1
|
Lv L, Tao Q, Kuang Y, Zhang T, Wang X. A novel multimodal aptasensor for Patulin detection in fruit products based on high-performance RuMOF@hydrogel and versatile pericarp-derived carbonized polymer dots. Food Chem 2024; 461:140930. [PMID: 39191034 DOI: 10.1016/j.foodchem.2024.140930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Patulin (PAT) is a widespread fruit toxin. Trace-level PAT exposure can cause serious harm to human health. Herein, a multimodal PAT aptasensor was designed based on Ru(bpy)32+-based metal organic framework composited hydrogel (RuMOF@hydrogel) and versatile banana peel-derived carbonized polymer dots (BPPDs). RuMOF@hydrogel modified magnetic-electrode exhibited excellent anodic and cathodic electrochemiluminescence (ECL) emission and stability. Meanwhile, the BPPDs could enhance anodic ECL of RuMOF@hydrogel, and also show excellent fluorescence (FL) and photothermal (PT) properties. With the aid of PAT-triggered hybridization chain reaction and magnetic separation, ECL, FL, and PT responses could be recorded concurrently. The detection limit can reach as low as 0.25 fg mL-1. The ratiometric ECL quantitation ensured the sensitivity and accuracy of this assay. And visual FL and portable PT modes contributed to the utility. Furthermore, this aptasensor demonstrated better performances than HPLC in fruit products and the protocol can be extended to determine various contaminants in foods.
Collapse
Affiliation(s)
- Liangrui Lv
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qin Tao
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yijing Kuang
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Tingting Zhang
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoying Wang
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
2
|
Wood AC, Johnson EC, Prasad RRR, Sullivan MV, Turner NW, Armes SP, Staniland SS, Foster JA. Phage Display Against 2D Metal-Organic Nanosheets as a New Route to Highly Selective Biomolecular Recognition Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406339. [PMID: 39535384 DOI: 10.1002/smll.202406339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Peptides are important biomarkers for various diseases, however distinguishing specific amino-acid sequences using artificial receptors remains a major challenge in biomedical sensing. This study introduces a new approach for creating highly selective recognition surfaces using phage display biopanning against metal-organic nanosheets (MONs). Three MONs (ZIF-7, ZIF-7-NH2, and Hf-BTB-NH2) are added to a solution containing every possible combination of seven-residue peptides attached to bacteriophage hosts. The highest affinity peptides for each MON are isolated through successive bio-panning rounds. Comparison of the surface properties of the MONs and high-affinity peptides provide useful insights into the relative importance of electrostatic, hydrophobic, and co-ordination bonding interactions in each system, aiding the design of future MONs. Coating of the Hf-BTB-NH2 MONs onto a quartz crystal microbalance (QCM) produced a five-fold higher signal for phage with the on-target peptide sequence compared to those with generic sequences. Surface plasmon resonance (SPR) studies produce a 4600-fold higher equilibrium dissociation constant (KD) for on-target sequences and are comparable to those of antibodies (KD = 4 x 10-10 m). It is anticipated that insights from the biopanning approach, combined with the highly tunable nature of MONs, will lead to a new generation of highly selective recognition surfaces for use in biomedical sensors.
Collapse
Affiliation(s)
- Amelia C Wood
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Edwin C Johnson
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Ram R R Prasad
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Mark V Sullivan
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Nicholas W Turner
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Steven P Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Sarah S Staniland
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Jonathan A Foster
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| |
Collapse
|
3
|
Xie H, Yin Z, Wei G, Li B, Cui H, Fan H, Zhang J. Sensitive detection of K-ras gene by a dual-mode "on-off-on" sensor based on bipyridine ruthenium-MOF and bis-enzymatic cleavage technology. Bioelectrochemistry 2024; 161:108845. [PMID: 39514942 DOI: 10.1016/j.bioelechem.2024.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/27/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
This study developed a dual-mode "on-off-on" sensor based on a bipyridine ruthenium metal-organic framework (Ru-MOF) and dual enzyme cleavage technology for the sensitive detection of the K-ras gene. The sensor combines electrogenerated chemiluminescence (ECL) and fluorescence (FL) detection modes, achieving high sensitivity and specificity in detecting the K-ras gene through catalytic hairpin assembly (CHA) and dual enzyme cleavage reactions. Experimental results showed that the detection limits for the K-ras gene were 0.044 fM (ECL) and 0.16 fM (FL), demonstrating excellent selectivity and stability during detection. Through testing actual samples, the sensor has shown potential for application in complex biological environments. This method offers an efficient and reliable new tool for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Haotian Xie
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China
| | - Zhaojiang Yin
- Clinical Medical Research Center, Yichun People's Hospital, Yichun, China
| | - Guobin Wei
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China
| | - Binghui Li
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China
| | - Hanfeng Cui
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China.
| | - Hao Fan
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China.
| | - Jing Zhang
- Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China.
| |
Collapse
|
4
|
Kala ABK, Rajeevan G, Madanan AS, Varghese S, Abraham MK, Shkhair AI, Indongo G, George S. Immunosensing of Cardiac Troponin I (cTnI) Using a Two-Electrode Electrochemiluminescence Platform with Near Persisting Luminescence Generated on a Ru(bpy) 32+-Tripropylamine System. ACS APPLIED BIO MATERIALS 2024. [PMID: 39487038 DOI: 10.1021/acsabm.4c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
An economical, rapid, and ultrasensitive detection of biomolecules in clinical settings is very crucial, particularly for the early detection of Cardiac Troponin I (cTnI), which is the gold standard biomarker for Acute Myocardial Infarction (AMI). Electrochemiluminescence (ECL) has risen in prominence as an important technique for in vitro diagnosis and detection by virtue of its high sensitivity reaching a femtomolar level. This study introduces an economically feasible nanoplatform for ECL immunosensing, consisting of a gold nanoparticle (AuNP) with Ru(bpy)32+ and tripropylamine (TPA) system, which is a potential ECL luminophore and coreactant system. AuNPs serve the role of an ECL signal enhancer as well as the carrier of antibody, which enables the creation of a label-free immunosensor for antigen-antibody interactions. The prepared immunosensor detected cTnI with a detection limit (LOD) of 0.03 ng/mL. This potential immunosensor provides appreciable results in the detection of cTnI from spiked real serum analysis, which shows its potential application in low-resource clinical settings.
Collapse
Affiliation(s)
- Arathy B K Kala
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Anju S Madanan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
- College of Food Science, Al-Qasim Green University, Babylon 51013, Iraq
| | - Geneva Indongo
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
- International Inter University Centre for Sensing and Imaging (IIUCSI), Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| |
Collapse
|
5
|
Ahmad A, Noor AE, Anwar A, Majeed S, Khan S, Ul Nisa Z, Ali S, Gnanasekaran L, Rajendran S, Li H. Support based metal incorporated layered nanomaterials for photocatalytic degradation of organic pollutants. ENVIRONMENTAL RESEARCH 2024; 260:119481. [PMID: 38917930 DOI: 10.1016/j.envres.2024.119481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/22/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
An effective approach to producing sophisticated miniaturized and nanoscale materials involves arranging nanomaterials into layered hierarchical frameworks. Nanostructured layered materials are constructed to possess isolated propagation assets, massive surface areas, and envisioned amenities, making them suitable for a variety of established and novel applications. The utilization of various techniques to create nanostructures adorned with metal nanoparticles provides a secure alternative or reinforcement for the existing physicochemical methods. Supported metal nanoparticles are preferred due to their ease of recovery and usage. Researchers have extensively studied the catalytic properties of noble metal nanoparticles using various selective oxidation and hydrogenation procedures. Despite the numerous advantages of metal-based nanoparticles (NPs), their catalytic potential remains incompletely explored. This article examines metal-based nanomaterials that are supported by layers, and provides an analysis of their manufacturing, procedures, and synthesis. This study incorporates both 2D and 3D layered nanomaterials because of their distinctive layered architectures. This review focuses on the most common metal-supported nanocomposites and methodologies used for photocatalytic degradation of organic dyes employing layered nanomaterials. The comprehensive examination of biological and ecological cleaning and treatment techniques discussed in this article has paved the way for the exploration of cutting-edge technologies that can contribute to the establishment of a sustainable future.
Collapse
Affiliation(s)
- Awais Ahmad
- Department of Chemistry, The University of Lahore, Lahore Pakistan
| | - Arsh E Noor
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Aneela Anwar
- Biomedical Engineering Department, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Safia Khan
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan, 250101, China
| | - Zaib Ul Nisa
- Department of Zoology, Government College University Faisalabad, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Hu Li
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan, 250101, China
| |
Collapse
|
6
|
Jiang J, Liu M, Xu D, Jiang T, Zhang J. Quantitative detection of microcystin-LR in Bellamya aeruginosa by thin-layer chromatography coupled with surface-enhanced Raman spectroscopy based on in-situ ZIF-67/Ag NPs/Au NWs composite substrate. Food Chem 2024; 452:139481. [PMID: 38723565 DOI: 10.1016/j.foodchem.2024.139481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
As a hypertoxic natural toxin, the risk of Microcystin-leucine-arginine (MC-LR) residues in Bellamya aeruginosa deserves more attention. Herein, employing the conventional thin-layer chromatography (TLC) technology and a novel surface-enhanced Raman scattering (SERS) substrate, a TLC-SERS chip was fabricated for the purification and quantitative detection of MC-LR in complex samples. The substrate exhibited excellent SERS performance with an enhancement factor of 6.6 × 107, a low detection limit of 2.27 × 10-9 mM for MC-LR, excellent uniformity and reproducibility, as well as a wide linear range. With the application of TLC, the MC-LR was efficiently purified and the concentration was increased to >3 times. Ultimately, recovery rates fluctuated between 93.28% and 101.66% were obtained from the TLC-SERS chip. On balance, the TLC-SERS chip has a robust capacity for achieving rapid and stable quantitative detection of MC-LR, which promises to improve the efficiency of food safety monitoring.
