Henry CS. Redox behavior and surface morphology of polystyrene thermoplastic electrodes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Noviana E, Ozer T, Carrell CS, Link JS, McMahon C, Jang I, Henry CS. Microfluidic Paper-Based Analytical Devices: From Design to Applications. Chem Rev 2021; 121:11835-11885. [DOI: 10.1021/acs.chemrev.0c01335] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eka Noviana
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia 55281
| | - Tugba Ozer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey 34220
| | - Cody S. Carrell
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeremy S. Link
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Catherine McMahon
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ilhoon Jang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Institute of Nano Science and Technology, Hanyang University, Seoul, South Korea 04763
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
20
|
Zeng L, Zhang X, Wang X, Cheng D, Li R, Han B, Wu M, Zhuang Z, Ren A, Zhou Y, Jing T. Simultaneous fluorescence determination of bisphenol A and its halogenated analogs based on a molecularly imprinted paper-based analytical device and a segment detection strategy. Biosens Bioelectron 2021; 180:113106. [PMID: 33647791 DOI: 10.1016/j.bios.2021.113106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 11/25/2022]
Abstract
Bisphenol A (BPA) and its halogenated analogs tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA) are common environmental contaminants and a method for their simultaneous determination is urgently needed. A paper-based analytical device (PAD) was prepared using a metal-organic framework of UiO-66-NH2 coated with molecularly imprinted polymers (MIPs) using TBBPA as a template. The maximum adsorption capacity was 120.94 mg g-1 and the imprinting factor was 4.07. The selective recognition ability of this PAD enabled the effective separation of TBBPA, TCBPA and BPA based on paper chromatography. Subsequently, the PAD cut into segments were used individually to determine the presence of target chemicals using a highly sensitive fluorescent method. Under ultraviolet light irradiation, UiO-66-NH2 acts as a photocatalyst to produce reactive oxygen species (ROS) that degrade TBBPA, TCBPA or BPA in the imprinted cavities and the fluorescent signal of 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) added as a ROS probe enabled the indirect determination of target chemicals. This method could determine BPA and its halogenated analogs in dust samples simultaneously with detection limits ranging from 0.14 to 0.30 ng g-1. The intraday relative standard deviation (RSD) was ≤6.8% and interday RSD was ≤8.1%. The recoveries ranged from 91.0 to 105.6% with RSD values that were ≤7.5%. The results stemmed from this method were consistent with those obtained from LC-MS/MS. It is an environmentally-friendly approach due to the degradation of target pollutants and possesses many advantages such as high selectivity, low cost and easy-to-fabrication.
Collapse
Affiliation(s)
- Lingshuai Zeng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xiu Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xiu Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Danqi Cheng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Ruifang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Bin Han
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Minmin Wu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Zhijia Zhuang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Annan Ren
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Yikai Zhou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
21
|
Berg KE, Leroux YR, Hapiot P, Henry CS. SECM Investigation of Carbon Composite Thermoplastic Electrodes. Anal Chem 2021; 93:1304-1309. [PMID: 33373524 DOI: 10.1021/acs.analchem.0c01041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermoplastic electrodes (TPEs) are carbon composite electrodes consisting of graphite and thermoplastic polymer binder. TPE production is a solvent-based method, which makes it easy to fabricate and pattern into complex geometries, contrary to classical carbon composite electrodes. Depending on the composition (carbon type, binder, and composition ratio), TPEs can give excellent electrochemical performance and high conductivity. However, these TPEs are relatively new electrode materials, and thorough electrochemical characterization is still missing to understand and predict why large differences between TPEs exist. We used scanning electrochemical microscopy (SECM) as a screening tool to characterize TPEs. SECM data treatment based on scanning probe microscopy imaging allows a fast and easy comparison of the numerous images, as well as the optimization of the preparation. Experiments suggest that TPEs behave as a network of interacting microelectrodes made by electrochemically active islands isolated between less active areas. Higher carbon content in TPEs is not always indicative of more uniform electrodes with better electrochemical performances. Using various SECM redox probes, it is possible to select a specific graphite or polymer type for the analyte of interest. For example, TPEs made with COC:3569 are the best compromise for general detection, whereas PMMA:11 μm is better suited for catechol-like polyphenol analysis.