Collapse
Affiliation(s)
- Jing Jiang
- College of Food and Pharmaceutical Sciences, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| | - Min Liu
- College of Food and Pharmaceutical Sciences, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Dalun Xu
- College of Food and Pharmaceutical Sciences, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| | - Tao Jiang
- College of Food and Pharmaceutical Sciences, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| | - Jinjie Zhang
- College of Food and Pharmaceutical Sciences, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| |
Collapse
|
7
|
Qin L, Liang W, Yang W, Tang S, Yuan R, Yang J, Li Y, Hu S. The tightest self-assembled ruthenium metal-organic framework combined with proximity hybridization for ultrasensitive electrochemiluminescence analysis of paraquat. Anal Bioanal Chem 2024; 416:4739-4748. [PMID: 38520588 DOI: 10.1007/s00216-024-05237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Metal-organic frameworks (MOFs), as porous materials, have great potential for exploring high-performance electrochemiluminescence (ECL) probes. However, the constrained applicability of MOFs in the realm of ECL biosensing is primarily attributed to their inadequate water stability, which consequently impairs the overall ECL efficiency. Herein, we developed a competitive ECL biosensor based on a novel tightest structural ruthenium-based organic framework emitter combining the proximity hybridization-induced catalytic hairpin assembly (CHA) strategy and the quenching effect between the Ru-MOF and ferrocene for detecting paraquat (PQ). Through a simple hydrothermal synthesis strategy, ruthenium and 2,2'-bipyrimidine (bpm) are head-to-head self-assembled to obtain a novel tightest structural Ru-MOF. Due to the metal-ligand charge-transfer (MLCT) effect between ruthenium and the bpm ligand and the connectivity between the internal chromophore units, the Ru-MOF exhibits strong ECL emissions. Meanwhile, the coordination-driven Ru-MOF utilizes strong metal-organic coordination bonds as building blocks, which effectively solves the problem of serious leakage of chromophores caused by water solubility. The sensitive analysis of PQ is realized in the range of 1 pg/mL to 1 ng/mL with a detection limit of 0.352 pg/mL. The tightest structural Ru-MOF driven by the coordination of ruthenium and bridging ligands (2,2'-bipyrimidine, bpm) provides new horizons for exploring high-performance MOF-based ECL probes for quantitative analysis of biomarkers.
Collapse
Affiliation(s)
- Ling Qin
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Wenbin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Weiguo Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Shenghan Tang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
- Analytical & Testing Center, Southwest University, Chongqing, 400715, People's Republic of China
| | - Jun Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Yan Li
- Analytical & Testing Center, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Shanshan Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
8
|
Fu Y, Pan J, Liu Y, Lu C. Sulfonic Acid-Functionalized Tetraphenylethylene-Amplified Electrochemiluminescence by Regulating π-π Interaction. Anal Chem 2024. [PMID: 39031062 DOI: 10.1021/acs.analchem.4c02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
The electrochemiluminescence (ECL) effectiveness of the tris(bipyridine) ruthenium(II) (Ru(bpy)32+) system is hampered by aggregation-caused quenching (ACQ) in optoelectronic systems as a result of π-π accumulation of the aromatic ring structure. In this work, a negatively charged tetraphenylvinyl molecule (TPE-2SO3Na, TPE-4SO3Na) was synthesized to modify the electrode interface, and the π-π accumulation between Ru(bpy)32+ molecules was transformed into the π-π interaction between Ru(bpy)32+ and TPE molecules. Interestingly, the ECL signal intensity of the Ru(bpy)32+-tripropylamine (TPA) system in the presence of TPE-2SO3Na was increased by about 15 times due to the π-π action and electrostatic action. In comparison with traditional physical packaging with porous zeolites, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs), the fabricated electrode interface modification strategy was simple and efficient to avoid π-π accumulation in aqueous solutions. Our success will inspire other researchers to investigate the supramolecular interaction (π-π interaction, electrostatic interaction, hydrophilic interaction, and host-guest interaction) at the electrode interface to amplify the ECL intensities of Ru(bpy)32+.
Collapse
Affiliation(s)
- Yizhuo Fu
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Jingke Pan
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Yuhao Liu
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Chao Lu
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Bu S, Song L, Ding Y, Yang Y, Liang Y, Chai Y, Zhang P, Fu Y, Yuan R. Dual-Ligand Ruthenium Coordination Polymer-Derived Self-Enhanced Electrochemiluminescent Emitters for Sensitive Detection of Procalcitonin. Anal Chem 2024; 96:10809-10816. [PMID: 38886176 DOI: 10.1021/acs.analchem.4c02100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Ru-based electrochemiluminescence (ECL) coordination polymers are widely employed for bioanalysis and medical diagnosis. However, commonly used Ru-based coordination polymers face the limitation of low efficiency due to the long distance between the ECL reagent and the coreactant dispersed in detecting solution. Herein, we report a dual-ligand self-enhanced ECL coordination polymer, composed of tris(4,4'-dicarboxylic acid-2,2'-bipyridyl) ruthenium(II) dichloride (Ru(dcbpy)32+) as ECL reactant ligand and ethylenediamine (EDA) as corresponding coreactant ligand into Zn2+ metal node, termed Zn-Ru-EDA. Zn-Ru-EDA shows excellent ECL performance which is attributed to the effective intramolecular electron transport between the two ligands. Furthermore, the dual-ligand polymer allows an anodic low excitation potential (+1.09 V) luminescence. The shift in the energy level of the highest occupied molecular orbital (HOMO) upward after the synthesis of the Zn-Ru-EDA has resulted in a reduced excitation potential. The low excitation potential reduced biomolecular damage and the destruction of the modified electrodes. The ECL biosensor has been constructed using Zn-Ru-EDA with high ECL efficiency for the ultrasensitive detection of a bacterial infection and sepsis biomarker, procalcitonin (PCT), in the range from 1.00 × 10-6 to 1.00 × 10 ng·mL-1 with outstanding selectivity, and the detection limit was as low as 0.47 fg·mL-1. Collectively, the dual-ligand-based self-enhanced polymer may provide an ideal strategy for high ECL efficiency improvement as well as designing new self-enhanced multiple-ligand-based coordination in sensitive biomolecular detection for early disease diagnostics.
Collapse
Affiliation(s)
- Shuchun Bu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Li Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yilan Ding
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yuqin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yufei Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Pu Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yingzi Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
10
|
Hu C, Cao L, Wu X, Chen G, Li Y, Wang J, Huang C, Zhan L. Coreactant-free aggregation-induced electrochemiluminescence system based on the novel zinc-luminol metal-organic gel for ultrasensitive detection of PiRNA-823. Biosens Bioelectron 2024; 255:116263. [PMID: 38593715 DOI: 10.1016/j.bios.2024.116263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/10/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024]
Abstract
Aggregation-induced electrochemiluminescence (AIECL) technology has aroused widespread interest due to the significant improve in ECL response by solving the problems of aggregation-caused quenching and poor water solubility of the luminophore. However, the existing AIECL emitters still suffer from low ECL efficiency, additional coreactants and complex synthesis steps, which greatly limit their applications. Herein, luminol, as a kind of AIE molecule, was assembled with Zn2+ nodes to obtain a novel microflower-like Zinc-luminol metal-organic gel (Zn-MOG) by one-step method. In the light of the strong affinity of N atoms in luminol ligand to Zn2+, Zn-MOG with vigorous viscosity and stability can be formed immediately after vortex oscillation, overcoming the main difficulties of the complicated synthesis steps and poor film-forming performance encountered in current AIECL materials. Impressively, an AIECL resonance energy transfer (RET) biosensor was constructed using Zn-MOG as a donor and Alexa Fluor 430 as an acceptor in combination with DNA-Fuel-driven target recycling amplification for the ultrasensitive detection of PiRNA-823. The fabricated biosensor exhibited a wide linear relationship in the range of 100 aM to 100 pM and a detection limit as low as 60.0 aM. This work is the first to realize the construction of ECL emitters using the AIE effect of luminol, which provides inspiration for the design of AIECL systems without adding coreactants.
Collapse
Affiliation(s)
- Congyi Hu
- Key Laboratory of Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Liping Cao
- Key Laboratory of Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Xinjie Wu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Gaoxu Chen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yuanfang Li
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jian Wang
- Key Laboratory of Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Chengzhi Huang
- Key Laboratory of Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| | - Lei Zhan
- Key Laboratory of Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
11
|
Al-Hazmi GH, Albedair LA, Alatawi RAS, Alnawmasi JS, Alsuhaibani AM, El-Desouky MG. Enhancing trimethoprim pollutant removal from wastewater using magnetic metal-organic framework encapsulated with poly (itaconic acid)-grafted crosslinked chitosan composite sponge: Optimization through Box-Behnken design and thermodynamics of adsorption parameters. Int J Biol Macromol 2024; 268:131947. [PMID: 38685542 DOI: 10.1016/j.ijbiomac.2024.131947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Trimethoprim (TMP), an antibiotic contaminant, can be effectively removed from water by using the innovative magnetic metal-organic framework (MOF) composite sponge Fe3O4@Rh-MOF@PIC, which is shown in this study. The composite is made up of magnetite (Fe3O4) nanoparticles and a rhodium MOF embedded in a poly(itaconic acid) grafted chitosan matrix. The structure and characteristics of the synthesized material were confirmed by thorough characterization employing SEM, FTIR, XPS, XRD, and BET techniques. Notably, the composite shows a high magnetic saturation of 64 emu g-1, which makes magnetic separation easier, according to vibrating sample magnetometry. Moreover, BET analysis revealed that the Fe3O4@Rh-MOF@PIC sponge had an incredibly high surface area of 1236.48 m2/g. Its outstanding efficacy was confirmed by batch adsorption tests, which produced a maximum adsorption capacity of 391.9 mg/g for the elimination of TMP. Due to its high porosity, magnetic characteristics, and superior trimethoprim uptake, this magnetic MOF composite sponge is a promising adsorbent for effective removal of antibiotics from contaminated water sources. An adsorption energy of 24.5 kJ/mol was found by batch investigations on the Fe3O4@Rh-MOF@PIC composite sponge for trimethoprim (TMP) adsorption. The fact that this value was up 8 kJ/mol suggests that the main mechanism controlling TMP absorption onto the sponge adsorbent is chemisorption. Chemisorption requires creating strong chemical interactions between adsorbate and adsorbent surface groups, unlike weaker physisorption. The magnetic composite sponge exhibited strong removal capabilities and high adsorption capacities for the antibiotic pollutant. The Fe3O4@Rh-MOF@PIC composite sponge also showed magnetism, which allowed for easy magnetic separation after adsorption. Over the course of 6 cycles, it showed outstanding reusability, and XRD confirmed that its composition was stable. The high surface area MOF's pore filling, hydrogen bonding, π-π stacking, and electrostatic interactions were the main trimethoprim adsorption mechanisms. This magnetic composite is feasible and effective for removing antibiotics from water because of its separability, reusability, and synergistic adsorption mechanisms via electrostatics, H-bonding, and π-interactions. The adsorption results were optimized using Box Behnken-design (BBD).