Collapse
Affiliation(s)
- Kathleen E Berg
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Yann R Leroux
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado 80523, United States.,Department of Chemical & Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
22
|
Pradela-Filho LA, Araújo DAG, Takeuchi RM, Santos AL, Henry CS. Thermoplastic electrodes as a new electrochemical platform coupled to microfluidic devices for tryptamine determination. Anal Chim Acta 2021; 1147:116-123. [PMID: 33485570 DOI: 10.1016/j.aca.2020.12.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/19/2020] [Accepted: 12/27/2020] [Indexed: 01/24/2023]
Abstract
This study reports a new electrochemical method for tryptamine determination using a paper-based microfluidic device and a thermoplastic electrode (TPE) as an amperometric detector. Tryptamine (Tryp) is a biogenic amine present in drinks and foods. Even though this compound has some beneficial effects on human health, the ingestion of foods with high concentrations of Tryp may be detrimental, which justifies the need for monitoring the Tryp levels. The TPEs were made from 50% carbon black and 50% polycaprolactone and characterized by cyclic voltammetry, demonstrating enhancement in the analytical response compared to other carbon composites. TPEs also showed a better antifouling effect for Tryp compared to conventional glassy carbon electrodes. Once characterized, the electrodes were incorporated into the microfluidic device to determine Tryp in water and cheese samples using amperometry. A linear range was achieved from 10 to 75 μmol L-1 with limits of detection and quantification of 3.2 and 10.5 μmol L-1, respectively. Therefore, this work shows promising findings of the electrochemical determination of Tryp, bringing valuable results regarding the electrochemical properties of thermoplastic composites.
Collapse
Affiliation(s)
- Lauro A Pradela-Filho
- Institute of Chemistry, Federal University of Uberlandia, 38400-902, Uberlandia, Minas Gerais, Brazil; Institute of Exact and Natural Sciences of Pontal, Federal University of Uberlandia, 38304-402, Ituiutaba, Minas Gerais, Brazil
| | - Diele A G Araújo
- Institute of Chemistry, Federal University of Uberlandia, 38400-902, Uberlandia, Minas Gerais, Brazil; Institute of Exact and Natural Sciences of Pontal, Federal University of Uberlandia, 38304-402, Ituiutaba, Minas Gerais, Brazil
| | - Regina M Takeuchi
- Institute of Chemistry, Federal University of Uberlandia, 38400-902, Uberlandia, Minas Gerais, Brazil; Institute of Exact and Natural Sciences of Pontal, Federal University of Uberlandia, 38304-402, Ituiutaba, Minas Gerais, Brazil
| | - André L Santos
- Institute of Chemistry, Federal University of Uberlandia, 38400-902, Uberlandia, Minas Gerais, Brazil; Institute of Exact and Natural Sciences of Pontal, Federal University of Uberlandia, 38304-402, Ituiutaba, Minas Gerais, Brazil
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States.
| |
Collapse
|
23
|
Kava AA, Henry CS. Exploring carbon particle type and plasma treatment to improve electrochemical properties of stencil-printed carbon electrodes. Talanta 2021; 221:121553. [PMID: 33076109 PMCID: PMC7575823 DOI: 10.1016/j.talanta.2020.121553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022]
Abstract
Stencil-printing conductive carbon inks has revolutionized the development of inexpensive, disposable and portable electrochemical sensors. However, stencil-printed carbon electrodes (SPCEs) typically suffer from poor electrochemical properties. While many surface pretreatments and modifications have been tested to improve the electrochemical activity of SPCEs, the bulk composition of the inks used for printing has been largely ignored. Recent studies of other carbon composite electrode materials show significant evidence that the conductive carbon particle component is strongly related to electrochemical performance. However, such a study has not been carried out with SPCEs. In this work, we perform a systematic characterization of SPCEs made with different carbon particle types including graphite particles, glassy carbon microparticles and carbon black. The relationship between carbon particle characteristics including particle size, particle purity, and particle morphology as well as particle mass loading on the fabrication and electrochemical properties of SPCEs is studied. SPCEs were plasma treated for surface activation and the electrochemical properties of both untreated and plasma treated SPCEs are also compared. SPCEs displayed distinct analytical utilities characterized through solvent window and double layer capacitance. Cyclic voltammetry (CV) of several standard redox probes, FcTMA+, ferri/ferrocyanide, and pAP was used to establish the effects of carbon particle type and plasma treatment on electron transfer kinetics of SPCEs. CV of the biologically relevant molecules uric acid, NADH and dopamine was employed to further illustrate the differences in sensing and fouling characteristics of SPCEs fabricated with different carbon particle types. SEM imaging revealed significant differences in the SPCE surface microstructures. This systematic study demonstrates that the electrochemical properties of SPCEs can be tuned and significantly improved through careful selection of carbon particle type and plasma cleaning with a goal toward the development of better performing electrochemical point-of-need sensors.