Collapse
Affiliation(s)
- Ghaferah H Al-Hazmi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Lamia A Albedair
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Raedah A S Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Jawza Sh Alnawmasi
- Department of Chemistry, College of Science, Qassim University, Buraydah 51452, Qassim, Saudi Arabia
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sports Sciences, College of Sports Sciences & Physical Activity, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | |
Collapse
|
12
|
Peng C, Pang R, Li J, Wang E. Current Advances on the Single-Atom Nanozyme and Its Bioapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211724. [PMID: 36773312 DOI: 10.1002/adma.202211724] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Nanozymes, a class of nanomaterials mimicking the function of enzymes, have aroused much attention as the candidate in diverse fields with the arbitrarily tunable features owing to the diversity of crystalline nanostructures, composition, and surface configurations. However, the uncertainty of their active sites and the lower intrinsic deficiencies of nanomaterial-initiated catalysis compared with the natural enzymes promote the pursuing of alternatives by imitating the biological active centers. Single-atom nanozymes (SAzymes) maximize the atom utilization with the well-defined structure, providing an important bridge to investigate mechanism and the relationship between structure and catalytic activity. They have risen as the new burgeoning alternative to the natural enzyme from in vitro bioanalytical tool to in vivo therapy owing to the flexible atomic engineering structure. Here, focus is mainly on the three parts. First, a detailed overview of single-atom catalyst synthesis strategies including bottom-up and top-down approaches is given. Then, according to the structural feature of single-atom nanocatalysts, the influence factors such as central metal atom, coordination number, heteroatom doping, and the metal-support interaction are discussed and the representative biological applications (including antibacterial/antiviral performance, cancer therapy, and biosensing) are highlighted. In the end, the future perspective and challenge facing are demonstrated.
Collapse
Affiliation(s)
- Chao Peng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Ruoyu Pang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
13
|
Han T, Geng YQ, Zhang M, Cao Y, Zhu JJ. Aggregation-Induced Enhanced Electrochemiluminescence from Tris(bipyridine)ruthenium(II) Derivative Nanosheets for the Ultrasensitive Detection of Human Telomerase RNA. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306291. [PMID: 37775937 DOI: 10.1002/smll.202306291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Indexed: 10/01/2023]
Abstract
The traditional tris(bipyridine)ruthenium(II) complex suffers from the notorious aggregation-caused quenching effect, which greatly compromises its electrochemiluminescence (ECL) efficiency, thus hindering further applications in biosensing and clinical diagnosis. Here, the ultrathin tetraphenylethylene-active tris(bipyridine)ruthenium(II) derivative nanosheets (abbreviated as Ru-TPE NSs) are synthesized through a protein-assisted self-assembly strategy for ultrasensitive ECL detection of human telomerase RNA (hTR) for the first time. The synthesized Ru-TPE NSs exhibit the aggregation-induced enhanced ECL behavior and excellent water-dispersion. Surprisingly, up to a 106.5-fold increase in the ECL efficiency of Ru-TPE NSs is demonstrated compared with the dispersed molecules in an organic solution. The restriction of intramolecular motions is confirmed to be responsible for the significant ECL enhancement. Therefore, this proposed ECL biosensor shows high sensitivity and excellent selectivity for hTR based on Ru-TPE NSs as efficient ECL beacons and the catalytic hairpin assembly as signal amplification, whose detection limit is as low as 8.0 fm, which is far superior to the previously reported works. Here, a promising analytical method is provided for early clinical diagnosis and a new type of efficient ECL emitters with great application prospects is represented.
Collapse
Affiliation(s)
- Tingting Han
- Jiangsu Key Laboratory of Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yu-Qian Geng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Yue Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| |
Collapse
|
14
|
Hu H, Cui H, Yin X, Fan Q, Shuai H, Zhang J, Liao F, Xiong W, Jiang H, Fan H, Liu W, Wei G. Dual-mode fluorescence and electrochemiluminescence sensors based on Ru-MOF nanosheets for sensitive detection of apoE genes. J Mater Chem B 2024; 12:701-709. [PMID: 38131524 DOI: 10.1039/d3tb01934a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A fluorescence-electrochemiluminescence (FL-ECL) dual-mode sensor for apoE gene detection has been developed, leveraging the unique properties of ruthenium metal organic framework nanosheets (RuMOFNSs). The system utilizes the quenching effect of the Ru(bpy)32+ ECL signal by ferrocene, leading to the synthesis of a multi-electron electrical signal marker, bisferrocene. By immobilizing the P-DNA on RuMOFNSs, bisferrocene quenches both FL and ECL signals. The addition of T-DNA and the consequent formation of double-stranded DNA enable the ExoIII enzyme to excise the bisferrocene fragment, restoring the signals. The sensor demonstrates wide detection linear ranges (1 fM to 1 nM for FL and 0.01 fM to 10 pM for ECL) and remarkable sensitivity (0.048 fM for FL and 0.016 fM for ECL). The dual-mode design offers enhanced reliability through a self-correction feature, reducing false positives. Compared to single-mode sensors, the dual-mode sensor shows significant advantages. Real-world testing confirms the sensor's capacity for robust detection in actual samples, underscoring its promising application in early disease diagnosis. This innovative approach opens up avenues for multi-signal response sensors, offering significant potential for diagnostic technologies.
Collapse
Affiliation(s)
- Huiting Hu
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Hanfeng Cui
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Xia Yin
- JiangXi Province Hospital of Integrated Chinese and Western Medicine, Nan Chang, JiangXi 330004, China
| | - Qiqi Fan
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Hai Shuai
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Jing Zhang
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Fusheng Liao
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Wei Xiong
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Hedong Jiang
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Hao Fan
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Wenming Liu
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Guobing Wei
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| |
Collapse
|
15
|
Peng X, He R, Xu J, Cao C, Wen W, Zhang X, Wang S. Hybridization chain reaction-enhanced electrochemically mediated ATRP coupling high-efficient magnetic separation for electrochemical aptasensing of cardiac troponin I. Anal Chim Acta 2024; 1286:342034. [PMID: 38049236 DOI: 10.1016/j.aca.2023.342034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023]
Abstract
The sensitive and accurate detection of cardiac troponin I (cTnI) as a gold biomarker for cardiovascular diseases at an early stage is crucial but has long been a challenge. In this study, we presented such an electrochemical (EC) aptasensor by combining hybridization chain reaction (HCR)-enhanced electrochemically mediated atom transfer radical polymerization (eATRP) amplification with high-efficient separation of magnetic beads (MBs). Aptamer-modified MBs empowered effective recognition and separation of cTnI from complex samples with high specificity. The specific binding of cTnI and aptamer could release triggered DNA (T-DNA) into solution to drive an HCR process, which produced plentiful active sites for eATRP initiators labeling followed by initiating eATRP process. With the development of eATRP, a great many of electroactive polymer probes were continually in situ formed to generate amplified current output for signal enhancement. Compared to no amplification, HCR-enhanced eATRP promoted the signals by ∼10-fold, greatly improving detection sensitivity for low-abundant cTnI analysis. Integrating MBs as capture carriers with HCR-enhanced eATRP as amplification strategy, this EC aptasensor achieved a low detection limit of 10.9 fg/mL for cTnI detection. Furthermore, the reliable detectability and anti-interference were confirmed in serum samples, indicating its promising application toward early diagnosis of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaolun Peng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, 430056, Wuhan, China.
| | - Rongxiang He
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, 430056, Wuhan, China
| | - Junhui Xu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, 430056, Wuhan, China
| | - Chunhua Cao
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, 430056, Wuhan, China
| | - Wei Wen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, 430062, Wuhan, China
| | - Xiuhua Zhang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, 430062, Wuhan, China
| | - Shengfu Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, 430062, Wuhan, China.
| |
Collapse
|
16
|
Sheng M, Yu L, Peng Y, Wang Q, Huang J, Yang X. Combination of Ternary Electrochemiluminescence System of BNQDs/AgMOG-K 2S 2O 8 and Electrochemiluminescence Resonance Energy Transfer Strategy for Ultrasensitive Immunoassay of Amyloid-β Protein. Anal Chem 2024; 96:41-48. [PMID: 38100715 DOI: 10.1021/acs.analchem.3c02545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
In this work, based on boron nitride quantum dots (BNQDs) as energy donors and MnO2@MWCNTs-COOH as energy receptors, we designed an efficient electrochemiluminescence resonance energy transfer (ECL-RET) immunosensor for the detection of amyloid-β (Aβ42) protein, a biomarker of Alzheimer's disease (AD). First, the signal amplification of a ternary ECL system composed of BNQDs (as the ECL emitter), K2S2O8 (as the coreactant), and silver metal-organic gels (AgMOG, as the coreaction accelerator) was realized, and PDDA as stabilizer was added, a strong and stable initial ECL signal was obtained. AgMOG could not only support a large amount of BNQDs and Aβ42 capture antibody (Ab1) through Ag-N bond but also exhibit excellent ECL catalytic performance and enhance the luminescent intensity of BNQDs@PDDA-K2S2O8 system. In addition, due to the broad absorption spectrum of MnO2@MWCNTs-COOH and the extensive overlap with the ECL emission spectrum of BNQDs, the quenching probe Ab2-MnO2@MWCNTs-COOH could be introduced into the ternary system through a sandwich immune response. On this basis, the signal on-off ECL immunosensor was constructed to achieve the ultrasensitive detection of Aβ42 through signal transformation. Under the optimal conditions, the prepared ECL biosensor manifested a wide linear range (10 fg/mL-100 ng/mL) with a detection limit of 2.89 fg/mL and showed excellent stability, selectivity, and repeatability, which provided an effective strategy for the ultrasensitive detection of biomarkers in clinical analysis.