Collapse
Affiliation(s)
- Alyssa A Kava
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States.
| |
Collapse
|
24
|
Sonia J, Zanhal GM, Prasad KS. Low cost paper electrodes and the role of oxygen functionalities and edge-plane sites towards trolox sensing. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Baharfar M, Rahbar M, Tajik M, Liu G. Engineering strategies for enhancing the performance of electrochemical paper-based analytical devices. Biosens Bioelectron 2020; 167:112506. [PMID: 32823207 DOI: 10.1016/j.bios.2020.112506] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022]
Abstract
Applications of electrochemical detection methods in microfluidic paper-based analytical devices (μPADs) has revolutionized the area of point-of-care (POC) testing towards highly sensitive and selective quantification of various (bio)chemical analytes in a miniaturized, low-coat, rapid, and user-friendly manner. Shortly after the initiation, these relatively new modulations of μPADs, named as electrochemical paper-based analytical devices (ePADs), gained widespread popularity within the POC research community thanks to the inherent advantages of both electrochemical sensing and usage of paper as a suitable substrate for POC testing platforms. Even though general aspects of ePADs such as applications and fabrication techniques, have already been reviewed multiple times in the literature, herein, we intend to provide a critical engineering insight into the area of ePADs by focusing particularly on the practical strategies utilized to enhance their analytical performance (i.e. sensitivity), while maintaining the desired simplicity and efficiency intact. Basically, the discussed strategies are driven by considering the parameters potentially affecting the generated electrochemical signal in the ePADs. Some of these parameters include the type of filter paper, electrode fabrication methods, electrode materials, fluid flow patterns, etc. Besides, the limitations and challenges associated with the development of ePADs are discussed, and further insights and directions for future research in this field are proposed.
Collapse
Affiliation(s)
- Mahroo Baharfar
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney NSW, 2052, Australia
| | - Mohammad Rahbar
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney NSW, 2052, Australia
| | - Mohammad Tajik
- School of Chemistry, The University of New South Wales, Sydney NSW, 2052, Australia
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney NSW, 2052, Australia.
| |
Collapse
|
26
|
Jang I, Carrão DB, Menger RF, Moraes de Oliveira AR, Henry CS. Pump-Free Microfluidic Rapid Mixer Combined with a Paper-Based Channel. ACS Sens 2020; 5:2230-2238. [PMID: 32583663 DOI: 10.1021/acssensors.0c00937] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Capillary forces are commonly employed to transport fluids in pump-free microfluidic platforms such as paper-based microfluidics. However, since paper is a porous material consisting of nonuniform cellulose fibers, it has some limitations in performing stable flow functions like mixing. Here, we developed a pump-free microfluidic device that enables rapid mixing by combining paper and plastic. The device was fabricated by laminating transparency film and double-sided adhesive and is composed of an overlapping inlet ending in a paper-based reaction area. The mixing performance of the developed device was confirmed experimentally using aqueous dyes and pH indicators. In addition, the absolute mixing index was evaluated by numerically calculating the concentration field across the microfluidic channels. To demonstrate the utility of the new approach, the detection of an organophosphate pesticide was carried out using a colorimetric enzymatic inhibition assay. The developed device and a smartphone application were used to detect organophosphate pesticide on food samples, demonstrating the potential for onsite analysis.
Collapse
Affiliation(s)
- Ilhoon Jang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| | - Daniel B. Carrão
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- Departamento de Quı́mica, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14090-901, SP, Brazil
| | - Ruth F. Menger
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Anderson R. Moraes de Oliveira
- Departamento de Quı́mica, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14090-901, SP, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT—DATREM), Unesp, Institute of Chemistry, P.O. Box 355, 14800-900 Araraquara, SP, Brazil
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
27
|
Emerging applications of paper-based analytical devices for drug analysis: A review. Anal Chim Acta 2020; 1116:70-90. [DOI: 10.1016/j.aca.2020.03.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/28/2020] [Accepted: 03/07/2020] [Indexed: 02/07/2023]
|
28
|
Barragan JT, Kubota LT. Minipotentiostat controlled by smartphone on a micropipette: A versatile, portable, agile and accurate tool for electroanalysis. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Pradela-Filho LA, Noviana E, Araújo DAG, Takeuchi RM, Santos AL, Henry CS. Rapid Analysis in Continuous-Flow Electrochemical Paper-Based Analytical Devices. ACS Sens 2020; 5:274-281. [PMID: 31898461 DOI: 10.1021/acssensors.9b02298] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A simple and low-cost continuous-flow (CF) electrochemical paper-based analytical device (ePAD) coupled with thermoplastic electrodes (TPEs) was developed. The fast, continuous flow combined with flow injection analysis was made possible by adding two inlet reservoirs to the same paper-based hollow channel flowing over detection electrodes, terminating in a fan-shaped pumping reservoir. The upstream inlet reservoir was filled with buffer and provided constant flow through the device. Sample injections were performed by adding 2 μL of the sample to the downstream sample inlet. Differences in flow resistance resulted in sample plugs displacing buffer as the solution flowed over the working electrodes. The electrodes were fabricated by mixing carbon black and polycaprolactone (50% w/w). CF-TPE-ePADs were characterized with chronoamperometry using ferrocenylmethyl trimethylammonium as the electrochemical probe. Optimized flow rates and injection volumes gave analysis times roughly an order of magnitude faster than those of previously reported flow injection analysis ePADs. To demonstrate applicability, the CF-TPE-ePADs were used to quantify caffeic acid in three different tea samples. The proposed method had a linear range from 10 to 500 μmol L-1 and limits of detection and quantification of 2.5 and 8.3 μmol L-1, respectively. Our approach is promising for fabricating simple, inexpensive, yet high-performance, flow injection analysis devices using paper substrates and easy-to-make electrodes that do not require external mechanical pumping systems or complicated valves.