Collapse
Affiliation(s)
- Mengting Sheng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Linying Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
| | - Yao Peng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qian Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
| | - Xiurong Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
| |
Collapse
|
17
|
Cheng M, Zhang J, Huang T, Qin L, Dong H, Liao F, Fan H. A dual-mode sensor platform with adjustable electrochemiluminescence-fluorescence for selective detection of paraquat pesticide. Food Chem 2024; 430:137030. [PMID: 37523820 DOI: 10.1016/j.foodchem.2023.137030] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
This study presents functionalized metal-organic frameworks nanosheets (RuMOFNSs) with strong electrochemiluminescence (ECL) and fluorescence (FL) properties and a novel signal marker-tetraferrocene. Based on the efficient quenching effect of the tetraferrocene on RuMOFNSs, a "signal switch" ECL-FL dual-mode sensor is constructed for sensitive detection of paraquat (PQ). ECL and FL signals are annihilated after adding paraquat-aptamer DNA (PQ-Apt DNA) labeled with tetraferrocene since it is close to RuMOFNSs. PQ is added, and the strong binding and intermolecular interaction between PQ-Apt DNA and PQ induces spatial separation, with tetraferrocene groups far away from RuMOFNSs. At this point, ECL and FL signals are restored. The change in ECL and FL signals realized the quantitative determination of the PQ solution. In addition, the dual-mode sensor exhibits high sensitivity and specificity with detection limits as low as 0.008 ng/mL and 0.059 ng/mL. The proposed sensor is successfully applied to determine PQ, indicating its great application potential in the food industry.
Collapse
Affiliation(s)
- Mengqing Cheng
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China
| | - Jing Zhang
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China
| | - Ting Huang
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China
| | - Longshua Qin
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China
| | - Huanhuan Dong
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Fusheng Liao
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Hao Fan
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| |
Collapse
|
18
|
Sentic M, Trajkovic I, Manojlovic D, Stankovic D, Nikolic MV, Sojic N, Vidic J. Luminescent Metal-Organic Frameworks for Electrochemiluminescent Detection of Water Pollutants. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7502. [PMID: 38068246 PMCID: PMC10707531 DOI: 10.3390/ma16237502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 10/16/2024]
Abstract
The modern lifestyle has increased our utilization of pollutants such as heavy metals, aromatic compounds, and contaminants that are of rising concern, involving pharmaceutical and personal products and other materials that may have an important environmental impact. In particular, the ultimate results of the intense use of highly stable materials, such as heavy metals and chemical restudies, are that they turn into waste materials, which, when discharged, accumulate in environmental water bodies. In this context, the present review presents the application of metal-organic frameworks (MOFs) in electrochemiluminescent (ECL) sensing for water pollutant detection. MOF composites applied as innovative luminophore or luminophore carriers, materials for electrode modification, and the enhancement of co-reaction in ECL sensors have enabled the sensitive monitoring of some of the most common contaminants of emerging concern such as heavy metals, volatile organic compounds, pharmaceuticals, industrial chemicals, and cyanotoxins. Moreover, we provide future trends and prospects associated with ECL MOF composites for environmental sensing.
Collapse
Affiliation(s)
- Milica Sentic
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11001 Belgrade, Serbia; (M.S.); (I.T.)
| | - Ivana Trajkovic
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11001 Belgrade, Serbia; (M.S.); (I.T.)
| | - Dragan Manojlovic
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (D.M.); (D.S.)
| | - Dalibor Stankovic
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (D.M.); (D.S.)
| | - Maria Vesna Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade, Serbia;
| | - Neso Sojic
- Bordeaux INP, ISM, UMR CNRS 5255, University of Bordeaux, 33607 Pessac, France;
| | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institute, UMR 1319, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
19
|
Fan X, Yao X, Qiu M, Wu K, Deng A, Li J. Electrochemiluminescence resonance energy transfer immunoassay based on a porphyrin metal-organic framework and AuNPs/NSG for the sensitive detection of zearalenone. Analyst 2023; 148:5691-5697. [PMID: 37823327 DOI: 10.1039/d3an01418e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In this study, a novel electrochemiluminescence resonance energy transfer (ECL-RET) immunoassay was developed for the first time for the detection of zearalenone (ZEN). A porphyrin metal-organic framework (PCN-222), an emerging porphyrin-based ECL luminophore, was prepared by a simple hydrothermal method using tetrakis(4-carboxyphenyl) porphyrin, which has excellent ECL emission as well as good ECL efficiency. Because the ECL emission spectrum of PCN-222 is highly matched to the absorption spectrum of gold nanoparticle-modified graphene oxide (AuNPs/NSG) nanocomposites, they were used as donor-acceptor counterparts in this work for the ECL-RET strategy. Under optimal conditions, the ECL immunosensor showed a sensitive response to ZEN in a wide detection range, with a linearity of 0.0005-1000 ng mL-1 and a detection limit of 0.15 pg mL-1. In addition, the sensor showed good potential for application in the detection of wheat and corn samples, providing a new approach for the detection of mycotoxin-like contaminants such as ZEN in food grains.
Collapse
Affiliation(s)
- Xiaolin Fan
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Xun Yao
- Comprehensive Technology Center of Zhangjiagang Customs, Zhangjiagang, Jiangsu, 215600, P.R. China
| | - Mengqi Qiu
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Kang Wu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, P.R. China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
20
|
Păun C, Motelică L, Ficai D, Ficai A, Andronescu E. Metal-Organic Frameworks: Versatile Platforms for Biomedical Innovations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6143. [PMID: 37763421 PMCID: PMC10532503 DOI: 10.3390/ma16186143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
This review article explores the multiple applications and potential of metal-organic frameworks (MOFs) in the biomedical field. With their highly versatile and tunable properties, MOFs present many possibilities, including drug delivery, biomolecule recognition, biosensors, and immunotherapy. Their crystal structure allows precise tuning, with the ligand typology and metal geometry playing critical roles. MOFs' ability to encapsulate drugs and exhibit pH-triggered release makes them ideal candidates for precision medicine, including cancer treatment. They are also potential gene carriers for genetic disorders and have been used in biosensors and as contrast agents for magnetic resonance imaging. Despite the complexities encountered in modulating properties and interactions with biological systems, further research on MOFs is imperative. The primary focus of this review is to provide a comprehensive examination of MOFs in these applications, highlighting the current achievements and complexities encountered. Such efforts will uncover their untapped potential in creating innovative tools for biomedical applications, emphasizing the need to invest in the continued exploration of this promising field.
Collapse
Affiliation(s)
- Cătălin Păun
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Ludmila Motelică
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Denisa Ficai
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 1-7, 050054 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov St. 3, 050054 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov St. 3, 050054 Bucharest, Romania
| |
Collapse
|
21
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
22
|
Qin L, Huang T, Cui H, Cheng M, Wei G, Liao F, Xiong W, Jiang H, Zhang J, Fan H. A fluorescence-electrochemiluminescence dual-mode sensor based on a "switch" system for highly selective and sensitive K-ras gene detection. Biosens Bioelectron 2023; 235:115385. [PMID: 37229843 DOI: 10.1016/j.bios.2023.115385] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Herein, an fluorescence (FL)-electrochemiluminescence (ECL) dual-mode biosensor is constructed based on the dual-signal "turn-on" strategy of functionalized metal-organic frameworks nanosheets (RuMOFNSs)-tetraferrocene for K-ras gene detection, and the mechanism of bursting through front-line orbital theory is explained for the first time. Amino-functionalized tetraferrocene-labeled probe DNA molecules are linked to RuMOFNSs by covalent amide bonds, acting as FL and ECL intensity switches. The target DNA, complementary to the probe DNA, triggers cyclic amplification of the target by nucleic acid exonuclease III (Exo III), repelling tetraferrocene reporter groups away from RuMOFNSs and inhibiting the electron transfer process and photoinduced electron transfer (PET) effect. These phenomena induce a double turn-on of FL and ECL signals with a high signal-to-noise ratio. The developed FL-ECL dual-mode sensing platform provides sensitive detection of the K-ras gene with detection limits of 0.01 fM (the detection range is 1 fM to 1 nM) and 0.003 fM (the detection range is 0.01 fM to 10 pM), respectively. In addition, the proposed dual-mode sensor can be easily extended to detect other disease-related biomarkers by changing the specific target and probe base sequences, depicting potential applications in bioanalysis and early disease diagnosis.
Collapse
Affiliation(s)
- Longshua Qin
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi, 330004, China
| | - Ting Huang
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi, 330004, China
| | - Hanfeng Cui
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi, 330004, China
| | - Mengqing Cheng
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi, 330004, China
| | - Guobing Wei
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi, 330004, China
| | - Fusheng Liao
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi, 330004, China
| | - Wei Xiong
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi, 330004, China
| | - Hedong Jiang
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi, 330004, China
| | - Jing Zhang
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi, 330004, China.
| | - Hao Fan
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi, 330004, China.
| |
Collapse
|
23
|
Ma G, Peng L, Zhang S, Wu K, Deng A, Li J. Electrochemiluminescence immunoassay strategies based on a hexagonal Ru-MOF and MoS 2@GO nanosheets: detection of 5-fluorouracil in serum samples. Analyst 2023; 148:1694-1702. [PMID: 36916172 DOI: 10.1039/d3an00190c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Herein, a competitive-type electrochemiluminescence immunosensor for ultrasensitive detection of 5-fluorouracil (5-FU) was fabricated. Ruthenium(II)-metal-organic framework (Ru-MOF) nanosheets were selected to act a promising ECL luminophore using tris(4,4'-dicarboxylic acid-2,2'-bipyridyl) ruthenium(II) dichloride (Ru(dcbpy)32+) as the organic ligand. The two-dimensional (2D) Ru-MOF nanosheets achieved an increased loading of Ru(dcbpy)32+ and effectively prevented leakage of the ECL emitter during application, which exhibited satisfactory ECL performance. Thin two-dimensional MoS2@GO was used to modify the electrode as the sensing platform for improving the electron transfer rate and loading more 5-FU coating antigens due to its large specific surface area and piezoelectric catalytic efficiency. Under the optimized conditions, the proposed immunosensor presented high sensitivity, a wide detection range (0.0001 ng-100 ng mL-1), a low limit of detection (0.031 pg mL-1, S/N = 3), good specificity and stability. Furthermore, the immunosensor was successfully applied for the detection of 5-FU in human serum samples with satisfactory results, proving this strategy has potential applications in bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Guoyu Ma
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Lu Peng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - SunXiaoYi Zhang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Kang Wu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, P.R. China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
24
|
Ji G, Zhu W, Jia X, Ji S, Han D, Gao Z, Liu H, Wang Y, Han T. AuNP/Cu-TCPP(Fe) metal-organic framework nanofilm: a paper-based electrochemical sensor for non-invasive detection of lactate in sweat. NANOSCALE 2023; 15:5023-5035. [PMID: 36790132 DOI: 10.1039/d2nr06342e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Effective and real-time detection of lactate (LA) content in human sweat has attracted considerable attention from researchers. In this work, a novel electrochemical paper-based analysis device (ePAD) was developed for the non-invasive detection of LA in sweat. The electrocatalytic properties of AuNP/Cu-TCPP(Fe) hybrid nanosheets, which were prepared by an optimised synthetic method, were studied by CV and EIS electrochemical methods for the first time and the working electrode can be fabricated using a drip coating method. The lactate sensor was optimised and validated for usability, adoptability and interpretability. To the best of our knowledge, this was the fastest, lowest detection line and widest linear range method reported to date for the detection of lactate. It achieved the detection limit of 0.91 pM and a linear range from 0.013 nM to 100 mM. The dual catalytic effects of the hybrid NSs shortened the detection time by nearly two times and enhanced the sensitivity approximately two times, an accuracy unmatched until now. Furthermore, this sensor was employed for LA analysis and validated by high performance liquid chromatography (HPLC). The ePAD shows superior biocompatibility, accuracy, and high sensitivity and can be easily manufactured. Hence, it is applicable for the long-term monitoring of sweat LA concentrations in point-of-care testing, athletic testing of athletes and military personnel and other subjects in different extreme environments.
Collapse
Affiliation(s)
- Guangna Ji
- School of Public Health Lanzhou University, Lanzhou 730000, P. R. China.
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China.
| | - Wenyan Zhu
- School of Public Health Lanzhou University, Lanzhou 730000, P. R. China.
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China.
| | - Xuexia Jia
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China.
| | - Shuaifeng Ji
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China.
| | - Dianpeng Han
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China.
| | - Zhixian Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China.
| | - Hui Liu
- School of Public Health Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yu Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China.
| | - Tie Han
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, P. R. China.
| |
Collapse
|
25
|
Yan X, Zhao Y, Cao G, Li X, Gao C, Liu L, Ahmed S, Altaf F, Tan H, Ma X, Xie Z, Zhang H. 2D Organic Materials: Status and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203889. [PMID: 36683257 PMCID: PMC9982583 DOI: 10.1002/advs.202203889] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/31/2022] [Indexed: 06/17/2023]
Abstract
In the past few decades, 2D layer materials have gradually become a central focus in materials science owing to their uniquely layered structural qualities and good optoelectronic properties. However, in the development of 2D materials, several disadvantages, such as limited types of materials and the inability to synthesize large-scale materials, severely confine their application. Therefore, further exploration of new materials and preparation methods is necessary to meet technological developmental needs. Organic molecular materials have the advantage of being customizable. Therefore, if organic molecular and 2D materials are combined, the resulting 2D organic materials would have excellent optical and electrical properties. In addition, through this combination, the free design and large-scale synthesis of 2D materials can be realized in principle. Furthermore, 2D organic materials exhibit excellent properties and unique functionalities along with great potential for developing sensors, biomedicine, and electronics. In this review, 2D organic materials are divided into five categories. The preparation methods and material properties of each class of materials are also described in detail. Notably, to comprehensively understand each material's advantages, the latest research applications for each material are presented in detail and summarized. Finally, the future development and application prospects of 2D organic materials are briefly discussed.
Collapse
Affiliation(s)
- Xiaobing Yan
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Ying Zhao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Gang Cao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Xiaoyu Li
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Chao Gao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Luan Liu
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Shakeel Ahmed
- Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Faizah Altaf
- Department of ChemistryWomen University Bagh Azad KashmirBagh Azad KashmirBagh12500Pakistan
- School of Materials Science and EngineeringGeorgia Institute of Technology North AvenueAtlantaGA30332USA
| | - Hui Tan
- Department of RespiratoryShenzhen Children's HospitalShenzhen518036P. R. China
| | - Xiaopeng Ma
- Department of RespiratoryShenzhen Children's HospitalShenzhen518036P. R. China
| | - Zhongjian Xie
- Institute of PediatricsShenzhen Children's HospitalShenzhenGuangdong518038P. R. China
- Shenzhen International Institute for Biomedical ResearchShenzhenGuangdong518116China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
26
|
Effect of divalent cations on electrochemiluminescence of metal-organic frameworks in bioassay. Anal Chim Acta 2023; 1239:340659. [PMID: 36628752 DOI: 10.1016/j.aca.2022.340659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
The structural characteristics of electrochemiluminescent (ECL) microreticula enabled flexible designs for probing specific molecules. However, bioanalysts paid little attention to the impact of concomitant electrolytic carriers on ECL responsiveness of these grids. Our previous finding confirmed the collisional quenching of ECL radiative secondary building units from polarized Br- and I-. To further address this concern, herein typical cationic commonplaces including Na+, K+, Ca2+, … in buffer plus regular transition metals - their influences upon the ECL performance of a well-defined zinc porphyrin-organic framework (ZnPOF) were inspected in a one-by-one manner. Except for Na+/K+, a dozen of divalent metal chlorides exerted an adverse effect in the form of Stern-Volmer quenching on the ECL brightness, which was illuminated to be cation channeling in open voids of ZnPOFs and bonding with O2-reactive sites as exemplified by the model Ca2+ via systematic compositional investigation. Following this principle, a simplistic Ca2+-sensitive sensor was developed for quantitative evaluation of health-care calcium supplements with high precision. Above all, this work highlighted the non-negligible interference from those Mn + requisites to the susceptible MOF-based ECL, which should be paid extra attention in bioassays and mechanistic analyses.
Collapse
|
27
|
Ghosh A, Fathima Thanutty Kallungal S, Ramaprabhu S. 2D Metal-Organic Frameworks: Properties, Synthesis, and Applications in Electrochemical and Optical Biosensors. BIOSENSORS 2023; 13:123. [PMID: 36671958 PMCID: PMC9855741 DOI: 10.3390/bios13010123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) nanomaterials like graphene, layered double hydroxides, etc., have received increasing attention owing to their unique properties imparted by their 2D structure. The newest member in this family is based on metal-organic frameworks (MOFs), which have been long known for their exceptional physicochemical properties-high surface area, tunable pore size, catalytic properties, etc., to list a few. 2D MOFs are promising materials for various applications as they combine the exciting properties of 2D materials and MOFs. Recently, they have been extensively used in biosensors by virtue of their enormous surface area and abundant, accessible active sites. In this review, we provide a synopsis of the recent progress in the field of 2D MOFs for sensor applications. Initially, the properties and synthesis techniques of 2D MOFs are briefly outlined with examples. Further, electrochemical and optical biosensors based on 2D MOFs are summarized, and the associated challenges are outlined.
Collapse
Affiliation(s)
| | | | - Sundara Ramaprabhu
- Alternative Energy and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
28
|
Li B, Huang X, Lu Y, Fan Z, Li B, Jiang D, Sojic N, Liu B. High Electrochemiluminescence from Ru(bpy) 3 2+ Embedded Metal-Organic Frameworks to Visualize Single Molecule Movement at the Cellular Membrane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204715. [PMID: 36328787 PMCID: PMC9762315 DOI: 10.1002/advs.202204715] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Indexed: 05/04/2023]
Abstract
Direct imaging of single-molecule and its movement is of fundamental importance in biology, but challenging. Herein, aided by the nanoconfinement effect and resultant high reaction activity within metal-organic frameworks (MOFs), the designed Ru(bpy)3 2+ embedded MOF complex (RuMOFs) exhibits bright electrochemiluminescence (ECL) emission permitting high-quality imaging of ECL events at single molecule level. By labeling individual proteins of living cells with single RuMOFs, the distribution of membrane tyrosine-protein-kinase-like7 (PTK7) proteins at low-expressing cells is imaged via ECL. More importantly, the efficient capture of ECL photons generated inside the MOFs results in a stable ECL emission up to 1 h, allowing the in operando visualization of protein movements at the cellular membrane. As compared with the fluorescence observation, near-zero ECL background surrounding the target protein with the ECL emitter gives a better contrast for the dynamic imaging of discrete protein movement. This achievement of single molecule ECL dynamic imaging using RuMOFs will provide a more effective nanoemitter to observe the distribution and motion of individual proteins at living cells.