Collapse
Affiliation(s)
- Lauro A. Pradela-Filho
- Instituto de Química, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Minas Gerais, Uberlândia, MG 38400-902, Brasil
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eka Noviana
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Diele A. G. Araújo
- Instituto de Química, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Minas Gerais, Uberlândia, MG 38400-902, Brasil
| | - Regina M. Takeuchi
- Instituto de Química, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Minas Gerais, Uberlândia, MG 38400-902, Brasil
| | - André L. Santos
- Instituto de Química, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Minas Gerais, Uberlândia, MG 38400-902, Brasil
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
30
|
Noviana E, McCord CP, Clark KM, Jang I, Henry CS. Electrochemical paper-based devices: sensing approaches and progress toward practical applications. LAB ON A CHIP 2020; 20:9-34. [PMID: 31620764 DOI: 10.1039/c9lc00903e] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Paper-based sensors offer an affordable yet powerful platform for field and point-of-care (POC) testing due to their self-pumping ability and utility for many different analytical measurements. When combined with electrochemical detection using small and portable electronics, sensitivity and selectivity of the paper devices can be improved over naked eye detection without sacrificing portability. Herein, we review how the field of electrochemical paper-based analytical devices (ePADs) has grown since it was introduced a decade ago. We start by reviewing fabrication methods relevant to ePADs with more focus given to the electrode fabrication, which is fundamental for electrochemical sensing. Multiple sensing approaches applicable to ePADs are then discussed and evaluated to present applicability, advantages and challenges associated with each approach. Recent applications of ePADs in the fields of clinical diagnostics, environmental testing, and food analysis are also presented. Finally, we discuss how the current ePAD technologies have progressed to meet the analytical and practical specifications required for field and/or POC applications, as well as challenges and outlook.
Collapse
Affiliation(s)
- Eka Noviana
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA. and Department of Pharmaceutical Chemistry, School of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Cynthia P McCord
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Kaylee M Clark
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ilhoon Jang
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA. and Institute of Nano Science and Technology, Hanyang University, Seoul, South Korea
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
31
|
Kava AA, Beardsley C, Hofstetter J, Henry CS. Disposable glassy carbon stencil printed electrodes for trace detection of cadmium and lead. Anal Chim Acta 2019; 1103:58-66. [PMID: 32081189 DOI: 10.1016/j.aca.2019.12.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/25/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022]
Abstract
Cadmium (Cd) and lead (Pb) pollution is a significant environmental and human health concern, and methods to detect Cd and Pb on site are valuable. Stencil-printed carbon electrodes (SPCEs) are an attractive electrode material for point-of-care (POC) applications due to their low cost, ease of fabrication, disposability and portability. At present, SPCEs are exclusively formulated from graphitic carbon powder and conductive carbon ink. However, graphitic carbon SPCEs are not ideal for heavy metal sensing due to the heterogeneity of graphitic SPCE surfaces. Moreover, SPCEs typically require extensive modification to provide desirable detection limits and sensitivity at the POC, significantly increasing cost and complexity of analysis. While there are many examples of chemically modified SPCEs, the bulk SPCE composition has not been studied for heavy metal detection. Here, a glassy carbon microparticle stencil printed electrode (GC-SPE) was developed. The GC-SPEs were first characterized with SEM and cyclic voltammetry and then optimized for Cd and Pb detection with an in situ Bi-film plated. The GC-SPEs require no chemical modification or pretreatment significantly decreasing the cost and complexity of fabrication. The detection limits for Cd and Pb were estimated to be 0.46 μg L-1 and 0.55 μg L-1, respectively, which are below EPA limits for drinking water (5 μg L-1 Cd and 10 μg L-1 Pb) [1]. The reported GC-SPEs are advantageous with their low cost, ease of fabrication and use, and attractive performance. The GC-SPEs can be used for low-level metal detection at the POC as shown in the report herein.