Collapse
Affiliation(s)
- Binxiao Li
- Department of ChemistryShanghai Stomatological HospitalState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| | - Xuedong Huang
- Department of ChemistryShanghai Stomatological HospitalState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| | - Yanwei Lu
- Department of ChemistryShanghai Stomatological HospitalState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| | - Zihui Fan
- Department of ChemistryShanghai Stomatological HospitalState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| | - Bin Li
- Department of ChemistryShanghai Stomatological HospitalState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210093China
| | - Neso Sojic
- Bordeaux INPInstitute of Molecular Science (ISM), and CNRS UMR 5255University of BordeauxPessac33607France
| | - Baohong Liu
- Department of ChemistryShanghai Stomatological HospitalState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| |
Collapse
|
29
|
Feng S, Xue Y, Huang J, Yang X. Ferrocene-Functionalized Covalent Organic Frameworks and Target Catalyzed Hairpin Assembly Strategy for Amplified Electrochemical Determination of MicroRNAs. Anal Chem 2022; 94:16945-16952. [DOI: 10.1021/acs.analchem.2c04482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Sinuo Feng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Xue
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
30
|
Controlled synthesis of zinc-metal organic framework microflower with high efficiency electrochemiluminescence for miR-21 detection. Biosens Bioelectron 2022; 213:114443. [DOI: 10.1016/j.bios.2022.114443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023]
|
31
|
Wu S, Zou S, Wang S, Li Z, Ma DL, Miao X. CTnI diagnosis in myocardial infarction using G-quadruplex selective Ir(Ⅲ) complex as effective electrochemiluminescence probe. Talanta 2022; 248:123622. [DOI: 10.1016/j.talanta.2022.123622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
|
32
|
Zhang Y, Zhu H, Ying Z, Gao X, Chen W, Zhan Y, Feng L, Liu CC, Dai Y. Design and Application of Metal Organic Framework ZIF-90-ZnO-MoS 2 Nanohybrid for an Integrated Electrochemical Liquid Biopsy. NANO LETTERS 2022; 22:6833-6840. [PMID: 35819288 DOI: 10.1021/acs.nanolett.2c01613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Limited healthcare capacity highlights the needs of integrated sensing systems for personalized health-monitoring. However, only limited sensors can be employed for point-of-care applications, emphasizing the lack of a generalizable sensing platform. Here, we report a metal organic framework (MOF) ZIF-90-ZnO-MoS2 nanohybrid-based integrated electrochemical liquid biopsy (ELB) platform capable of direct profiling cancer exosomes from blood. Using a bottom-up approach for sensor design, a series of critical sensing functions is considered and encoded into the MOF material interface by programming the material with different chemical and structural features. The MOF-based ELB platform is able to achieve one-step sensor fabrication, target isolation, nonfouling and high-sensitivity sensing, direct signal transduction, and multiplexed detection. We demonstrated the capability of the designed sensing system on differentiating cancerous groups from healthy controls by analyzing clinical samples from lung cancer patients, providing a generalizable sensing platform.
Collapse
Affiliation(s)
- Yuan Zhang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Hao Zhu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Zi Ying
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Wei Chen
- Department of Emergency, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yueping Zhan
- Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Chung Chiun Liu
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Yifan Dai
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
33
|
Yang G, Zhang Y, Zhao J, He Y, Yuan R, Chen S. Dual-emitting Iridium nanorods combining dual-regulating coreaction accelerator Ag nanoparticles for electrochemiluminescence ratio determination of amyloid-β oligomers. Biosens Bioelectron 2022; 216:114629. [PMID: 36001932 DOI: 10.1016/j.bios.2022.114629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022]
Abstract
Iridium(III) complexes have been developed as eminent electrochemiluminescence (ECL) luminophores, but their current applications are only limited to anodic ECL emission because of weak cathodic ECL emission. This work explored poly(styrene-co-maleicanhydride) (PSMA) as functional reagent to modulate iridium(III) complexes to simultaneously emit bipolar ECL signals. The prepared iridium(III) nanorods (Ir NRs) were detected strong bipolar ECL emissions at +0.9 V and -2.0 V with N,N-diisopropylethylenediamine (DPEA) and persulfate (S2O82-) as coreactant, respectively. Meanwhile, Ag nanoparticles (Ag NPs) were developed as dual-regulating coreaction accelerator to boost the bipolar emissions of Ir NRs simultaneously. The dual-emitting Ir NRs coupled with dual-regulating coreaction accelerator Ag NPs facilitated the construction of mono-luminophore-based ECL ratio strategy for detecting amyloid-β oligomers (AβO). When the target AβO appeared, the Mg2+-dependent DNAzyme-powered biped walkers were unlocked to cleave single-stranded S1 immobilized on the surface of magnetic beads (MBs), resulting in the production of massive single-stranded ST. Then, the output ST cleaved hairpin H1 captured by Ir NRs modified electrode to produce numerous single strands, which could initiate the hybridization chain reaction (HCR) between Ag NPs-labeled H2 and Ag NPs-labeled H3 to introduce abundant Ag NPs onto the electrode surface. Due to the enhancement effect of Ag NPs on the bipolar ECL emissions from Ir NRs, the ECL ratio detection of AβO was achieved with the detection limit of 0.62 pM. The unique dual-emitting properties of Ir NRs coupled with dual-regulating effect of Ag NPs provided an interesting mono-luminophore-based ECL ratio sensing platform for biological analysis.
Collapse
Affiliation(s)
- Guomin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yuanyuan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jinwen Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ying He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
34
|
Electrochemiluminescence resonance energy transfer system between ruthenium-based nanosheets and CdS quantum dots for detection of chlorogenic acid. Mikrochim Acta 2022; 189:323. [PMID: 35933502 DOI: 10.1007/s00604-022-05428-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/22/2022] [Indexed: 10/15/2022]
Abstract
A new strategy is proposed for ultrasensitive detection of chlorogenic acid (CGA) by fabricating an electrochemiluminescence resonance energy transfer (ECL-RET) sensing platform. The novel system designed by introducing ruthenium-based 2D metal-organic framework nanosheets (Ru@Zn-MOF) as ECL acceptor and L-cysteine capped CdS quantum dots (L-CdS QDs) as ECL donor, exhibited good ECL response. The possible mechanism of the modified electrode surface reaction was discussed. Modifying of the electrode surface by application of L-CdS QDs directly on ultrathin MOF nanosheets greatly shortened the electron-transfer distance and reduce energy loss, therefore significantly improving the ECL efficiency. The prepared sensor demonstrated good stability and highly selective detection of the target molecule. Under optimal conditions, the constructed sensor for the detection of CGA exhibited a wide linear range from 1.0 × 10-10 to 1.0 × 10-4 mol·L-1 and a low detection limit of 3.2 × 10-11 mol·L-1 with a correction coefficient of 0.995. The recovery for spiked samples was calculated to be 94.4-109% and the RSD was 1.07-1.72% in real samples. The obtained sensor is considered to be a promising platform for CGA detection. Electrochemiluminescence resonance energy transfer (ECL-RET) sensing platform is used for the detection for chlorogenic acid.
Collapse
|
35
|
Li C, Yang J, Xu R, Wang H, Zhang Y, Wei Q. Progress and Prospects of Electrochemiluminescence Biosensors Based on Porous Nanomaterials. BIOSENSORS 2022; 12:508. [PMID: 35884311 PMCID: PMC9313272 DOI: 10.3390/bios12070508] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Porous nanomaterials have attracted much attention in the field of electrochemiluminescence (ECL) analysis research because of their large specific surface area, high porosity, possession of multiple functional groups, and ease of modification. Porous nanomaterials can not only serve as good carriers for loading ECL luminophores to prepare nanomaterials with excellent luminescence properties, but they also have a good electrical conductivity to facilitate charge transfer and substance exchange between electrode surfaces and solutions. In particular, some porous nanomaterials with special functional groups or centered on metals even possess excellent catalytic properties that can enhance the ECL response of the system. ECL composites prepared based on porous nanomaterials have a wide range of applications in the field of ECL biosensors due to their extraordinary ECL response. In this paper, we reviewed recent research advances in various porous nanomaterials commonly used to fabricate ECL biosensors, such as ordered mesoporous silica (OMS), metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and metal-polydopamine frameworks (MPFs). Their applications in the detection of heavy metal ions, small molecules, proteins and nucleic acids are also summarized. The challenges and prospects of constructing ECL biosensors based on porous nanomaterials are further discussed. We hope that this review will provide the reader with a comprehensive understanding of the development of porous nanomaterial-based ECL systems in analytical biosensors and materials science.
Collapse
Affiliation(s)
- Chenchen Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming 650500, China
| | - Jinghui Yang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming 650500, China
| | - Rui Xu
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming 650500, China
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yong Zhang
- Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming 650500, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
36
|
Li J, Jia H, Ren X, Li Y, Liu L, Feng R, Ma H, Wei Q. Dumbbell Plate-Shaped AIEgen-Based Luminescent MOF with High Quantum Yield as Self-Enhanced ECL Tags: Mechanism Insights and Biosensing Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106567. [PMID: 35156302 DOI: 10.1002/smll.202106567] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/10/2022] [Indexed: 06/14/2023]
Abstract
It is widely known that high-performance electrochemiluminescence (ECL) emitters play a crucial part in improving the detection sensitivity of the ECL strategy. Through the combination of aggregation-induced emission luminogens (AIEgens), 1,1,2,2-tetra(4-carboxylbiphenyl)ethylene (H4 TCBPE) with Zr(IV) cations, a dumbbell plate-shaped metal-organic framework (MOF) with high luminous efficiency is synthesized as ECL tags. The resultant MOF exhibits stronger ECL activity than those of H4 TCBPE monomers and aggregates. Herein, this phenomenon is defined as the coordination-triggered electrochemiluminescence (CT-ECL) enhancement effect. Furthermore, the nearly matched ECL and photoluminescence (PL) spectra imply the bandgap emission mechanism. Remarkably, polyethyleneimine (PEI) as the coreactant is covalently connected with MOF to form the uniquely self-enhanced ECL complex of Zr-TCBPE-PEI, where the robust ECL signal is captured owing to the intramolecular-like coreaction acceleration. Based on the resonance energy transfer (RET) behavior, the AuPd@SiO2 composite is designed as the high-efficiency quencher. In this manner, an innovative and ultrasensitive ECL sensor is constructed for neuron-specific enolase (NSE) detection through sandwich-type immunoreaction, with the detection limit down to 52 fg ml-1 . The present study has gone some way toward designing MOF-based self-luminescent ECL materials, thus paving a new avenue to expand the late-model ECL emitters for immunoassay.