Collapse
Affiliation(s)
- Alyssa A Kava
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States
| | - Chloe Beardsley
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States; Access Sensor Technologies, Fort Collins, CO, 80526, United States
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States.
| |
Collapse
|
32
|
Dias AA, Chagas CLS, Silva-Neto HDA, Lobo-Junior EO, Sgobbi LF, de Araujo WR, Paixão TRLC, Coltro WKT. Environmentally Friendly Manufacturing of Flexible Graphite Electrodes for a Wearable Device Monitoring Zinc in Sweat. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39484-39492. [PMID: 31524381 DOI: 10.1021/acsami.9b12797] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Electrochemical sensors based on graphite and polymers have emerged as powerful analytical tools for bioanalytical applications. However, most of the fabrication processes are not environmentally friendly because they often involve the use of toxic reagents and generate waste. This study describes an alternative method to produce flexible electrodes in plastic substrates using graphite powder and thermal laminating sheets by solid-solid deposition through hot compression, without the use of hazardous chemical reagents. The electrodes developed through the proposed approach have successfully demonstrated flexibility, robustness, reproducibility (relative standard deviation around 6%), and versatility. The electrodes were thoroughly characterized by cyclic voltammetry, electrochemical impedance spectroscopy, Raman spectroscopy, and scanning electron microscopy. As a proof of concept, the electrode surfaces were modified with bismuth and used for zinc analysis in sweat. The modified electrodes presented linearity (R2 = 0.996) for a wide zinc concentration range (50-2000 ppb) and low detection limit (4.31 ppb). The proposed electrodes were tested using real sweat samples and the achieved zinc concentrations did not differ statistically from the data obtained by atomic absorption spectroscopy. To allow wearable applications, a 3D-printed device was fabricated, integrated with the proposed electrochemical system, and fixed at the abdomen by using an elastic tape to collect, store, and analyze the sweat sample. The matrix effect test was performed, spiking the real sample with different zinc levels, and the recovery values varied between 85 and 106%, thus demonstrating adequate accuracy and robustness of the flexible electrodes developed based on the proposed fabrication method.
Collapse
Affiliation(s)
- Anderson A Dias
- Instituto de Química , Universidade Federal de Goiás , Goiânia , Goiás 74690-900 , Brazil
| | - Cyro L S Chagas
- Departamento de Química Fundamental, Instituto de Química , Universidade de São Paulo , São Paulo , São Paulo 05508-000 , Brazil
| | | | - Eulício O Lobo-Junior
- Instituto de Química , Universidade Federal de Goiás , Goiânia , Goiás 74690-900 , Brazil
| | - Lívia F Sgobbi
- Instituto de Química , Universidade Federal de Goiás , Goiânia , Goiás 74690-900 , Brazil
| | - William R de Araujo
- Departamento de Química Analítica, Instituto de Química , Universidade Estadual de Campinas , Campinas , São Paulo 13083-970 , Brazil
| | - Thiago R L C Paixão
- Departamento de Química Fundamental, Instituto de Química , Universidade de São Paulo , São Paulo , São Paulo 05508-000 , Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica , Campinas , São Paulo 13084-971 , Brazil
| | - Wendell K T Coltro
- Instituto de Química , Universidade Federal de Goiás , Goiânia , Goiás 74690-900 , Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica , Campinas , São Paulo 13084-971 , Brazil
| |
Collapse
|
33
|
Berg KE, Leroux YR, Hapiot P, Henry CS. Increasing Applications of Graphite Thermoplastic Electrodes with Aryl Diazonium Grafting. ChemElectroChem 2019. [DOI: 10.1002/celc.201901048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kathleen E. Berg
- Department of Chemistry Colorado State University 1872 Campus Delivery Fort Collins, CO 80523 USA
| | - Yann R. Leroux
- CNRS, ISCR – UMR 6226 Université de Rennes 1 F-35000 Rennes France
| | - Philippe Hapiot
- CNRS, ISCR – UMR 6226 Université de Rennes 1 F-35000 Rennes France
| | - Charles S. Henry
- Department of Chemistry Colorado State University 1872 Campus Delivery Fort Collins, CO 80523 USA
| |
Collapse
|
34
|
|