Collapse
Affiliation(s)
- Jingshuai Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Hongying Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Yuyang Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Lei Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Ruiqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, China
| |
Collapse
|
37
|
Zhao Y, Zhang X, Gao Y, Chen Z, Li Z, Ma T, Wu Z, Wang L, Feng S. Heterostructure of RuO 2 -RuP 2 /Ru Derived from HMT-based Coordination Polymers as Superior pH-Universal Electrocatalyst for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105168. [PMID: 35038219 DOI: 10.1002/smll.202105168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Searching for Pt-like activity, stable and economic electrocatalysts that can function at various pH values for the hydrogen evolution reaction (HER) is under increasing interest for the scientific community as H2 is a very promising energy carrier with great potential development value for renewable energy conversion. Herein, a unique self-supported heterostructure of RuO2 -RuP2 /Ru on the N, P co-doped carbon matrix (Ru-HMT-MP-7) is demonstrated, which is derived from HMT-based coordination polymers as superior pH-universal electrocatalysts. In the strategy, pyrolysis and phosphating processes are simultaneously proceeded that can produce the unique heterostructure containing three phases of RuO2 , RuP2, and Ru, at the same time the generated RuO2 -RuP2 /Ru can be highly dispersed on the self-assembly N, P co-doped carbon substrates. The resulting heterostructure Ru-HMT-MP-7 exhibits excellent activity superior to that of benchmark Pt/C with low overpotentials at 10 mA cm-2 (33 mV for 1.0 M KOH, 29 mV for 0.5 M H2 SO4 and 86 mV for 1.0 M PBS) and long-term electrocatalysis durability toward HER at various pH values. The rational construction strategy paves a novel avenue for obtaining superior pH-universal catalysts for electrochemical energy storage and conversion.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Xiaoyin Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, 266042, P. R. China
| | - Yuxiao Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Zhi Chen
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Zhenjiang Li
- College of Materials Science and Engineering, College of Electromechanical Engineering, Key Laboratory of Polymer Material Advanced Manufacturing's Technology of Shandong Province, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266061, P. R. China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC, 3122, Australia
| | - Zexing Wu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Shouhua Feng
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| |
Collapse
|
38
|
Chen F, Tang Q, Ma T, Zhu B, Wang L, He C, Luo X, Cao S, Ma L, Cheng C. Structures, properties, and challenges of emerging
2D
materials in bioelectronics and biosensors. INFOMAT 2022. [DOI: 10.1002/inf2.12299] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Qing Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Bihui Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Liyun Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Sujiao Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
- Department of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| |
Collapse
|
39
|
Huang Z, Yu S, Jian M, Weng Z, Deng H, Peng H, Chen W. Ultrasensitive Glutathione-Mediated Facile Split-Type Electrochemiluminescence Nanoswitch Sensing Platform. Anal Chem 2022; 94:2341-2347. [PMID: 35049295 DOI: 10.1021/acs.analchem.1c05198] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Seeking for an advanced electrochemiluminescence (ECL) platform is still an active and continuous theme in the ECL-sensing realm. This work outlines a femtomolar-level and highly selective glutathione (GSH) and adenosine triphosphate (ATP) ECL assay strategy using a facile split-type gold nanocluster (AuNC) probe-based ECL platform. The system utilizes GSH as an efficient etching agent to turn on the MnO2/AuNC-based ECL nanoswitch platform. This method successfully achieves an ultrasensitive detection of GSH, which significantly outperformed other sensors. Based on the above excellent results, GSH-related biological assays have been further established by taking ATP as a model. Combined with the high catalytic oxidation ability of DNAzyme, this ECL sensor can realize ATP assay as low as 1.4 fmol without other complicated exonuclease amplification strategies. Thus, we successfully achieved an ultrahigh sensitivity, extremely wide dynamic range, great simplicity, and strong anti-interference detection of ATP. In addition, the actual sample detection for GSH and ATP exhibits satisfactory results. We believe that our proposed high-performance platform will provide more possibilities for the detection of other GSH-related substances and show great prospect in disease diagnosis and biochemical research.
Collapse
Affiliation(s)
- Zhongnan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Sunxing Yu
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
| | - Meili Jian
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Zhimin Weng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Haohua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Huaping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
40
|
Jin H, Ye D, Shen L, Fu R, Tang Y, Jung JCY, Zhao H, Zhang J. Perspective for Single Atom Nanozymes Based Sensors: Advanced Materials, Sensing Mechanism, Selectivity Regulation, and Applications. Anal Chem 2022; 94:1499-1509. [PMID: 35014271 DOI: 10.1021/acs.analchem.1c04496] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanozymes are a kind of nanomaterial mimicking enzyme catalytic activity, which has aroused extensive interest in the fields of biosensors, biomedicine, and climate and ecosystems management. However, due to the complexity of structures and composition of nanozymes, atomic scale active centers have been extensively investigated, which helps with in-depth understanding of the nature of the biocatalysis. Single atom nanozymes (SANs) cannot only significantly enhance the activity of nanozymes but also effectively improve the selectivity of nanozymes owing to the characteristics of simple and adjustable coordination environment and have been becoming the brightest star in the nanozyme spectrum. The SANs based sensors have also been widely investigated due to their definite structural features, which can be helpful to study the catalytic mechanism and provide ways to improve catalytic activity. This perspective presents a comprehensive understanding on the advances and challenges on SANs based sensors. The catalytic mechanisms of SANs and then the sensing application from the perspectives of sensing technology and sensor construction are thoroughly analyzed. Finally, the major challenges, potential future research directions, and prospects for further research on SANs based sensors are also proposed.
Collapse
Affiliation(s)
- Huan Jin
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Daixin Ye
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Lihua Shen
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ruixue Fu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ya Tang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Joey Chung-Yen Jung
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Hongbin Zhao
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
41
|
Dynamic nano-assemblies based on two-dimensional inorganic nanoparticles: Construction and preclinical demonstration. Adv Drug Deliv Rev 2022; 180:114031. [PMID: 34736985 DOI: 10.1016/j.addr.2021.114031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022]
Abstract
Dynamic drug delivery systems (DDSs) have the ability of transforming their morphology and functionality in response to the biological microenvironments at the disease site and/or external stimuli, show spatio-temporally controllable drug delivery, and enhance the treatment efficacy. Due to the large surface area and modification flexibility, two-dimensional (2D) inorganic nanomaterials are being increasingly exploited for developing intelligent DDSs for biomedical applications. In this review, we summarize the engineering methodologies used to construct transformable 2D DDSs, including changing compositions, creating defects, and surface dot-coating with polymers, biomolecules, or nanodots. Then we present and discuss dynamic inorganic 2D DDSs whose transformation is driven by the diseased characteristics, such as pH gradient, redox, hypoxia, and enzyme in the tumor microenvironment as well as the external stimuli including light, magnetism, and ultrasound. Finally, the limitations and challenges of current transformable inorganic DDSs for clinical translation and their in vivo safety assessment are discussed.
Collapse
|
42
|
Xiong H, Huang Z, Lin Q, Yang B, Yan F, Liu B, Chen H, Kong J. Surface Plasmon Coupling Electrochemiluminescence Immunosensor Based on Polymer Dots and AuNPs for Ultrasensitive Detection of Pancreatic Cancer Exosomes. Anal Chem 2021; 94:837-846. [PMID: 34914878 DOI: 10.1021/acs.analchem.1c03535] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polymer dots (Pdots) have become attractive electrochemiluminescence (ECL) luminophores due to their facile synthesis, easy modification, and stable electrochemical and optical properties. However, their ECL efficiency is not high enough for practical applications. In this work, we proposed an ECL immunosensor based on localized surface plasmon resonance (LSPR) between AuNPs and Pdots for the determination of pancreatic cancer exosomes. Based on the finite-difference time-domain simulations and the band energy of Pdots and AuNPs, we proposed the possible LSPR mechanism. The hot electrons of plasmonic AuNPs were photoexcited to surface plasmon states by ECL emission of Pdots, and then the excited hot electrons were transferred to the conduction band of Pdots, which significantly improved the ECL efficiency of Pdots. The ECL immunosensor displayed a wide calibration range of 1.0 × 103 to 1.0 × 106 particles/mL with a detection limit of 400 particles/mL. Cancer-related protein profiling revealed high selectivity toward different expressions of exosomal surface proteins from PANC-01, HeLa, MCF-7, and HPDE6-C7 cell lines. The proposed ECL system exhibits a promising prospect for protein biomarker profiling and early cancer-related diagnosis.
Collapse
Affiliation(s)
- Huiwen Xiong
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China
| | - Zhipeng Huang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China
| | - Qiuyuan Lin
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China
| | - Bin Yang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China
| | - Feng Yan
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P. R. China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China
| | - Hui Chen
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China
| | - Jilie Kong
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China
| |
Collapse
|
43
|
Han T, Cao Y, Chen HY, Zhu JJ. Versatile porous nanomaterials for electrochemiluminescence biosensing: Recent advances and future perspective. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Du X, Su X, Zhang W, Yi S, Zhang G, Jiang S, Li H, Li S, Xia F. Progress, Opportunities, and Challenges of Troponin Analysis in the Early Diagnosis of Cardiovascular Diseases. Anal Chem 2021; 94:442-463. [PMID: 34843218 DOI: 10.1021/acs.analchem.1c04476] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuewei Du
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xujie Su
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wanxue Zhang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Suyan Yi
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ge Zhang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shan Jiang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shaoguang Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
45
|
Gholami MD, O'Mullane AP, Sonar P, Ayoko GA, Izake EL. Antibody coated conductive polymer for the electrochemical immunosensing of Human Cardiac Troponin I in blood plasma. Anal Chim Acta 2021; 1185:339082. [PMID: 34711328 DOI: 10.1016/j.aca.2021.339082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/05/2023]
Abstract
Cardiac troponin I (cTnI) is a sensitive biomarker for cardiovascular disease (CVD). Rapid determination of cTnI concentration in blood can greatly reduce the potential of significant heart damage and heart failure. Herein, we demonstrate a new electrochemical immunosensor for selective affinity binding and rapid detection of cTnI in blood plasma by an electrochemical method. A conductive film of "poly 2,5-bis(2-thienyl)3,4-diamine-terthiophene (PDATT)" was deposited onto an Indium Tin Oxide (ITO) electrode using chronoamperometry. Anti-cardiac troponin I antibody was then attached to the two amine (NH2) groups substituted on the central thiophene of terthiophene repeating unit of the polymer chain via amide bond formation. The gaps on the surface of the antibody coated immunosensor were backfilled with bovine serum albumin (BSA) to prevent nonspecific binding of interfering molecules. Differential pulse voltammetry (DPV) was used to determine cTnI upon the formation of cTnI immunocomplex on the sensing surface, appearing a peak at 0.27 V. The response range was 0.01-100 ng mL-1 with limit of quantification down to 0.01 ng mL-1. The developed immunosensor was used to determine cTnI in spiked blood plasma without interference from cardiac troponin T (cTnT). Therefore, this new sensor can be utilised for the detection of cTnI biomarker in pathological laboratories and points of care in less than 15 min.
Collapse
Affiliation(s)
- Mahnaz D Gholami
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia; Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia.
| | - Prashant Sonar
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia; Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Godwin A Ayoko
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia; Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Emad L Izake
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia; Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
46
|
Mi X, Li H, Tan R, Feng B, Tu Y. The TDs/aptamer cTnI biosensors based on HCR and Au/Ti 3C 2-MXene amplification for screening serious patient in COVID-19 pandemic. Biosens Bioelectron 2021; 192:113482. [PMID: 34256261 PMCID: PMC8258042 DOI: 10.1016/j.bios.2021.113482] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/26/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
The accurate assay of cardiac troponin I (cTnI) is very important for acute myocardial infarction (AMI), it also can be employed as an effective index for screening serious patients in COVID-19 pandemic before fatal heart injury to reduce the mortality. A ratiometric sensing strategy was proposed based on electrochemiluminescent (ECL) signal of doxorubicin (Dox)-luminol or the electrochemical (EC) signal of methylene blue (MB) vs. referable EC signal of Dox. The bio-recognitive Tro4-aptamer ensures the high specificity of the sensor by affinity binding to catch cTnI, and the tetrahedral DNA (TDs) on Au/Ti3C2-MXene built an excellent sensing matrix. An in situ hybrid chain reaction (HCR) amplification greatly improved the sensitivity. The ratiometric sensing responses ECLDox-luminol/CurrentDox or CurrentMB/CurrentDox linearly regressed to cTnI concentration in the range of 0.1 fM-1 pM or 0.1 fM-500 fM with the limit of detection (LOD) as 0.04 fM or 0.1 fM, respectively. Served as the reference signal, CurrentDox reflected the variation of sensor, it is very effective to ensure the accuracy of detection to obviate the false results. The proposed biosensors show good specificity, sensitivity, reproducibility and stability, have been applied to determine cTnI in real samples with satisfactory results. They are worth looking forward to be used for screening serious patient of COVID-19 to reduce the mortality, especially in mobile cabin hospital.
Collapse
Affiliation(s)
- Xiaona Mi
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, PR China
| | - Hui Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, PR China
| | - Rong Tan
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, PR China
| | - Bainian Feng
- School of Pharmaceutical Sciences, Jiangnan University, 214122, PR China
| | - Yifeng Tu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
47
|
Lv X, Bi M, Xu X, Li Y, Geng C, Cui B, Fang Y. An ultrasensitive ratiometric immunosensor based on the ratios of conjugated distyrylbenzene derivative nanosheets with AIECL properties and electrochemical signal for CYFRA21-1 detection. Anal Bioanal Chem 2021; 414:1389-1402. [PMID: 34741181 DOI: 10.1007/s00216-021-03764-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/04/2023]
Abstract
Aggregation-induced electrochemiluminescence reagent, a distyrylbenzene derivative with donor-acceptor conjugated nanosheet structure, namely TPAPCN, was used as a trace label and modified on the electrode through the formation of classical sandwich complex of antibody-antigen-antibody in this work. In aggregate state, TPAPCN with twisted structure was limited in nanometer space through intermolecular π - π stacking interactions, which not only restricts the intramolecular motions but also combines a large number of singlet excitons to greatly trigger electrochemiluminescence (ECL). The ECL signal of this system enhanced with more captured cytokeratin 19 fragment 21-1 (CYFRA21-1) on the modified electrode. Three-dimensional graphene/platinum nanoparticles with large specific surface, and excellent electroconductivity and biocompatibility were prepared and acted as excellent carriers for thionine handling (3D-GN/PtNPs/Th), which was employed for improving the loading of antibodies and generating internal electrochemical signal. Consequently, a novel ratiometric sandwich immunosensor for CYFRA21-1 detection was fabricated based on TPAPCN and 3D-GN/PtNPs/Th, that is, a rapid and reliable detection was achieved through the ratio between ECL and electrochemical signals. The prepared sensor performed good linearity in the range of 50 fg/mL to 1 ng/mL with a detection limit as low as 16 fg/mL. Moreover, the detection results revealed well in the analysis of human serum samples, demonstrating a significant application for clinical monitoring and biomolecules detection.
Collapse
Affiliation(s)
- Xiaoyi Lv
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China
| | - Mengmeng Bi
- Juye County People's Hospital, Heze, 274900, Shandong, People's Republic of China
| | - Xiaoyun Xu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China
| | - Yanping Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China
| | - Chao Geng
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China.
| |
Collapse
|
48
|
Feng J, Yao T, Chu C, Ma Z, Han H. Proton-responsive annunciator based on i-motif DNA structure modified metal organic frameworks for ameliorative construction of electrochemical immunosensing interface. J Colloid Interface Sci 2021; 608:2050-2057. [PMID: 34749152 DOI: 10.1016/j.jcis.2021.10.139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 01/25/2023]
Abstract
Reformative exploitation for metal organic frameworks (MOFs) has been a topic subject in electrochemical sensing, in which the loading of electroactive species is always introduced to enable them to generate electrochemical signal. However, insulation shielding of MOFs and flimsy combination method interfere with the signal readout of electroactive dyes when they are co-immobilized on electrode surface, indicating that an amelioration is imperatively proposed to solve these issues. Herein, a proton-activated annunciator for responsive release of methylene blue (MB) based on i-motif DNA structure modified UIO-66-NH2 was presented to design electrochemical immunosensor (Squamous cell carcinoma antigen was used as the model analyte). With the catalysis of a ZIF-8 immunoprobe contained glucose oxidase (GOx) to glucose in test tube, protons are produced in ambient solution and then they can be used as the key to unlock the i-motif functionalized UIO-66-NH2, releasing the loaded MB molecules to be readout on an improved electrode. This stimuli-responsive mode not merely eliminates the insulation effect of MOFs but also provides a firm loading method for electroactive dyes. Under the optimal conditions, the proposed immunoassay for SCCA had displayed excellent performance with a wide linear range from 1 µg mL-1 to 1 pg mL-1 and an ultralow detection limit of 1.504 fg mL-1 (S/N = 3) under the optimal conditions.
Collapse
Affiliation(s)
- Jiejie Feng
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Tao Yao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Changshun Chu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
49
|
Liu C, Qie Y, Zhao L, Li M, Guo LH. A High-Throughput Platform for the Rapid Quantification of Phosphorylated Histone H2AX in Cell Lysates Based on Microplate Electrochemiluminescence Immunosensor Array. ACS Sens 2021; 6:3724-3732. [PMID: 34591450 DOI: 10.1021/acssensors.1c01502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sensitive detection of phosphorylated histone H2AX (γH2AX) in cells as a biomarker of DNA double-strand breaks has great significance in the field of molecular toxicology and life science research. However, current γH2AX detection methods require labor- and time-consuming steps. Here, for the first time, we designed a simple electrochemiluminescence (ECL) immunoassay integrated with a microplate-based sensor array to realize sensitive and high-throughput detection of γH2AX in cell lysates. Under the optimized conditions, this ECL immunosensor array could linearly respond to γH2AX concentrations in the range from 2 × 102 to 1 × 105 pg/mL. In addition, our approach possessed excellent specificity and satisfactory reproducibility, and its practicality was verified in real cell lysates. The whole process including instrumental and manual operation was completed in no more than 3 h. This study provides a convenient and rapid alternative method for the sensitive quantification of γH2AX, which shows promising application in high-throughput screening of genotoxic chemicals and drug candidates.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People’s Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yu Qie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People’s Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People’s Republic of China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310007, P. R. China
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, People’s Republic of China
| | - Liang-Hong Guo
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, People’s Republic of China
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, Zhejiang, People’s Republic of China
| |
Collapse
|
50
|
Cen SY, Ge XY, Chen Y, Wang AJ, Feng JJ. Label-free electrochemical immunosensor for ultrasensitive determination of cardiac troponin I based on porous fluffy-like AuPtPd trimetallic alloyed nanodendrites. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|